1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified.  This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation.  Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/AtomicOrdering.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iterator>
56 
57 #define DEBUG_TYPE "aa"
58 
59 using namespace llvm;
60 
61 STATISTIC(NumNoAlias,   "Number of NoAlias results");
62 STATISTIC(NumMayAlias,  "Number of MayAlias results");
63 STATISTIC(NumMustAlias, "Number of MustAlias results");
64 
65 namespace llvm {
66 /// Allow disabling BasicAA from the AA results. This is particularly useful
67 /// when testing to isolate a single AA implementation.
68 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
69 } // namespace llvm
70 
71 #ifndef NDEBUG
72 /// Print a trace of alias analysis queries and their results.
73 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false));
74 #else
75 static const bool EnableAATrace = false;
76 #endif
77 
78 AAResults::AAResults(AAResults &&Arg)
79     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
80   for (auto &AA : AAs)
81     AA->setAAResults(this);
82 }
83 
84 AAResults::~AAResults() {
85 // FIXME; It would be nice to at least clear out the pointers back to this
86 // aggregation here, but we end up with non-nesting lifetimes in the legacy
87 // pass manager that prevent this from working. In the legacy pass manager
88 // we'll end up with dangling references here in some cases.
89 #if 0
90   for (auto &AA : AAs)
91     AA->setAAResults(nullptr);
92 #endif
93 }
94 
95 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
96                            FunctionAnalysisManager::Invalidator &Inv) {
97   // AAResults preserves the AAManager by default, due to the stateless nature
98   // of AliasAnalysis. There is no need to check whether it has been preserved
99   // explicitly. Check if any module dependency was invalidated and caused the
100   // AAManager to be invalidated. Invalidate ourselves in that case.
101   auto PAC = PA.getChecker<AAManager>();
102   if (!PAC.preservedWhenStateless())
103     return true;
104 
105   // Check if any of the function dependencies were invalidated, and invalidate
106   // ourselves in that case.
107   for (AnalysisKey *ID : AADeps)
108     if (Inv.invalidate(ID, F, PA))
109       return true;
110 
111   // Everything we depend on is still fine, so are we. Nothing to invalidate.
112   return false;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Default chaining methods
117 //===----------------------------------------------------------------------===//
118 
119 AliasResult AAResults::alias(const MemoryLocation &LocA,
120                              const MemoryLocation &LocB) {
121   SimpleAAQueryInfo AAQIP;
122   return alias(LocA, LocB, AAQIP);
123 }
124 
125 AliasResult AAResults::alias(const MemoryLocation &LocA,
126                              const MemoryLocation &LocB, AAQueryInfo &AAQI) {
127   AliasResult Result = AliasResult::MayAlias;
128 
129   if (EnableAATrace) {
130     for (unsigned I = 0; I < AAQI.Depth; ++I)
131       dbgs() << "  ";
132     dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", "
133            << *LocB.Ptr << " @ " << LocB.Size << "\n";
134   }
135 
136   AAQI.Depth++;
137   for (const auto &AA : AAs) {
138     Result = AA->alias(LocA, LocB, AAQI);
139     if (Result != AliasResult::MayAlias)
140       break;
141   }
142   AAQI.Depth--;
143 
144   if (EnableAATrace) {
145     for (unsigned I = 0; I < AAQI.Depth; ++I)
146       dbgs() << "  ";
147     dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", "
148            << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n";
149   }
150 
151   if (AAQI.Depth == 0) {
152     if (Result == AliasResult::NoAlias)
153       ++NumNoAlias;
154     else if (Result == AliasResult::MustAlias)
155       ++NumMustAlias;
156     else
157       ++NumMayAlias;
158   }
159   return Result;
160 }
161 
162 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
163                                        bool OrLocal) {
164   SimpleAAQueryInfo AAQIP;
165   return pointsToConstantMemory(Loc, AAQIP, OrLocal);
166 }
167 
168 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
169                                        AAQueryInfo &AAQI, bool OrLocal) {
170   for (const auto &AA : AAs)
171     if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
172       return true;
173 
174   return false;
175 }
176 
177 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
178   ModRefInfo Result = ModRefInfo::ModRef;
179 
180   for (const auto &AA : AAs) {
181     Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
182 
183     // Early-exit the moment we reach the bottom of the lattice.
184     if (isNoModRef(Result))
185       return ModRefInfo::NoModRef;
186   }
187 
188   return Result;
189 }
190 
191 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
192   SimpleAAQueryInfo AAQIP;
193   return getModRefInfo(I, Call2, AAQIP);
194 }
195 
196 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
197                                     AAQueryInfo &AAQI) {
198   // We may have two calls.
199   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
200     // Check if the two calls modify the same memory.
201     return getModRefInfo(Call1, Call2, AAQI);
202   }
203   // If this is a fence, just return ModRef.
204   if (I->isFenceLike())
205     return ModRefInfo::ModRef;
206   // Otherwise, check if the call modifies or references the
207   // location this memory access defines.  The best we can say
208   // is that if the call references what this instruction
209   // defines, it must be clobbered by this location.
210   const MemoryLocation DefLoc = MemoryLocation::get(I);
211   ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
212   if (isModOrRefSet(MR))
213     return setModAndRef(MR);
214   return ModRefInfo::NoModRef;
215 }
216 
217 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
218                                     const MemoryLocation &Loc) {
219   SimpleAAQueryInfo AAQIP;
220   return getModRefInfo(Call, Loc, AAQIP);
221 }
222 
223 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
224                                     const MemoryLocation &Loc,
225                                     AAQueryInfo &AAQI) {
226   ModRefInfo Result = ModRefInfo::ModRef;
227 
228   for (const auto &AA : AAs) {
229     Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
230 
231     // Early-exit the moment we reach the bottom of the lattice.
232     if (isNoModRef(Result))
233       return ModRefInfo::NoModRef;
234   }
235 
236   // Try to refine the mod-ref info further using other API entry points to the
237   // aggregate set of AA results.
238   auto MRB = getModRefBehavior(Call);
239   if (onlyAccessesInaccessibleMem(MRB))
240     return ModRefInfo::NoModRef;
241 
242   if (onlyReadsMemory(MRB))
243     Result = clearMod(Result);
244   else if (onlyWritesMemory(MRB))
245     Result = clearRef(Result);
246 
247   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
248     bool IsMustAlias = true;
249     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
250     if (doesAccessArgPointees(MRB)) {
251       for (const auto &I : llvm::enumerate(Call->args())) {
252         const Value *Arg = I.value();
253         if (!Arg->getType()->isPointerTy())
254           continue;
255         unsigned ArgIdx = I.index();
256         MemoryLocation ArgLoc =
257             MemoryLocation::getForArgument(Call, ArgIdx, TLI);
258         AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI);
259         if (ArgAlias != AliasResult::NoAlias) {
260           ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
261           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
262         }
263         // Conservatively clear IsMustAlias unless only MustAlias is found.
264         IsMustAlias &= (ArgAlias == AliasResult::MustAlias);
265       }
266     }
267     // Return NoModRef if no alias found with any argument.
268     if (isNoModRef(AllArgsMask))
269       return ModRefInfo::NoModRef;
270     // Logical & between other AA analyses and argument analysis.
271     Result = intersectModRef(Result, AllArgsMask);
272     // If only MustAlias found above, set Must bit.
273     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
274   }
275 
276   // If Loc is a constant memory location, the call definitely could not
277   // modify the memory location.
278   if (isModSet(Result) && pointsToConstantMemory(Loc, AAQI, /*OrLocal*/ false))
279     Result = clearMod(Result);
280 
281   return Result;
282 }
283 
284 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
285                                     const CallBase *Call2) {
286   SimpleAAQueryInfo AAQIP;
287   return getModRefInfo(Call1, Call2, AAQIP);
288 }
289 
290 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
291                                     const CallBase *Call2, AAQueryInfo &AAQI) {
292   ModRefInfo Result = ModRefInfo::ModRef;
293 
294   for (const auto &AA : AAs) {
295     Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
296 
297     // Early-exit the moment we reach the bottom of the lattice.
298     if (isNoModRef(Result))
299       return ModRefInfo::NoModRef;
300   }
301 
302   // Try to refine the mod-ref info further using other API entry points to the
303   // aggregate set of AA results.
304 
305   // If Call1 or Call2 are readnone, they don't interact.
306   auto Call1B = getModRefBehavior(Call1);
307   if (Call1B == FMRB_DoesNotAccessMemory)
308     return ModRefInfo::NoModRef;
309 
310   auto Call2B = getModRefBehavior(Call2);
311   if (Call2B == FMRB_DoesNotAccessMemory)
312     return ModRefInfo::NoModRef;
313 
314   // If they both only read from memory, there is no dependence.
315   if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
316     return ModRefInfo::NoModRef;
317 
318   // If Call1 only reads memory, the only dependence on Call2 can be
319   // from Call1 reading memory written by Call2.
320   if (onlyReadsMemory(Call1B))
321     Result = clearMod(Result);
322   else if (onlyWritesMemory(Call1B))
323     Result = clearRef(Result);
324 
325   // If Call2 only access memory through arguments, accumulate the mod/ref
326   // information from Call1's references to the memory referenced by
327   // Call2's arguments.
328   if (onlyAccessesArgPointees(Call2B)) {
329     if (!doesAccessArgPointees(Call2B))
330       return ModRefInfo::NoModRef;
331     ModRefInfo R = ModRefInfo::NoModRef;
332     bool IsMustAlias = true;
333     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
334       const Value *Arg = *I;
335       if (!Arg->getType()->isPointerTy())
336         continue;
337       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
338       auto Call2ArgLoc =
339           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
340 
341       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
342       // dependence of Call1 on that location is the inverse:
343       // - If Call2 modifies location, dependence exists if Call1 reads or
344       //   writes.
345       // - If Call2 only reads location, dependence exists if Call1 writes.
346       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
347       ModRefInfo ArgMask = ModRefInfo::NoModRef;
348       if (isModSet(ArgModRefC2))
349         ArgMask = ModRefInfo::ModRef;
350       else if (isRefSet(ArgModRefC2))
351         ArgMask = ModRefInfo::Mod;
352 
353       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
354       // above ArgMask to update dependence info.
355       ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc, AAQI);
356       ArgMask = intersectModRef(ArgMask, ModRefC1);
357 
358       // Conservatively clear IsMustAlias unless only MustAlias is found.
359       IsMustAlias &= isMustSet(ModRefC1);
360 
361       R = intersectModRef(unionModRef(R, ArgMask), Result);
362       if (R == Result) {
363         // On early exit, not all args were checked, cannot set Must.
364         if (I + 1 != E)
365           IsMustAlias = false;
366         break;
367       }
368     }
369 
370     if (isNoModRef(R))
371       return ModRefInfo::NoModRef;
372 
373     // If MustAlias found above, set Must bit.
374     return IsMustAlias ? setMust(R) : clearMust(R);
375   }
376 
377   // If Call1 only accesses memory through arguments, check if Call2 references
378   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
379   if (onlyAccessesArgPointees(Call1B)) {
380     if (!doesAccessArgPointees(Call1B))
381       return ModRefInfo::NoModRef;
382     ModRefInfo R = ModRefInfo::NoModRef;
383     bool IsMustAlias = true;
384     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
385       const Value *Arg = *I;
386       if (!Arg->getType()->isPointerTy())
387         continue;
388       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
389       auto Call1ArgLoc =
390           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
391 
392       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
393       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
394       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
395       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
396       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
397       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
398           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
399         R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
400 
401       // Conservatively clear IsMustAlias unless only MustAlias is found.
402       IsMustAlias &= isMustSet(ModRefC2);
403 
404       if (R == Result) {
405         // On early exit, not all args were checked, cannot set Must.
406         if (I + 1 != E)
407           IsMustAlias = false;
408         break;
409       }
410     }
411 
412     if (isNoModRef(R))
413       return ModRefInfo::NoModRef;
414 
415     // If MustAlias found above, set Must bit.
416     return IsMustAlias ? setMust(R) : clearMust(R);
417   }
418 
419   return Result;
420 }
421 
422 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
423   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
424 
425   for (const auto &AA : AAs) {
426     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
427 
428     // Early-exit the moment we reach the bottom of the lattice.
429     if (Result == FMRB_DoesNotAccessMemory)
430       return Result;
431   }
432 
433   return Result;
434 }
435 
436 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
437   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
438 
439   for (const auto &AA : AAs) {
440     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
441 
442     // Early-exit the moment we reach the bottom of the lattice.
443     if (Result == FMRB_DoesNotAccessMemory)
444       return Result;
445   }
446 
447   return Result;
448 }
449 
450 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
451   switch (AR) {
452   case AliasResult::NoAlias:
453     OS << "NoAlias";
454     break;
455   case AliasResult::MustAlias:
456     OS << "MustAlias";
457     break;
458   case AliasResult::MayAlias:
459     OS << "MayAlias";
460     break;
461   case AliasResult::PartialAlias:
462     OS << "PartialAlias";
463     if (AR.hasOffset())
464       OS << " (off " << AR.getOffset() << ")";
465     break;
466   }
467   return OS;
468 }
469 
470 //===----------------------------------------------------------------------===//
471 // Helper method implementation
472 //===----------------------------------------------------------------------===//
473 
474 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
475                                     const MemoryLocation &Loc) {
476   SimpleAAQueryInfo AAQIP;
477   return getModRefInfo(L, Loc, AAQIP);
478 }
479 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
480                                     const MemoryLocation &Loc,
481                                     AAQueryInfo &AAQI) {
482   // Be conservative in the face of atomic.
483   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
484     return ModRefInfo::ModRef;
485 
486   // If the load address doesn't alias the given address, it doesn't read
487   // or write the specified memory.
488   if (Loc.Ptr) {
489     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
490     if (AR == AliasResult::NoAlias)
491       return ModRefInfo::NoModRef;
492     if (AR == AliasResult::MustAlias)
493       return ModRefInfo::MustRef;
494   }
495   // Otherwise, a load just reads.
496   return ModRefInfo::Ref;
497 }
498 
499 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
500                                     const MemoryLocation &Loc) {
501   SimpleAAQueryInfo AAQIP;
502   return getModRefInfo(S, Loc, AAQIP);
503 }
504 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
505                                     const MemoryLocation &Loc,
506                                     AAQueryInfo &AAQI) {
507   // Be conservative in the face of atomic.
508   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
509     return ModRefInfo::ModRef;
510 
511   if (Loc.Ptr) {
512     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
513     // If the store address cannot alias the pointer in question, then the
514     // specified memory cannot be modified by the store.
515     if (AR == AliasResult::NoAlias)
516       return ModRefInfo::NoModRef;
517 
518     // If the pointer is a pointer to constant memory, then it could not have
519     // been modified by this store.
520     if (pointsToConstantMemory(Loc, AAQI))
521       return ModRefInfo::NoModRef;
522 
523     // If the store address aliases the pointer as must alias, set Must.
524     if (AR == AliasResult::MustAlias)
525       return ModRefInfo::MustMod;
526   }
527 
528   // Otherwise, a store just writes.
529   return ModRefInfo::Mod;
530 }
531 
532 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
533   SimpleAAQueryInfo AAQIP;
534   return getModRefInfo(S, Loc, AAQIP);
535 }
536 
537 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
538                                     const MemoryLocation &Loc,
539                                     AAQueryInfo &AAQI) {
540   // If we know that the location is a constant memory location, the fence
541   // cannot modify this location.
542   if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
543     return ModRefInfo::Ref;
544   return ModRefInfo::ModRef;
545 }
546 
547 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
548                                     const MemoryLocation &Loc) {
549   SimpleAAQueryInfo AAQIP;
550   return getModRefInfo(V, Loc, AAQIP);
551 }
552 
553 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
554                                     const MemoryLocation &Loc,
555                                     AAQueryInfo &AAQI) {
556   if (Loc.Ptr) {
557     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
558     // If the va_arg address cannot alias the pointer in question, then the
559     // specified memory cannot be accessed by the va_arg.
560     if (AR == AliasResult::NoAlias)
561       return ModRefInfo::NoModRef;
562 
563     // If the pointer is a pointer to constant memory, then it could not have
564     // been modified by this va_arg.
565     if (pointsToConstantMemory(Loc, AAQI))
566       return ModRefInfo::NoModRef;
567 
568     // If the va_arg aliases the pointer as must alias, set Must.
569     if (AR == AliasResult::MustAlias)
570       return ModRefInfo::MustModRef;
571   }
572 
573   // Otherwise, a va_arg reads and writes.
574   return ModRefInfo::ModRef;
575 }
576 
577 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
578                                     const MemoryLocation &Loc) {
579   SimpleAAQueryInfo AAQIP;
580   return getModRefInfo(CatchPad, Loc, AAQIP);
581 }
582 
583 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
584                                     const MemoryLocation &Loc,
585                                     AAQueryInfo &AAQI) {
586   if (Loc.Ptr) {
587     // If the pointer is a pointer to constant memory,
588     // then it could not have been modified by this catchpad.
589     if (pointsToConstantMemory(Loc, AAQI))
590       return ModRefInfo::NoModRef;
591   }
592 
593   // Otherwise, a catchpad reads and writes.
594   return ModRefInfo::ModRef;
595 }
596 
597 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
598                                     const MemoryLocation &Loc) {
599   SimpleAAQueryInfo AAQIP;
600   return getModRefInfo(CatchRet, Loc, AAQIP);
601 }
602 
603 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
604                                     const MemoryLocation &Loc,
605                                     AAQueryInfo &AAQI) {
606   if (Loc.Ptr) {
607     // If the pointer is a pointer to constant memory,
608     // then it could not have been modified by this catchpad.
609     if (pointsToConstantMemory(Loc, AAQI))
610       return ModRefInfo::NoModRef;
611   }
612 
613   // Otherwise, a catchret reads and writes.
614   return ModRefInfo::ModRef;
615 }
616 
617 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
618                                     const MemoryLocation &Loc) {
619   SimpleAAQueryInfo AAQIP;
620   return getModRefInfo(CX, Loc, AAQIP);
621 }
622 
623 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
624                                     const MemoryLocation &Loc,
625                                     AAQueryInfo &AAQI) {
626   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
627   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
628     return ModRefInfo::ModRef;
629 
630   if (Loc.Ptr) {
631     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
632     // If the cmpxchg address does not alias the location, it does not access
633     // it.
634     if (AR == AliasResult::NoAlias)
635       return ModRefInfo::NoModRef;
636 
637     // If the cmpxchg address aliases the pointer as must alias, set Must.
638     if (AR == AliasResult::MustAlias)
639       return ModRefInfo::MustModRef;
640   }
641 
642   return ModRefInfo::ModRef;
643 }
644 
645 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
646                                     const MemoryLocation &Loc) {
647   SimpleAAQueryInfo AAQIP;
648   return getModRefInfo(RMW, Loc, AAQIP);
649 }
650 
651 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
652                                     const MemoryLocation &Loc,
653                                     AAQueryInfo &AAQI) {
654   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
655   if (isStrongerThanMonotonic(RMW->getOrdering()))
656     return ModRefInfo::ModRef;
657 
658   if (Loc.Ptr) {
659     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
660     // If the atomicrmw address does not alias the location, it does not access
661     // it.
662     if (AR == AliasResult::NoAlias)
663       return ModRefInfo::NoModRef;
664 
665     // If the atomicrmw address aliases the pointer as must alias, set Must.
666     if (AR == AliasResult::MustAlias)
667       return ModRefInfo::MustModRef;
668   }
669 
670   return ModRefInfo::ModRef;
671 }
672 
673 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
674                                     const Optional<MemoryLocation> &OptLoc,
675                                     AAQueryInfo &AAQIP) {
676   if (OptLoc == None) {
677     if (const auto *Call = dyn_cast<CallBase>(I)) {
678       return createModRefInfo(getModRefBehavior(Call));
679     }
680   }
681 
682   const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation());
683 
684   switch (I->getOpcode()) {
685   case Instruction::VAArg:
686     return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
687   case Instruction::Load:
688     return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
689   case Instruction::Store:
690     return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
691   case Instruction::Fence:
692     return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
693   case Instruction::AtomicCmpXchg:
694     return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
695   case Instruction::AtomicRMW:
696     return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
697   case Instruction::Call:
698   case Instruction::CallBr:
699   case Instruction::Invoke:
700     return getModRefInfo((const CallBase *)I, Loc, AAQIP);
701   case Instruction::CatchPad:
702     return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
703   case Instruction::CatchRet:
704     return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
705   default:
706     assert(!I->mayReadOrWriteMemory() &&
707            "Unhandled memory access instruction!");
708     return ModRefInfo::NoModRef;
709   }
710 }
711 
712 /// Return information about whether a particular call site modifies
713 /// or reads the specified memory location \p MemLoc before instruction \p I
714 /// in a BasicBlock.
715 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
716 /// BasicAA isn't willing to spend linear time determining whether an alloca
717 /// was captured before or after this particular call, while we are. However,
718 /// with a smarter AA in place, this test is just wasting compile time.
719 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
720                                          const MemoryLocation &MemLoc,
721                                          DominatorTree *DT,
722                                          AAQueryInfo &AAQI) {
723   if (!DT)
724     return ModRefInfo::ModRef;
725 
726   const Value *Object = getUnderlyingObject(MemLoc.Ptr);
727   if (!isIdentifiedFunctionLocal(Object))
728     return ModRefInfo::ModRef;
729 
730   const auto *Call = dyn_cast<CallBase>(I);
731   if (!Call || Call == Object)
732     return ModRefInfo::ModRef;
733 
734   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
735                                  /* StoreCaptures */ true, I, DT,
736                                  /* include Object */ true))
737     return ModRefInfo::ModRef;
738 
739   unsigned ArgNo = 0;
740   ModRefInfo R = ModRefInfo::NoModRef;
741   bool IsMustAlias = true;
742   // Set flag only if no May found and all operands processed.
743   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
744        CI != CE; ++CI, ++ArgNo) {
745     // Only look at the no-capture or byval pointer arguments.  If this
746     // pointer were passed to arguments that were neither of these, then it
747     // couldn't be no-capture.
748     if (!(*CI)->getType()->isPointerTy() ||
749         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() &&
750          !Call->isByValArgument(ArgNo)))
751       continue;
752 
753     AliasResult AR = alias(
754         MemoryLocation::getBeforeOrAfter(*CI),
755         MemoryLocation::getBeforeOrAfter(Object), AAQI);
756     // If this is a no-capture pointer argument, see if we can tell that it
757     // is impossible to alias the pointer we're checking.  If not, we have to
758     // assume that the call could touch the pointer, even though it doesn't
759     // escape.
760     if (AR != AliasResult::MustAlias)
761       IsMustAlias = false;
762     if (AR == AliasResult::NoAlias)
763       continue;
764     if (Call->doesNotAccessMemory(ArgNo))
765       continue;
766     if (Call->onlyReadsMemory(ArgNo)) {
767       R = ModRefInfo::Ref;
768       continue;
769     }
770     // Not returning MustModRef since we have not seen all the arguments.
771     return ModRefInfo::ModRef;
772   }
773   return IsMustAlias ? setMust(R) : clearMust(R);
774 }
775 
776 /// canBasicBlockModify - Return true if it is possible for execution of the
777 /// specified basic block to modify the location Loc.
778 ///
779 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
780                                     const MemoryLocation &Loc) {
781   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
782 }
783 
784 /// canInstructionRangeModRef - Return true if it is possible for the
785 /// execution of the specified instructions to mod\ref (according to the
786 /// mode) the location Loc. The instructions to consider are all
787 /// of the instructions in the range of [I1,I2] INCLUSIVE.
788 /// I1 and I2 must be in the same basic block.
789 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
790                                           const Instruction &I2,
791                                           const MemoryLocation &Loc,
792                                           const ModRefInfo Mode) {
793   assert(I1.getParent() == I2.getParent() &&
794          "Instructions not in same basic block!");
795   BasicBlock::const_iterator I = I1.getIterator();
796   BasicBlock::const_iterator E = I2.getIterator();
797   ++E;  // Convert from inclusive to exclusive range.
798 
799   for (; I != E; ++I) // Check every instruction in range
800     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
801       return true;
802   return false;
803 }
804 
805 // Provide a definition for the root virtual destructor.
806 AAResults::Concept::~Concept() = default;
807 
808 // Provide a definition for the static object used to identify passes.
809 AnalysisKey AAManager::Key;
810 
811 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
812   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
813 }
814 
815 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
816     : ImmutablePass(ID), CB(std::move(CB)) {
817   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
818 }
819 
820 char ExternalAAWrapperPass::ID = 0;
821 
822 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
823                 false, true)
824 
825 ImmutablePass *
826 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
827   return new ExternalAAWrapperPass(std::move(Callback));
828 }
829 
830 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
831   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
832 }
833 
834 char AAResultsWrapperPass::ID = 0;
835 
836 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
837                       "Function Alias Analysis Results", false, true)
838 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
839 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
840 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
841 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
842 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
843 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
844 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
845 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
846 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
847 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
848                     "Function Alias Analysis Results", false, true)
849 
850 FunctionPass *llvm::createAAResultsWrapperPass() {
851   return new AAResultsWrapperPass();
852 }
853 
854 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
855 ///
856 /// This is the legacy pass manager's interface to the new-style AA results
857 /// aggregation object. Because this is somewhat shoe-horned into the legacy
858 /// pass manager, we hard code all the specific alias analyses available into
859 /// it. While the particular set enabled is configured via commandline flags,
860 /// adding a new alias analysis to LLVM will require adding support for it to
861 /// this list.
862 bool AAResultsWrapperPass::runOnFunction(Function &F) {
863   // NB! This *must* be reset before adding new AA results to the new
864   // AAResults object because in the legacy pass manager, each instance
865   // of these will refer to the *same* immutable analyses, registering and
866   // unregistering themselves with them. We need to carefully tear down the
867   // previous object first, in this case replacing it with an empty one, before
868   // registering new results.
869   AAR.reset(
870       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
871 
872   // BasicAA is always available for function analyses. Also, we add it first
873   // so that it can trump TBAA results when it proves MustAlias.
874   // FIXME: TBAA should have an explicit mode to support this and then we
875   // should reconsider the ordering here.
876   if (!DisableBasicAA)
877     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
878 
879   // Populate the results with the currently available AAs.
880   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
881     AAR->addAAResult(WrapperPass->getResult());
882   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
883     AAR->addAAResult(WrapperPass->getResult());
884   if (auto *WrapperPass =
885           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
886     AAR->addAAResult(WrapperPass->getResult());
887   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
888     AAR->addAAResult(WrapperPass->getResult());
889   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
890     AAR->addAAResult(WrapperPass->getResult());
891   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
892     AAR->addAAResult(WrapperPass->getResult());
893   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
894     AAR->addAAResult(WrapperPass->getResult());
895 
896   // If available, run an external AA providing callback over the results as
897   // well.
898   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
899     if (WrapperPass->CB)
900       WrapperPass->CB(*this, F, *AAR);
901 
902   // Analyses don't mutate the IR, so return false.
903   return false;
904 }
905 
906 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
907   AU.setPreservesAll();
908   AU.addRequiredTransitive<BasicAAWrapperPass>();
909   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
910 
911   // We also need to mark all the alias analysis passes we will potentially
912   // probe in runOnFunction as used here to ensure the legacy pass manager
913   // preserves them. This hard coding of lists of alias analyses is specific to
914   // the legacy pass manager.
915   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
916   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
917   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
918   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
919   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
920   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
921   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
922   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
923 }
924 
925 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
926   Result R(AM.getResult<TargetLibraryAnalysis>(F));
927   for (auto &Getter : ResultGetters)
928     (*Getter)(F, AM, R);
929   return R;
930 }
931 
932 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
933                                         BasicAAResult &BAR) {
934   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
935 
936   // Add in our explicitly constructed BasicAA results.
937   if (!DisableBasicAA)
938     AAR.addAAResult(BAR);
939 
940   // Populate the results with the other currently available AAs.
941   if (auto *WrapperPass =
942           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
943     AAR.addAAResult(WrapperPass->getResult());
944   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
945     AAR.addAAResult(WrapperPass->getResult());
946   if (auto *WrapperPass =
947           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
948     AAR.addAAResult(WrapperPass->getResult());
949   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
950     AAR.addAAResult(WrapperPass->getResult());
951   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
952     AAR.addAAResult(WrapperPass->getResult());
953   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
954     AAR.addAAResult(WrapperPass->getResult());
955   if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
956     if (WrapperPass->CB)
957       WrapperPass->CB(P, F, AAR);
958 
959   return AAR;
960 }
961 
962 bool llvm::isNoAliasCall(const Value *V) {
963   if (const auto *Call = dyn_cast<CallBase>(V))
964     return Call->hasRetAttr(Attribute::NoAlias);
965   return false;
966 }
967 
968 static bool isNoAliasOrByValArgument(const Value *V) {
969   if (const Argument *A = dyn_cast<Argument>(V))
970     return A->hasNoAliasAttr() || A->hasByValAttr();
971   return false;
972 }
973 
974 bool llvm::isIdentifiedObject(const Value *V) {
975   if (isa<AllocaInst>(V))
976     return true;
977   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
978     return true;
979   if (isNoAliasCall(V))
980     return true;
981   if (isNoAliasOrByValArgument(V))
982     return true;
983   return false;
984 }
985 
986 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
987   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
988 }
989 
990 bool llvm::isEscapeSource(const Value *V) {
991   if (auto *CB = dyn_cast<CallBase>(V))
992     return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB,
993                                                                         true);
994 
995   // The load case works because isNonEscapingLocalObject considers all
996   // stores to be escapes (it passes true for the StoreCaptures argument
997   // to PointerMayBeCaptured).
998   if (isa<LoadInst>(V))
999     return true;
1000 
1001   // The inttoptr case works because isNonEscapingLocalObject considers all
1002   // means of converting or equating a pointer to an int (ptrtoint, ptr store
1003   // which could be followed by an integer load, ptr<->int compare) as
1004   // escaping, and objects located at well-known addresses via platform-specific
1005   // means cannot be considered non-escaping local objects.
1006   if (isa<IntToPtrInst>(V))
1007     return true;
1008 
1009   return false;
1010 }
1011 
1012 bool llvm::isNotVisibleOnUnwind(const Value *Object,
1013                                 bool &RequiresNoCaptureBeforeUnwind) {
1014   RequiresNoCaptureBeforeUnwind = false;
1015 
1016   // Alloca goes out of scope on unwind.
1017   if (isa<AllocaInst>(Object))
1018     return true;
1019 
1020   // Byval goes out of scope on unwind.
1021   if (auto *A = dyn_cast<Argument>(Object))
1022     return A->hasByValAttr();
1023 
1024   // A noalias return is not accessible from any other code. If the pointer
1025   // does not escape prior to the unwind, then the caller cannot access the
1026   // memory either.
1027   if (isNoAliasCall(Object)) {
1028     RequiresNoCaptureBeforeUnwind = true;
1029     return true;
1030   }
1031 
1032   return false;
1033 }
1034 
1035 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
1036   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
1037   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
1038   // to be added here also.
1039   AU.addRequired<TargetLibraryInfoWrapperPass>();
1040   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
1041   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
1042   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
1043   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
1044   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
1045   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
1046   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
1047 }
1048