1 //===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines some loop transformation utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
14 #define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
15 
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/Analysis/IVDescriptors.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/Transforms/Utils/ValueMapper.h"
20 
21 namespace llvm {
22 
23 template <typename T> class DomTreeNodeBase;
24 using DomTreeNode = DomTreeNodeBase<BasicBlock>;
25 class AAResults;
26 class AliasSet;
27 class AliasSetTracker;
28 class BasicBlock;
29 class BlockFrequencyInfo;
30 class ICFLoopSafetyInfo;
31 class IRBuilderBase;
32 class Loop;
33 class LoopInfo;
34 class MemoryAccess;
35 class MemorySSA;
36 class MemorySSAUpdater;
37 class OptimizationRemarkEmitter;
38 class PredIteratorCache;
39 class ScalarEvolution;
40 class ScalarEvolutionExpander;
41 class SCEV;
42 class SCEVExpander;
43 class TargetLibraryInfo;
44 class LPPassManager;
45 class Instruction;
46 struct RuntimeCheckingPtrGroup;
47 typedef std::pair<const RuntimeCheckingPtrGroup *,
48                   const RuntimeCheckingPtrGroup *>
49     RuntimePointerCheck;
50 
51 template <typename T> class Optional;
52 template <typename T, unsigned N> class SmallSetVector;
53 template <typename T, unsigned N> class SmallVector;
54 template <typename T> class SmallVectorImpl;
55 template <typename T, unsigned N> class SmallPriorityWorklist;
56 
57 BasicBlock *InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
58                                    MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
59 
60 /// Ensure that all exit blocks of the loop are dedicated exits.
61 ///
62 /// For any loop exit block with non-loop predecessors, we split the loop
63 /// predecessors to use a dedicated loop exit block. We update the dominator
64 /// tree and loop info if provided, and will preserve LCSSA if requested.
65 bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
66                              MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
67 
68 /// Ensures LCSSA form for every instruction from the Worklist in the scope of
69 /// innermost containing loop.
70 ///
71 /// For the given instruction which have uses outside of the loop, an LCSSA PHI
72 /// node is inserted and the uses outside the loop are rewritten to use this
73 /// node.
74 ///
75 /// LoopInfo and DominatorTree are required and, since the routine makes no
76 /// changes to CFG, preserved.
77 ///
78 /// Returns true if any modifications are made.
79 ///
80 /// This function may introduce unused PHI nodes. If \p PHIsToRemove is not
81 /// nullptr, those are added to it (before removing, the caller has to check if
82 /// they still do not have any uses). Otherwise the PHIs are directly removed.
83 bool formLCSSAForInstructions(
84     SmallVectorImpl<Instruction *> &Worklist, const DominatorTree &DT,
85     const LoopInfo &LI, ScalarEvolution *SE, IRBuilderBase &Builder,
86     SmallVectorImpl<PHINode *> *PHIsToRemove = nullptr);
87 
88 /// Put loop into LCSSA form.
89 ///
90 /// Looks at all instructions in the loop which have uses outside of the
91 /// current loop. For each, an LCSSA PHI node is inserted and the uses outside
92 /// the loop are rewritten to use this node. Sub-loops must be in LCSSA form
93 /// already.
94 ///
95 /// LoopInfo and DominatorTree are required and preserved.
96 ///
97 /// If ScalarEvolution is passed in, it will be preserved.
98 ///
99 /// Returns true if any modifications are made to the loop.
100 bool formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
101                ScalarEvolution *SE);
102 
103 /// Put a loop nest into LCSSA form.
104 ///
105 /// This recursively forms LCSSA for a loop nest.
106 ///
107 /// LoopInfo and DominatorTree are required and preserved.
108 ///
109 /// If ScalarEvolution is passed in, it will be preserved.
110 ///
111 /// Returns true if any modifications are made to the loop.
112 bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
113                           ScalarEvolution *SE);
114 
115 /// Flags controlling how much is checked when sinking or hoisting
116 /// instructions.  The number of memory access in the loop (and whether there
117 /// are too many) is determined in the constructors when using MemorySSA.
118 class SinkAndHoistLICMFlags {
119 public:
120   // Explicitly set limits.
121   SinkAndHoistLICMFlags(unsigned LicmMssaOptCap,
122                         unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
123                         Loop *L = nullptr, MemorySSA *MSSA = nullptr);
124   // Use default limits.
125   SinkAndHoistLICMFlags(bool IsSink, Loop *L = nullptr,
126                         MemorySSA *MSSA = nullptr);
127 
128   void setIsSink(bool B) { IsSink = B; }
129   bool getIsSink() { return IsSink; }
130   bool tooManyMemoryAccesses() { return NoOfMemAccTooLarge; }
131   bool tooManyClobberingCalls() { return LicmMssaOptCounter >= LicmMssaOptCap; }
132   void incrementClobberingCalls() { ++LicmMssaOptCounter; }
133 
134 protected:
135   bool NoOfMemAccTooLarge = false;
136   unsigned LicmMssaOptCounter = 0;
137   unsigned LicmMssaOptCap;
138   unsigned LicmMssaNoAccForPromotionCap;
139   bool IsSink;
140 };
141 
142 /// Walk the specified region of the CFG (defined by all blocks
143 /// dominated by the specified block, and that are in the current loop) in
144 /// reverse depth first order w.r.t the DominatorTree. This allows us to visit
145 /// uses before definitions, allowing us to sink a loop body in one pass without
146 /// iteration. Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
147 /// BlockFrequencyInfo, TargetLibraryInfo, Loop, AliasSet information for all
148 /// instructions of the loop and loop safety information as
149 /// arguments. Diagnostics is emitted via \p ORE. It returns changed status.
150 bool sinkRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
151                 BlockFrequencyInfo *, TargetLibraryInfo *,
152                 TargetTransformInfo *, Loop *, AliasSetTracker *,
153                 MemorySSAUpdater *, ICFLoopSafetyInfo *,
154                 SinkAndHoistLICMFlags &, OptimizationRemarkEmitter *);
155 
156 /// Walk the specified region of the CFG (defined by all blocks
157 /// dominated by the specified block, and that are in the current loop) in depth
158 /// first order w.r.t the DominatorTree.  This allows us to visit definitions
159 /// before uses, allowing us to hoist a loop body in one pass without iteration.
160 /// Takes DomTreeNode, AAResults, LoopInfo, DominatorTree,
161 /// BlockFrequencyInfo, TargetLibraryInfo, Loop, AliasSet information for all
162 /// instructions of the loop and loop safety information as arguments.
163 /// Diagnostics is emitted via \p ORE. It returns changed status.
164 bool hoistRegion(DomTreeNode *, AAResults *, LoopInfo *, DominatorTree *,
165                  BlockFrequencyInfo *, TargetLibraryInfo *, Loop *,
166                  AliasSetTracker *, MemorySSAUpdater *, ScalarEvolution *,
167                  ICFLoopSafetyInfo *, SinkAndHoistLICMFlags &,
168                  OptimizationRemarkEmitter *, bool);
169 
170 /// This function deletes dead loops. The caller of this function needs to
171 /// guarantee that the loop is infact dead.
172 /// The function requires a bunch or prerequisites to be present:
173 ///   - The loop needs to be in LCSSA form
174 ///   - The loop needs to have a Preheader
175 ///   - A unique dedicated exit block must exist
176 ///
177 /// This also updates the relevant analysis information in \p DT, \p SE, \p LI
178 /// and \p MSSA if pointers to those are provided.
179 /// It also updates the loop PM if an updater struct is provided.
180 
181 void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
182                     LoopInfo *LI, MemorySSA *MSSA = nullptr);
183 
184 /// Remove the backedge of the specified loop.  Handles loop nests and general
185 /// loop structures subject to the precondition that the loop has no parent
186 /// loop and has a single latch block.  Preserves all listed analyses.
187 void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
188                        LoopInfo &LI, MemorySSA *MSSA);
189 
190 /// Try to promote memory values to scalars by sinking stores out of
191 /// the loop and moving loads to before the loop.  We do this by looping over
192 /// the stores in the loop, looking for stores to Must pointers which are
193 /// loop invariant. It takes a set of must-alias values, Loop exit blocks
194 /// vector, loop exit blocks insertion point vector, PredIteratorCache,
195 /// LoopInfo, DominatorTree, Loop, AliasSet information for all instructions
196 /// of the loop and loop safety information as arguments.
197 /// Diagnostics is emitted via \p ORE. It returns changed status.
198 bool promoteLoopAccessesToScalars(
199     const SmallSetVector<Value *, 8> &, SmallVectorImpl<BasicBlock *> &,
200     SmallVectorImpl<Instruction *> &, SmallVectorImpl<MemoryAccess *> &,
201     PredIteratorCache &, LoopInfo *, DominatorTree *, const TargetLibraryInfo *,
202     Loop *, AliasSetTracker *, MemorySSAUpdater *, ICFLoopSafetyInfo *,
203     OptimizationRemarkEmitter *);
204 
205 /// Does a BFS from a given node to all of its children inside a given loop.
206 /// The returned vector of nodes includes the starting point.
207 SmallVector<DomTreeNode *, 16> collectChildrenInLoop(DomTreeNode *N,
208                                                      const Loop *CurLoop);
209 
210 /// Returns the instructions that use values defined in the loop.
211 SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L);
212 
213 /// Find a combination of metadata ("llvm.loop.vectorize.width" and
214 /// "llvm.loop.vectorize.scalable.enable") for a loop and use it to construct a
215 /// ElementCount. If the metadata "llvm.loop.vectorize.width" cannot be found
216 /// then None is returned.
217 Optional<ElementCount>
218 getOptionalElementCountLoopAttribute(const Loop *TheLoop);
219 
220 /// Create a new loop identifier for a loop created from a loop transformation.
221 ///
222 /// @param OrigLoopID The loop ID of the loop before the transformation.
223 /// @param FollowupAttrs List of attribute names that contain attributes to be
224 ///                      added to the new loop ID.
225 /// @param InheritOptionsAttrsPrefix Selects which attributes should be inherited
226 ///                                  from the original loop. The following values
227 ///                                  are considered:
228 ///        nullptr   : Inherit all attributes from @p OrigLoopID.
229 ///        ""        : Do not inherit any attribute from @p OrigLoopID; only use
230 ///                    those specified by a followup attribute.
231 ///        "<prefix>": Inherit all attributes except those which start with
232 ///                    <prefix>; commonly used to remove metadata for the
233 ///                    applied transformation.
234 /// @param AlwaysNew If true, do not try to reuse OrigLoopID and never return
235 ///                  None.
236 ///
237 /// @return The loop ID for the after-transformation loop. The following values
238 ///         can be returned:
239 ///         None         : No followup attribute was found; it is up to the
240 ///                        transformation to choose attributes that make sense.
241 ///         @p OrigLoopID: The original identifier can be reused.
242 ///         nullptr      : The new loop has no attributes.
243 ///         MDNode*      : A new unique loop identifier.
244 Optional<MDNode *>
245 makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef<StringRef> FollowupAttrs,
246                    const char *InheritOptionsAttrsPrefix = "",
247                    bool AlwaysNew = false);
248 
249 /// Look for the loop attribute that disables all transformation heuristic.
250 bool hasDisableAllTransformsHint(const Loop *L);
251 
252 /// Look for the loop attribute that disables the LICM transformation heuristics.
253 bool hasDisableLICMTransformsHint(const Loop *L);
254 
255 /// The mode sets how eager a transformation should be applied.
256 enum TransformationMode {
257   /// The pass can use heuristics to determine whether a transformation should
258   /// be applied.
259   TM_Unspecified,
260 
261   /// The transformation should be applied without considering a cost model.
262   TM_Enable,
263 
264   /// The transformation should not be applied.
265   TM_Disable,
266 
267   /// Force is a flag and should not be used alone.
268   TM_Force = 0x04,
269 
270   /// The transformation was directed by the user, e.g. by a #pragma in
271   /// the source code. If the transformation could not be applied, a
272   /// warning should be emitted.
273   TM_ForcedByUser = TM_Enable | TM_Force,
274 
275   /// The transformation must not be applied. For instance, `#pragma clang loop
276   /// unroll(disable)` explicitly forbids any unrolling to take place. Unlike
277   /// general loop metadata, it must not be dropped. Most passes should not
278   /// behave differently under TM_Disable and TM_SuppressedByUser.
279   TM_SuppressedByUser = TM_Disable | TM_Force
280 };
281 
282 /// @{
283 /// Get the mode for LLVM's supported loop transformations.
284 TransformationMode hasUnrollTransformation(const Loop *L);
285 TransformationMode hasUnrollAndJamTransformation(const Loop *L);
286 TransformationMode hasVectorizeTransformation(const Loop *L);
287 TransformationMode hasDistributeTransformation(const Loop *L);
288 TransformationMode hasLICMVersioningTransformation(const Loop *L);
289 /// @}
290 
291 /// Set input string into loop metadata by keeping other values intact.
292 /// If the string is already in loop metadata update value if it is
293 /// different.
294 void addStringMetadataToLoop(Loop *TheLoop, const char *MDString,
295                              unsigned V = 0);
296 
297 /// Returns a loop's estimated trip count based on branch weight metadata.
298 /// In addition if \p EstimatedLoopInvocationWeight is not null it is
299 /// initialized with weight of loop's latch leading to the exit.
300 /// Returns 0 when the count is estimated to be 0, or None when a meaningful
301 /// estimate can not be made.
302 Optional<unsigned>
303 getLoopEstimatedTripCount(Loop *L,
304                           unsigned *EstimatedLoopInvocationWeight = nullptr);
305 
306 /// Set a loop's branch weight metadata to reflect that loop has \p
307 /// EstimatedTripCount iterations and \p EstimatedLoopInvocationWeight exits
308 /// through latch. Returns true if metadata is successfully updated, false
309 /// otherwise. Note that loop must have a latch block which controls loop exit
310 /// in order to succeed.
311 bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
312                                unsigned EstimatedLoopInvocationWeight);
313 
314 /// Check inner loop (L) backedge count is known to be invariant on all
315 /// iterations of its outer loop. If the loop has no parent, this is trivially
316 /// true.
317 bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE);
318 
319 /// Helper to consistently add the set of standard passes to a loop pass's \c
320 /// AnalysisUsage.
321 ///
322 /// All loop passes should call this as part of implementing their \c
323 /// getAnalysisUsage.
324 void getLoopAnalysisUsage(AnalysisUsage &AU);
325 
326 /// Returns true if is legal to hoist or sink this instruction disregarding the
327 /// possible introduction of faults.  Reasoning about potential faulting
328 /// instructions is the responsibility of the caller since it is challenging to
329 /// do efficiently from within this routine.
330 /// \p TargetExecutesOncePerLoop is true only when it is guaranteed that the
331 /// target executes at most once per execution of the loop body.  This is used
332 /// to assess the legality of duplicating atomic loads.  Generally, this is
333 /// true when moving out of loop and not true when moving into loops.
334 /// If \p ORE is set use it to emit optimization remarks.
335 bool canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
336                         Loop *CurLoop, AliasSetTracker *CurAST,
337                         MemorySSAUpdater *MSSAU, bool TargetExecutesOncePerLoop,
338                         SinkAndHoistLICMFlags *LICMFlags = nullptr,
339                         OptimizationRemarkEmitter *ORE = nullptr);
340 
341 /// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
342 /// The Builder's fast-math-flags must be set to propagate the expected values.
343 Value *createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
344                       Value *Right);
345 
346 /// Generates an ordered vector reduction using extracts to reduce the value.
347 Value *getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
348                            unsigned Op, RecurKind MinMaxKind = RecurKind::None,
349                            ArrayRef<Value *> RedOps = None);
350 
351 /// Generates a vector reduction using shufflevectors to reduce the value.
352 /// Fast-math-flags are propagated using the IRBuilder's setting.
353 Value *getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op,
354                            RecurKind MinMaxKind = RecurKind::None,
355                            ArrayRef<Value *> RedOps = None);
356 
357 /// Create a target reduction of the given vector. The reduction operation
358 /// is described by the \p Opcode parameter. min/max reductions require
359 /// additional information supplied in \p RdxKind.
360 /// The target is queried to determine if intrinsics or shuffle sequences are
361 /// required to implement the reduction.
362 /// Fast-math-flags are propagated using the IRBuilder's setting.
363 Value *createSimpleTargetReduction(IRBuilderBase &B,
364                                    const TargetTransformInfo *TTI, Value *Src,
365                                    RecurKind RdxKind,
366                                    ArrayRef<Value *> RedOps = None);
367 
368 /// Create a generic target reduction using a recurrence descriptor \p Desc
369 /// The target is queried to determine if intrinsics or shuffle sequences are
370 /// required to implement the reduction.
371 /// Fast-math-flags are propagated using the RecurrenceDescriptor.
372 Value *createTargetReduction(IRBuilderBase &B, const TargetTransformInfo *TTI,
373                              const RecurrenceDescriptor &Desc, Value *Src);
374 
375 /// Create an ordered reduction intrinsic using the given recurrence
376 /// descriptor \p Desc.
377 Value *createOrderedReduction(IRBuilderBase &B,
378                               const RecurrenceDescriptor &Desc, Value *Src,
379                               Value *Start);
380 
381 /// Get the intersection (logical and) of all of the potential IR flags
382 /// of each scalar operation (VL) that will be converted into a vector (I).
383 /// If OpValue is non-null, we only consider operations similar to OpValue
384 /// when intersecting.
385 /// Flag set: NSW, NUW, exact, and all of fast-math.
386 void propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue = nullptr);
387 
388 /// Returns true if we can prove that \p S is defined and always negative in
389 /// loop \p L.
390 bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE);
391 
392 /// Returns true if we can prove that \p S is defined and always non-negative in
393 /// loop \p L.
394 bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
395                               ScalarEvolution &SE);
396 
397 /// Returns true if \p S is defined and never is equal to signed/unsigned max.
398 bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
399                        bool Signed);
400 
401 /// Returns true if \p S is defined and never is equal to signed/unsigned min.
402 bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
403                        bool Signed);
404 
405 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl };
406 
407 /// If the final value of any expressions that are recurrent in the loop can
408 /// be computed, substitute the exit values from the loop into any instructions
409 /// outside of the loop that use the final values of the current expressions.
410 /// Return the number of loop exit values that have been replaced, and the
411 /// corresponding phi node will be added to DeadInsts.
412 int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
413                           ScalarEvolution *SE, const TargetTransformInfo *TTI,
414                           SCEVExpander &Rewriter, DominatorTree *DT,
415                           ReplaceExitVal ReplaceExitValue,
416                           SmallVector<WeakTrackingVH, 16> &DeadInsts);
417 
418 /// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
419 /// \p OrigLoop and the following distribution of \p OrigLoop iteration among \p
420 /// UnrolledLoop and \p RemainderLoop. \p UnrolledLoop receives weights that
421 /// reflect TC/UF iterations, and \p RemainderLoop receives weights that reflect
422 /// the remaining TC%UF iterations.
423 ///
424 /// Note that \p OrigLoop may be equal to either \p UnrolledLoop or \p
425 /// RemainderLoop in which case weights for \p OrigLoop are updated accordingly.
426 /// Note also behavior is undefined if \p UnrolledLoop and \p RemainderLoop are
427 /// equal. \p UF must be greater than zero.
428 /// If \p OrigLoop has no profile info associated nothing happens.
429 ///
430 /// This utility may be useful for such optimizations as unroller and
431 /// vectorizer as it's typical transformation for them.
432 void setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
433                                   Loop *RemainderLoop, uint64_t UF);
434 
435 /// Utility that implements appending of loops onto a worklist given a range.
436 /// We want to process loops in postorder, but the worklist is a LIFO data
437 /// structure, so we append to it in *reverse* postorder.
438 /// For trees, a preorder traversal is a viable reverse postorder, so we
439 /// actually append using a preorder walk algorithm.
440 template <typename RangeT>
441 void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist<Loop *, 4> &);
442 /// Utility that implements appending of loops onto a worklist given a range.
443 /// It has the same behavior as appendLoopsToWorklist, but assumes the range of
444 /// loops has already been reversed, so it processes loops in the given order.
445 template <typename RangeT>
446 void appendReversedLoopsToWorklist(RangeT &&,
447                                    SmallPriorityWorklist<Loop *, 4> &);
448 
449 /// Utility that implements appending of loops onto a worklist given LoopInfo.
450 /// Calls the templated utility taking a Range of loops, handing it the Loops
451 /// in LoopInfo, iterated in reverse. This is because the loops are stored in
452 /// RPO w.r.t. the control flow graph in LoopInfo. For the purpose of unrolling,
453 /// loop deletion, and LICM, we largely want to work forward across the CFG so
454 /// that we visit defs before uses and can propagate simplifications from one
455 /// loop nest into the next. Calls appendReversedLoopsToWorklist with the
456 /// already reversed loops in LI.
457 /// FIXME: Consider changing the order in LoopInfo.
458 void appendLoopsToWorklist(LoopInfo &, SmallPriorityWorklist<Loop *, 4> &);
459 
460 /// Recursively clone the specified loop and all of its children,
461 /// mapping the blocks with the specified map.
462 Loop *cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
463                 LoopInfo *LI, LPPassManager *LPM);
464 
465 /// Add code that checks at runtime if the accessed arrays in \p PointerChecks
466 /// overlap.
467 ///
468 /// Returns a pair of instructions where the first element is the first
469 /// instruction generated in possibly a sequence of instructions and the
470 /// second value is the final comparator value or NULL if no check is needed.
471 std::pair<Instruction *, Instruction *>
472 addRuntimeChecks(Instruction *Loc, Loop *TheLoop,
473                  const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
474                  SCEVExpander &Expander);
475 
476 /// Struct to hold information about a partially invariant condition.
477 struct IVConditionInfo {
478   /// Instructions that need to be duplicated and checked for the unswitching
479   /// condition.
480   SmallVector<Instruction *> InstToDuplicate;
481 
482   /// Constant to indicate for which value the condition is invariant.
483   Constant *KnownValue = nullptr;
484 
485   /// True if the partially invariant path is no-op (=does not have any
486   /// side-effects and no loop value is used outside the loop).
487   bool PathIsNoop = true;
488 
489   /// If the partially invariant path reaches a single exit block, ExitForPath
490   /// is set to that block. Otherwise it is nullptr.
491   BasicBlock *ExitForPath = nullptr;
492 };
493 
494 /// Check if the loop header has a conditional branch that is not
495 /// loop-invariant, because it involves load instructions. If all paths from
496 /// either the true or false successor to the header or loop exists do not
497 /// modify the memory feeding the condition, perform 'partial unswitching'. That
498 /// is, duplicate the instructions feeding the condition in the pre-header. Then
499 /// unswitch on the duplicated condition. The condition is now known in the
500 /// unswitched version for the 'invariant' path through the original loop.
501 ///
502 /// If the branch condition of the header is partially invariant, return a pair
503 /// containing the instructions to duplicate and a boolean Constant to update
504 /// the condition in the loops created for the true or false successors.
505 Optional<IVConditionInfo> hasPartialIVCondition(Loop &L, unsigned MSSAThreshold,
506                                                 MemorySSA &MSSA, AAResults &AA);
507 
508 } // end namespace llvm
509 
510 #endif // LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
511