1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to generate code from scalar expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
14 #define LLVM_TRANSFORMS_UTILS_SCALAREVOLUTIONEXPANDER_H
15 
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstSimplifyFolder.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/InstructionCost.h"
27 
28 namespace llvm {
29 extern cl::opt<unsigned> SCEVCheapExpansionBudget;
30 
31 /// struct for holding enough information to help calculate the cost of the
32 /// given SCEV when expanded into IR.
33 struct SCEVOperand {
34   explicit SCEVOperand(unsigned Opc, int Idx, const SCEV *S) :
35     ParentOpcode(Opc), OperandIdx(Idx), S(S) { }
36   /// LLVM instruction opcode that uses the operand.
37   unsigned ParentOpcode;
38   /// The use index of an expanded instruction.
39   int OperandIdx;
40   /// The SCEV operand to be costed.
41   const SCEV* S;
42 };
43 
44 /// This class uses information about analyze scalars to rewrite expressions
45 /// in canonical form.
46 ///
47 /// Clients should create an instance of this class when rewriting is needed,
48 /// and destroy it when finished to allow the release of the associated
49 /// memory.
50 class SCEVExpander : public SCEVVisitor<SCEVExpander, Value *> {
51   ScalarEvolution &SE;
52   const DataLayout &DL;
53 
54   // New instructions receive a name to identify them with the current pass.
55   const char *IVName;
56 
57   /// Indicates whether LCSSA phis should be created for inserted values.
58   bool PreserveLCSSA;
59 
60   // InsertedExpressions caches Values for reuse, so must track RAUW.
61   DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>>
62       InsertedExpressions;
63 
64   // InsertedValues only flags inserted instructions so needs no RAUW.
65   DenseSet<AssertingVH<Value>> InsertedValues;
66   DenseSet<AssertingVH<Value>> InsertedPostIncValues;
67 
68   /// Keep track of the existing IR values re-used during expansion.
69   /// FIXME: Ideally re-used instructions would not be added to
70   /// InsertedValues/InsertedPostIncValues.
71   SmallPtrSet<Value *, 16> ReusedValues;
72 
73   // The induction variables generated.
74   SmallVector<WeakVH, 2> InsertedIVs;
75 
76   /// A memoization of the "relevant" loop for a given SCEV.
77   DenseMap<const SCEV *, const Loop *> RelevantLoops;
78 
79   /// Addrecs referring to any of the given loops are expanded in post-inc
80   /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add
81   /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new
82   /// phi starting at 1. This is only supported in non-canonical mode.
83   PostIncLoopSet PostIncLoops;
84 
85   /// When this is non-null, addrecs expanded in the loop it indicates should
86   /// be inserted with increments at IVIncInsertPos.
87   const Loop *IVIncInsertLoop;
88 
89   /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV
90   /// increment at this position.
91   Instruction *IVIncInsertPos;
92 
93   /// Phis that complete an IV chain. Reuse
94   DenseSet<AssertingVH<PHINode>> ChainedPhis;
95 
96   /// When true, SCEVExpander tries to expand expressions in "canonical" form.
97   /// When false, expressions are expanded in a more literal form.
98   ///
99   /// In "canonical" form addrecs are expanded as arithmetic based on a
100   /// canonical induction variable. Note that CanonicalMode doesn't guarantee
101   /// that all expressions are expanded in "canonical" form. For some
102   /// expressions literal mode can be preferred.
103   bool CanonicalMode;
104 
105   /// When invoked from LSR, the expander is in "strength reduction" mode. The
106   /// only difference is that phi's are only reused if they are already in
107   /// "expanded" form.
108   bool LSRMode;
109 
110   typedef IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> BuilderType;
111   BuilderType Builder;
112 
113   // RAII object that stores the current insertion point and restores it when
114   // the object is destroyed. This includes the debug location.  Duplicated
115   // from InsertPointGuard to add SetInsertPoint() which is used to updated
116   // InsertPointGuards stack when insert points are moved during SCEV
117   // expansion.
118   class SCEVInsertPointGuard {
119     IRBuilderBase &Builder;
120     AssertingVH<BasicBlock> Block;
121     BasicBlock::iterator Point;
122     DebugLoc DbgLoc;
123     SCEVExpander *SE;
124 
125     SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete;
126     SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete;
127 
128   public:
129     SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE)
130         : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
131           DbgLoc(B.getCurrentDebugLocation()), SE(SE) {
132       SE->InsertPointGuards.push_back(this);
133     }
134 
135     ~SCEVInsertPointGuard() {
136       // These guards should always created/destroyed in FIFO order since they
137       // are used to guard lexically scoped blocks of code in
138       // ScalarEvolutionExpander.
139       assert(SE->InsertPointGuards.back() == this);
140       SE->InsertPointGuards.pop_back();
141       Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point));
142       Builder.SetCurrentDebugLocation(DbgLoc);
143     }
144 
145     BasicBlock::iterator GetInsertPoint() const { return Point; }
146     void SetInsertPoint(BasicBlock::iterator I) { Point = I; }
147   };
148 
149   /// Stack of pointers to saved insert points, used to keep insert points
150   /// consistent when instructions are moved.
151   SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards;
152 
153 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
154   const char *DebugType;
155 #endif
156 
157   friend struct SCEVVisitor<SCEVExpander, Value *>;
158 
159 public:
160   /// Construct a SCEVExpander in "canonical" mode.
161   explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
162                         const char *name, bool PreserveLCSSA = true)
163       : SE(se), DL(DL), IVName(name), PreserveLCSSA(PreserveLCSSA),
164         IVIncInsertLoop(nullptr), IVIncInsertPos(nullptr), CanonicalMode(true),
165         LSRMode(false),
166         Builder(se.getContext(), InstSimplifyFolder(DL),
167                 IRBuilderCallbackInserter(
168                     [this](Instruction *I) { rememberInstruction(I); })) {
169 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
170     DebugType = "";
171 #endif
172   }
173 
174   ~SCEVExpander() {
175     // Make sure the insert point guard stack is consistent.
176     assert(InsertPointGuards.empty());
177   }
178 
179 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
180   void setDebugType(const char *s) { DebugType = s; }
181 #endif
182 
183   /// Erase the contents of the InsertedExpressions map so that users trying
184   /// to expand the same expression into multiple BasicBlocks or different
185   /// places within the same BasicBlock can do so.
186   void clear() {
187     InsertedExpressions.clear();
188     InsertedValues.clear();
189     InsertedPostIncValues.clear();
190     ReusedValues.clear();
191     ChainedPhis.clear();
192     InsertedIVs.clear();
193   }
194 
195   ScalarEvolution *getSE() { return &SE; }
196   const SmallVectorImpl<WeakVH> &getInsertedIVs() const { return InsertedIVs; }
197 
198   /// Return a vector containing all instructions inserted during expansion.
199   SmallVector<Instruction *, 32> getAllInsertedInstructions() const {
200     SmallVector<Instruction *, 32> Result;
201     for (const auto &VH : InsertedValues) {
202       Value *V = VH;
203       if (ReusedValues.contains(V))
204         continue;
205       if (auto *Inst = dyn_cast<Instruction>(V))
206         Result.push_back(Inst);
207     }
208     for (const auto &VH : InsertedPostIncValues) {
209       Value *V = VH;
210       if (ReusedValues.contains(V))
211         continue;
212       if (auto *Inst = dyn_cast<Instruction>(V))
213         Result.push_back(Inst);
214     }
215 
216     return Result;
217   }
218 
219   /// Return true for expressions that can't be evaluated at runtime
220   /// within given \b Budget.
221   ///
222   /// \p At is a parameter which specifies point in code where user is going to
223   /// expand these expressions. Sometimes this knowledge can lead to
224   /// a less pessimistic cost estimation.
225   bool isHighCostExpansion(ArrayRef<const SCEV *> Exprs, Loop *L,
226                            unsigned Budget, const TargetTransformInfo *TTI,
227                            const Instruction *At) {
228     assert(TTI && "This function requires TTI to be provided.");
229     assert(At && "This function requires At instruction to be provided.");
230     if (!TTI)      // In assert-less builds, avoid crashing
231       return true; // by always claiming to be high-cost.
232     SmallVector<SCEVOperand, 8> Worklist;
233     SmallPtrSet<const SCEV *, 8> Processed;
234     InstructionCost Cost = 0;
235     unsigned ScaledBudget = Budget * TargetTransformInfo::TCC_Basic;
236     for (auto *Expr : Exprs)
237       Worklist.emplace_back(-1, -1, Expr);
238     while (!Worklist.empty()) {
239       const SCEVOperand WorkItem = Worklist.pop_back_val();
240       if (isHighCostExpansionHelper(WorkItem, L, *At, Cost, ScaledBudget, *TTI,
241                                     Processed, Worklist))
242         return true;
243     }
244     assert(Cost <= ScaledBudget && "Should have returned from inner loop.");
245     return false;
246   }
247 
248   /// Return the induction variable increment's IV operand.
249   Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
250                                bool allowScale);
251 
252   /// Utility for hoisting \p IncV (with all subexpressions requried for its
253   /// computation) before \p InsertPos. If \p RecomputePoisonFlags is set, drops
254   /// all poison-generating flags from instructions being hoisted and tries to
255   /// re-infer them in the new location. It should be used when we are going to
256   /// introduce a new use in the new position that didn't exist before, and may
257   /// trigger new UB in case of poison.
258   bool hoistIVInc(Instruction *IncV, Instruction *InsertPos,
259                   bool RecomputePoisonFlags = false);
260 
261   /// replace congruent phis with their most canonical representative. Return
262   /// the number of phis eliminated.
263   unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
264                                SmallVectorImpl<WeakTrackingVH> &DeadInsts,
265                                const TargetTransformInfo *TTI = nullptr);
266 
267   /// Return true if the given expression is safe to expand in the sense that
268   /// all materialized values are safe to speculate anywhere their operands are
269   /// defined, and the expander is capable of expanding the expression.
270   bool isSafeToExpand(const SCEV *S) const;
271 
272   /// Return true if the given expression is safe to expand in the sense that
273   /// all materialized values are defined and safe to speculate at the specified
274   /// location and their operands are defined at this location.
275   bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint) const;
276 
277   /// Insert code to directly compute the specified SCEV expression into the
278   /// program.  The code is inserted into the specified block.
279   Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I) {
280     return expandCodeForImpl(SH, Ty, I);
281   }
282 
283   /// Insert code to directly compute the specified SCEV expression into the
284   /// program.  The code is inserted into the SCEVExpander's current
285   /// insertion point. If a type is specified, the result will be expanded to
286   /// have that type, with a cast if necessary.
287   Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr) {
288     return expandCodeForImpl(SH, Ty);
289   }
290 
291   /// Generates a code sequence that evaluates this predicate.  The inserted
292   /// instructions will be at position \p Loc.  The result will be of type i1
293   /// and will have a value of 0 when the predicate is false and 1 otherwise.
294   Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
295 
296   /// A specialized variant of expandCodeForPredicate, handling the case when
297   /// we are expanding code for a SCEVComparePredicate.
298   Value *expandComparePredicate(const SCEVComparePredicate *Pred,
299                                 Instruction *Loc);
300 
301   /// Generates code that evaluates if the \p AR expression will overflow.
302   Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc,
303                                bool Signed);
304 
305   /// A specialized variant of expandCodeForPredicate, handling the case when
306   /// we are expanding code for a SCEVWrapPredicate.
307   Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc);
308 
309   /// A specialized variant of expandCodeForPredicate, handling the case when
310   /// we are expanding code for a SCEVUnionPredicate.
311   Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, Instruction *Loc);
312 
313   /// Set the current IV increment loop and position.
314   void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
315     assert(!CanonicalMode &&
316            "IV increment positions are not supported in CanonicalMode");
317     IVIncInsertLoop = L;
318     IVIncInsertPos = Pos;
319   }
320 
321   /// Enable post-inc expansion for addrecs referring to the given
322   /// loops. Post-inc expansion is only supported in non-canonical mode.
323   void setPostInc(const PostIncLoopSet &L) {
324     assert(!CanonicalMode &&
325            "Post-inc expansion is not supported in CanonicalMode");
326     PostIncLoops = L;
327   }
328 
329   /// Disable all post-inc expansion.
330   void clearPostInc() {
331     PostIncLoops.clear();
332 
333     // When we change the post-inc loop set, cached expansions may no
334     // longer be valid.
335     InsertedPostIncValues.clear();
336   }
337 
338   /// Disable the behavior of expanding expressions in canonical form rather
339   /// than in a more literal form. Non-canonical mode is useful for late
340   /// optimization passes.
341   void disableCanonicalMode() { CanonicalMode = false; }
342 
343   void enableLSRMode() { LSRMode = true; }
344 
345   /// Set the current insertion point. This is useful if multiple calls to
346   /// expandCodeFor() are going to be made with the same insert point and the
347   /// insert point may be moved during one of the expansions (e.g. if the
348   /// insert point is not a block terminator).
349   void setInsertPoint(Instruction *IP) {
350     assert(IP);
351     Builder.SetInsertPoint(IP);
352   }
353 
354   /// Clear the current insertion point. This is useful if the instruction
355   /// that had been serving as the insertion point may have been deleted.
356   void clearInsertPoint() { Builder.ClearInsertionPoint(); }
357 
358   /// Set location information used by debugging information.
359   void SetCurrentDebugLocation(DebugLoc L) {
360     Builder.SetCurrentDebugLocation(std::move(L));
361   }
362 
363   /// Get location information used by debugging information.
364   DebugLoc getCurrentDebugLocation() const {
365     return Builder.getCurrentDebugLocation();
366   }
367 
368   /// Return true if the specified instruction was inserted by the code
369   /// rewriter.  If so, the client should not modify the instruction. Note that
370   /// this also includes instructions re-used during expansion.
371   bool isInsertedInstruction(Instruction *I) const {
372     return InsertedValues.count(I) || InsertedPostIncValues.count(I);
373   }
374 
375   void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
376 
377   /// Try to find the ValueOffsetPair for S. The function is mainly used to
378   /// check whether S can be expanded cheaply.  If this returns a non-None
379   /// value, we know we can codegen the `ValueOffsetPair` into a suitable
380   /// expansion identical with S so that S can be expanded cheaply.
381   ///
382   /// L is a hint which tells in which loop to look for the suitable value.
383   /// On success return value which is equivalent to the expanded S at point
384   /// At. Return nullptr if value was not found.
385   ///
386   /// Note that this function does not perform an exhaustive search. I.e if it
387   /// didn't find any value it does not mean that there is no such value.
388   ///
389   Value *getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
390                                      Loop *L);
391 
392   /// Returns a suitable insert point after \p I, that dominates \p
393   /// MustDominate. Skips instructions inserted by the expander.
394   BasicBlock::iterator findInsertPointAfter(Instruction *I,
395                                             Instruction *MustDominate) const;
396 
397 private:
398   LLVMContext &getContext() const { return SE.getContext(); }
399 
400   /// Insert code to directly compute the specified SCEV expression into the
401   /// program. The code is inserted into the SCEVExpander's current
402   /// insertion point. If a type is specified, the result will be expanded to
403   /// have that type, with a cast if necessary. If \p Root is true, this
404   /// indicates that \p SH is the top-level expression to expand passed from
405   /// an external client call.
406   Value *expandCodeForImpl(const SCEV *SH, Type *Ty);
407 
408   /// Insert code to directly compute the specified SCEV expression into the
409   /// program. The code is inserted into the specified block. If \p
410   /// Root is true, this indicates that \p SH is the top-level expression to
411   /// expand passed from an external client call.
412   Value *expandCodeForImpl(const SCEV *SH, Type *Ty, Instruction *I);
413 
414   /// Recursive helper function for isHighCostExpansion.
415   bool isHighCostExpansionHelper(const SCEVOperand &WorkItem, Loop *L,
416                                  const Instruction &At, InstructionCost &Cost,
417                                  unsigned Budget,
418                                  const TargetTransformInfo &TTI,
419                                  SmallPtrSetImpl<const SCEV *> &Processed,
420                                  SmallVectorImpl<SCEVOperand> &Worklist);
421 
422   /// Insert the specified binary operator, doing a small amount of work to
423   /// avoid inserting an obviously redundant operation, and hoisting to an
424   /// outer loop when the opportunity is there and it is safe.
425   Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
426                      SCEV::NoWrapFlags Flags, bool IsSafeToHoist);
427 
428   /// We want to cast \p V. What would be the best place for such a cast?
429   BasicBlock::iterator GetOptimalInsertionPointForCastOf(Value *V) const;
430 
431   /// Arrange for there to be a cast of V to Ty at IP, reusing an existing
432   /// cast if a suitable one exists, moving an existing cast if a suitable one
433   /// exists but isn't in the right place, or creating a new one.
434   Value *ReuseOrCreateCast(Value *V, Type *Ty, Instruction::CastOps Op,
435                            BasicBlock::iterator IP);
436 
437   /// Insert a cast of V to the specified type, which must be possible with a
438   /// noop cast, doing what we can to share the casts.
439   Value *InsertNoopCastOfTo(Value *V, Type *Ty);
440 
441   /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using
442   /// ptrtoint+arithmetic+inttoptr.
443   Value *expandAddToGEP(const SCEV *Op, Type *Ty, Value *V);
444 
445   /// Find a previous Value in ExprValueMap for expand.
446   Value *FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt);
447 
448   Value *expand(const SCEV *S);
449 
450   /// Determine the most "relevant" loop for the given SCEV.
451   const Loop *getRelevantLoop(const SCEV *);
452 
453   Value *expandMinMaxExpr(const SCEVNAryExpr *S, Intrinsic::ID IntrinID,
454                           Twine Name, bool IsSequential = false);
455 
456   Value *visitConstant(const SCEVConstant *S) { return S->getValue(); }
457 
458   Value *visitVScale(const SCEVVScale *S);
459 
460   Value *visitPtrToIntExpr(const SCEVPtrToIntExpr *S);
461 
462   Value *visitTruncateExpr(const SCEVTruncateExpr *S);
463 
464   Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
465 
466   Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
467 
468   Value *visitAddExpr(const SCEVAddExpr *S);
469 
470   Value *visitMulExpr(const SCEVMulExpr *S);
471 
472   Value *visitUDivExpr(const SCEVUDivExpr *S);
473 
474   Value *visitAddRecExpr(const SCEVAddRecExpr *S);
475 
476   Value *visitSMaxExpr(const SCEVSMaxExpr *S);
477 
478   Value *visitUMaxExpr(const SCEVUMaxExpr *S);
479 
480   Value *visitSMinExpr(const SCEVSMinExpr *S);
481 
482   Value *visitUMinExpr(const SCEVUMinExpr *S);
483 
484   Value *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S);
485 
486   Value *visitUnknown(const SCEVUnknown *S) { return S->getValue(); }
487 
488   void rememberInstruction(Value *I);
489 
490   bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
491 
492   bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
493 
494   Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
495   PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
496                                      const Loop *L, Type *ExpandTy, Type *IntTy,
497                                      Type *&TruncTy, bool &InvertStep);
498   Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, Type *ExpandTy,
499                      Type *IntTy, bool useSubtract);
500 
501   void fixupInsertPoints(Instruction *I);
502 
503   /// Create LCSSA PHIs for \p V, if it is required for uses at the Builder's
504   /// current insertion point.
505   Value *fixupLCSSAFormFor(Value *V);
506 };
507 
508 /// Helper to remove instructions inserted during SCEV expansion, unless they
509 /// are marked as used.
510 class SCEVExpanderCleaner {
511   SCEVExpander &Expander;
512 
513   /// Indicates whether the result of the expansion is used. If false, the
514   /// instructions added during expansion are removed.
515   bool ResultUsed;
516 
517 public:
518   SCEVExpanderCleaner(SCEVExpander &Expander)
519       : Expander(Expander), ResultUsed(false) {}
520 
521   ~SCEVExpanderCleaner() { cleanup(); }
522 
523   /// Indicate that the result of the expansion is used.
524   void markResultUsed() { ResultUsed = true; }
525 
526   void cleanup();
527 };
528 } // namespace llvm
529 
530 #endif
531