1 //===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines various functions that are used to clone chunks of LLVM
10 // code for various purposes.  This varies from copying whole modules into new
11 // modules, to cloning functions with different arguments, to inlining
12 // functions, to copying basic blocks to support loop unrolling or superblock
13 // formation, etc.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18 #define LLVM_TRANSFORMS_UTILS_CLONING_H
19 
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/InlineCost.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Transforms/Utils/ValueMapper.h"
26 #include <functional>
27 #include <memory>
28 #include <vector>
29 
30 namespace llvm {
31 
32 class AAResults;
33 class AllocaInst;
34 class BasicBlock;
35 class BlockFrequencyInfo;
36 class CallGraph;
37 class DebugInfoFinder;
38 class DominatorTree;
39 class Function;
40 class Instruction;
41 class Loop;
42 class LoopInfo;
43 class Module;
44 class ProfileSummaryInfo;
45 class ReturnInst;
46 class DomTreeUpdater;
47 
48 /// Return an exact copy of the specified module
49 std::unique_ptr<Module> CloneModule(const Module &M);
50 std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
51 
52 /// Return a copy of the specified module. The ShouldCloneDefinition function
53 /// controls whether a specific GlobalValue's definition is cloned. If the
54 /// function returns false, the module copy will contain an external reference
55 /// in place of the global definition.
56 std::unique_ptr<Module>
57 CloneModule(const Module &M, ValueToValueMapTy &VMap,
58             function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
59 
60 /// This struct can be used to capture information about code
61 /// being cloned, while it is being cloned.
62 struct ClonedCodeInfo {
63   /// This is set to true if the cloned code contains a normal call instruction.
64   bool ContainsCalls = false;
65 
66   /// This is set to true if there is memprof related metadata (memprof or
67   /// callsite metadata) in the cloned code.
68   bool ContainsMemProfMetadata = false;
69 
70   /// This is set to true if the cloned code contains a 'dynamic' alloca.
71   /// Dynamic allocas are allocas that are either not in the entry block or they
72   /// are in the entry block but are not a constant size.
73   bool ContainsDynamicAllocas = false;
74 
75   /// All cloned call sites that have operand bundles attached are appended to
76   /// this vector.  This vector may contain nulls or undefs if some of the
77   /// originally inserted callsites were DCE'ed after they were cloned.
78   std::vector<WeakTrackingVH> OperandBundleCallSites;
79 
80   /// Like VMap, but maps only unsimplified instructions. Values in the map
81   /// may be dangling, it is only intended to be used via isSimplified(), to
82   /// check whether the main VMap mapping involves simplification or not.
83   DenseMap<const Value *, const Value *> OrigVMap;
84 
85   ClonedCodeInfo() = default;
86 
87   bool isSimplified(const Value *From, const Value *To) const {
88     return OrigVMap.lookup(From) != To;
89   }
90 };
91 
92 /// Return a copy of the specified basic block, but without
93 /// embedding the block into a particular function.  The block returned is an
94 /// exact copy of the specified basic block, without any remapping having been
95 /// performed.  Because of this, this is only suitable for applications where
96 /// the basic block will be inserted into the same function that it was cloned
97 /// from (loop unrolling would use this, for example).
98 ///
99 /// Also, note that this function makes a direct copy of the basic block, and
100 /// can thus produce illegal LLVM code.  In particular, it will copy any PHI
101 /// nodes from the original block, even though there are no predecessors for the
102 /// newly cloned block (thus, phi nodes will have to be updated).  Also, this
103 /// block will branch to the old successors of the original block: these
104 /// successors will have to have any PHI nodes updated to account for the new
105 /// incoming edges.
106 ///
107 /// The correlation between instructions in the source and result basic blocks
108 /// is recorded in the VMap map.
109 ///
110 /// If you have a particular suffix you'd like to use to add to any cloned
111 /// names, specify it as the optional third parameter.
112 ///
113 /// If you would like the basic block to be auto-inserted into the end of a
114 /// function, you can specify it as the optional fourth parameter.
115 ///
116 /// If you would like to collect additional information about the cloned
117 /// function, you can specify a ClonedCodeInfo object with the optional fifth
118 /// parameter.
119 BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
120                             const Twine &NameSuffix = "", Function *F = nullptr,
121                             ClonedCodeInfo *CodeInfo = nullptr,
122                             DebugInfoFinder *DIFinder = nullptr);
123 
124 /// Return a copy of the specified function and add it to that
125 /// function's module.  Also, any references specified in the VMap are changed
126 /// to refer to their mapped value instead of the original one.  If any of the
127 /// arguments to the function are in the VMap, the arguments are deleted from
128 /// the resultant function.  The VMap is updated to include mappings from all of
129 /// the instructions and basicblocks in the function from their old to new
130 /// values.  The final argument captures information about the cloned code if
131 /// non-null.
132 ///
133 /// \pre VMap contains no non-identity GlobalValue mappings.
134 ///
135 Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
136                         ClonedCodeInfo *CodeInfo = nullptr);
137 
138 enum class CloneFunctionChangeType {
139   LocalChangesOnly,
140   GlobalChanges,
141   DifferentModule,
142   ClonedModule,
143 };
144 
145 /// Clone OldFunc into NewFunc, transforming the old arguments into references
146 /// to VMap values.  Note that if NewFunc already has basic blocks, the ones
147 /// cloned into it will be added to the end of the function.  This function
148 /// fills in a list of return instructions, and can optionally remap types
149 /// and/or append the specified suffix to all values cloned.
150 ///
151 /// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is
152 /// required to contain no non-identity GlobalValue mappings. Otherwise,
153 /// referenced metadata will be cloned.
154 ///
155 /// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule
156 /// indicating cloning into the same module (even if it's LocalChangesOnly), if
157 /// debug info metadata transitively references a \a DISubprogram, it will be
158 /// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing
159 /// cloning of types and compile units.
160 ///
161 /// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new
162 /// module's \c !llvm.dbg.cu will get updated with any newly created compile
163 /// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the
164 /// caller.)
165 ///
166 /// FIXME: Consider simplifying this function by splitting out \a
167 /// CloneFunctionMetadataInto() and expecting / updating callers to call it
168 /// first when / how it's needed.
169 void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
170                        ValueToValueMapTy &VMap, CloneFunctionChangeType Changes,
171                        SmallVectorImpl<ReturnInst *> &Returns,
172                        const char *NameSuffix = "",
173                        ClonedCodeInfo *CodeInfo = nullptr,
174                        ValueMapTypeRemapper *TypeMapper = nullptr,
175                        ValueMaterializer *Materializer = nullptr);
176 
177 void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
178                                const Instruction *StartingInst,
179                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
180                                SmallVectorImpl<ReturnInst *> &Returns,
181                                const char *NameSuffix = "",
182                                ClonedCodeInfo *CodeInfo = nullptr);
183 
184 /// This works exactly like CloneFunctionInto,
185 /// except that it does some simple constant prop and DCE on the fly.  The
186 /// effect of this is to copy significantly less code in cases where (for
187 /// example) a function call with constant arguments is inlined, and those
188 /// constant arguments cause a significant amount of code in the callee to be
189 /// dead.  Since this doesn't produce an exactly copy of the input, it can't be
190 /// used for things like CloneFunction or CloneModule.
191 ///
192 /// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
193 /// mappings.
194 ///
195 void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
196                                ValueToValueMapTy &VMap, bool ModuleLevelChanges,
197                                SmallVectorImpl<ReturnInst*> &Returns,
198                                const char *NameSuffix = "",
199                                ClonedCodeInfo *CodeInfo = nullptr);
200 
201 /// This class captures the data input to the InlineFunction call, and records
202 /// the auxiliary results produced by it.
203 class InlineFunctionInfo {
204 public:
205   explicit InlineFunctionInfo(
206       CallGraph *cg = nullptr,
207       function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr,
208       ProfileSummaryInfo *PSI = nullptr,
209       BlockFrequencyInfo *CallerBFI = nullptr,
210       BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true)
211       : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
212         CallerBFI(CallerBFI), CalleeBFI(CalleeBFI),
213         UpdateProfile(UpdateProfile) {}
214 
215   /// If non-null, InlineFunction will update the callgraph to reflect the
216   /// changes it makes.
217   CallGraph *CG;
218   function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
219   ProfileSummaryInfo *PSI;
220   BlockFrequencyInfo *CallerBFI, *CalleeBFI;
221 
222   /// InlineFunction fills this in with all static allocas that get copied into
223   /// the caller.
224   SmallVector<AllocaInst *, 4> StaticAllocas;
225 
226   /// InlineFunction fills this in with callsites that were inlined from the
227   /// callee. This is only filled in if CG is non-null.
228   SmallVector<WeakTrackingVH, 8> InlinedCalls;
229 
230   /// All of the new call sites inlined into the caller.
231   ///
232   /// 'InlineFunction' fills this in by scanning the inlined instructions, and
233   /// only if CG is null. If CG is non-null, instead the value handle
234   /// `InlinedCalls` above is used.
235   SmallVector<CallBase *, 8> InlinedCallSites;
236 
237   /// Update profile for callee as well as cloned version. We need to do this
238   /// for regular inlining, but not for inlining from sample profile loader.
239   bool UpdateProfile;
240 
241   void reset() {
242     StaticAllocas.clear();
243     InlinedCalls.clear();
244     InlinedCallSites.clear();
245   }
246 };
247 
248 /// This function inlines the called function into the basic
249 /// block of the caller.  This returns false if it is not possible to inline
250 /// this call.  The program is still in a well defined state if this occurs
251 /// though.
252 ///
253 /// Note that this only does one level of inlining.  For example, if the
254 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
255 /// exists in the instruction stream.  Similarly this will inline a recursive
256 /// function by one level.
257 ///
258 /// Note that while this routine is allowed to cleanup and optimize the
259 /// *inlined* code to minimize the actual inserted code, it must not delete
260 /// code in the caller as users of this routine may have pointers to
261 /// instructions in the caller that need to remain stable.
262 ///
263 /// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
264 /// and all varargs at the callsite will be passed to any calls to
265 /// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
266 /// are only used by ForwardVarArgsTo.
267 ///
268 /// The callee's function attributes are merged into the callers' if
269 /// MergeAttributes is set to true.
270 InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
271                             bool MergeAttributes = false,
272                             AAResults *CalleeAAR = nullptr,
273                             bool InsertLifetime = true,
274                             Function *ForwardVarArgsTo = nullptr);
275 
276 /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
277 /// Blocks.
278 ///
279 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
280 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
281 /// Note: Only innermost loops are supported.
282 Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
283                              Loop *OrigLoop, ValueToValueMapTy &VMap,
284                              const Twine &NameSuffix, LoopInfo *LI,
285                              DominatorTree *DT,
286                              SmallVectorImpl<BasicBlock *> &Blocks);
287 
288 /// Remaps instructions in \p Blocks using the mapping in \p VMap.
289 void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
290                                ValueToValueMapTy &VMap);
291 
292 /// Split edge between BB and PredBB and duplicate all non-Phi instructions
293 /// from BB between its beginning and the StopAt instruction into the split
294 /// block. Phi nodes are not duplicated, but their uses are handled correctly:
295 /// we replace them with the uses of corresponding Phi inputs. ValueMapping
296 /// is used to map the original instructions from BB to their newly-created
297 /// copies. Returns the split block.
298 BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
299                                                 BasicBlock *PredBB,
300                                                 Instruction *StopAt,
301                                                 ValueToValueMapTy &ValueMapping,
302                                                 DomTreeUpdater &DTU);
303 
304 /// Updates profile information by adjusting the entry count by adding
305 /// EntryDelta then scaling callsite information by the new count divided by the
306 /// old count. VMap is used during inlinng to also update the new clone
307 void updateProfileCallee(
308     Function *Callee, int64_t EntryDelta,
309     const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
310 
311 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
312 /// basic blocks and extract their scope. These are candidates for duplication
313 /// when cloning.
314 void identifyNoAliasScopesToClone(
315     ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
316 
317 /// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
318 /// instruction range and extract their scope. These are candidates for
319 /// duplication when cloning.
320 void identifyNoAliasScopesToClone(
321     BasicBlock::iterator Start, BasicBlock::iterator End,
322     SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
323 
324 /// Duplicate the specified list of noalias decl scopes.
325 /// The 'Ext' string is added as an extension to the name.
326 /// Afterwards, the ClonedScopes contains the mapping of the original scope
327 /// MDNode onto the cloned scope.
328 /// Be aware that the cloned scopes are still part of the original scope domain.
329 void cloneNoAliasScopes(
330     ArrayRef<MDNode *> NoAliasDeclScopes,
331     DenseMap<MDNode *, MDNode *> &ClonedScopes,
332     StringRef Ext, LLVMContext &Context);
333 
334 /// Adapt the metadata for the specified instruction according to the
335 /// provided mapping. This is normally used after cloning an instruction, when
336 /// some noalias scopes needed to be cloned.
337 void adaptNoAliasScopes(
338     llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
339     LLVMContext &Context);
340 
341 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
342 /// NewBlocks basicblocks to the cloned versions.
343 /// 'Ext' will be added to the duplicate scope names.
344 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
345                                 ArrayRef<BasicBlock *> NewBlocks,
346                                 LLVMContext &Context, StringRef Ext);
347 
348 /// Clone the specified noalias decl scopes. Then adapt all instructions in the
349 /// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be
350 /// added to the duplicate scope names.
351 void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
352                                 Instruction *IStart, Instruction *IEnd,
353                                 LLVMContext &Context, StringRef Ext);
354 } // end namespace llvm
355 
356 #endif // LLVM_TRANSFORMS_UTILS_CLONING_H
357