1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified.  This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation.  Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
30 #include "llvm/Analysis/CaptureTracking.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/ScopedNoAliasAA.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/IR/Argument.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/AtomicOrdering.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iterator>
56 
57 using namespace llvm;
58 
59 /// Allow disabling BasicAA from the AA results. This is particularly useful
60 /// when testing to isolate a single AA implementation.
61 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
62                                     cl::init(false));
63 
64 AAResults::AAResults(AAResults &&Arg)
65     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
66   for (auto &AA : AAs)
67     AA->setAAResults(this);
68 }
69 
70 AAResults::~AAResults() {
71 // FIXME; It would be nice to at least clear out the pointers back to this
72 // aggregation here, but we end up with non-nesting lifetimes in the legacy
73 // pass manager that prevent this from working. In the legacy pass manager
74 // we'll end up with dangling references here in some cases.
75 #if 0
76   for (auto &AA : AAs)
77     AA->setAAResults(nullptr);
78 #endif
79 }
80 
81 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
82                            FunctionAnalysisManager::Invalidator &Inv) {
83   // AAResults preserves the AAManager by default, due to the stateless nature
84   // of AliasAnalysis. There is no need to check whether it has been preserved
85   // explicitly. Check if any module dependency was invalidated and caused the
86   // AAManager to be invalidated. Invalidate ourselves in that case.
87   auto PAC = PA.getChecker<AAManager>();
88   if (!PAC.preservedWhenStateless())
89     return true;
90 
91   // Check if any of the function dependencies were invalidated, and invalidate
92   // ourselves in that case.
93   for (AnalysisKey *ID : AADeps)
94     if (Inv.invalidate(ID, F, PA))
95       return true;
96 
97   // Everything we depend on is still fine, so are we. Nothing to invalidate.
98   return false;
99 }
100 
101 //===----------------------------------------------------------------------===//
102 // Default chaining methods
103 //===----------------------------------------------------------------------===//
104 
105 AliasResult AAResults::alias(const MemoryLocation &LocA,
106                              const MemoryLocation &LocB) {
107   AAQueryInfo AAQIP;
108   return alias(LocA, LocB, AAQIP);
109 }
110 
111 AliasResult AAResults::alias(const MemoryLocation &LocA,
112                              const MemoryLocation &LocB, AAQueryInfo &AAQI) {
113   for (const auto &AA : AAs) {
114     auto Result = AA->alias(LocA, LocB, AAQI);
115     if (Result != MayAlias)
116       return Result;
117   }
118   return MayAlias;
119 }
120 
121 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
122                                        bool OrLocal) {
123   AAQueryInfo AAQIP;
124   return pointsToConstantMemory(Loc, AAQIP, OrLocal);
125 }
126 
127 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
128                                        AAQueryInfo &AAQI, bool OrLocal) {
129   for (const auto &AA : AAs)
130     if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
131       return true;
132 
133   return false;
134 }
135 
136 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
137   ModRefInfo Result = ModRefInfo::ModRef;
138 
139   for (const auto &AA : AAs) {
140     Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
141 
142     // Early-exit the moment we reach the bottom of the lattice.
143     if (isNoModRef(Result))
144       return ModRefInfo::NoModRef;
145   }
146 
147   return Result;
148 }
149 
150 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
151   AAQueryInfo AAQIP;
152   return getModRefInfo(I, Call2, AAQIP);
153 }
154 
155 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
156                                     AAQueryInfo &AAQI) {
157   // We may have two calls.
158   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
159     // Check if the two calls modify the same memory.
160     return getModRefInfo(Call1, Call2, AAQI);
161   } else if (I->isFenceLike()) {
162     // If this is a fence, just return ModRef.
163     return ModRefInfo::ModRef;
164   } else {
165     // Otherwise, check if the call modifies or references the
166     // location this memory access defines.  The best we can say
167     // is that if the call references what this instruction
168     // defines, it must be clobbered by this location.
169     const MemoryLocation DefLoc = MemoryLocation::get(I);
170     ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
171     if (isModOrRefSet(MR))
172       return setModAndRef(MR);
173   }
174   return ModRefInfo::NoModRef;
175 }
176 
177 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
178                                     const MemoryLocation &Loc) {
179   AAQueryInfo AAQIP;
180   return getModRefInfo(Call, Loc, AAQIP);
181 }
182 
183 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
184                                     const MemoryLocation &Loc,
185                                     AAQueryInfo &AAQI) {
186   ModRefInfo Result = ModRefInfo::ModRef;
187 
188   for (const auto &AA : AAs) {
189     Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
190 
191     // Early-exit the moment we reach the bottom of the lattice.
192     if (isNoModRef(Result))
193       return ModRefInfo::NoModRef;
194   }
195 
196   // Try to refine the mod-ref info further using other API entry points to the
197   // aggregate set of AA results.
198   auto MRB = getModRefBehavior(Call);
199   if (MRB == FMRB_DoesNotAccessMemory ||
200       MRB == FMRB_OnlyAccessesInaccessibleMem)
201     return ModRefInfo::NoModRef;
202 
203   if (onlyReadsMemory(MRB))
204     Result = clearMod(Result);
205   else if (doesNotReadMemory(MRB))
206     Result = clearRef(Result);
207 
208   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
209     bool IsMustAlias = true;
210     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
211     if (doesAccessArgPointees(MRB)) {
212       for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
213         const Value *Arg = *AI;
214         if (!Arg->getType()->isPointerTy())
215           continue;
216         unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
217         MemoryLocation ArgLoc =
218             MemoryLocation::getForArgument(Call, ArgIdx, TLI);
219         AliasResult ArgAlias = alias(ArgLoc, Loc);
220         if (ArgAlias != NoAlias) {
221           ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
222           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
223         }
224         // Conservatively clear IsMustAlias unless only MustAlias is found.
225         IsMustAlias &= (ArgAlias == MustAlias);
226       }
227     }
228     // Return NoModRef if no alias found with any argument.
229     if (isNoModRef(AllArgsMask))
230       return ModRefInfo::NoModRef;
231     // Logical & between other AA analyses and argument analysis.
232     Result = intersectModRef(Result, AllArgsMask);
233     // If only MustAlias found above, set Must bit.
234     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
235   }
236 
237   // If Loc is a constant memory location, the call definitely could not
238   // modify the memory location.
239   if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
240     Result = clearMod(Result);
241 
242   return Result;
243 }
244 
245 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
246                                     const CallBase *Call2) {
247   AAQueryInfo AAQIP;
248   return getModRefInfo(Call1, Call2, AAQIP);
249 }
250 
251 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
252                                     const CallBase *Call2, AAQueryInfo &AAQI) {
253   ModRefInfo Result = ModRefInfo::ModRef;
254 
255   for (const auto &AA : AAs) {
256     Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
257 
258     // Early-exit the moment we reach the bottom of the lattice.
259     if (isNoModRef(Result))
260       return ModRefInfo::NoModRef;
261   }
262 
263   // Try to refine the mod-ref info further using other API entry points to the
264   // aggregate set of AA results.
265 
266   // If Call1 or Call2 are readnone, they don't interact.
267   auto Call1B = getModRefBehavior(Call1);
268   if (Call1B == FMRB_DoesNotAccessMemory)
269     return ModRefInfo::NoModRef;
270 
271   auto Call2B = getModRefBehavior(Call2);
272   if (Call2B == FMRB_DoesNotAccessMemory)
273     return ModRefInfo::NoModRef;
274 
275   // If they both only read from memory, there is no dependence.
276   if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
277     return ModRefInfo::NoModRef;
278 
279   // If Call1 only reads memory, the only dependence on Call2 can be
280   // from Call1 reading memory written by Call2.
281   if (onlyReadsMemory(Call1B))
282     Result = clearMod(Result);
283   else if (doesNotReadMemory(Call1B))
284     Result = clearRef(Result);
285 
286   // If Call2 only access memory through arguments, accumulate the mod/ref
287   // information from Call1's references to the memory referenced by
288   // Call2's arguments.
289   if (onlyAccessesArgPointees(Call2B)) {
290     if (!doesAccessArgPointees(Call2B))
291       return ModRefInfo::NoModRef;
292     ModRefInfo R = ModRefInfo::NoModRef;
293     bool IsMustAlias = true;
294     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
295       const Value *Arg = *I;
296       if (!Arg->getType()->isPointerTy())
297         continue;
298       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
299       auto Call2ArgLoc =
300           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
301 
302       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
303       // dependence of Call1 on that location is the inverse:
304       // - If Call2 modifies location, dependence exists if Call1 reads or
305       //   writes.
306       // - If Call2 only reads location, dependence exists if Call1 writes.
307       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
308       ModRefInfo ArgMask = ModRefInfo::NoModRef;
309       if (isModSet(ArgModRefC2))
310         ArgMask = ModRefInfo::ModRef;
311       else if (isRefSet(ArgModRefC2))
312         ArgMask = ModRefInfo::Mod;
313 
314       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
315       // above ArgMask to update dependence info.
316       ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc);
317       ArgMask = intersectModRef(ArgMask, ModRefC1);
318 
319       // Conservatively clear IsMustAlias unless only MustAlias is found.
320       IsMustAlias &= isMustSet(ModRefC1);
321 
322       R = intersectModRef(unionModRef(R, ArgMask), Result);
323       if (R == Result) {
324         // On early exit, not all args were checked, cannot set Must.
325         if (I + 1 != E)
326           IsMustAlias = false;
327         break;
328       }
329     }
330 
331     if (isNoModRef(R))
332       return ModRefInfo::NoModRef;
333 
334     // If MustAlias found above, set Must bit.
335     return IsMustAlias ? setMust(R) : clearMust(R);
336   }
337 
338   // If Call1 only accesses memory through arguments, check if Call2 references
339   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
340   if (onlyAccessesArgPointees(Call1B)) {
341     if (!doesAccessArgPointees(Call1B))
342       return ModRefInfo::NoModRef;
343     ModRefInfo R = ModRefInfo::NoModRef;
344     bool IsMustAlias = true;
345     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
346       const Value *Arg = *I;
347       if (!Arg->getType()->isPointerTy())
348         continue;
349       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
350       auto Call1ArgLoc =
351           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
352 
353       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
354       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
355       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
356       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
357       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc);
358       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
359           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
360         R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
361 
362       // Conservatively clear IsMustAlias unless only MustAlias is found.
363       IsMustAlias &= isMustSet(ModRefC2);
364 
365       if (R == Result) {
366         // On early exit, not all args were checked, cannot set Must.
367         if (I + 1 != E)
368           IsMustAlias = false;
369         break;
370       }
371     }
372 
373     if (isNoModRef(R))
374       return ModRefInfo::NoModRef;
375 
376     // If MustAlias found above, set Must bit.
377     return IsMustAlias ? setMust(R) : clearMust(R);
378   }
379 
380   return Result;
381 }
382 
383 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
384   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
385 
386   for (const auto &AA : AAs) {
387     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
388 
389     // Early-exit the moment we reach the bottom of the lattice.
390     if (Result == FMRB_DoesNotAccessMemory)
391       return Result;
392   }
393 
394   return Result;
395 }
396 
397 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
398   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
399 
400   for (const auto &AA : AAs) {
401     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
402 
403     // Early-exit the moment we reach the bottom of the lattice.
404     if (Result == FMRB_DoesNotAccessMemory)
405       return Result;
406   }
407 
408   return Result;
409 }
410 
411 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
412   switch (AR) {
413   case NoAlias:
414     OS << "NoAlias";
415     break;
416   case MustAlias:
417     OS << "MustAlias";
418     break;
419   case MayAlias:
420     OS << "MayAlias";
421     break;
422   case PartialAlias:
423     OS << "PartialAlias";
424     break;
425   }
426   return OS;
427 }
428 
429 //===----------------------------------------------------------------------===//
430 // Helper method implementation
431 //===----------------------------------------------------------------------===//
432 
433 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
434                                     const MemoryLocation &Loc) {
435   AAQueryInfo AAQIP;
436   return getModRefInfo(L, Loc, AAQIP);
437 }
438 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
439                                     const MemoryLocation &Loc,
440                                     AAQueryInfo &AAQI) {
441   // Be conservative in the face of atomic.
442   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
443     return ModRefInfo::ModRef;
444 
445   // If the load address doesn't alias the given address, it doesn't read
446   // or write the specified memory.
447   if (Loc.Ptr) {
448     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
449     if (AR == NoAlias)
450       return ModRefInfo::NoModRef;
451     if (AR == MustAlias)
452       return ModRefInfo::MustRef;
453   }
454   // Otherwise, a load just reads.
455   return ModRefInfo::Ref;
456 }
457 
458 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
459                                     const MemoryLocation &Loc) {
460   AAQueryInfo AAQIP;
461   return getModRefInfo(S, Loc, AAQIP);
462 }
463 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
464                                     const MemoryLocation &Loc,
465                                     AAQueryInfo &AAQI) {
466   // Be conservative in the face of atomic.
467   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
468     return ModRefInfo::ModRef;
469 
470   if (Loc.Ptr) {
471     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
472     // If the store address cannot alias the pointer in question, then the
473     // specified memory cannot be modified by the store.
474     if (AR == NoAlias)
475       return ModRefInfo::NoModRef;
476 
477     // If the pointer is a pointer to constant memory, then it could not have
478     // been modified by this store.
479     if (pointsToConstantMemory(Loc, AAQI))
480       return ModRefInfo::NoModRef;
481 
482     // If the store address aliases the pointer as must alias, set Must.
483     if (AR == MustAlias)
484       return ModRefInfo::MustMod;
485   }
486 
487   // Otherwise, a store just writes.
488   return ModRefInfo::Mod;
489 }
490 
491 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
492   AAQueryInfo AAQIP;
493   return getModRefInfo(S, Loc, AAQIP);
494 }
495 
496 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
497                                     const MemoryLocation &Loc,
498                                     AAQueryInfo &AAQI) {
499   // If we know that the location is a constant memory location, the fence
500   // cannot modify this location.
501   if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
502     return ModRefInfo::Ref;
503   return ModRefInfo::ModRef;
504 }
505 
506 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
507                                     const MemoryLocation &Loc) {
508   AAQueryInfo AAQIP;
509   return getModRefInfo(V, Loc, AAQIP);
510 }
511 
512 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
513                                     const MemoryLocation &Loc,
514                                     AAQueryInfo &AAQI) {
515   if (Loc.Ptr) {
516     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
517     // If the va_arg address cannot alias the pointer in question, then the
518     // specified memory cannot be accessed by the va_arg.
519     if (AR == NoAlias)
520       return ModRefInfo::NoModRef;
521 
522     // If the pointer is a pointer to constant memory, then it could not have
523     // been modified by this va_arg.
524     if (pointsToConstantMemory(Loc, AAQI))
525       return ModRefInfo::NoModRef;
526 
527     // If the va_arg aliases the pointer as must alias, set Must.
528     if (AR == MustAlias)
529       return ModRefInfo::MustModRef;
530   }
531 
532   // Otherwise, a va_arg reads and writes.
533   return ModRefInfo::ModRef;
534 }
535 
536 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
537                                     const MemoryLocation &Loc) {
538   AAQueryInfo AAQIP;
539   return getModRefInfo(CatchPad, Loc, AAQIP);
540 }
541 
542 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
543                                     const MemoryLocation &Loc,
544                                     AAQueryInfo &AAQI) {
545   if (Loc.Ptr) {
546     // If the pointer is a pointer to constant memory,
547     // then it could not have been modified by this catchpad.
548     if (pointsToConstantMemory(Loc, AAQI))
549       return ModRefInfo::NoModRef;
550   }
551 
552   // Otherwise, a catchpad reads and writes.
553   return ModRefInfo::ModRef;
554 }
555 
556 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
557                                     const MemoryLocation &Loc) {
558   AAQueryInfo AAQIP;
559   return getModRefInfo(CatchRet, Loc, AAQIP);
560 }
561 
562 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
563                                     const MemoryLocation &Loc,
564                                     AAQueryInfo &AAQI) {
565   if (Loc.Ptr) {
566     // If the pointer is a pointer to constant memory,
567     // then it could not have been modified by this catchpad.
568     if (pointsToConstantMemory(Loc, AAQI))
569       return ModRefInfo::NoModRef;
570   }
571 
572   // Otherwise, a catchret reads and writes.
573   return ModRefInfo::ModRef;
574 }
575 
576 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
577                                     const MemoryLocation &Loc) {
578   AAQueryInfo AAQIP;
579   return getModRefInfo(CX, Loc, AAQIP);
580 }
581 
582 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
583                                     const MemoryLocation &Loc,
584                                     AAQueryInfo &AAQI) {
585   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
586   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
587     return ModRefInfo::ModRef;
588 
589   if (Loc.Ptr) {
590     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
591     // If the cmpxchg address does not alias the location, it does not access
592     // it.
593     if (AR == NoAlias)
594       return ModRefInfo::NoModRef;
595 
596     // If the cmpxchg address aliases the pointer as must alias, set Must.
597     if (AR == MustAlias)
598       return ModRefInfo::MustModRef;
599   }
600 
601   return ModRefInfo::ModRef;
602 }
603 
604 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
605                                     const MemoryLocation &Loc) {
606   AAQueryInfo AAQIP;
607   return getModRefInfo(RMW, Loc, AAQIP);
608 }
609 
610 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
611                                     const MemoryLocation &Loc,
612                                     AAQueryInfo &AAQI) {
613   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
614   if (isStrongerThanMonotonic(RMW->getOrdering()))
615     return ModRefInfo::ModRef;
616 
617   if (Loc.Ptr) {
618     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
619     // If the atomicrmw address does not alias the location, it does not access
620     // it.
621     if (AR == NoAlias)
622       return ModRefInfo::NoModRef;
623 
624     // If the atomicrmw address aliases the pointer as must alias, set Must.
625     if (AR == MustAlias)
626       return ModRefInfo::MustModRef;
627   }
628 
629   return ModRefInfo::ModRef;
630 }
631 
632 /// Return information about whether a particular call site modifies
633 /// or reads the specified memory location \p MemLoc before instruction \p I
634 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
635 /// instruction-ordering queries inside the BasicBlock containing \p I.
636 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
637 /// BasicAA isn't willing to spend linear time determining whether an alloca
638 /// was captured before or after this particular call, while we are. However,
639 /// with a smarter AA in place, this test is just wasting compile time.
640 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
641                                          const MemoryLocation &MemLoc,
642                                          DominatorTree *DT,
643                                          OrderedBasicBlock *OBB) {
644   if (!DT)
645     return ModRefInfo::ModRef;
646 
647   const Value *Object =
648       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
649   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
650       isa<Constant>(Object))
651     return ModRefInfo::ModRef;
652 
653   const auto *Call = dyn_cast<CallBase>(I);
654   if (!Call || Call == Object)
655     return ModRefInfo::ModRef;
656 
657   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
658                                  /* StoreCaptures */ true, I, DT,
659                                  /* include Object */ true,
660                                  /* OrderedBasicBlock */ OBB))
661     return ModRefInfo::ModRef;
662 
663   unsigned ArgNo = 0;
664   ModRefInfo R = ModRefInfo::NoModRef;
665   bool IsMustAlias = true;
666   // Set flag only if no May found and all operands processed.
667   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
668        CI != CE; ++CI, ++ArgNo) {
669     // Only look at the no-capture or byval pointer arguments.  If this
670     // pointer were passed to arguments that were neither of these, then it
671     // couldn't be no-capture.
672     if (!(*CI)->getType()->isPointerTy() ||
673         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
674          !Call->isByValArgument(ArgNo)))
675       continue;
676 
677     AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
678     // If this is a no-capture pointer argument, see if we can tell that it
679     // is impossible to alias the pointer we're checking.  If not, we have to
680     // assume that the call could touch the pointer, even though it doesn't
681     // escape.
682     if (AR != MustAlias)
683       IsMustAlias = false;
684     if (AR == NoAlias)
685       continue;
686     if (Call->doesNotAccessMemory(ArgNo))
687       continue;
688     if (Call->onlyReadsMemory(ArgNo)) {
689       R = ModRefInfo::Ref;
690       continue;
691     }
692     // Not returning MustModRef since we have not seen all the arguments.
693     return ModRefInfo::ModRef;
694   }
695   return IsMustAlias ? setMust(R) : clearMust(R);
696 }
697 
698 /// canBasicBlockModify - Return true if it is possible for execution of the
699 /// specified basic block to modify the location Loc.
700 ///
701 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
702                                     const MemoryLocation &Loc) {
703   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
704 }
705 
706 /// canInstructionRangeModRef - Return true if it is possible for the
707 /// execution of the specified instructions to mod\ref (according to the
708 /// mode) the location Loc. The instructions to consider are all
709 /// of the instructions in the range of [I1,I2] INCLUSIVE.
710 /// I1 and I2 must be in the same basic block.
711 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
712                                           const Instruction &I2,
713                                           const MemoryLocation &Loc,
714                                           const ModRefInfo Mode) {
715   assert(I1.getParent() == I2.getParent() &&
716          "Instructions not in same basic block!");
717   BasicBlock::const_iterator I = I1.getIterator();
718   BasicBlock::const_iterator E = I2.getIterator();
719   ++E;  // Convert from inclusive to exclusive range.
720 
721   for (; I != E; ++I) // Check every instruction in range
722     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
723       return true;
724   return false;
725 }
726 
727 // Provide a definition for the root virtual destructor.
728 AAResults::Concept::~Concept() = default;
729 
730 // Provide a definition for the static object used to identify passes.
731 AnalysisKey AAManager::Key;
732 
733 namespace {
734 
735 
736 } // end anonymous namespace
737 
738 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
739   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
740 }
741 
742 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
743     : ImmutablePass(ID), CB(std::move(CB)) {
744   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
745 }
746 
747 char ExternalAAWrapperPass::ID = 0;
748 
749 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
750                 false, true)
751 
752 ImmutablePass *
753 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
754   return new ExternalAAWrapperPass(std::move(Callback));
755 }
756 
757 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
758   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
759 }
760 
761 char AAResultsWrapperPass::ID = 0;
762 
763 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
764                       "Function Alias Analysis Results", false, true)
765 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
766 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
767 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
768 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
769 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
770 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
771 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
772 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
773 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
774 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
775                     "Function Alias Analysis Results", false, true)
776 
777 FunctionPass *llvm::createAAResultsWrapperPass() {
778   return new AAResultsWrapperPass();
779 }
780 
781 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
782 ///
783 /// This is the legacy pass manager's interface to the new-style AA results
784 /// aggregation object. Because this is somewhat shoe-horned into the legacy
785 /// pass manager, we hard code all the specific alias analyses available into
786 /// it. While the particular set enabled is configured via commandline flags,
787 /// adding a new alias analysis to LLVM will require adding support for it to
788 /// this list.
789 bool AAResultsWrapperPass::runOnFunction(Function &F) {
790   // NB! This *must* be reset before adding new AA results to the new
791   // AAResults object because in the legacy pass manager, each instance
792   // of these will refer to the *same* immutable analyses, registering and
793   // unregistering themselves with them. We need to carefully tear down the
794   // previous object first, in this case replacing it with an empty one, before
795   // registering new results.
796   AAR.reset(
797       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
798 
799   // BasicAA is always available for function analyses. Also, we add it first
800   // so that it can trump TBAA results when it proves MustAlias.
801   // FIXME: TBAA should have an explicit mode to support this and then we
802   // should reconsider the ordering here.
803   if (!DisableBasicAA)
804     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
805 
806   // Populate the results with the currently available AAs.
807   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
808     AAR->addAAResult(WrapperPass->getResult());
809   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
810     AAR->addAAResult(WrapperPass->getResult());
811   if (auto *WrapperPass =
812           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
813     AAR->addAAResult(WrapperPass->getResult());
814   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
815     AAR->addAAResult(WrapperPass->getResult());
816   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
817     AAR->addAAResult(WrapperPass->getResult());
818   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
819     AAR->addAAResult(WrapperPass->getResult());
820   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
821     AAR->addAAResult(WrapperPass->getResult());
822 
823   // If available, run an external AA providing callback over the results as
824   // well.
825   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
826     if (WrapperPass->CB)
827       WrapperPass->CB(*this, F, *AAR);
828 
829   // Analyses don't mutate the IR, so return false.
830   return false;
831 }
832 
833 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
834   AU.setPreservesAll();
835   AU.addRequired<BasicAAWrapperPass>();
836   AU.addRequired<TargetLibraryInfoWrapperPass>();
837 
838   // We also need to mark all the alias analysis passes we will potentially
839   // probe in runOnFunction as used here to ensure the legacy pass manager
840   // preserves them. This hard coding of lists of alias analyses is specific to
841   // the legacy pass manager.
842   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
843   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
844   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
845   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
846   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
847   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
848   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
849   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
850 }
851 
852 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
853                                         BasicAAResult &BAR) {
854   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
855 
856   // Add in our explicitly constructed BasicAA results.
857   if (!DisableBasicAA)
858     AAR.addAAResult(BAR);
859 
860   // Populate the results with the other currently available AAs.
861   if (auto *WrapperPass =
862           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
863     AAR.addAAResult(WrapperPass->getResult());
864   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
865     AAR.addAAResult(WrapperPass->getResult());
866   if (auto *WrapperPass =
867           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
868     AAR.addAAResult(WrapperPass->getResult());
869   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
870     AAR.addAAResult(WrapperPass->getResult());
871   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
872     AAR.addAAResult(WrapperPass->getResult());
873   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
874     AAR.addAAResult(WrapperPass->getResult());
875   if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
876     if (WrapperPass->CB)
877       WrapperPass->CB(P, F, AAR);
878 
879   return AAR;
880 }
881 
882 bool llvm::isNoAliasCall(const Value *V) {
883   if (const auto *Call = dyn_cast<CallBase>(V))
884     return Call->hasRetAttr(Attribute::NoAlias);
885   return false;
886 }
887 
888 bool llvm::isNoAliasArgument(const Value *V) {
889   if (const Argument *A = dyn_cast<Argument>(V))
890     return A->hasNoAliasAttr();
891   return false;
892 }
893 
894 bool llvm::isIdentifiedObject(const Value *V) {
895   if (isa<AllocaInst>(V))
896     return true;
897   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
898     return true;
899   if (isNoAliasCall(V))
900     return true;
901   if (const Argument *A = dyn_cast<Argument>(V))
902     return A->hasNoAliasAttr() || A->hasByValAttr();
903   return false;
904 }
905 
906 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
907   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
908 }
909 
910 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
911   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
912   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
913   // to be added here also.
914   AU.addRequired<TargetLibraryInfoWrapperPass>();
915   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
916   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
917   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
918   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
919   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
920   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
921   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
922 }
923