1 //===- SCCPSolver.h - SCCP Utility ----------------------------- *- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements Sparse Conditional Constant Propagation (SCCP) utility.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_TRANSFORMS_UTILS_SCCPSOLVER_H
15 #define LLVM_TRANSFORMS_UTILS_SCCPSOLVER_H
16 
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Transforms/Utils/PredicateInfo.h"
22 #include <vector>
23 
24 namespace llvm {
25 class Argument;
26 class BasicBlock;
27 class CallInst;
28 class Constant;
29 class DataLayout;
30 class DominatorTree;
31 class Function;
32 class GlobalVariable;
33 class Instruction;
34 class LLVMContext;
35 class StructType;
36 class TargetLibraryInfo;
37 class Value;
38 class ValueLatticeElement;
39 
40 /// Helper struct shared between Function Specialization and SCCP Solver.
41 struct ArgInfo {
42   Argument *Formal; // The Formal argument being analysed.
43   Constant *Actual; // A corresponding actual constant argument.
44 
ArgInfoArgInfo45   ArgInfo(Argument *F, Constant *A) : Formal(F), Actual(A) {}
46 
47   bool operator==(const ArgInfo &Other) const {
48     return Formal == Other.Formal && Actual == Other.Actual;
49   }
50 
51   bool operator!=(const ArgInfo &Other) const { return !(*this == Other); }
52 
hash_valueArgInfo53   friend hash_code hash_value(const ArgInfo &A) {
54     return hash_combine(hash_value(A.Formal), hash_value(A.Actual));
55   }
56 };
57 
58 class SCCPInstVisitor;
59 
60 //===----------------------------------------------------------------------===//
61 //
62 /// SCCPSolver - This interface class is a general purpose solver for Sparse
63 /// Conditional Constant Propagation (SCCP).
64 ///
65 class SCCPSolver {
66   std::unique_ptr<SCCPInstVisitor> Visitor;
67 
68 public:
69   SCCPSolver(const DataLayout &DL,
70              std::function<const TargetLibraryInfo &(Function &)> GetTLI,
71              LLVMContext &Ctx);
72 
73   ~SCCPSolver();
74 
75   void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC);
76 
77   /// markBlockExecutable - This method can be used by clients to mark all of
78   /// the blocks that are known to be intrinsically live in the processed unit.
79   /// This returns true if the block was not considered live before.
80   bool markBlockExecutable(BasicBlock *BB);
81 
82   const PredicateBase *getPredicateInfoFor(Instruction *I);
83 
84   /// trackValueOfGlobalVariable - Clients can use this method to
85   /// inform the SCCPSolver that it should track loads and stores to the
86   /// specified global variable if it can.  This is only legal to call if
87   /// performing Interprocedural SCCP.
88   void trackValueOfGlobalVariable(GlobalVariable *GV);
89 
90   /// addTrackedFunction - If the SCCP solver is supposed to track calls into
91   /// and out of the specified function (which cannot have its address taken),
92   /// this method must be called.
93   void addTrackedFunction(Function *F);
94 
95   /// Add function to the list of functions whose return cannot be modified.
96   void addToMustPreserveReturnsInFunctions(Function *F);
97 
98   /// Returns true if the return of the given function cannot be modified.
99   bool mustPreserveReturn(Function *F);
100 
101   void addArgumentTrackedFunction(Function *F);
102 
103   /// Returns true if the given function is in the solver's set of
104   /// argument-tracked functions.
105   bool isArgumentTrackedFunction(Function *F);
106 
107   /// Solve - Solve for constants and executable blocks.
108   void solve();
109 
110   /// resolvedUndefsIn - While solving the dataflow for a function, we assume
111   /// that branches on undef values cannot reach any of their successors.
112   /// However, this is not a safe assumption.  After we solve dataflow, this
113   /// method should be use to handle this.  If this returns true, the solver
114   /// should be rerun.
115   bool resolvedUndefsIn(Function &F);
116 
117   void solveWhileResolvedUndefsIn(Module &M);
118 
119   void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList);
120 
121   void solveWhileResolvedUndefs();
122 
123   bool isBlockExecutable(BasicBlock *BB) const;
124 
125   // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
126   // block to the 'To' basic block is currently feasible.
127   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
128 
129   std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const;
130 
131   void removeLatticeValueFor(Value *V);
132 
133   /// Invalidate the Lattice Value of \p Call and its users after specializing
134   /// the call. Then recompute it.
135   void resetLatticeValueFor(CallBase *Call);
136 
137   const ValueLatticeElement &getLatticeValueFor(Value *V) const;
138 
139   /// getTrackedRetVals - Get the inferred return value map.
140   const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals();
141 
142   /// getTrackedGlobals - Get and return the set of inferred initializers for
143   /// global variables.
144   const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals();
145 
146   /// getMRVFunctionsTracked - Get the set of functions which return multiple
147   /// values tracked by the pass.
148   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked();
149 
150   /// markOverdefined - Mark the specified value overdefined.  This
151   /// works with both scalars and structs.
152   void markOverdefined(Value *V);
153 
154   // isStructLatticeConstant - Return true if all the lattice values
155   // corresponding to elements of the structure are constants,
156   // false otherwise.
157   bool isStructLatticeConstant(Function *F, StructType *STy);
158 
159   /// Helper to return a Constant if \p LV is either a constant or a constant
160   /// range with a single element.
161   Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
162 
163   /// Return either a Constant or nullptr for a given Value.
164   Constant *getConstantOrNull(Value *V) const;
165 
166   /// Return a reference to the set of argument tracked functions.
167   SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions();
168 
169   /// Set the Lattice Value for the arguments of a specialization \p F.
170   /// If an argument is Constant then its lattice value is marked with the
171   /// corresponding actual argument in \p Args. Otherwise, its lattice value
172   /// is inherited (copied) from the corresponding formal argument in \p Args.
173   void setLatticeValueForSpecializationArguments(Function *F,
174                                        const SmallVectorImpl<ArgInfo> &Args);
175 
176   /// Mark all of the blocks in function \p F non-executable. Clients can used
177   /// this method to erase a function from the module (e.g., if it has been
178   /// completely specialized and is no longer needed).
179   void markFunctionUnreachable(Function *F);
180 
181   void visit(Instruction *I);
182   void visitCall(CallInst &I);
183 
184   bool simplifyInstsInBlock(BasicBlock &BB,
185                             SmallPtrSetImpl<Value *> &InsertedValues,
186                             Statistic &InstRemovedStat,
187                             Statistic &InstReplacedStat);
188 
189   bool removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU,
190                               BasicBlock *&NewUnreachableBB) const;
191 
192   bool tryToReplaceWithConstant(Value *V);
193 
194   // Helper to check if \p LV is either a constant or a constant
195   // range with a single element. This should cover exactly the same cases as
196   // the old ValueLatticeElement::isConstant() and is intended to be used in the
197   // transition to ValueLatticeElement.
198   static bool isConstant(const ValueLatticeElement &LV);
199 
200   // Helper to check if \p LV is either overdefined or a constant range with
201   // more than a single element. This should cover exactly the same cases as the
202   // old ValueLatticeElement::isOverdefined() and is intended to be used in the
203   // transition to ValueLatticeElement.
204   static bool isOverdefined(const ValueLatticeElement &LV);
205 };
206 } // namespace llvm
207 
208 #endif // LLVM_TRANSFORMS_UTILS_SCCPSOLVER_H
209