1 //===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines some loop transformation utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
14 #define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
15 
16 #include "llvm/Analysis/IVDescriptors.h"
17 #include "llvm/Analysis/LoopAccessAnalysis.h"
18 #include "llvm/Transforms/Utils/ValueMapper.h"
19 
20 namespace llvm {
21 
22 template <typename T> class DomTreeNodeBase;
23 using DomTreeNode = DomTreeNodeBase<BasicBlock>;
24 class StringRef;
25 class AnalysisUsage;
26 class TargetTransformInfo;
27 class AAResults;
28 class BasicBlock;
29 class BlockFrequencyInfo;
30 class ICFLoopSafetyInfo;
31 class IRBuilderBase;
32 class Loop;
33 class LoopInfo;
34 class MemoryAccess;
35 class MemorySSA;
36 class MemorySSAUpdater;
37 class OptimizationRemarkEmitter;
38 class PredIteratorCache;
39 class ScalarEvolution;
40 class SCEV;
41 class SCEVExpander;
42 class TargetLibraryInfo;
43 class LPPassManager;
44 class Instruction;
45 struct RuntimeCheckingPtrGroup;
46 typedef std::pair<const RuntimeCheckingPtrGroup *,
47                   const RuntimeCheckingPtrGroup *>
48     RuntimePointerCheck;
49 
50 template <typename T> class Optional;
51 template <typename T, unsigned N> class SmallSetVector;
52 template <typename T, unsigned N> class SmallPriorityWorklist;
53 
54 BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
55                                    MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
56 
57 /// Ensure that all exit blocks of the loop are dedicated exits.
58 ///
59 /// For any loop exit block with non-loop predecessors, we split the loop
60 /// predecessors to use a dedicated loop exit block. We update the dominator
61 /// tree and loop info if provided, and will preserve LCSSA if requested.
62 bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
63                              MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
64 
65 /// Ensures LCSSA form for every instruction from the Worklist in the scope of
66 /// innermost containing loop.
67 ///
68 /// For the given instruction which have uses outside of the loop, an LCSSA PHI
69 /// node is inserted and the uses outside the loop are rewritten to use this
70 /// node.
71 ///
72 /// LoopInfo and DominatorTree are required and, since the routine makes no
73 /// changes to CFG, preserved.
74 ///
75 /// Returns true if any modifications are made.
76 ///
77 /// This function may introduce unused PHI nodes. If \p PHIsToRemove is not
78 /// nullptr, those are added to it (before removing, the caller has to check if
79 /// they still do not have any uses). Otherwise the PHIs are directly removed.
80 bool formLCSSAForInstructions(
81     SmallVectorImpl<Instruction *> &Worklist, const DominatorTree &DT,
82     const LoopInfo &LI, ScalarEvolution *SE, IRBuilderBase &Builder,
83     SmallVectorImpl<PHINode *> *PHIsToRemove = nullptr);
84 
85 /// Put loop into LCSSA form.
86 ///
87 /// Looks at all instructions in the loop which have uses outside of the
88 /// current loop. For each, an LCSSA PHI node is inserted and the uses outside
89 /// the loop are rewritten to use this node. Sub-loops must be in LCSSA form
90 /// already.
91 ///
92 /// LoopInfo and DominatorTree are required and preserved.
93 ///
94 /// If ScalarEvolution is passed in, it will be preserved.
95 ///
96 /// Returns true if any modifications are made to the loop.
97 bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
98                ScalarEvolution *SE);
99 
100 /// Put a loop nest into LCSSA form.
101 ///
102 /// This recursively forms LCSSA for a loop nest.
103 ///
104 /// LoopInfo and DominatorTree are required and preserved.
105 ///
106 /// If ScalarEvolution is passed in, it will be preserved.
107 ///
108 /// Returns true if any modifications are made to the loop.
109 bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
110                           ScalarEvolution *SE);
111 
112 /// Flags controlling how much is checked when sinking or hoisting
113 /// instructions.  The number of memory access in the loop (and whether there
114 /// are too many) is determined in the constructors when using MemorySSA.
115 class SinkAndHoistLICMFlags {
116 public:
117   // Explicitly set limits.
118   SinkAndHoistLICMFlags(unsigned LicmMssaOptCap,
119                         unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
120                         Loop *L = nullptr, MemorySSA *MSSA = nullptr);
121   // Use default limits.
122   SinkAndHoistLICMFlags(bool IsSink, Loop *L = nullptr,
123                         MemorySSA *MSSA = nullptr);
124 
125   void setIsSink(bool B) { IsSink = B; }
126   bool getIsSink() { return IsSink; }
127   bool tooManyMemoryAccesses() { return NoOfMemAccTooLarge; }
128   bool tooManyClobberingCalls() { return LicmMssaOptCounter >= LicmMssaOptCap; }
129   void incrementClobberingCalls() { ++LicmMssaOptCounter; }
130 
131 protected:
132   bool NoOfMemAccTooLarge = false;
133   unsigned LicmMssaOptCounter = 0;
134   unsigned LicmMssaOptCap;
135   unsigned LicmMssaNoAccForPromotionCap;
136   bool IsSink;
137 };
138 
139 /// Walk the specified region of the CFG (defined by all blocks
140 /// dominated by the specified block, and that are in the current loop) in
141 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
142 /// uses before definitions, allowing us to sink a loop body in one pass without
143 /// iteration. Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
144 /// BlockFrequencyInfo, TargetLibraryInfo, Loop, AliasSet information for all
145 /// instructions of the loop and loop safety information as
146 /// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
147 /// \p CurLoop is a loop to do sinking on. \p OutermostLoop is used only when
148 /// this function is called by \p sinkRegionForLoopNest.
149 bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
150                 BlockFrequencyInfo *, TargetLibraryInfo *,
151                 TargetTransformInfo *, Loop *CurLoop, MemorySSAUpdater &,
152                 ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &,
153                 OptimizationRemarkEmitter *, Loop *OutermostLoop = nullptr);
154 
155 /// Call sinkRegion on loops contained within the specified loop
156 /// in order from innermost to outermost.
157 bool sinkRegionForLoopNest(DomTreeNode *, AAResults *, LoopInfo *,
158                            DominatorTree *, BlockFrequencyInfo *,
159                            TargetLibraryInfo *, TargetTransformInfo *, Loop *,
160                            MemorySSAUpdater &, ICFLoopSafetyInfo *,
161                            SinkAndHoistLICMFlags &,
162                            OptimizationRemarkEmitter *);
163 
164 /// Walk the specified region of the CFG (defined by all blocks
165 /// dominated by the specified block, and that are in the current loop) in depth
166 /// first order w.r.t the DominatorTree.  This allows us to visit definitions
167 /// before uses, allowing us to hoist a loop body in one pass without iteration.
168 /// Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
169 /// BlockFrequencyInfo, TargetLibraryInfo, Loop, AliasSet information for all
170 /// instructions of the loop and loop safety information as arguments.
171 /// Diagnostics is emitted via \p ORE. It returns changed status.
172 /// \p AllowSpeculation is whether values should be hoisted even if they are not
173 /// guaranteed to execute in the loop, but are safe to speculatively execute.
174 bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
175                  BlockFrequencyInfo *, TargetLibraryInfo *, Loop *,
176                  MemorySSAUpdater &, ScalarEvolution *, ICFLoopSafetyInfo *,
177                  SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *, bool,
178                  bool AllowSpeculation);
179 
180 /// This function deletes dead loops. The caller of this function needs to
181 /// guarantee that the loop is infact dead.
182 /// The function requires a bunch or prerequisites to be present:
183 ///   - The loop needs to be in LCSSA form
184 ///   - The loop needs to have a Preheader
185 ///   - A unique dedicated exit block must exist
186 ///
187 /// This also updates the relevant analysis information in \p DT, \p SE, \p LI
188 /// and \p MSSA if pointers to those are provided.
189 /// It also updates the loop PM if an updater struct is provided.
190 
191 void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
192                     LoopInfo *LI, MemorySSA *MSSA = nullptr);
193 
194 /// Remove the backedge of the specified loop.  Handles loop nests and general
195 /// loop structures subject to the precondition that the loop has no parent
196 /// loop and has a single latch block.  Preserves all listed analyses.
197 void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
198                        LoopInfo &LI, MemorySSA *MSSA);
199 
200 /// Try to promote memory values to scalars by sinking stores out of
201 /// the loop and moving loads to before the loop.  We do this by looping over
202 /// the stores in the loop, looking for stores to Must pointers which are
203 /// loop invariant. It takes a set of must-alias values, Loop exit blocks
204 /// vector, loop exit blocks insertion point vector, PredIteratorCache,
205 /// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
206 /// of the loop and loop safety information as arguments.
207 /// Diagnostics is emitted via \p ORE. It returns changed status.
208 /// \p AllowSpeculation is whether values should be hoisted even if they are not
209 /// guaranteed to execute in the loop, but are safe to speculatively execute.
210 bool promoteLoopAccessesToScalars(
211     const SmallSetVector<Value *, 8> &, SmallVectorImpl<BasicBlock *> &,
212     SmallVectorImpl<Instruction *> &, SmallVectorImpl<MemoryAccess *> &,
213     PredIteratorCache &, LoopInfo *, DominatorTree *, const TargetLibraryInfo *,
214     Loop *, MemorySSAUpdater &, ICFLoopSafetyInfo *,
215     OptimizationRemarkEmitter *, bool AllowSpeculation);
216 
217 /// Does a BFS from a given node to all of its children inside a given loop.
218 /// The returned vector of nodes includes the starting point.
219 SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
220                                                      const Loop *CurLoop);
221 
222 /// Returns the instructions that use values defined in the loop.
223 SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
224 
225 /// Find a combination of metadata ("llvm.loop.vectorize.width" and
226 /// "llvm.loop.vectorize.scalable.enable") for a loop and use it to construct a
227 /// ElementCount. If the metadata "llvm.loop.vectorize.width" cannot be found
228 /// then None is returned.
229 Optional<ElementCount>
230 getOptionalElementCountLoopAttribute(const Loop *TheLoop);
231 
232 /// Create a new loop identifier for a loop created from a loop transformation.
233 ///
234 /// @param OrigLoopID The loop ID of the loop before the transformation.
235 /// @param FollowupAttrs List of attribute names that contain attributes to be
236 ///                      added to the new loop ID.
237 /// @param InheritOptionsAttrsPrefix Selects which attributes should be inherited
238 ///                                  from the original loop. The following values
239 ///                                  are considered:
240 ///        nullptr   : Inherit all attributes from @p OrigLoopID.
241 ///        ""        : Do not inherit any attribute from @p OrigLoopID; only use
242 ///                    those specified by a followup attribute.
243 ///        "<prefix>": Inherit all attributes except those which start with
244 ///                    <prefix>; commonly used to remove metadata for the
245 ///                    applied transformation.
246 /// @param AlwaysNew If true, do not try to reuse OrigLoopID and never return
247 ///                  None.
248 ///
249 /// @return The loop ID for the after-transformation loop. The following values
250 ///         can be returned:
251 ///         None         : No followup attribute was found; it is up to the
252 ///                        transformation to choose attributes that make sense.
253 ///         @p OrigLoopID: The original identifier can be reused.
254 ///         nullptr      : The new loop has no attributes.
255 ///         MDNode*      : A new unique loop identifier.
256 Optional<MDNode *>
257 makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef<StringRef> FollowupAttrs,
258                    const char *InheritOptionsAttrsPrefix = "",
259                    bool AlwaysNew = false);
260 
261 /// Look for the loop attribute that disables all transformation heuristic.
262 bool hasDisableAllTransformsHint(const Loop *L);
263 
264 /// Look for the loop attribute that disables the LICM transformation heuristics.
265 bool hasDisableLICMTransformsHint(const Loop *L);
266 
267 /// The mode sets how eager a transformation should be applied.
268 enum TransformationMode {
269   /// The pass can use heuristics to determine whether a transformation should
270   /// be applied.
271   TM_Unspecified,
272 
273   /// The transformation should be applied without considering a cost model.
274   TM_Enable,
275 
276   /// The transformation should not be applied.
277   TM_Disable,
278 
279   /// Force is a flag and should not be used alone.
280   TM_Force = 0x04,
281 
282   /// The transformation was directed by the user, e.g. by a #pragma in
283   /// the source code. If the transformation could not be applied, a
284   /// warning should be emitted.
285   TM_ForcedByUser = TM_Enable | TM_Force,
286 
287   /// The transformation must not be applied. For instance, `#pragma clang loop
288   /// unroll(disable)` explicitly forbids any unrolling to take place. Unlike
289   /// general loop metadata, it must not be dropped. Most passes should not
290   /// behave differently under TM_Disable and TM_SuppressedByUser.
291   TM_SuppressedByUser = TM_Disable | TM_Force
292 };
293 
294 /// @{
295 /// Get the mode for LLVM's supported loop transformations.
296 TransformationMode hasUnrollTransformation(const Loop *L);
297 TransformationMode hasUnrollAndJamTransformation(const Loop *L);
298 TransformationMode hasVectorizeTransformation(const Loop *L);
299 TransformationMode hasDistributeTransformation(const Loop *L);
300 TransformationMode hasLICMVersioningTransformation(const Loop *L);
301 /// @}
302 
303 /// Set input string into loop metadata by keeping other values intact.
304 /// If the string is already in loop metadata update value if it is
305 /// different.
306 void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
307                              unsigned V = 0);
308 
309 /// Returns a loop's estimated trip count based on branch weight metadata.
310 /// In addition if \p EstimatedLoopInvocationWeight is not null it is
311 /// initialized with weight of loop's latch leading to the exit.
312 /// Returns 0 when the count is estimated to be 0, or None when a meaningful
313 /// estimate can not be made.
314 Optional<unsigned>
315 getLoopEstimatedTripCount(Loop *L,
316                           unsigned *EstimatedLoopInvocationWeight = nullptr);
317 
318 /// Set a loop's branch weight metadata to reflect that loop has \p
319 /// EstimatedTripCount iterations and \p EstimatedLoopInvocationWeight exits
320 /// through latch. Returns true if metadata is successfully updated, false
321 /// otherwise. Note that loop must have a latch block which controls loop exit
322 /// in order to succeed.
323 bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
324                                unsigned EstimatedLoopInvocationWeight);
325 
326 /// Check inner loop (L) backedge count is known to be invariant on all
327 /// iterations of its outer loop. If the loop has no parent, this is trivially
328 /// true.
329 bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);
330 
331 /// Helper to consistently add the set of standard passes to a loop pass's \c
332 /// AnalysisUsage.
333 ///
334 /// All loop passes should call this as part of implementing their \c
335 /// getAnalysisUsage.
336 void getLoopAnalysisUsage(AnalysisUsage &AU);
337 
338 /// Returns true if is legal to hoist or sink this instruction disregarding the
339 /// possible introduction of faults.  Reasoning about potential faulting
340 /// instructions is the responsibility of the caller since it is challenging to
341 /// do efficiently from within this routine.
342 /// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
343 /// target executes at most once per execution of the loop body.  This is used
344 /// to assess the legality of duplicating atomic loads.  Generally, this is
345 /// true when moving out of loop and not true when moving into loops.
346 /// If \p ORE is set use it to emit optimization remarks.
347 bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
348                         Loop *CurLoop, MemorySSAUpdater &MSSAU,
349                         bool TargetExecutesOncePerLoop,
350                         SinkAndHoistLICMFlags &LICMFlags,
351                         OptimizationRemarkEmitter *ORE = nullptr);
352 
353 /// Returns the comparison predicate used when expanding a min/max reduction.
354 CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK);
355 
356 /// See RecurrenceDescriptor::isSelectCmpPattern for a description of the
357 /// pattern we are trying to match. In this pattern we are only ever selecting
358 /// between two values: 1) an initial PHI start value, and 2) a loop invariant
359 /// value. This function uses \p LoopExitInst to determine 2), which we then use
360 /// to select between \p Left and \p Right. Any lane value in \p Left that
361 /// matches 2) will be merged into \p Right.
362 Value *createSelectCmpOp(IRBuilderBase &Builder, Value *StartVal, RecurKind RK,
363                          Value *Left, Value *Right);
364 
365 /// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
366 /// The Builder's fast-math-flags must be set to propagate the expected values.
367 Value *createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
368                       Value *Right);
369 
370 /// Generates an ordered vector reduction using extracts to reduce the value.
371 Value *getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
372                            unsigned Op, RecurKind MinMaxKind = RecurKind::None);
373 
374 /// Generates a vector reduction using shufflevectors to reduce the value.
375 /// Fast-math-flags are propagated using the IRBuilder's setting.
376 Value *getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
377                            RecurKind MinMaxKind = RecurKind::None);
378 
379 /// Create a target reduction of the given vector. The reduction operation
380 /// is described by the \p Opcode parameter. min/max reductions require
381 /// additional information supplied in \p RdxKind.
382 /// The target is queried to determine if intrinsics or shuffle sequences are
383 /// required to implement the reduction.
384 /// Fast-math-flags are propagated using the IRBuilder's setting.
385 Value *createSimpleTargetReduction(IRBuilderBase &B,
386                                    const TargetTransformInfo *TTI, Value *Src,
387                                    RecurKind RdxKind);
388 
389 /// Create a target reduction of the given vector \p Src for a reduction of the
390 /// kind RecurKind::SelectICmp or RecurKind::SelectFCmp. The reduction operation
391 /// is described by \p Desc.
392 Value *createSelectCmpTargetReduction(IRBuilderBase &B,
393                                       const TargetTransformInfo *TTI,
394                                       Value *Src,
395                                       const RecurrenceDescriptor &Desc,
396                                       PHINode *OrigPhi);
397 
398 /// Create a generic target reduction using a recurrence descriptor \p Desc
399 /// The target is queried to determine if intrinsics or shuffle sequences are
400 /// required to implement the reduction.
401 /// Fast-math-flags are propagated using the RecurrenceDescriptor.
402 Value *createTargetReduction(IRBuilderBase &B, const TargetTransformInfo *TTI,
403                              const RecurrenceDescriptor &Desc, Value *Src,
404                              PHINode *OrigPhi = nullptr);
405 
406 /// Create an ordered reduction intrinsic using the given recurrence
407 /// descriptor \p Desc.
408 Value *createOrderedReduction(IRBuilderBase &B,
409                               const RecurrenceDescriptor &Desc, Value *Src,
410                               Value *Start);
411 
412 /// Get the intersection (logical and) of all of the potential IR flags
413 /// of each scalar operation (VL) that will be converted into a vector (I).
414 /// If OpValue is non-null, we only consider operations similar to OpValue
415 /// when intersecting.
416 /// Flag set: NSW, NUW (if IncludeWrapFlags is true), exact, and all of
417 /// fast-math.
418 void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr,
419                       bool IncludeWrapFlags = true);
420 
421 /// Returns true if we can prove that \p S is defined and always negative in
422 /// loop \p L.
423 bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE);
424 
425 /// Returns true if we can prove that \p S is defined and always non-negative in
426 /// loop \p L.
427 bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
428                               ScalarEvolution &SE);
429 
430 /// Returns true if \p S is defined and never is equal to signed/unsigned max.
431 bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
432                        bool Signed);
433 
434 /// Returns true if \p S is defined and never is equal to signed/unsigned min.
435 bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
436                        bool Signed);
437 
438 enum ReplaceExitVal {
439   NeverRepl,
440   OnlyCheapRepl,
441   NoHardUse,
442   UnusedIndVarInLoop,
443   AlwaysRepl
444 };
445 
446 /// If the final value of any expressions that are recurrent in the loop can
447 /// be computed, substitute the exit values from the loop into any instructions
448 /// outside of the loop that use the final values of the current expressions.
449 /// Return the number of loop exit values that have been replaced, and the
450 /// corresponding phi node will be added to DeadInsts.
451 int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
452                           ScalarEvolution *SE, const TargetTransformInfo *TTI,
453                           SCEVExpander &Rewriter, DominatorTree *DT,
454                           ReplaceExitVal ReplaceExitValue,
455                           SmallVector<WeakTrackingVH, 16> &DeadInsts);
456 
457 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
458 /// \p OrigLoop and the following distribution of \p OrigLoop iteration among \p
459 /// UnrolledLoop and \p RemainderLoop. \p UnrolledLoop receives weights that
460 /// reflect TC/UF iterations, and \p RemainderLoop receives weights that reflect
461 /// the remaining TC%UF iterations.
462 ///
463 /// Note that \p OrigLoop may be equal to either \p UnrolledLoop or \p
464 /// RemainderLoop in which case weights for \p OrigLoop are updated accordingly.
465 /// Note also behavior is undefined if \p UnrolledLoop and \p RemainderLoop are
466 /// equal. \p UF must be greater than zero.
467 /// If \p OrigLoop has no profile info associated nothing happens.
468 ///
469 /// This utility may be useful for such optimizations as unroller and
470 /// vectorizer as it's typical transformation for them.
471 void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
472                                   Loop *RemainderLoop, uint64_t UF);
473 
474 /// Utility that implements appending of loops onto a worklist given a range.
475 /// We want to process loops in postorder, but the worklist is a LIFO data
476 /// structure, so we append to it in *reverse* postorder.
477 /// For trees, a preorder traversal is a viable reverse postorder, so we
478 /// actually append using a preorder walk algorithm.
479 template <typename RangeT>
480 void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist<Loop *, 4> &);
481 /// Utility that implements appending of loops onto a worklist given a range.
482 /// It has the same behavior as appendLoopsToWorklist, but assumes the range of
483 /// loops has already been reversed, so it processes loops in the given order.
484 template <typename RangeT>
485 void appendReversedLoopsToWorklist(RangeT &&,
486                                    SmallPriorityWorklist<Loop *, 4> &);
487 
488 /// Utility that implements appending of loops onto a worklist given LoopInfo.
489 /// Calls the templated utility taking a Range of loops, handing it the Loops
490 /// in LoopInfo, iterated in reverse. This is because the loops are stored in
491 /// RPO w.r.t. the control flow graph in LoopInfo. For the purpose of unrolling,
492 /// loop deletion, and LICM, we largely want to work forward across the CFG so
493 /// that we visit defs before uses and can propagate simplifications from one
494 /// loop nest into the next. Calls appendReversedLoopsToWorklist with the
495 /// already reversed loops in LI.
496 /// FIXME: Consider changing the order in LoopInfo.
497 void appendLoopsToWorklist(LoopInfo &, SmallPriorityWorklist<Loop *, 4> &);
498 
499 /// Recursively clone the specified loop and all of its children,
500 /// mapping the blocks with the specified map.
501 Loop *cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
502                 LoopInfo *LI, LPPassManager *LPM);
503 
504 /// Add code that checks at runtime if the accessed arrays in \p PointerChecks
505 /// overlap. Returns the final comparator value or NULL if no check is needed.
506 Value *
507 addRuntimeChecks(Instruction *Loc, Loop *TheLoop,
508                  const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
509                  SCEVExpander &Expander);
510 
511 Value *
512 addDiffRuntimeChecks(Instruction *Loc, Loop *TheLoop,
513                      ArrayRef<PointerDiffInfo> Checks, SCEVExpander &Expander,
514                      function_ref<Value *(IRBuilderBase &, unsigned)> GetVF,
515                      unsigned IC);
516 
517 /// Struct to hold information about a partially invariant condition.
518 struct IVConditionInfo {
519   /// Instructions that need to be duplicated and checked for the unswitching
520   /// condition.
521   SmallVector<Instruction *> InstToDuplicate;
522 
523   /// Constant to indicate for which value the condition is invariant.
524   Constant *KnownValue = nullptr;
525 
526   /// True if the partially invariant path is no-op (=does not have any
527   /// side-effects and no loop value is used outside the loop).
528   bool PathIsNoop = true;
529 
530   /// If the partially invariant path reaches a single exit block, ExitForPath
531   /// is set to that block. Otherwise it is nullptr.
532   BasicBlock *ExitForPath = nullptr;
533 };
534 
535 /// Check if the loop header has a conditional branch that is not
536 /// loop-invariant, because it involves load instructions. If all paths from
537 /// either the true or false successor to the header or loop exists do not
538 /// modify the memory feeding the condition, perform 'partial unswitching'. That
539 /// is, duplicate the instructions feeding the condition in the pre-header. Then
540 /// unswitch on the duplicated condition. The condition is now known in the
541 /// unswitched version for the 'invariant' path through the original loop.
542 ///
543 /// If the branch condition of the header is partially invariant, return a pair
544 /// containing the instructions to duplicate and a boolean Constant to update
545 /// the condition in the loops created for the true or false successors.
546 Optional<IVConditionInfo> hasPartialIVCondition(Loop &L, unsigned MSSAThreshold,
547                                                 MemorySSA &MSSA, AAResults &AA);
548 
549 } // end namespace llvm
550 
551 #endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
552