1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/Support/BlockFrequency.h"
21 #include "llvm/Support/BranchProbability.h"
22 #include "llvm/Support/Compiler.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/ScaledNumber.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm>
28 #include <cassert>
29 #include <cstddef>
30 #include <cstdint>
31 #include <iterator>
32 #include <list>
33 #include <numeric>
34 #include <utility>
35 #include <vector>
36 
37 using namespace llvm;
38 using namespace llvm::bfi_detail;
39 
40 #define DEBUG_TYPE "block-freq"
41 
42 namespace llvm {
43 cl::opt<bool> CheckBFIUnknownBlockQueries(
44     "check-bfi-unknown-block-queries",
45     cl::init(false), cl::Hidden,
46     cl::desc("Check if block frequency is queried for an unknown block "
47              "for debugging missed BFI updates"));
48 
49 cl::opt<bool> UseIterativeBFIInference(
50     "use-iterative-bfi-inference", cl::Hidden,
51     cl::desc("Apply an iterative post-processing to infer correct BFI counts"));
52 
53 cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock(
54     "iterative-bfi-max-iterations-per-block", cl::init(1000), cl::Hidden,
55     cl::desc("Iterative inference: maximum number of update iterations "
56              "per block"));
57 
58 cl::opt<double> IterativeBFIPrecision(
59     "iterative-bfi-precision", cl::init(1e-12), cl::Hidden,
60     cl::desc("Iterative inference: delta convergence precision; smaller values "
61              "typically lead to better results at the cost of worsen runtime"));
62 }
63 
64 ScaledNumber<uint64_t> BlockMass::toScaled() const {
65   if (isFull())
66     return ScaledNumber<uint64_t>(1, 0);
67   return ScaledNumber<uint64_t>(getMass() + 1, -64);
68 }
69 
70 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
71 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
72 #endif
73 
74 static char getHexDigit(int N) {
75   assert(N < 16);
76   if (N < 10)
77     return '0' + N;
78   return 'a' + N - 10;
79 }
80 
81 raw_ostream &BlockMass::print(raw_ostream &OS) const {
82   for (int Digits = 0; Digits < 16; ++Digits)
83     OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
84   return OS;
85 }
86 
87 namespace {
88 
89 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
90 using Distribution = BlockFrequencyInfoImplBase::Distribution;
91 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
92 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
93 using LoopData = BlockFrequencyInfoImplBase::LoopData;
94 using Weight = BlockFrequencyInfoImplBase::Weight;
95 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
96 
97 /// Dithering mass distributer.
98 ///
99 /// This class splits up a single mass into portions by weight, dithering to
100 /// spread out error.  No mass is lost.  The dithering precision depends on the
101 /// precision of the product of \a BlockMass and \a BranchProbability.
102 ///
103 /// The distribution algorithm follows.
104 ///
105 ///  1. Initialize by saving the sum of the weights in \a RemWeight and the
106 ///     mass to distribute in \a RemMass.
107 ///
108 ///  2. For each portion:
109 ///
110 ///      1. Construct a branch probability, P, as the portion's weight divided
111 ///         by the current value of \a RemWeight.
112 ///      2. Calculate the portion's mass as \a RemMass times P.
113 ///      3. Update \a RemWeight and \a RemMass at each portion by subtracting
114 ///         the current portion's weight and mass.
115 struct DitheringDistributer {
116   uint32_t RemWeight;
117   BlockMass RemMass;
118 
119   DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
120 
121   BlockMass takeMass(uint32_t Weight);
122 };
123 
124 } // end anonymous namespace
125 
126 DitheringDistributer::DitheringDistributer(Distribution &Dist,
127                                            const BlockMass &Mass) {
128   Dist.normalize();
129   RemWeight = Dist.Total;
130   RemMass = Mass;
131 }
132 
133 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
134   assert(Weight && "invalid weight");
135   assert(Weight <= RemWeight);
136   BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
137 
138   // Decrement totals (dither).
139   RemWeight -= Weight;
140   RemMass -= Mass;
141   return Mass;
142 }
143 
144 void Distribution::add(const BlockNode &Node, uint64_t Amount,
145                        Weight::DistType Type) {
146   assert(Amount && "invalid weight of 0");
147   uint64_t NewTotal = Total + Amount;
148 
149   // Check for overflow.  It should be impossible to overflow twice.
150   bool IsOverflow = NewTotal < Total;
151   assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
152   DidOverflow |= IsOverflow;
153 
154   // Update the total.
155   Total = NewTotal;
156 
157   // Save the weight.
158   Weights.push_back(Weight(Type, Node, Amount));
159 }
160 
161 static void combineWeight(Weight &W, const Weight &OtherW) {
162   assert(OtherW.TargetNode.isValid());
163   if (!W.Amount) {
164     W = OtherW;
165     return;
166   }
167   assert(W.Type == OtherW.Type);
168   assert(W.TargetNode == OtherW.TargetNode);
169   assert(OtherW.Amount && "Expected non-zero weight");
170   if (W.Amount > W.Amount + OtherW.Amount)
171     // Saturate on overflow.
172     W.Amount = UINT64_MAX;
173   else
174     W.Amount += OtherW.Amount;
175 }
176 
177 static void combineWeightsBySorting(WeightList &Weights) {
178   // Sort so edges to the same node are adjacent.
179   llvm::sort(Weights, [](const Weight &L, const Weight &R) {
180     return L.TargetNode < R.TargetNode;
181   });
182 
183   // Combine adjacent edges.
184   WeightList::iterator O = Weights.begin();
185   for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
186        ++O, (I = L)) {
187     *O = *I;
188 
189     // Find the adjacent weights to the same node.
190     for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
191       combineWeight(*O, *L);
192   }
193 
194   // Erase extra entries.
195   Weights.erase(O, Weights.end());
196 }
197 
198 static void combineWeightsByHashing(WeightList &Weights) {
199   // Collect weights into a DenseMap.
200   using HashTable = DenseMap<BlockNode::IndexType, Weight>;
201 
202   HashTable Combined(NextPowerOf2(2 * Weights.size()));
203   for (const Weight &W : Weights)
204     combineWeight(Combined[W.TargetNode.Index], W);
205 
206   // Check whether anything changed.
207   if (Weights.size() == Combined.size())
208     return;
209 
210   // Fill in the new weights.
211   Weights.clear();
212   Weights.reserve(Combined.size());
213   for (const auto &I : Combined)
214     Weights.push_back(I.second);
215 }
216 
217 static void combineWeights(WeightList &Weights) {
218   // Use a hash table for many successors to keep this linear.
219   if (Weights.size() > 128) {
220     combineWeightsByHashing(Weights);
221     return;
222   }
223 
224   combineWeightsBySorting(Weights);
225 }
226 
227 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
228   assert(Shift >= 0);
229   assert(Shift < 64);
230   if (!Shift)
231     return N;
232   return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
233 }
234 
235 void Distribution::normalize() {
236   // Early exit for termination nodes.
237   if (Weights.empty())
238     return;
239 
240   // Only bother if there are multiple successors.
241   if (Weights.size() > 1)
242     combineWeights(Weights);
243 
244   // Early exit when combined into a single successor.
245   if (Weights.size() == 1) {
246     Total = 1;
247     Weights.front().Amount = 1;
248     return;
249   }
250 
251   // Determine how much to shift right so that the total fits into 32-bits.
252   //
253   // If we shift at all, shift by 1 extra.  Otherwise, the lower limit of 1
254   // for each weight can cause a 32-bit overflow.
255   int Shift = 0;
256   if (DidOverflow)
257     Shift = 33;
258   else if (Total > UINT32_MAX)
259     Shift = 33 - countLeadingZeros(Total);
260 
261   // Early exit if nothing needs to be scaled.
262   if (!Shift) {
263     // If we didn't overflow then combineWeights() shouldn't have changed the
264     // sum of the weights, but let's double-check.
265     assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
266                                     [](uint64_t Sum, const Weight &W) {
267                       return Sum + W.Amount;
268                     }) &&
269            "Expected total to be correct");
270     return;
271   }
272 
273   // Recompute the total through accumulation (rather than shifting it) so that
274   // it's accurate after shifting and any changes combineWeights() made above.
275   Total = 0;
276 
277   // Sum the weights to each node and shift right if necessary.
278   for (Weight &W : Weights) {
279     // Scale down below UINT32_MAX.  Since Shift is larger than necessary, we
280     // can round here without concern about overflow.
281     assert(W.TargetNode.isValid());
282     W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
283     assert(W.Amount <= UINT32_MAX);
284 
285     // Update the total.
286     Total += W.Amount;
287   }
288   assert(Total <= UINT32_MAX);
289 }
290 
291 void BlockFrequencyInfoImplBase::clear() {
292   // Swap with a default-constructed std::vector, since std::vector<>::clear()
293   // does not actually clear heap storage.
294   std::vector<FrequencyData>().swap(Freqs);
295   IsIrrLoopHeader.clear();
296   std::vector<WorkingData>().swap(Working);
297   Loops.clear();
298 }
299 
300 /// Clear all memory not needed downstream.
301 ///
302 /// Releases all memory not used downstream.  In particular, saves Freqs.
303 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
304   std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
305   SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
306   BFI.clear();
307   BFI.Freqs = std::move(SavedFreqs);
308   BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
309 }
310 
311 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
312                                            const LoopData *OuterLoop,
313                                            const BlockNode &Pred,
314                                            const BlockNode &Succ,
315                                            uint64_t Weight) {
316   if (!Weight)
317     Weight = 1;
318 
319   auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
320     return OuterLoop && OuterLoop->isHeader(Node);
321   };
322 
323   BlockNode Resolved = Working[Succ.Index].getResolvedNode();
324 
325 #ifndef NDEBUG
326   auto debugSuccessor = [&](const char *Type) {
327     dbgs() << "  =>"
328            << " [" << Type << "] weight = " << Weight;
329     if (!isLoopHeader(Resolved))
330       dbgs() << ", succ = " << getBlockName(Succ);
331     if (Resolved != Succ)
332       dbgs() << ", resolved = " << getBlockName(Resolved);
333     dbgs() << "\n";
334   };
335   (void)debugSuccessor;
336 #endif
337 
338   if (isLoopHeader(Resolved)) {
339     LLVM_DEBUG(debugSuccessor("backedge"));
340     Dist.addBackedge(Resolved, Weight);
341     return true;
342   }
343 
344   if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
345     LLVM_DEBUG(debugSuccessor("  exit  "));
346     Dist.addExit(Resolved, Weight);
347     return true;
348   }
349 
350   if (Resolved < Pred) {
351     if (!isLoopHeader(Pred)) {
352       // If OuterLoop is an irreducible loop, we can't actually handle this.
353       assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
354              "unhandled irreducible control flow");
355 
356       // Irreducible backedge.  Abort.
357       LLVM_DEBUG(debugSuccessor("abort!!!"));
358       return false;
359     }
360 
361     // If "Pred" is a loop header, then this isn't really a backedge; rather,
362     // OuterLoop must be irreducible.  These false backedges can come only from
363     // secondary loop headers.
364     assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
365            "unhandled irreducible control flow");
366   }
367 
368   LLVM_DEBUG(debugSuccessor(" local  "));
369   Dist.addLocal(Resolved, Weight);
370   return true;
371 }
372 
373 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
374     const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
375   // Copy the exit map into Dist.
376   for (const auto &I : Loop.Exits)
377     if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
378                    I.second.getMass()))
379       // Irreducible backedge.
380       return false;
381 
382   return true;
383 }
384 
385 /// Compute the loop scale for a loop.
386 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
387   // Compute loop scale.
388   LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
389 
390   // Infinite loops need special handling. If we give the back edge an infinite
391   // mass, they may saturate all the other scales in the function down to 1,
392   // making all the other region temperatures look exactly the same. Choose an
393   // arbitrary scale to avoid these issues.
394   //
395   // FIXME: An alternate way would be to select a symbolic scale which is later
396   // replaced to be the maximum of all computed scales plus 1. This would
397   // appropriately describe the loop as having a large scale, without skewing
398   // the final frequency computation.
399   const Scaled64 InfiniteLoopScale(1, 12);
400 
401   // LoopScale == 1 / ExitMass
402   // ExitMass == HeadMass - BackedgeMass
403   BlockMass TotalBackedgeMass;
404   for (auto &Mass : Loop.BackedgeMass)
405     TotalBackedgeMass += Mass;
406   BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
407 
408   // Block scale stores the inverse of the scale. If this is an infinite loop,
409   // its exit mass will be zero. In this case, use an arbitrary scale for the
410   // loop scale.
411   Loop.Scale =
412       ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
413 
414   LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
415                     << BlockMass::getFull() << " - " << TotalBackedgeMass
416                     << ")\n"
417                     << " - scale = " << Loop.Scale << "\n");
418 }
419 
420 /// Package up a loop.
421 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
422   LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
423 
424   // Clear the subloop exits to prevent quadratic memory usage.
425   for (const BlockNode &M : Loop.Nodes) {
426     if (auto *Loop = Working[M.Index].getPackagedLoop())
427       Loop->Exits.clear();
428     LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
429   }
430   Loop.IsPackaged = true;
431 }
432 
433 #ifndef NDEBUG
434 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
435                         const DitheringDistributer &D, const BlockNode &T,
436                         const BlockMass &M, const char *Desc) {
437   dbgs() << "  => assign " << M << " (" << D.RemMass << ")";
438   if (Desc)
439     dbgs() << " [" << Desc << "]";
440   if (T.isValid())
441     dbgs() << " to " << BFI.getBlockName(T);
442   dbgs() << "\n";
443 }
444 #endif
445 
446 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
447                                                 LoopData *OuterLoop,
448                                                 Distribution &Dist) {
449   BlockMass Mass = Working[Source.Index].getMass();
450   LLVM_DEBUG(dbgs() << "  => mass:  " << Mass << "\n");
451 
452   // Distribute mass to successors as laid out in Dist.
453   DitheringDistributer D(Dist, Mass);
454 
455   for (const Weight &W : Dist.Weights) {
456     // Check for a local edge (non-backedge and non-exit).
457     BlockMass Taken = D.takeMass(W.Amount);
458     if (W.Type == Weight::Local) {
459       Working[W.TargetNode.Index].getMass() += Taken;
460       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
461       continue;
462     }
463 
464     // Backedges and exits only make sense if we're processing a loop.
465     assert(OuterLoop && "backedge or exit outside of loop");
466 
467     // Check for a backedge.
468     if (W.Type == Weight::Backedge) {
469       OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
470       LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
471       continue;
472     }
473 
474     // This must be an exit.
475     assert(W.Type == Weight::Exit);
476     OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
477     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
478   }
479 }
480 
481 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
482                                      const Scaled64 &Min, const Scaled64 &Max) {
483   // Scale the Factor to a size that creates integers.  Ideally, integers would
484   // be scaled so that Max == UINT64_MAX so that they can be best
485   // differentiated.  However, in the presence of large frequency values, small
486   // frequencies are scaled down to 1, making it impossible to differentiate
487   // small, unequal numbers. When the spread between Min and Max frequencies
488   // fits well within MaxBits, we make the scale be at least 8.
489   const unsigned MaxBits = 64;
490   const unsigned SpreadBits = (Max / Min).lg();
491   Scaled64 ScalingFactor;
492   if (SpreadBits <= MaxBits - 3) {
493     // If the values are small enough, make the scaling factor at least 8 to
494     // allow distinguishing small values.
495     ScalingFactor = Min.inverse();
496     ScalingFactor <<= 3;
497   } else {
498     // If the values need more than MaxBits to be represented, saturate small
499     // frequency values down to 1 by using a scaling factor that benefits large
500     // frequency values.
501     ScalingFactor = Scaled64(1, MaxBits) / Max;
502   }
503 
504   // Translate the floats to integers.
505   LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
506                     << ", factor = " << ScalingFactor << "\n");
507   for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
508     Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
509     BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
510     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
511                       << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
512                       << ", int = " << BFI.Freqs[Index].Integer << "\n");
513   }
514 }
515 
516 /// Unwrap a loop package.
517 ///
518 /// Visits all the members of a loop, adjusting their BlockData according to
519 /// the loop's pseudo-node.
520 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
521   LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
522                     << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
523                     << "\n");
524   Loop.Scale *= Loop.Mass.toScaled();
525   Loop.IsPackaged = false;
526   LLVM_DEBUG(dbgs() << "  => combined-scale = " << Loop.Scale << "\n");
527 
528   // Propagate the head scale through the loop.  Since members are visited in
529   // RPO, the head scale will be updated by the loop scale first, and then the
530   // final head scale will be used for updated the rest of the members.
531   for (const BlockNode &N : Loop.Nodes) {
532     const auto &Working = BFI.Working[N.Index];
533     Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
534                                        : BFI.Freqs[N.Index].Scaled;
535     Scaled64 New = Loop.Scale * F;
536     LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
537                       << New << "\n");
538     F = New;
539   }
540 }
541 
542 void BlockFrequencyInfoImplBase::unwrapLoops() {
543   // Set initial frequencies from loop-local masses.
544   for (size_t Index = 0; Index < Working.size(); ++Index)
545     Freqs[Index].Scaled = Working[Index].Mass.toScaled();
546 
547   for (LoopData &Loop : Loops)
548     unwrapLoop(*this, Loop);
549 }
550 
551 void BlockFrequencyInfoImplBase::finalizeMetrics() {
552   // Unwrap loop packages in reverse post-order, tracking min and max
553   // frequencies.
554   auto Min = Scaled64::getLargest();
555   auto Max = Scaled64::getZero();
556   for (size_t Index = 0; Index < Working.size(); ++Index) {
557     // Update min/max scale.
558     Min = std::min(Min, Freqs[Index].Scaled);
559     Max = std::max(Max, Freqs[Index].Scaled);
560   }
561 
562   // Convert to integers.
563   convertFloatingToInteger(*this, Min, Max);
564 
565   // Clean up data structures.
566   cleanup(*this);
567 
568   // Print out the final stats.
569   LLVM_DEBUG(dump());
570 }
571 
572 BlockFrequency
573 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
574   if (!Node.isValid()) {
575 #ifndef NDEBUG
576     if (CheckBFIUnknownBlockQueries) {
577       SmallString<256> Msg;
578       raw_svector_ostream OS(Msg);
579       OS << "*** Detected BFI query for unknown block " << getBlockName(Node);
580       report_fatal_error(OS.str());
581     }
582 #endif
583     return 0;
584   }
585   return Freqs[Node.Index].Integer;
586 }
587 
588 Optional<uint64_t>
589 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
590                                                  const BlockNode &Node,
591                                                  bool AllowSynthetic) const {
592   return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency(),
593                                  AllowSynthetic);
594 }
595 
596 Optional<uint64_t>
597 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
598                                                     uint64_t Freq,
599                                                     bool AllowSynthetic) const {
600   auto EntryCount = F.getEntryCount(AllowSynthetic);
601   if (!EntryCount)
602     return None;
603   // Use 128 bit APInt to do the arithmetic to avoid overflow.
604   APInt BlockCount(128, EntryCount->getCount());
605   APInt BlockFreq(128, Freq);
606   APInt EntryFreq(128, getEntryFreq());
607   BlockCount *= BlockFreq;
608   // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
609   // lshr by 1 gives EntryFreq/2.
610   BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
611   return BlockCount.getLimitedValue();
612 }
613 
614 bool
615 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
616   if (!Node.isValid())
617     return false;
618   return IsIrrLoopHeader.test(Node.Index);
619 }
620 
621 Scaled64
622 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
623   if (!Node.isValid())
624     return Scaled64::getZero();
625   return Freqs[Node.Index].Scaled;
626 }
627 
628 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
629                                               uint64_t Freq) {
630   assert(Node.isValid() && "Expected valid node");
631   assert(Node.Index < Freqs.size() && "Expected legal index");
632   Freqs[Node.Index].Integer = Freq;
633 }
634 
635 std::string
636 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
637   return {};
638 }
639 
640 std::string
641 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
642   return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
643 }
644 
645 raw_ostream &
646 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
647                                            const BlockNode &Node) const {
648   return OS << getFloatingBlockFreq(Node);
649 }
650 
651 raw_ostream &
652 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
653                                            const BlockFrequency &Freq) const {
654   Scaled64 Block(Freq.getFrequency(), 0);
655   Scaled64 Entry(getEntryFreq(), 0);
656 
657   return OS << Block / Entry;
658 }
659 
660 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
661   Start = OuterLoop.getHeader();
662   Nodes.reserve(OuterLoop.Nodes.size());
663   for (auto N : OuterLoop.Nodes)
664     addNode(N);
665   indexNodes();
666 }
667 
668 void IrreducibleGraph::addNodesInFunction() {
669   Start = 0;
670   for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
671     if (!BFI.Working[Index].isPackaged())
672       addNode(Index);
673   indexNodes();
674 }
675 
676 void IrreducibleGraph::indexNodes() {
677   for (auto &I : Nodes)
678     Lookup[I.Node.Index] = &I;
679 }
680 
681 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
682                                const BFIBase::LoopData *OuterLoop) {
683   if (OuterLoop && OuterLoop->isHeader(Succ))
684     return;
685   auto L = Lookup.find(Succ.Index);
686   if (L == Lookup.end())
687     return;
688   IrrNode &SuccIrr = *L->second;
689   Irr.Edges.push_back(&SuccIrr);
690   SuccIrr.Edges.push_front(&Irr);
691   ++SuccIrr.NumIn;
692 }
693 
694 namespace llvm {
695 
696 template <> struct GraphTraits<IrreducibleGraph> {
697   using GraphT = bfi_detail::IrreducibleGraph;
698   using NodeRef = const GraphT::IrrNode *;
699   using ChildIteratorType = GraphT::IrrNode::iterator;
700 
701   static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
702   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
703   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
704 };
705 
706 } // end namespace llvm
707 
708 /// Find extra irreducible headers.
709 ///
710 /// Find entry blocks and other blocks with backedges, which exist when \c G
711 /// contains irreducible sub-SCCs.
712 static void findIrreducibleHeaders(
713     const BlockFrequencyInfoImplBase &BFI,
714     const IrreducibleGraph &G,
715     const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
716     LoopData::NodeList &Headers, LoopData::NodeList &Others) {
717   // Map from nodes in the SCC to whether it's an entry block.
718   SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
719 
720   // InSCC also acts the set of nodes in the graph.  Seed it.
721   for (const auto *I : SCC)
722     InSCC[I] = false;
723 
724   for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
725     auto &Irr = *I->first;
726     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
727       if (InSCC.count(P))
728         continue;
729 
730       // This is an entry block.
731       I->second = true;
732       Headers.push_back(Irr.Node);
733       LLVM_DEBUG(dbgs() << "  => entry = " << BFI.getBlockName(Irr.Node)
734                         << "\n");
735       break;
736     }
737   }
738   assert(Headers.size() >= 2 &&
739          "Expected irreducible CFG; -loop-info is likely invalid");
740   if (Headers.size() == InSCC.size()) {
741     // Every block is a header.
742     llvm::sort(Headers);
743     return;
744   }
745 
746   // Look for extra headers from irreducible sub-SCCs.
747   for (const auto &I : InSCC) {
748     // Entry blocks are already headers.
749     if (I.second)
750       continue;
751 
752     auto &Irr = *I.first;
753     for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
754       // Skip forward edges.
755       if (P->Node < Irr.Node)
756         continue;
757 
758       // Skip predecessors from entry blocks.  These can have inverted
759       // ordering.
760       if (InSCC.lookup(P))
761         continue;
762 
763       // Store the extra header.
764       Headers.push_back(Irr.Node);
765       LLVM_DEBUG(dbgs() << "  => extra = " << BFI.getBlockName(Irr.Node)
766                         << "\n");
767       break;
768     }
769     if (Headers.back() == Irr.Node)
770       // Added this as a header.
771       continue;
772 
773     // This is not a header.
774     Others.push_back(Irr.Node);
775     LLVM_DEBUG(dbgs() << "  => other = " << BFI.getBlockName(Irr.Node) << "\n");
776   }
777   llvm::sort(Headers);
778   llvm::sort(Others);
779 }
780 
781 static void createIrreducibleLoop(
782     BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
783     LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
784     const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
785   // Translate the SCC into RPO.
786   LLVM_DEBUG(dbgs() << " - found-scc\n");
787 
788   LoopData::NodeList Headers;
789   LoopData::NodeList Others;
790   findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
791 
792   auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
793                                 Headers.end(), Others.begin(), Others.end());
794 
795   // Update loop hierarchy.
796   for (const auto &N : Loop->Nodes)
797     if (BFI.Working[N.Index].isLoopHeader())
798       BFI.Working[N.Index].Loop->Parent = &*Loop;
799     else
800       BFI.Working[N.Index].Loop = &*Loop;
801 }
802 
803 iterator_range<std::list<LoopData>::iterator>
804 BlockFrequencyInfoImplBase::analyzeIrreducible(
805     const IrreducibleGraph &G, LoopData *OuterLoop,
806     std::list<LoopData>::iterator Insert) {
807   assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
808   auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
809 
810   for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
811     if (I->size() < 2)
812       continue;
813 
814     // Translate the SCC into RPO.
815     createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
816   }
817 
818   if (OuterLoop)
819     return make_range(std::next(Prev), Insert);
820   return make_range(Loops.begin(), Insert);
821 }
822 
823 void
824 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
825   OuterLoop.Exits.clear();
826   for (auto &Mass : OuterLoop.BackedgeMass)
827     Mass = BlockMass::getEmpty();
828   auto O = OuterLoop.Nodes.begin() + 1;
829   for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
830     if (!Working[I->Index].isPackaged())
831       *O++ = *I;
832   OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
833 }
834 
835 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
836   assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
837 
838   // Since the loop has more than one header block, the mass flowing back into
839   // each header will be different. Adjust the mass in each header loop to
840   // reflect the masses flowing through back edges.
841   //
842   // To do this, we distribute the initial mass using the backedge masses
843   // as weights for the distribution.
844   BlockMass LoopMass = BlockMass::getFull();
845   Distribution Dist;
846 
847   LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
848   for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
849     auto &HeaderNode = Loop.Nodes[H];
850     auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
851     LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
852                       << getBlockName(HeaderNode) << ": " << BackedgeMass
853                       << "\n");
854     if (BackedgeMass.getMass() > 0)
855       Dist.addLocal(HeaderNode, BackedgeMass.getMass());
856     else
857       LLVM_DEBUG(dbgs() << "   Nothing added. Back edge mass is zero\n");
858   }
859 
860   DitheringDistributer D(Dist, LoopMass);
861 
862   LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
863                     << " to headers using above weights\n");
864   for (const Weight &W : Dist.Weights) {
865     BlockMass Taken = D.takeMass(W.Amount);
866     assert(W.Type == Weight::Local && "all weights should be local");
867     Working[W.TargetNode.Index].getMass() = Taken;
868     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
869   }
870 }
871 
872 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
873   BlockMass LoopMass = BlockMass::getFull();
874   DitheringDistributer D(Dist, LoopMass);
875   for (const Weight &W : Dist.Weights) {
876     BlockMass Taken = D.takeMass(W.Amount);
877     assert(W.Type == Weight::Local && "all weights should be local");
878     Working[W.TargetNode.Index].getMass() = Taken;
879     LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
880   }
881 }
882