1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to generate code from scalar expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
14 #define LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstSimplifyFolder.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/InstructionCost.h"
27 
28 namespace llvm {
29 extern cl::opt<unsigned> SCEVCheapExpansionBudget;
30 
31 /// struct for holding enough information to help calculate the cost of the
32 /// given SCEV when expanded into IR.
33 struct SCEVOperand {
34   explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) :
35     ParentOpcode(Opc), OperandIdx(Idx), S(S) { }
36   /// LLVM instruction opcode that uses the operand.
37   unsigned ParentOpcode;
38   /// The use index of an expanded instruction.
39   int OperandIdx;
40   /// The SCEV operand to be costed.
41   const SCEV* S;
42 };
43 
44 /// This class uses information about analyze scalars to rewrite expressions
45 /// in canonical form.
46 ///
47 /// Clients should create an instance of this class when rewriting is needed,
48 /// and destroy it when finished to allow the release of the associated
49 /// memory.
50 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> {
51   ScalarEvolution &SE;
52   const DataLayout &DL;
53 
54   // New instructions receive a name to identify them with the current pass.
55   const char *IVName;
56 
57   /// Indicates whether LCSSA phis should be created for inserted values.
58   bool PreserveLCSSA;
59 
60   // InsertedExpressions caches Values for reuse, so must track RAUW.
61   DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
62       InsertedExpressions;
63 
64   // InsertedValues only flags inserted instructions so needs no RAUW.
65   DenseSet<AssertingVH<Value>> InsertedValues;
66   DenseSet<AssertingVH<Value>> InsertedPostIncValues;
67 
68   /// Keep track of the existing IR values re-used during expansion.
69   /// FIXME: Ideally re-used instructions would not be added to
70   /// InsertedValues/InsertedPostIncValues.
71   SmallPtrSet<Value *, 16> ReusedValues;
72 
73   // The induction variables generated.
74   SmallVector<WeakVH, 2> InsertedIVs;
75 
76   /// A memoization of the "relevant" loop for a given SCEV.
77   DenseMap<const SCEV *, const Loop *> RelevantLoops;
78 
79   /// Addrecs referring to any of the given loops are expanded in post-inc
80   /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
81   /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
82   /// phi starting at 1. This is only supported in non-canonical mode.
83   PostIncLoopSet PostIncLoops;
84 
85   /// When this is non-null, addrecs expanded in the loop it indicates should
86   /// be inserted with increments at IVIncInsertPos.
87   const Loop *IVIncInsertLoop;
88 
89   /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
90   /// increment at this position.
91   Instruction *IVIncInsertPos;
92 
93   /// Phis that complete an IV chain. Reuse
94   DenseSet<AssertingVH<PHINode>> ChainedPhis;
95 
96   /// When true, SCEVExpander tries to expand expressions in "canonical" form.
97   /// When false, expressions are expanded in a more literal form.
98   ///
99   /// In "canonical" form addrecs are expanded as arithmetic based on a
100   /// canonical induction variable. Note that CanonicalMode doesn't guarantee
101   /// that all expressions are expanded in "canonical" form. For some
102   /// expressions literal mode can be preferred.
103   bool CanonicalMode;
104 
105   /// When invoked from LSR, the expander is in "strength reduction" mode. The
106   /// only difference is that phi's are only reused if they are already in
107   /// "expanded" form.
108   bool LSRMode;
109 
110   typedef IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> BuilderType;
111   BuilderType Builder;
112 
113   // RAII object that stores the current insertion point and restores it when
114   // the object is destroyed. This includes the debug location.  Duplicated
115   // from InsertPointGuard to add SetInsertPoint() which is used to updated
116   // InsertPointGuards stack when insert points are moved during SCEV
117   // expansion.
118   class SCEVInsertPointGuard {
119     IRBuilderBase &Builder;
120     AssertingVH<BasicBlock> Block;
121     BasicBlock::iterator Point;
122     DebugLoc DbgLoc;
123     SCEVExpander *SE;
124 
125     SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
126     SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
127 
128   public:
129     SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
130         : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
131           DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
132       SE->InsertPointGuards.push_back(this);
133     }
134 
135     ~SCEVInsertPointGuard() {
136       // These guards should always created/destroyed in FIFO order since they
137       // are used to guard lexically scoped blocks of code in
138       // ScalarEvolutionExpander.
139       assert(SE->InsertPointGuards.back() == this);
140       SE->InsertPointGuards.pop_back();
141       Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
142       Builder.SetCurrentDebugLocation(DbgLoc);
143     }
144 
145     BasicBlock::iterator GetInsertPoint() const { return Point; }
146     void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
147   };
148 
149   /// Stack of pointers to saved insert points, used to keep insert points
150   /// consistent when instructions are moved.
151   SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
152 
153 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
154   const char *DebugType;
155 #endif
156 
157   friend struct SCEVVisitor<SCEVExpander, Value *>;
158 
159 public:
160   /// Construct a SCEVExpander in "canonical" mode.
161   explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
162                         const char *name, bool PreserveLCSSA = true)
163       : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA),
164         IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true),
165         LSRMode(false),
166         Builder(se.getContext(), InstSimplifyFolder(DL),
167                 IRBuilderCallbackInserter(
168                     [this](Instruction *I) { rememberInstruction(I); })) {
169 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
170     DebugType = "";
171 #endif
172   }
173 
174   ~SCEVExpander() {
175     // Make sure the insert point guard stack is consistent.
176     assert(InsertPointGuards.empty());
177   }
178 
179 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
180   void setDebugType(const char *s) { DebugType = s; }
181 #endif
182 
183   /// Erase the contents of the InsertedExpressions map so that users trying
184   /// to expand the same expression into multiple BasicBlocks or different
185   /// places within the same BasicBlock can do so.
186   void clear() {
187     InsertedExpressions.clear();
188     InsertedValues.clear();
189     InsertedPostIncValues.clear();
190     ReusedValues.clear();
191     ChainedPhis.clear();
192     InsertedIVs.clear();
193   }
194 
195   ScalarEvolution *getSE() { return &SE; }
196   const SmallVectorImpl<WeakVH> &getInsertedIVs() const { return InsertedIVs; }
197 
198   /// Return a vector containing all instructions inserted during expansion.
199   SmallVector<Instruction *, 32> getAllInsertedInstructions() const {
200     SmallVector<Instruction *, 32> Result;
201     for (auto &VH : InsertedValues) {
202       Value *V = VH;
203       if (ReusedValues.contains(V))
204         continue;
205       if (auto *Inst = dyn_cast<Instruction>(V))
206         Result.push_back(Inst);
207     }
208     for (auto &VH : InsertedPostIncValues) {
209       Value *V = VH;
210       if (ReusedValues.contains(V))
211         continue;
212       if (auto *Inst = dyn_cast<Instruction>(V))
213         Result.push_back(Inst);
214     }
215 
216     return Result;
217   }
218 
219   /// Return true for expressions that can't be evaluated at runtime
220   /// within given \b Budget.
221   ///
222   /// At is a parameter which specifies point in code where user is going to
223   /// expand this expression. Sometimes this knowledge can lead to
224   /// a less pessimistic cost estimation.
225   bool isHighCostExpansion(const SCEV *Expr, Loop *L, unsigned Budget,
226                            const TargetTransformInfo *TTI,
227                            const Instruction *At) {
228     assert(TTI && "This function requires TTI to be provided.");
229     assert(At && "This function requires At instruction to be provided.");
230     if (!TTI)      // In assert-less builds, avoid crashing
231       return true; // by always claiming to be high-cost.
232     SmallVector<SCEVOperand, 8> Worklist;
233     SmallPtrSet<const SCEV *, 8> Processed;
234     InstructionCost Cost = 0;
235     unsigned ScaledBudget = Budget * TargetTransformInfo::TCC_Basic;
236     Worklist.emplace_back(-1, -1, Expr);
237     while (!Worklist.empty()) {
238       const SCEVOperand WorkItem = Worklist.pop_back_val();
239       if (isHighCostExpansionHelper(WorkItem, L, *At, Cost, ScaledBudget, *TTI,
240                                     Processed, Worklist))
241         return true;
242     }
243     assert(Cost <= ScaledBudget && "Should have returned from inner loop.");
244     return false;
245   }
246 
247   /// Return the induction variable increment's IV operand.
248   Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
249                                bool allowScale);
250 
251   /// Utility for hoisting an IV increment.
252   bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
253 
254   /// replace congruent phis with their most canonical representative. Return
255   /// the number of phis eliminated.
256   unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
257                                SmallVectorImpl<WeakTrackingVH> &DeadInsts,
258                                const TargetTransformInfo *TTI = nullptr);
259 
260   /// Return true if the given expression is safe to expand in the sense that
261   /// all materialized values are safe to speculate anywhere their operands are
262   /// defined, and the expander is capable of expanding the expression.
263   bool isSafeToExpand(const SCEV *S) const;
264 
265   /// Return true if the given expression is safe to expand in the sense that
266   /// all materialized values are defined and safe to speculate at the specified
267   /// location and their operands are defined at this location.
268   bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint) const;
269 
270   /// Insert code to directly compute the specified SCEV expression into the
271   /// program.  The code is inserted into the specified block.
272   Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) {
273     return expandCodeForImpl(SH, Ty, I, true);
274   }
275 
276   /// Insert code to directly compute the specified SCEV expression into the
277   /// program.  The code is inserted into the SCEVExpander's current
278   /// insertion point. If a type is specified, the result will be expanded to
279   /// have that type, with a cast if necessary.
280   Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) {
281     return expandCodeForImpl(SH, Ty, true);
282   }
283 
284   /// Generates a code sequence that evaluates this predicate.  The inserted
285   /// instructions will be at position \p Loc.  The result will be of type i1
286   /// and will have a value of 0 when the predicate is false and 1 otherwise.
287   Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
288 
289   /// A specialized variant of expandCodeForPredicate, handling the case when
290   /// we are expanding code for a SCEVComparePredicate.
291   Value *expandComparePredicate(const SCEVComparePredicate *Pred,
292                                 Instruction *Loc);
293 
294   /// Generates code that evaluates if the \p AR expression will overflow.
295   Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
296                                bool Signed);
297 
298   /// A specialized variant of expandCodeForPredicate, handling the case when
299   /// we are expanding code for a SCEVWrapPredicate.
300   Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
301 
302   /// A specialized variant of expandCodeForPredicate, handling the case when
303   /// we are expanding code for a SCEVUnionPredicate.
304   Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc);
305 
306   /// Set the current IV increment loop and position.
307   void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
308     assert(!CanonicalMode &&
309            "IV increment positions are not supported in CanonicalMode");
310     IVIncInsertLoop = L;
311     IVIncInsertPos = Pos;
312   }
313 
314   /// Enable post-inc expansion for addrecs referring to the given
315   /// loops. Post-inc expansion is only supported in non-canonical mode.
316   void setPostInc(const PostIncLoopSet &L) {
317     assert(!CanonicalMode &&
318            "Post-inc expansion is not supported in CanonicalMode");
319     PostIncLoops = L;
320   }
321 
322   /// Disable all post-inc expansion.
323   void clearPostInc() {
324     PostIncLoops.clear();
325 
326     // When we change the post-inc loop set, cached expansions may no
327     // longer be valid.
328     InsertedPostIncValues.clear();
329   }
330 
331   /// Disable the behavior of expanding expressions in canonical form rather
332   /// than in a more literal form. Non-canonical mode is useful for late
333   /// optimization passes.
334   void disableCanonicalMode() { CanonicalMode = false; }
335 
336   void enableLSRMode() { LSRMode = true; }
337 
338   /// Set the current insertion point. This is useful if multiple calls to
339   /// expandCodeFor() are going to be made with the same insert point and the
340   /// insert point may be moved during one of the expansions (e.g. if the
341   /// insert point is not a block terminator).
342   void setInsertPoint(Instruction *IP) {
343     assert(IP);
344     Builder.SetInsertPoint(IP);
345   }
346 
347   /// Clear the current insertion point. This is useful if the instruction
348   /// that had been serving as the insertion point may have been deleted.
349   void clearInsertPoint() { Builder.ClearInsertionPoint(); }
350 
351   /// Set location information used by debugging information.
352   void SetCurrentDebugLocation(DebugLoc L) {
353     Builder.SetCurrentDebugLocation(std::move(L));
354   }
355 
356   /// Get location information used by debugging information.
357   DebugLoc getCurrentDebugLocation() const {
358     return Builder.getCurrentDebugLocation();
359   }
360 
361   /// Return true if the specified instruction was inserted by the code
362   /// rewriter.  If so, the client should not modify the instruction. Note that
363   /// this also includes instructions re-used during expansion.
364   bool isInsertedInstruction(Instruction *I) const {
365     return InsertedValues.count(I) || InsertedPostIncValues.count(I);
366   }
367 
368   void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
369 
370   /// Try to find the ValueOffsetPair for S. The function is mainly used to
371   /// check whether S can be expanded cheaply.  If this returns a non-None
372   /// value, we know we can codegen the `ValueOffsetPair` into a suitable
373   /// expansion identical with S so that S can be expanded cheaply.
374   ///
375   /// L is a hint which tells in which loop to look for the suitable value.
376   /// On success return value which is equivalent to the expanded S at point
377   /// At. Return nullptr if value was not found.
378   ///
379   /// Note that this function does not perform an exhaustive search. I.e if it
380   /// didn't find any value it does not mean that there is no such value.
381   ///
382   Value *getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
383                                      Loop *L);
384 
385   /// Returns a suitable insert point after \p I, that dominates \p
386   /// MustDominate. Skips instructions inserted by the expander.
387   BasicBlock::iterator findInsertPointAfter(Instruction *I,
388                                             Instruction *MustDominate) const;
389 
390 private:
391   LLVMContext &getContext() const { return SE.getContext(); }
392 
393   /// Insert code to directly compute the specified SCEV expression into the
394   /// program. The code is inserted into the SCEVExpander's current
395   /// insertion point. If a type is specified, the result will be expanded to
396   /// have that type, with a cast if necessary. If \p Root is true, this
397   /// indicates that \p SH is the top-level expression to expand passed from
398   /// an external client call.
399   Value *expandCodeForImpl(const SCEV *SH, Type *Ty, bool Root);
400 
401   /// Insert code to directly compute the specified SCEV expression into the
402   /// program. The code is inserted into the specified block. If \p
403   /// Root is true, this indicates that \p SH is the top-level expression to
404   /// expand passed from an external client call.
405   Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I, bool Root);
406 
407   /// Recursive helper function for isHighCostExpansion.
408   bool isHighCostExpansionHelper(const SCEVOperand &WorkItem, Loop *L,
409                                  const Instruction &At, InstructionCost &Cost,
410                                  unsigned Budget,
411                                  const TargetTransformInfo &TTI,
412                                  SmallPtrSetImpl<const SCEV *> &Processed,
413                                  SmallVectorImpl<SCEVOperand> &Worklist);
414 
415   /// Insert the specified binary operator, doing a small amount of work to
416   /// avoid inserting an obviously redundant operation, and hoisting to an
417   /// outer loop when the opportunity is there and it is safe.
418   Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
419                      SCEV::NoWrapFlags Flags, bool IsSafeToHoist);
420 
421   /// We want to cast \p V. What would be the best place for such a cast?
422   BasicBlock::iterator GetOptimalInsertionPointForCastOf(Value *V) const;
423 
424   /// Arrange for there to be a cast of V to Ty at IP, reusing an existing
425   /// cast if a suitable one exists, moving an existing cast if a suitable one
426   /// exists but isn't in the right place, or creating a new one.
427   Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op,
428                            BasicBlock::iterator IP);
429 
430   /// Insert a cast of V to the specified type, which must be possible with a
431   /// noop cast, doing what we can to share the casts.
432   Value *InsertNoopCastOfTo(Value *V, Type *Ty);
433 
434   /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
435   /// ptrtoint+arithmetic+inttoptr.
436   Value *expandAddToGEP(const SCEV *const *op_begin, const SCEV *const *op_end,
437                         PointerType *PTy, Type *Ty, Value *V);
438   Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V);
439 
440   /// Find a previous Value in ExprValueMap for expand.
441   Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
442 
443   Value *expand(const SCEV *S);
444 
445   /// Determine the most "relevant" loop for the given SCEV.
446   const Loop *getRelevantLoop(const SCEV *);
447 
448   Value *expandMinMaxExpr(const SCEVNAryExpr *S, Intrinsic::ID IntrinID,
449                           Twine Name, bool IsSequential = false);
450 
451   Value *visitConstant(const SCEVConstant *S) { return S->getValue(); }
452 
453   Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S);
454 
455   Value *visitTruncateExpr(const SCEVTruncateExpr *S);
456 
457   Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
458 
459   Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
460 
461   Value *visitAddExpr(const SCEVAddExpr *S);
462 
463   Value *visitMulExpr(const SCEVMulExpr *S);
464 
465   Value *visitUDivExpr(const SCEVUDivExpr *S);
466 
467   Value *visitAddRecExpr(const SCEVAddRecExpr *S);
468 
469   Value *visitSMaxExpr(const SCEVSMaxExpr *S);
470 
471   Value *visitUMaxExpr(const SCEVUMaxExpr *S);
472 
473   Value *visitSMinExpr(const SCEVSMinExpr *S);
474 
475   Value *visitUMinExpr(const SCEVUMinExpr *S);
476 
477   Value *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S);
478 
479   Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); }
480 
481   void rememberInstruction(Value *I);
482 
483   bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
484 
485   bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
486 
487   Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
488   PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
489                                      const Loop *L, Type *ExpandTy, Type *IntTy,
490                                      Type *&TruncTy, bool &InvertStep);
491   Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy,
492                      Type *IntTy, bool useSubtract);
493 
494   void fixupInsertPoints(Instruction *I);
495 
496   /// If required, create LCSSA PHIs for \p Users' operand \p OpIdx. If new
497   /// LCSSA PHIs have been created, return the LCSSA PHI available at \p User.
498   /// If no PHIs have been created, return the unchanged operand \p OpIdx.
499   Value *fixupLCSSAFormFor(Instruction *User, unsigned OpIdx);
500 };
501 
502 /// Helper to remove instructions inserted during SCEV expansion, unless they
503 /// are marked as used.
504 class SCEVExpanderCleaner {
505   SCEVExpander &Expander;
506 
507   /// Indicates whether the result of the expansion is used. If false, the
508   /// instructions added during expansion are removed.
509   bool ResultUsed;
510 
511 public:
512   SCEVExpanderCleaner(SCEVExpander &Expander)
513       : Expander(Expander), ResultUsed(false) {}
514 
515   ~SCEVExpanderCleaner() { cleanup(); }
516 
517   /// Indicate that the result of the expansion is used.
518   void markResultUsed() { ResultUsed = true; }
519 
520   void cleanup();
521 };
522 } // namespace llvm
523 
524 #endif
525