1 //===-- llvm/Target/TargetMachine.h - Target Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TargetMachine and LLVMTargetMachine classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TARGET_TARGETMACHINE_H
14 #define LLVM_TARGET_TARGETMACHINE_H
15 
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Support/CodeGen.h"
22 #include "llvm/Support/Error.h"
23 #include "llvm/Support/PGOOptions.h"
24 #include "llvm/Target/CGPassBuilderOption.h"
25 #include "llvm/Target/TargetOptions.h"
26 #include <string>
27 #include <utility>
28 
29 namespace llvm {
30 
31 class AAManager;
32 using ModulePassManager = PassManager<Module>;
33 
34 class Function;
35 class GlobalValue;
36 class MachineFunctionPassManager;
37 class MachineFunctionAnalysisManager;
38 class MachineModuleInfoWrapperPass;
39 class Mangler;
40 class MCAsmInfo;
41 class MCContext;
42 class MCInstrInfo;
43 class MCRegisterInfo;
44 class MCStreamer;
45 class MCSubtargetInfo;
46 class MCSymbol;
47 class raw_pwrite_stream;
48 class PassBuilder;
49 class PassManagerBuilder;
50 struct PerFunctionMIParsingState;
51 class SMDiagnostic;
52 class SMRange;
53 class Target;
54 class TargetIntrinsicInfo;
55 class TargetIRAnalysis;
56 class TargetTransformInfo;
57 class TargetLoweringObjectFile;
58 class TargetPassConfig;
59 class TargetSubtargetInfo;
60 
61 // The old pass manager infrastructure is hidden in a legacy namespace now.
62 namespace legacy {
63 class PassManagerBase;
64 }
65 using legacy::PassManagerBase;
66 
67 namespace yaml {
68 struct MachineFunctionInfo;
69 }
70 
71 //===----------------------------------------------------------------------===//
72 ///
73 /// Primary interface to the complete machine description for the target
74 /// machine.  All target-specific information should be accessible through this
75 /// interface.
76 ///
77 class TargetMachine {
78 protected: // Can only create subclasses.
79   TargetMachine(const Target &T, StringRef DataLayoutString,
80                 const Triple &TargetTriple, StringRef CPU, StringRef FS,
81                 const TargetOptions &Options);
82 
83   /// The Target that this machine was created for.
84   const Target &TheTarget;
85 
86   /// DataLayout for the target: keep ABI type size and alignment.
87   ///
88   /// The DataLayout is created based on the string representation provided
89   /// during construction. It is kept here only to avoid reparsing the string
90   /// but should not really be used during compilation, because it has an
91   /// internal cache that is context specific.
92   const DataLayout DL;
93 
94   /// Triple string, CPU name, and target feature strings the TargetMachine
95   /// instance is created with.
96   Triple TargetTriple;
97   std::string TargetCPU;
98   std::string TargetFS;
99 
100   Reloc::Model RM = Reloc::Static;
101   CodeModel::Model CMModel = CodeModel::Small;
102   CodeGenOpt::Level OptLevel = CodeGenOpt::Default;
103 
104   /// Contains target specific asm information.
105   std::unique_ptr<const MCAsmInfo> AsmInfo;
106   std::unique_ptr<const MCRegisterInfo> MRI;
107   std::unique_ptr<const MCInstrInfo> MII;
108   std::unique_ptr<const MCSubtargetInfo> STI;
109 
110   unsigned RequireStructuredCFG : 1;
111   unsigned O0WantsFastISel : 1;
112 
113   // PGO related tunables.
114   Optional<PGOOptions> PGOOption = None;
115 
116 public:
117   const TargetOptions DefaultOptions;
118   mutable TargetOptions Options;
119 
120   TargetMachine(const TargetMachine &) = delete;
121   void operator=(const TargetMachine &) = delete;
122   virtual ~TargetMachine();
123 
124   const Target &getTarget() const { return TheTarget; }
125 
126   const Triple &getTargetTriple() const { return TargetTriple; }
127   StringRef getTargetCPU() const { return TargetCPU; }
128   StringRef getTargetFeatureString() const { return TargetFS; }
129   void setTargetFeatureString(StringRef FS) { TargetFS = std::string(FS); }
130 
131   /// Virtual method implemented by subclasses that returns a reference to that
132   /// target's TargetSubtargetInfo-derived member variable.
133   virtual const TargetSubtargetInfo *getSubtargetImpl(const Function &) const {
134     return nullptr;
135   }
136   virtual TargetLoweringObjectFile *getObjFileLowering() const {
137     return nullptr;
138   }
139 
140   /// Allocate and return a default initialized instance of the YAML
141   /// representation for the MachineFunctionInfo.
142   virtual yaml::MachineFunctionInfo *createDefaultFuncInfoYAML() const {
143     return nullptr;
144   }
145 
146   /// Allocate and initialize an instance of the YAML representation of the
147   /// MachineFunctionInfo.
148   virtual yaml::MachineFunctionInfo *
149   convertFuncInfoToYAML(const MachineFunction &MF) const {
150     return nullptr;
151   }
152 
153   /// Parse out the target's MachineFunctionInfo from the YAML reprsentation.
154   virtual bool parseMachineFunctionInfo(const yaml::MachineFunctionInfo &,
155                                         PerFunctionMIParsingState &PFS,
156                                         SMDiagnostic &Error,
157                                         SMRange &SourceRange) const {
158     return false;
159   }
160 
161   /// This method returns a pointer to the specified type of
162   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
163   /// returned is of the correct type.
164   template <typename STC> const STC &getSubtarget(const Function &F) const {
165     return *static_cast<const STC*>(getSubtargetImpl(F));
166   }
167 
168   /// Create a DataLayout.
169   const DataLayout createDataLayout() const { return DL; }
170 
171   /// Test if a DataLayout if compatible with the CodeGen for this target.
172   ///
173   /// The LLVM Module owns a DataLayout that is used for the target independent
174   /// optimizations and code generation. This hook provides a target specific
175   /// check on the validity of this DataLayout.
176   bool isCompatibleDataLayout(const DataLayout &Candidate) const {
177     return DL == Candidate;
178   }
179 
180   /// Get the pointer size for this target.
181   ///
182   /// This is the only time the DataLayout in the TargetMachine is used.
183   unsigned getPointerSize(unsigned AS) const {
184     return DL.getPointerSize(AS);
185   }
186 
187   unsigned getPointerSizeInBits(unsigned AS) const {
188     return DL.getPointerSizeInBits(AS);
189   }
190 
191   unsigned getProgramPointerSize() const {
192     return DL.getPointerSize(DL.getProgramAddressSpace());
193   }
194 
195   unsigned getAllocaPointerSize() const {
196     return DL.getPointerSize(DL.getAllocaAddrSpace());
197   }
198 
199   /// Reset the target options based on the function's attributes.
200   // FIXME: Remove TargetOptions that affect per-function code generation
201   // from TargetMachine.
202   void resetTargetOptions(const Function &F) const;
203 
204   /// Return target specific asm information.
205   const MCAsmInfo *getMCAsmInfo() const { return AsmInfo.get(); }
206 
207   const MCRegisterInfo *getMCRegisterInfo() const { return MRI.get(); }
208   const MCInstrInfo *getMCInstrInfo() const { return MII.get(); }
209   const MCSubtargetInfo *getMCSubtargetInfo() const { return STI.get(); }
210 
211   /// If intrinsic information is available, return it.  If not, return null.
212   virtual const TargetIntrinsicInfo *getIntrinsicInfo() const {
213     return nullptr;
214   }
215 
216   bool requiresStructuredCFG() const { return RequireStructuredCFG; }
217   void setRequiresStructuredCFG(bool Value) { RequireStructuredCFG = Value; }
218 
219   /// Returns the code generation relocation model. The choices are static, PIC,
220   /// and dynamic-no-pic, and target default.
221   Reloc::Model getRelocationModel() const;
222 
223   /// Returns the code model. The choices are small, kernel, medium, large, and
224   /// target default.
225   CodeModel::Model getCodeModel() const { return CMModel; }
226 
227   /// Set the code model.
228   void setCodeModel(CodeModel::Model CM) { CMModel = CM; }
229 
230   bool isPositionIndependent() const;
231 
232   bool shouldAssumeDSOLocal(const Module &M, const GlobalValue *GV) const;
233 
234   /// Returns true if this target uses emulated TLS.
235   bool useEmulatedTLS() const;
236 
237   /// Returns the TLS model which should be used for the given global variable.
238   TLSModel::Model getTLSModel(const GlobalValue *GV) const;
239 
240   /// Returns the optimization level: None, Less, Default, or Aggressive.
241   CodeGenOpt::Level getOptLevel() const;
242 
243   /// Overrides the optimization level.
244   void setOptLevel(CodeGenOpt::Level Level);
245 
246   void setFastISel(bool Enable) { Options.EnableFastISel = Enable; }
247   bool getO0WantsFastISel() { return O0WantsFastISel; }
248   void setO0WantsFastISel(bool Enable) { O0WantsFastISel = Enable; }
249   void setGlobalISel(bool Enable) { Options.EnableGlobalISel = Enable; }
250   void setGlobalISelAbort(GlobalISelAbortMode Mode) {
251     Options.GlobalISelAbort = Mode;
252   }
253   void setMachineOutliner(bool Enable) {
254     Options.EnableMachineOutliner = Enable;
255   }
256   void setSupportsDefaultOutlining(bool Enable) {
257     Options.SupportsDefaultOutlining = Enable;
258   }
259   void setSupportsDebugEntryValues(bool Enable) {
260     Options.SupportsDebugEntryValues = Enable;
261   }
262 
263   void setCFIFixup(bool Enable) { Options.EnableCFIFixup = Enable; }
264 
265   bool getAIXExtendedAltivecABI() const {
266     return Options.EnableAIXExtendedAltivecABI;
267   }
268 
269   bool getUniqueSectionNames() const { return Options.UniqueSectionNames; }
270 
271   /// Return true if unique basic block section names must be generated.
272   bool getUniqueBasicBlockSectionNames() const {
273     return Options.UniqueBasicBlockSectionNames;
274   }
275 
276   /// Return true if data objects should be emitted into their own section,
277   /// corresponds to -fdata-sections.
278   bool getDataSections() const {
279     return Options.DataSections;
280   }
281 
282   /// Return true if functions should be emitted into their own section,
283   /// corresponding to -ffunction-sections.
284   bool getFunctionSections() const {
285     return Options.FunctionSections;
286   }
287 
288   /// Return true if visibility attribute should not be emitted in XCOFF,
289   /// corresponding to -mignore-xcoff-visibility.
290   bool getIgnoreXCOFFVisibility() const {
291     return Options.IgnoreXCOFFVisibility;
292   }
293 
294   /// Return true if XCOFF traceback table should be emitted,
295   /// corresponding to -xcoff-traceback-table.
296   bool getXCOFFTracebackTable() const { return Options.XCOFFTracebackTable; }
297 
298   /// If basic blocks should be emitted into their own section,
299   /// corresponding to -fbasic-block-sections.
300   llvm::BasicBlockSection getBBSectionsType() const {
301     return Options.BBSections;
302   }
303 
304   /// Get the list of functions and basic block ids that need unique sections.
305   const MemoryBuffer *getBBSectionsFuncListBuf() const {
306     return Options.BBSectionsFuncListBuf.get();
307   }
308 
309   /// Returns true if a cast between SrcAS and DestAS is a noop.
310   virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const {
311     return false;
312   }
313 
314   void setPGOOption(Optional<PGOOptions> PGOOpt) { PGOOption = PGOOpt; }
315   const Optional<PGOOptions> &getPGOOption() const { return PGOOption; }
316 
317   /// If the specified generic pointer could be assumed as a pointer to a
318   /// specific address space, return that address space.
319   ///
320   /// Under offloading programming, the offloading target may be passed with
321   /// values only prepared on the host side and could assume certain
322   /// properties.
323   virtual unsigned getAssumedAddrSpace(const Value *V) const { return -1; }
324 
325   /// If the specified predicate checks whether a generic pointer falls within
326   /// a specified address space, return that generic pointer and the address
327   /// space being queried.
328   ///
329   /// Such predicates could be specified in @llvm.assume intrinsics for the
330   /// optimizer to assume that the given generic pointer always falls within
331   /// the address space based on that predicate.
332   virtual std::pair<const Value *, unsigned>
333   getPredicatedAddrSpace(const Value *V) const {
334     return std::make_pair(nullptr, -1);
335   }
336 
337   /// Get a \c TargetIRAnalysis appropriate for the target.
338   ///
339   /// This is used to construct the new pass manager's target IR analysis pass,
340   /// set up appropriately for this target machine. Even the old pass manager
341   /// uses this to answer queries about the IR.
342   TargetIRAnalysis getTargetIRAnalysis() const;
343 
344   /// Return a TargetTransformInfo for a given function.
345   ///
346   /// The returned TargetTransformInfo is specialized to the subtarget
347   /// corresponding to \p F.
348   virtual TargetTransformInfo getTargetTransformInfo(const Function &F) const;
349 
350   /// Allow the target to modify the pass manager, e.g. by calling
351   /// PassManagerBuilder::addExtension.
352   virtual void adjustPassManager(PassManagerBuilder &) {}
353 
354   /// Allow the target to modify the pass pipeline with New Pass Manager
355   /// (similar to adjustPassManager for Legacy Pass manager).
356   virtual void registerPassBuilderCallbacks(PassBuilder &) {}
357 
358   /// Allow the target to register alias analyses with the AAManager for use
359   /// with the new pass manager. Only affects the "default" AAManager.
360   virtual void registerDefaultAliasAnalyses(AAManager &) {}
361 
362   /// Add passes to the specified pass manager to get the specified file
363   /// emitted.  Typically this will involve several steps of code generation.
364   /// This method should return true if emission of this file type is not
365   /// supported, or false on success.
366   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
367   /// will be used to set the MachineModuloInfo for this PM.
368   virtual bool
369   addPassesToEmitFile(PassManagerBase &, raw_pwrite_stream &,
370                       raw_pwrite_stream *, CodeGenFileType,
371                       bool /*DisableVerify*/ = true,
372                       MachineModuleInfoWrapperPass *MMIWP = nullptr) {
373     return true;
374   }
375 
376   /// Add passes to the specified pass manager to get machine code emitted with
377   /// the MCJIT. This method returns true if machine code is not supported. It
378   /// fills the MCContext Ctx pointer which can be used to build custom
379   /// MCStreamer.
380   ///
381   virtual bool addPassesToEmitMC(PassManagerBase &, MCContext *&,
382                                  raw_pwrite_stream &,
383                                  bool /*DisableVerify*/ = true) {
384     return true;
385   }
386 
387   /// True if subtarget inserts the final scheduling pass on its own.
388   ///
389   /// Branch relaxation, which must happen after block placement, can
390   /// on some targets (e.g. SystemZ) expose additional post-RA
391   /// scheduling opportunities.
392   virtual bool targetSchedulesPostRAScheduling() const { return false; };
393 
394   void getNameWithPrefix(SmallVectorImpl<char> &Name, const GlobalValue *GV,
395                          Mangler &Mang, bool MayAlwaysUsePrivate = false) const;
396   MCSymbol *getSymbol(const GlobalValue *GV) const;
397 
398   /// The integer bit size to use for SjLj based exception handling.
399   static constexpr unsigned DefaultSjLjDataSize = 32;
400   virtual unsigned getSjLjDataSize() const { return DefaultSjLjDataSize; }
401 
402   static std::pair<int, int> parseBinutilsVersion(StringRef Version);
403 
404   /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
405   /// (e.g. stack) the target returns the corresponding address space.
406   virtual unsigned getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
407     return 0;
408   }
409 };
410 
411 /// This class describes a target machine that is implemented with the LLVM
412 /// target-independent code generator.
413 ///
414 class LLVMTargetMachine : public TargetMachine {
415 protected: // Can only create subclasses.
416   LLVMTargetMachine(const Target &T, StringRef DataLayoutString,
417                     const Triple &TT, StringRef CPU, StringRef FS,
418                     const TargetOptions &Options, Reloc::Model RM,
419                     CodeModel::Model CM, CodeGenOpt::Level OL);
420 
421   void initAsmInfo();
422 
423 public:
424   /// Get a TargetTransformInfo implementation for the target.
425   ///
426   /// The TTI returned uses the common code generator to answer queries about
427   /// the IR.
428   TargetTransformInfo getTargetTransformInfo(const Function &F) const override;
429 
430   /// Create a pass configuration object to be used by addPassToEmitX methods
431   /// for generating a pipeline of CodeGen passes.
432   virtual TargetPassConfig *createPassConfig(PassManagerBase &PM);
433 
434   /// Add passes to the specified pass manager to get the specified file
435   /// emitted.  Typically this will involve several steps of code generation.
436   /// \p MMIWP is an optional parameter that, if set to non-nullptr,
437   /// will be used to set the MachineModuloInfo for this PM.
438   bool
439   addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
440                       raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
441                       bool DisableVerify = true,
442                       MachineModuleInfoWrapperPass *MMIWP = nullptr) override;
443 
444   virtual Error buildCodeGenPipeline(ModulePassManager &,
445                                      MachineFunctionPassManager &,
446                                      MachineFunctionAnalysisManager &,
447                                      raw_pwrite_stream &, raw_pwrite_stream *,
448                                      CodeGenFileType, CGPassBuilderOption,
449                                      PassInstrumentationCallbacks *) {
450     return make_error<StringError>("buildCodeGenPipeline is not overriden",
451                                    inconvertibleErrorCode());
452   }
453 
454   virtual std::pair<StringRef, bool> getPassNameFromLegacyName(StringRef) {
455     llvm_unreachable(
456         "getPassNameFromLegacyName parseMIRPipeline is not overriden");
457   }
458 
459   /// Add passes to the specified pass manager to get machine code emitted with
460   /// the MCJIT. This method returns true if machine code is not supported. It
461   /// fills the MCContext Ctx pointer which can be used to build custom
462   /// MCStreamer.
463   bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
464                          raw_pwrite_stream &Out,
465                          bool DisableVerify = true) override;
466 
467   /// Returns true if the target is expected to pass all machine verifier
468   /// checks. This is a stopgap measure to fix targets one by one. We will
469   /// remove this at some point and always enable the verifier when
470   /// EXPENSIVE_CHECKS is enabled.
471   virtual bool isMachineVerifierClean() const { return true; }
472 
473   /// Adds an AsmPrinter pass to the pipeline that prints assembly or
474   /// machine code from the MI representation.
475   bool addAsmPrinter(PassManagerBase &PM, raw_pwrite_stream &Out,
476                      raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
477                      MCContext &Context);
478 
479   Expected<std::unique_ptr<MCStreamer>>
480   createMCStreamer(raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
481                    CodeGenFileType FileType, MCContext &Ctx);
482 
483   /// True if the target uses physical regs (as nearly all targets do). False
484   /// for stack machines such as WebAssembly and other virtual-register
485   /// machines. If true, all vregs must be allocated before PEI. If false, then
486   /// callee-save register spilling and scavenging are not needed or used. If
487   /// false, implicitly defined registers will still be assumed to be physical
488   /// registers, except that variadic defs will be allocated vregs.
489   virtual bool usesPhysRegsForValues() const { return true; }
490 
491   /// True if the target wants to use interprocedural register allocation by
492   /// default. The -enable-ipra flag can be used to override this.
493   virtual bool useIPRA() const {
494     return false;
495   }
496 
497   /// The default variant to use in unqualified `asm` instructions.
498   /// If this returns 0, `asm "$(foo$|bar$)"` will evaluate to `asm "foo"`.
499   virtual int unqualifiedInlineAsmVariant() const { return 0; }
500 };
501 
502 /// Helper method for getting the code model, returning Default if
503 /// CM does not have a value. The tiny and kernel models will produce
504 /// an error, so targets that support them or require more complex codemodel
505 /// selection logic should implement and call their own getEffectiveCodeModel.
506 inline CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
507                                               CodeModel::Model Default) {
508   if (CM) {
509     // By default, targets do not support the tiny and kernel models.
510     if (*CM == CodeModel::Tiny)
511       report_fatal_error("Target does not support the tiny CodeModel", false);
512     if (*CM == CodeModel::Kernel)
513       report_fatal_error("Target does not support the kernel CodeModel", false);
514     return *CM;
515   }
516   return Default;
517 }
518 
519 } // end namespace llvm
520 
521 #endif // LLVM_TARGET_TARGETMACHINE_H
522