1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform various local transformations to the
10 // program.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/TinyPtrVector.h"
21 #include "llvm/Analysis/Utils/Local.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/User.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
34 #include <cstdint>
35 #include <limits>
36 
37 namespace llvm {
38 
39 class AAResults;
40 class AllocaInst;
41 class AssumptionCache;
42 class BasicBlock;
43 class BranchInst;
44 class CallBase;
45 class CallInst;
46 class DbgDeclareInst;
47 class DbgVariableIntrinsic;
48 class DbgValueInst;
49 class DIBuilder;
50 class DomTreeUpdater;
51 class Function;
52 class Instruction;
53 class InvokeInst;
54 class LoadInst;
55 class MDNode;
56 class MemorySSAUpdater;
57 class PHINode;
58 class StoreInst;
59 class TargetLibraryInfo;
60 class TargetTransformInfo;
61 
62 //===----------------------------------------------------------------------===//
63 //  Local constant propagation.
64 //
65 
66 /// If a terminator instruction is predicated on a constant value, convert it
67 /// into an unconditional branch to the constant destination.
68 /// This is a nontrivial operation because the successors of this basic block
69 /// must have their PHI nodes updated.
70 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
71 /// conditions and indirectbr addresses this might make dead if
72 /// DeleteDeadConditions is true.
73 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
74                             const TargetLibraryInfo *TLI = nullptr,
75                             DomTreeUpdater *DTU = nullptr);
76 
77 //===----------------------------------------------------------------------===//
78 //  Local dead code elimination.
79 //
80 
81 /// Return true if the result produced by the instruction is not used, and the
82 /// instruction has no side effects.
83 bool isInstructionTriviallyDead(Instruction *I,
84                                 const TargetLibraryInfo *TLI = nullptr);
85 
86 /// Return true if the result produced by the instruction would have no side
87 /// effects if it was not used. This is equivalent to checking whether
88 /// isInstructionTriviallyDead would be true if the use count was 0.
89 bool wouldInstructionBeTriviallyDead(Instruction *I,
90                                      const TargetLibraryInfo *TLI = nullptr);
91 
92 /// If the specified value is a trivially dead instruction, delete it.
93 /// If that makes any of its operands trivially dead, delete them too,
94 /// recursively. Return true if any instructions were deleted.
95 bool RecursivelyDeleteTriviallyDeadInstructions(
96     Value *V, const TargetLibraryInfo *TLI = nullptr,
97     MemorySSAUpdater *MSSAU = nullptr,
98     std::function<void(Value *)> AboutToDeleteCallback =
99         std::function<void(Value *)>());
100 
101 /// Delete all of the instructions in `DeadInsts`, and all other instructions
102 /// that deleting these in turn causes to be trivially dead.
103 ///
104 /// The initial instructions in the provided vector must all have empty use
105 /// lists and satisfy `isInstructionTriviallyDead`.
106 ///
107 /// `DeadInsts` will be used as scratch storage for this routine and will be
108 /// empty afterward.
109 void RecursivelyDeleteTriviallyDeadInstructions(
110     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
111     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
112     std::function<void(Value *)> AboutToDeleteCallback =
113         std::function<void(Value *)>());
114 
115 /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow
116 /// instructions that are not trivially dead. These will be ignored.
117 /// Returns true if any changes were made, i.e. any instructions trivially dead
118 /// were found and deleted.
119 bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(
120     SmallVectorImpl<WeakTrackingVH> &DeadInsts,
121     const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
122     std::function<void(Value *)> AboutToDeleteCallback =
123         std::function<void(Value *)>());
124 
125 /// If the specified value is an effectively dead PHI node, due to being a
126 /// def-use chain of single-use nodes that either forms a cycle or is terminated
127 /// by a trivially dead instruction, delete it. If that makes any of its
128 /// operands trivially dead, delete them too, recursively. Return true if a
129 /// change was made.
130 bool RecursivelyDeleteDeadPHINode(PHINode *PN,
131                                   const TargetLibraryInfo *TLI = nullptr,
132                                   MemorySSAUpdater *MSSAU = nullptr);
133 
134 /// Scan the specified basic block and try to simplify any instructions in it
135 /// and recursively delete dead instructions.
136 ///
137 /// This returns true if it changed the code, note that it can delete
138 /// instructions in other blocks as well in this block.
139 bool SimplifyInstructionsInBlock(BasicBlock *BB,
140                                  const TargetLibraryInfo *TLI = nullptr);
141 
142 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
143 /// undef. This is useful for signaling that a variable, e.g. has been
144 /// found dead and hence it's unavailable at a given program point.
145 /// Returns true if the dbg values have been changed.
146 bool replaceDbgUsesWithUndef(Instruction *I);
147 
148 //===----------------------------------------------------------------------===//
149 //  Control Flow Graph Restructuring.
150 //
151 
152 /// BB is a block with one predecessor and its predecessor is known to have one
153 /// successor (BB!). Eliminate the edge between them, moving the instructions in
154 /// the predecessor into BB. This deletes the predecessor block.
155 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
156 
157 /// BB is known to contain an unconditional branch, and contains no instructions
158 /// other than PHI nodes, potential debug intrinsics and the branch. If
159 /// possible, eliminate BB by rewriting all the predecessors to branch to the
160 /// successor block and return true. If we can't transform, return false.
161 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
162                                              DomTreeUpdater *DTU = nullptr);
163 
164 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
165 /// to be clever about PHI nodes which differ only in the order of the incoming
166 /// values, but instcombine orders them so it usually won't matter.
167 bool EliminateDuplicatePHINodes(BasicBlock *BB);
168 
169 /// This function is used to do simplification of a CFG.  For example, it
170 /// adjusts branches to branches to eliminate the extra hop, it eliminates
171 /// unreachable basic blocks, and does other peephole optimization of the CFG.
172 /// It returns true if a modification was made, possibly deleting the basic
173 /// block that was pointed to. LoopHeaders is an optional input parameter
174 /// providing the set of loop headers that SimplifyCFG should not eliminate.
175 extern cl::opt<bool> RequireAndPreserveDomTree;
176 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
177                  DomTreeUpdater *DTU = nullptr,
178                  const SimplifyCFGOptions &Options = {},
179                  ArrayRef<WeakVH> LoopHeaders = {});
180 
181 /// This function is used to flatten a CFG. For example, it uses parallel-and
182 /// and parallel-or mode to collapse if-conditions and merge if-regions with
183 /// identical statements.
184 bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr);
185 
186 /// If this basic block is ONLY a setcc and a branch, and if a predecessor
187 /// branches to us and one of our successors, fold the setcc into the
188 /// predecessor and use logical operations to pick the right destination.
189 bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr,
190                             MemorySSAUpdater *MSSAU = nullptr,
191                             const TargetTransformInfo *TTI = nullptr,
192                             unsigned BonusInstThreshold = 1);
193 
194 /// This function takes a virtual register computed by an Instruction and
195 /// replaces it with a slot in the stack frame, allocated via alloca.
196 /// This allows the CFG to be changed around without fear of invalidating the
197 /// SSA information for the value. It returns the pointer to the alloca inserted
198 /// to create a stack slot for X.
199 AllocaInst *DemoteRegToStack(Instruction &X,
200                              bool VolatileLoads = false,
201                              Instruction *AllocaPoint = nullptr);
202 
203 /// This function takes a virtual register computed by a phi node and replaces
204 /// it with a slot in the stack frame, allocated via alloca. The phi node is
205 /// deleted and it returns the pointer to the alloca inserted.
206 AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
207 
208 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
209 /// the owning object can be modified and has an alignment less than \p
210 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
211 /// cannot be increased, the known alignment of the value is returned.
212 ///
213 /// It is not always possible to modify the alignment of the underlying object,
214 /// so if alignment is important, a more reliable approach is to simply align
215 /// all global variables and allocation instructions to their preferred
216 /// alignment from the beginning.
217 Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
218                                  const DataLayout &DL,
219                                  const Instruction *CxtI = nullptr,
220                                  AssumptionCache *AC = nullptr,
221                                  const DominatorTree *DT = nullptr);
222 
223 /// Try to infer an alignment for the specified pointer.
224 inline Align getKnownAlignment(Value *V, const DataLayout &DL,
225                                const Instruction *CxtI = nullptr,
226                                AssumptionCache *AC = nullptr,
227                                const DominatorTree *DT = nullptr) {
228   return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT);
229 }
230 
231 /// Create a call that matches the invoke \p II in terms of arguments,
232 /// attributes, debug information, etc. The call is not placed in a block and it
233 /// will not have a name. The invoke instruction is not removed, nor are the
234 /// uses replaced by the new call.
235 CallInst *createCallMatchingInvoke(InvokeInst *II);
236 
237 /// This function converts the specified invoek into a normall call.
238 void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
239 
240 ///===---------------------------------------------------------------------===//
241 ///  Dbg Intrinsic utilities
242 ///
243 
244 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
245 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
246 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
247                                      StoreInst *SI, DIBuilder &Builder);
248 
249 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
250 /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
251 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
252                                      LoadInst *LI, DIBuilder &Builder);
253 
254 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
255 /// llvm.dbg.declare or llvm.dbg.addr intrinsic.
256 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
257                                      PHINode *LI, DIBuilder &Builder);
258 
259 /// Lowers llvm.dbg.declare intrinsics into appropriate set of
260 /// llvm.dbg.value intrinsics.
261 bool LowerDbgDeclare(Function &F);
262 
263 /// Propagate dbg.value intrinsics through the newly inserted PHIs.
264 void insertDebugValuesForPHIs(BasicBlock *BB,
265                               SmallVectorImpl<PHINode *> &InsertedPHIs);
266 
267 /// Finds all intrinsics declaring local variables as living in the memory that
268 /// 'V' points to. This may include a mix of dbg.declare and
269 /// dbg.addr intrinsics.
270 TinyPtrVector<DbgVariableIntrinsic *> FindDbgAddrUses(Value *V);
271 
272 /// Like \c FindDbgAddrUses, but only returns dbg.declare intrinsics, not
273 /// dbg.addr.
274 TinyPtrVector<DbgDeclareInst *> FindDbgDeclareUses(Value *V);
275 
276 /// Finds the llvm.dbg.value intrinsics describing a value.
277 void findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V);
278 
279 /// Finds the debug info intrinsics describing a value.
280 void findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgInsts, Value *V);
281 
282 /// Replaces llvm.dbg.declare instruction when the address it
283 /// describes is replaced with a new value. If Deref is true, an
284 /// additional DW_OP_deref is prepended to the expression. If Offset
285 /// is non-zero, a constant displacement is added to the expression
286 /// (between the optional Deref operations). Offset can be negative.
287 bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder,
288                        uint8_t DIExprFlags, int Offset);
289 
290 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes
291 /// is replaced with a new value. If Offset is non-zero, a constant displacement
292 /// is added to the expression (after the mandatory Deref). Offset can be
293 /// negative. New llvm.dbg.value instructions are inserted at the locations of
294 /// the instructions they replace.
295 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
296                               DIBuilder &Builder, int Offset = 0);
297 
298 /// Assuming the instruction \p I is going to be deleted, attempt to salvage
299 /// debug users of \p I by writing the effect of \p I in a DIExpression. If it
300 /// cannot be salvaged changes its debug uses to undef.
301 void salvageDebugInfo(Instruction &I);
302 
303 
304 /// Implementation of salvageDebugInfo, applying only to instructions in
305 /// \p Insns, rather than all debug users from findDbgUsers( \p I).
306 /// Returns true if any debug users were updated.
307 /// Mark undef if salvaging cannot be completed.
308 void salvageDebugInfoForDbgValues(Instruction &I,
309                                   ArrayRef<DbgVariableIntrinsic *> Insns);
310 
311 /// Given an instruction \p I and DIExpression \p DIExpr operating on it, write
312 /// the effects of \p I into the returned DIExpression, or return nullptr if
313 /// it cannot be salvaged. \p StackVal: whether DW_OP_stack_value should be
314 /// appended to the expression.
315 DIExpression *salvageDebugInfoImpl(Instruction &I, DIExpression *DIExpr,
316                                    bool StackVal);
317 
318 /// Point debug users of \p From to \p To or salvage them. Use this function
319 /// only when replacing all uses of \p From with \p To, with a guarantee that
320 /// \p From is going to be deleted.
321 ///
322 /// Follow these rules to prevent use-before-def of \p To:
323 ///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
324 ///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
325 ///     \p To will be inserted after.
326 ///   . If \p To is not an Instruction (e.g a Constant), the choice of
327 ///     \p DomPoint is arbitrary. Pick \p From for simplicity.
328 ///
329 /// If a debug user cannot be preserved without reordering variable updates or
330 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
331 /// or deleted. Returns true if any debug users were updated.
332 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
333                            DominatorTree &DT);
334 
335 /// Remove all instructions from a basic block other than its terminator
336 /// and any present EH pad instructions. Returns a pair where the first element
337 /// is the number of instructions (excluding debug info instrinsics) that have
338 /// been removed, and the second element is the number of debug info intrinsics
339 /// that have been removed.
340 std::pair<unsigned, unsigned>
341 removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
342 
343 /// Insert an unreachable instruction before the specified
344 /// instruction, making it and the rest of the code in the block dead.
345 unsigned changeToUnreachable(Instruction *I, bool UseLLVMTrap,
346                              bool PreserveLCSSA = false,
347                              DomTreeUpdater *DTU = nullptr,
348                              MemorySSAUpdater *MSSAU = nullptr);
349 
350 /// Convert the CallInst to InvokeInst with the specified unwind edge basic
351 /// block.  This also splits the basic block where CI is located, because
352 /// InvokeInst is a terminator instruction.  Returns the newly split basic
353 /// block.
354 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
355                                              BasicBlock *UnwindEdge);
356 
357 /// Replace 'BB's terminator with one that does not have an unwind successor
358 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
359 /// successor.
360 ///
361 /// \param BB  Block whose terminator will be replaced.  Its terminator must
362 ///            have an unwind successor.
363 void removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
364 
365 /// Remove all blocks that can not be reached from the function's entry.
366 ///
367 /// Returns true if any basic block was removed.
368 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
369                              MemorySSAUpdater *MSSAU = nullptr);
370 
371 /// Combine the metadata of two instructions so that K can replace J. Some
372 /// metadata kinds can only be kept if K does not move, meaning it dominated
373 /// J in the original IR.
374 ///
375 /// Metadata not listed as known via KnownIDs is removed
376 void combineMetadata(Instruction *K, const Instruction *J,
377                      ArrayRef<unsigned> KnownIDs, bool DoesKMove);
378 
379 /// Combine the metadata of two instructions so that K can replace J. This
380 /// specifically handles the case of CSE-like transformations. Some
381 /// metadata can only be kept if K dominates J. For this to be correct,
382 /// K cannot be hoisted.
383 ///
384 /// Unknown metadata is removed.
385 void combineMetadataForCSE(Instruction *K, const Instruction *J,
386                            bool DoesKMove);
387 
388 /// Copy the metadata from the source instruction to the destination (the
389 /// replacement for the source instruction).
390 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
391 
392 /// Patch the replacement so that it is not more restrictive than the value
393 /// being replaced. It assumes that the replacement does not get moved from
394 /// its original position.
395 void patchReplacementInstruction(Instruction *I, Value *Repl);
396 
397 // Replace each use of 'From' with 'To', if that use does not belong to basic
398 // block where 'From' is defined. Returns the number of replacements made.
399 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
400 
401 /// Replace each use of 'From' with 'To' if that use is dominated by
402 /// the given edge.  Returns the number of replacements made.
403 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
404                                   const BasicBlockEdge &Edge);
405 /// Replace each use of 'From' with 'To' if that use is dominated by
406 /// the end of the given BasicBlock. Returns the number of replacements made.
407 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
408                                   const BasicBlock *BB);
409 
410 /// Return true if this call calls a gc leaf function.
411 ///
412 /// A leaf function is a function that does not safepoint the thread during its
413 /// execution.  During a call or invoke to such a function, the callers stack
414 /// does not have to be made parseable.
415 ///
416 /// Most passes can and should ignore this information, and it is only used
417 /// during lowering by the GC infrastructure.
418 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
419 
420 /// Copy a nonnull metadata node to a new load instruction.
421 ///
422 /// This handles mapping it to range metadata if the new load is an integer
423 /// load instead of a pointer load.
424 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
425 
426 /// Copy a range metadata node to a new load instruction.
427 ///
428 /// This handles mapping it to nonnull metadata if the new load is a pointer
429 /// load instead of an integer load and the range doesn't cover null.
430 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
431                        LoadInst &NewLI);
432 
433 /// Remove the debug intrinsic instructions for the given instruction.
434 void dropDebugUsers(Instruction &I);
435 
436 /// Hoist all of the instructions in the \p IfBlock to the dominant block
437 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
438 ///
439 /// The moved instructions receive the insertion point debug location values
440 /// (DILocations) and their debug intrinsic instructions are removed.
441 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
442                               BasicBlock *BB);
443 
444 //===----------------------------------------------------------------------===//
445 //  Intrinsic pattern matching
446 //
447 
448 /// Try to match a bswap or bitreverse idiom.
449 ///
450 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
451 /// instructions are returned in \c InsertedInsts. They will all have been added
452 /// to a basic block.
453 ///
454 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
455 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
456 /// to BW / 4 nodes to be searched, so is significantly faster.
457 ///
458 /// This function returns true on a successful match or false otherwise.
459 bool recognizeBSwapOrBitReverseIdiom(
460     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
461     SmallVectorImpl<Instruction *> &InsertedInsts);
462 
463 //===----------------------------------------------------------------------===//
464 //  Sanitizer utilities
465 //
466 
467 /// Given a CallInst, check if it calls a string function known to CodeGen,
468 /// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
469 /// to intercept string functions and want to avoid converting them to target
470 /// specific instructions.
471 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
472                                             const TargetLibraryInfo *TLI);
473 
474 //===----------------------------------------------------------------------===//
475 //  Transform predicates
476 //
477 
478 /// Given an instruction, is it legal to set operand OpIdx to a non-constant
479 /// value?
480 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
481 
482 //===----------------------------------------------------------------------===//
483 //  Value helper functions
484 //
485 
486 /// Invert the given true/false value, possibly reusing an existing copy.
487 Value *invertCondition(Value *Condition);
488 
489 } // end namespace llvm
490 
491 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H
492