1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/PostDominators.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "branch-prob"
50 
51 static cl::opt<bool> PrintBranchProb(
52     "print-bpi", cl::init(false), cl::Hidden,
53     cl::desc("Print the branch probability info."));
54 
55 cl::opt<std::string> PrintBranchProbFuncName(
56     "print-bpi-func-name", cl::Hidden,
57     cl::desc("The option to specify the name of the function "
58              "whose branch probability info is printed."));
59 
60 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
61                       "Branch Probability Analysis", false, true)
62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
66 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
67                     "Branch Probability Analysis", false, true)
68 
69 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
70     : FunctionPass(ID) {
71   initializeBranchProbabilityInfoWrapperPassPass(
72       *PassRegistry::getPassRegistry());
73 }
74 
75 char BranchProbabilityInfoWrapperPass::ID = 0;
76 
77 // Weights are for internal use only. They are used by heuristics to help to
78 // estimate edges' probability. Example:
79 //
80 // Using "Loop Branch Heuristics" we predict weights of edges for the
81 // block BB2.
82 //         ...
83 //          |
84 //          V
85 //         BB1<-+
86 //          |   |
87 //          |   | (Weight = 124)
88 //          V   |
89 //         BB2--+
90 //          |
91 //          | (Weight = 4)
92 //          V
93 //         BB3
94 //
95 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
96 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
97 static const uint32_t LBH_TAKEN_WEIGHT = 124;
98 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
99 
100 /// Unreachable-terminating branch taken probability.
101 ///
102 /// This is the probability for a branch being taken to a block that terminates
103 /// (eventually) in unreachable. These are predicted as unlikely as possible.
104 /// All reachable probability will proportionally share the remaining part.
105 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
106 
107 static const uint32_t PH_TAKEN_WEIGHT = 20;
108 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
109 
110 static const uint32_t ZH_TAKEN_WEIGHT = 20;
111 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
112 
113 static const uint32_t FPH_TAKEN_WEIGHT = 20;
114 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
115 
116 /// This is the probability for an ordered floating point comparison.
117 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
118 /// This is the probability for an unordered floating point comparison, it means
119 /// one or two of the operands are NaN. Usually it is used to test for an
120 /// exceptional case, so the result is unlikely.
121 static const uint32_t FPH_UNO_WEIGHT = 1;
122 
123 /// Set of dedicated "absolute" execution weights for a block. These weights are
124 /// meaningful relative to each other and their derivatives only.
125 enum class BlockExecWeight : std::uint32_t {
126   /// Special weight used for cases with exact zero probability.
127   ZERO = 0x0,
128   /// Minimal possible non zero weight.
129   LOWEST_NON_ZERO = 0x1,
130   /// Weight to an 'unreachable' block.
131   UNREACHABLE = ZERO,
132   /// Weight to a block containing non returning call.
133   NORETURN = LOWEST_NON_ZERO,
134   /// Weight to 'unwind' block of an invoke instruction.
135   UNWIND = LOWEST_NON_ZERO,
136   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
137   /// with attribute 'cold'.
138   COLD = 0xffff,
139   /// Default weight is used in cases when there is no dedicated execution
140   /// weight set. It is not propagated through the domination line either.
141   DEFAULT = 0xfffff
142 };
143 
144 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
145   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
146   // FIXME: We could only calculate this if the CFG is known to be irreducible
147   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
148   int SccNum = 0;
149   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
150        ++It, ++SccNum) {
151     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
152     // catch them.
153     const std::vector<const BasicBlock *> &Scc = *It;
154     if (Scc.size() == 1)
155       continue;
156 
157     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
158     for (const auto *BB : Scc) {
159       LLVM_DEBUG(dbgs() << " " << BB->getName());
160       SccNums[BB] = SccNum;
161       calculateSccBlockType(BB, SccNum);
162     }
163     LLVM_DEBUG(dbgs() << "\n");
164   }
165 }
166 
167 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
168   auto SccIt = SccNums.find(BB);
169   if (SccIt == SccNums.end())
170     return -1;
171   return SccIt->second;
172 }
173 
174 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
175     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
176 
177   for (auto MapIt : SccBlocks[SccNum]) {
178     const auto *BB = MapIt.first;
179     if (isSCCHeader(BB, SccNum))
180       for (const auto *Pred : predecessors(BB))
181         if (getSCCNum(Pred) != SccNum)
182           Enters.push_back(const_cast<BasicBlock *>(BB));
183   }
184 }
185 
186 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
187     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
188   for (auto MapIt : SccBlocks[SccNum]) {
189     const auto *BB = MapIt.first;
190     if (isSCCExitingBlock(BB, SccNum))
191       for (const auto *Succ : successors(BB))
192         if (getSCCNum(Succ) != SccNum)
193           Exits.push_back(const_cast<BasicBlock *>(BB));
194   }
195 }
196 
197 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
198                                                          int SccNum) const {
199   assert(getSCCNum(BB) == SccNum);
200 
201   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
202   const auto &SccBlockTypes = SccBlocks[SccNum];
203 
204   auto It = SccBlockTypes.find(BB);
205   if (It != SccBlockTypes.end()) {
206     return It->second;
207   }
208   return Inner;
209 }
210 
211 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
212                                                            int SccNum) {
213   assert(getSCCNum(BB) == SccNum);
214   uint32_t BlockType = Inner;
215 
216   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
217         // Consider any block that is an entry point to the SCC as
218         // a header.
219         return getSCCNum(Pred) != SccNum;
220       }))
221     BlockType |= Header;
222 
223   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
224         return getSCCNum(Succ) != SccNum;
225       }))
226     BlockType |= Exiting;
227 
228   // Lazily compute the set of headers for a given SCC and cache the results
229   // in the SccHeaderMap.
230   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
231     SccBlocks.resize(SccNum + 1);
232   auto &SccBlockTypes = SccBlocks[SccNum];
233 
234   if (BlockType != Inner) {
235     bool IsInserted;
236     std::tie(std::ignore, IsInserted) =
237         SccBlockTypes.insert(std::make_pair(BB, BlockType));
238     assert(IsInserted && "Duplicated block in SCC");
239   }
240 }
241 
242 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
243                                             const LoopInfo &LI,
244                                             const SccInfo &SccI)
245     : BB(BB) {
246   LD.first = LI.getLoopFor(BB);
247   if (!LD.first) {
248     LD.second = SccI.getSCCNum(BB);
249   }
250 }
251 
252 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
253   const auto &SrcBlock = Edge.first;
254   const auto &DstBlock = Edge.second;
255   return (DstBlock.getLoop() &&
256           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
257          // Assume that SCCs can't be nested.
258          (DstBlock.getSccNum() != -1 &&
259           SrcBlock.getSccNum() != DstBlock.getSccNum());
260 }
261 
262 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
263   return isLoopEnteringEdge({Edge.second, Edge.first});
264 }
265 
266 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
267     const LoopEdge &Edge) const {
268   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
269 }
270 
271 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
272   const auto &SrcBlock = Edge.first;
273   const auto &DstBlock = Edge.second;
274   return SrcBlock.belongsToSameLoop(DstBlock) &&
275          ((DstBlock.getLoop() &&
276            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
277           (DstBlock.getSccNum() != -1 &&
278            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
279 }
280 
281 void BranchProbabilityInfo::getLoopEnterBlocks(
282     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
283   if (LB.getLoop()) {
284     auto *Header = LB.getLoop()->getHeader();
285     Enters.append(pred_begin(Header), pred_end(Header));
286   } else {
287     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
288     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
289   }
290 }
291 
292 void BranchProbabilityInfo::getLoopExitBlocks(
293     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
294   if (LB.getLoop()) {
295     LB.getLoop()->getExitBlocks(Exits);
296   } else {
297     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
298     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
299   }
300 }
301 
302 // Propagate existing explicit probabilities from either profile data or
303 // 'expect' intrinsic processing. Examine metadata against unreachable
304 // heuristic. The probability of the edge coming to unreachable block is
305 // set to min of metadata and unreachable heuristic.
306 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
307   const Instruction *TI = BB->getTerminator();
308   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
309   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
310         isa<InvokeInst>(TI)))
311     return false;
312 
313   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
314   if (!WeightsNode)
315     return false;
316 
317   // Check that the number of successors is manageable.
318   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
319 
320   // Ensure there are weights for all of the successors. Note that the first
321   // operand to the metadata node is a name, not a weight.
322   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
323     return false;
324 
325   // Build up the final weights that will be used in a temporary buffer.
326   // Compute the sum of all weights to later decide whether they need to
327   // be scaled to fit in 32 bits.
328   uint64_t WeightSum = 0;
329   SmallVector<uint32_t, 2> Weights;
330   SmallVector<unsigned, 2> UnreachableIdxs;
331   SmallVector<unsigned, 2> ReachableIdxs;
332   Weights.reserve(TI->getNumSuccessors());
333   for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
334     ConstantInt *Weight =
335         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
336     if (!Weight)
337       return false;
338     assert(Weight->getValue().getActiveBits() <= 32 &&
339            "Too many bits for uint32_t");
340     Weights.push_back(Weight->getZExtValue());
341     WeightSum += Weights.back();
342     const LoopBlock SrcLoopBB = getLoopBlock(BB);
343     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
344     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
345     if (EstimatedWeight &&
346         EstimatedWeight.getValue() <=
347             static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
348       UnreachableIdxs.push_back(I - 1);
349     else
350       ReachableIdxs.push_back(I - 1);
351   }
352   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
353 
354   // If the sum of weights does not fit in 32 bits, scale every weight down
355   // accordingly.
356   uint64_t ScalingFactor =
357       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
358 
359   if (ScalingFactor > 1) {
360     WeightSum = 0;
361     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
362       Weights[I] /= ScalingFactor;
363       WeightSum += Weights[I];
364     }
365   }
366   assert(WeightSum <= UINT32_MAX &&
367          "Expected weights to scale down to 32 bits");
368 
369   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
370     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
371       Weights[I] = 1;
372     WeightSum = TI->getNumSuccessors();
373   }
374 
375   // Set the probability.
376   SmallVector<BranchProbability, 2> BP;
377   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
378     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
379 
380   // Examine the metadata against unreachable heuristic.
381   // If the unreachable heuristic is more strong then we use it for this edge.
382   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
383     setEdgeProbability(BB, BP);
384     return true;
385   }
386 
387   auto UnreachableProb = UR_TAKEN_PROB;
388   for (auto I : UnreachableIdxs)
389     if (UnreachableProb < BP[I]) {
390       BP[I] = UnreachableProb;
391     }
392 
393   // Sum of all edge probabilities must be 1.0. If we modified the probability
394   // of some edges then we must distribute the introduced difference over the
395   // reachable blocks.
396   //
397   // Proportional distribution: the relation between probabilities of the
398   // reachable edges is kept unchanged. That is for any reachable edges i and j:
399   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
400   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
401   // Where K is independent of i,j.
402   //   newBP[i] == oldBP[i] * K
403   // We need to find K.
404   // Make sum of all reachables of the left and right parts:
405   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
406   // Sum of newBP must be equal to 1.0:
407   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
408   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
409   // Where sum_of_unreachable(newBP) is what has been just changed.
410   // Finally:
411   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
412   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
413   BranchProbability NewUnreachableSum = BranchProbability::getZero();
414   for (auto I : UnreachableIdxs)
415     NewUnreachableSum += BP[I];
416 
417   BranchProbability NewReachableSum =
418       BranchProbability::getOne() - NewUnreachableSum;
419 
420   BranchProbability OldReachableSum = BranchProbability::getZero();
421   for (auto I : ReachableIdxs)
422     OldReachableSum += BP[I];
423 
424   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
425     if (OldReachableSum.isZero()) {
426       // If all oldBP[i] are zeroes then the proportional distribution results
427       // in all zero probabilities and the error stays big. In this case we
428       // evenly spread NewReachableSum over the reachable edges.
429       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
430       for (auto I : ReachableIdxs)
431         BP[I] = PerEdge;
432     } else {
433       for (auto I : ReachableIdxs) {
434         // We use uint64_t to avoid double rounding error of the following
435         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
436         // The formula is taken from the private constructor
437         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
438         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
439                        BP[I].getNumerator();
440         uint32_t Div = static_cast<uint32_t>(
441             divideNearest(Mul, OldReachableSum.getNumerator()));
442         BP[I] = BranchProbability::getRaw(Div);
443       }
444     }
445   }
446 
447   setEdgeProbability(BB, BP);
448 
449   return true;
450 }
451 
452 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
453 // between two pointer or pointer and NULL will fail.
454 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
455   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
456   if (!BI || !BI->isConditional())
457     return false;
458 
459   Value *Cond = BI->getCondition();
460   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
461   if (!CI || !CI->isEquality())
462     return false;
463 
464   Value *LHS = CI->getOperand(0);
465 
466   if (!LHS->getType()->isPointerTy())
467     return false;
468 
469   assert(CI->getOperand(1)->getType()->isPointerTy());
470 
471   BranchProbability TakenProb(PH_TAKEN_WEIGHT,
472                               PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
473   BranchProbability UntakenProb(PH_NONTAKEN_WEIGHT,
474                                 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
475 
476   // p != 0   ->   isProb = true
477   // p == 0   ->   isProb = false
478   // p != q   ->   isProb = true
479   // p == q   ->   isProb = false;
480   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
481   if (!isProb)
482     std::swap(TakenProb, UntakenProb);
483 
484   setEdgeProbability(
485       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
486   return true;
487 }
488 
489 // Compute the unlikely successors to the block BB in the loop L, specifically
490 // those that are unlikely because this is a loop, and add them to the
491 // UnlikelyBlocks set.
492 static void
493 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
494                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
495   // Sometimes in a loop we have a branch whose condition is made false by
496   // taking it. This is typically something like
497   //  int n = 0;
498   //  while (...) {
499   //    if (++n >= MAX) {
500   //      n = 0;
501   //    }
502   //  }
503   // In this sort of situation taking the branch means that at the very least it
504   // won't be taken again in the next iteration of the loop, so we should
505   // consider it less likely than a typical branch.
506   //
507   // We detect this by looking back through the graph of PHI nodes that sets the
508   // value that the condition depends on, and seeing if we can reach a successor
509   // block which can be determined to make the condition false.
510   //
511   // FIXME: We currently consider unlikely blocks to be half as likely as other
512   // blocks, but if we consider the example above the likelyhood is actually
513   // 1/MAX. We could therefore be more precise in how unlikely we consider
514   // blocks to be, but it would require more careful examination of the form
515   // of the comparison expression.
516   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
517   if (!BI || !BI->isConditional())
518     return;
519 
520   // Check if the branch is based on an instruction compared with a constant
521   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
522   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
523       !isa<Constant>(CI->getOperand(1)))
524     return;
525 
526   // Either the instruction must be a PHI, or a chain of operations involving
527   // constants that ends in a PHI which we can then collapse into a single value
528   // if the PHI value is known.
529   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
530   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
531   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
532   // Collect the instructions until we hit a PHI
533   SmallVector<BinaryOperator *, 1> InstChain;
534   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
535          isa<Constant>(CmpLHS->getOperand(1))) {
536     // Stop if the chain extends outside of the loop
537     if (!L->contains(CmpLHS))
538       return;
539     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
540     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
541     if (CmpLHS)
542       CmpPHI = dyn_cast<PHINode>(CmpLHS);
543   }
544   if (!CmpPHI || !L->contains(CmpPHI))
545     return;
546 
547   // Trace the phi node to find all values that come from successors of BB
548   SmallPtrSet<PHINode*, 8> VisitedInsts;
549   SmallVector<PHINode*, 8> WorkList;
550   WorkList.push_back(CmpPHI);
551   VisitedInsts.insert(CmpPHI);
552   while (!WorkList.empty()) {
553     PHINode *P = WorkList.back();
554     WorkList.pop_back();
555     for (BasicBlock *B : P->blocks()) {
556       // Skip blocks that aren't part of the loop
557       if (!L->contains(B))
558         continue;
559       Value *V = P->getIncomingValueForBlock(B);
560       // If the source is a PHI add it to the work list if we haven't
561       // already visited it.
562       if (PHINode *PN = dyn_cast<PHINode>(V)) {
563         if (VisitedInsts.insert(PN).second)
564           WorkList.push_back(PN);
565         continue;
566       }
567       // If this incoming value is a constant and B is a successor of BB, then
568       // we can constant-evaluate the compare to see if it makes the branch be
569       // taken or not.
570       Constant *CmpLHSConst = dyn_cast<Constant>(V);
571       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
572         continue;
573       // First collapse InstChain
574       for (Instruction *I : llvm::reverse(InstChain)) {
575         CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
576                                         cast<Constant>(I->getOperand(1)), true);
577         if (!CmpLHSConst)
578           break;
579       }
580       if (!CmpLHSConst)
581         continue;
582       // Now constant-evaluate the compare
583       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
584                                                   CmpLHSConst, CmpConst, true);
585       // If the result means we don't branch to the block then that block is
586       // unlikely.
587       if (Result &&
588           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
589            (Result->isOneValue() && B == BI->getSuccessor(1))))
590         UnlikelyBlocks.insert(B);
591     }
592   }
593 }
594 
595 Optional<uint32_t>
596 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
597   auto WeightIt = EstimatedBlockWeight.find(BB);
598   if (WeightIt == EstimatedBlockWeight.end())
599     return None;
600   return WeightIt->second;
601 }
602 
603 Optional<uint32_t>
604 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
605   auto WeightIt = EstimatedLoopWeight.find(L);
606   if (WeightIt == EstimatedLoopWeight.end())
607     return None;
608   return WeightIt->second;
609 }
610 
611 Optional<uint32_t>
612 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
613   // For edges entering a loop take weight of a loop rather than an individual
614   // block in the loop.
615   return isLoopEnteringEdge(Edge)
616              ? getEstimatedLoopWeight(Edge.second.getLoopData())
617              : getEstimatedBlockWeight(Edge.second.getBlock());
618 }
619 
620 template <class IterT>
621 Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
622     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
623   SmallVector<uint32_t, 4> Weights;
624   Optional<uint32_t> MaxWeight;
625   for (const BasicBlock *DstBB : Successors) {
626     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
627     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
628 
629     if (!Weight)
630       return None;
631 
632     if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
633       MaxWeight = Weight;
634   }
635 
636   return MaxWeight;
637 }
638 
639 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
640 // an associated weight it is unchanged and false is returned.
641 //
642 // Please note by the algorithm the weight is not expected to change once set
643 // thus 'false' status is used to track visited blocks.
644 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
645     LoopBlock &LoopBB, uint32_t BBWeight,
646     SmallVectorImpl<BasicBlock *> &BlockWorkList,
647     SmallVectorImpl<LoopBlock> &LoopWorkList) {
648   BasicBlock *BB = LoopBB.getBlock();
649 
650   // In general, weight is assigned to a block when it has final value and
651   // can't/shouldn't be changed.  However, there are cases when a block
652   // inherently has several (possibly "contradicting") weights. For example,
653   // "unwind" block may also contain "cold" call. In that case the first
654   // set weight is favored and all consequent weights are ignored.
655   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
656     return false;
657 
658   for (BasicBlock *PredBlock : predecessors(BB)) {
659     LoopBlock PredLoop = getLoopBlock(PredBlock);
660     // Add affected block/loop to a working list.
661     if (isLoopExitingEdge({PredLoop, LoopBB})) {
662       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
663         LoopWorkList.push_back(PredLoop);
664     } else if (!EstimatedBlockWeight.count(PredBlock))
665       BlockWorkList.push_back(PredBlock);
666   }
667   return true;
668 }
669 
670 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
671 // to all such blocks that are post dominated by \BB. In other words to all
672 // blocks that the one is executed if and only if another one is executed.
673 // Importantly, we skip loops here for two reasons. First weights of blocks in
674 // a loop should be scaled by trip count (yet possibly unknown). Second there is
675 // no any value in doing that because that doesn't give any additional
676 // information regarding distribution of probabilities inside the loop.
677 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
678 // at calcEstimatedHeuristics.
679 //
680 // In addition, \p WorkList is populated with basic blocks if at leas one
681 // successor has updated estimated weight.
682 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
683     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
684     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
685     SmallVectorImpl<LoopBlock> &LoopWorkList) {
686   const BasicBlock *BB = LoopBB.getBlock();
687   const auto *DTStartNode = DT->getNode(BB);
688   const auto *PDTStartNode = PDT->getNode(BB);
689 
690   // TODO: Consider propagating weight down the domination line as well.
691   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
692        DTNode = DTNode->getIDom()) {
693     auto *DomBB = DTNode->getBlock();
694     // Consider blocks which lie on one 'line'.
695     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
696       // If BB doesn't post dominate DomBB it will not post dominate dominators
697       // of DomBB as well.
698       break;
699 
700     LoopBlock DomLoopBB = getLoopBlock(DomBB);
701     const LoopEdge Edge{DomLoopBB, LoopBB};
702     // Don't propagate weight to blocks belonging to different loops.
703     if (!isLoopEnteringExitingEdge(Edge)) {
704       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
705                                       LoopWorkList))
706         // If DomBB has weight set then all it's predecessors are already
707         // processed (since we propagate weight up to the top of IR each time).
708         break;
709     } else if (isLoopExitingEdge(Edge)) {
710       LoopWorkList.push_back(DomLoopBB);
711     }
712   }
713 }
714 
715 Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
716     const BasicBlock *BB) {
717   // Returns true if \p BB has call marked with "NoReturn" attribute.
718   auto hasNoReturn = [&](const BasicBlock *BB) {
719     for (const auto &I : reverse(*BB))
720       if (const CallInst *CI = dyn_cast<CallInst>(&I))
721         if (CI->hasFnAttr(Attribute::NoReturn))
722           return true;
723 
724     return false;
725   };
726 
727   // Important note regarding the order of checks. They are ordered by weight
728   // from lowest to highest. Doing that allows to avoid "unstable" results
729   // when several conditions heuristics can be applied simultaneously.
730   if (isa<UnreachableInst>(BB->getTerminator()) ||
731       // If this block is terminated by a call to
732       // @llvm.experimental.deoptimize then treat it like an unreachable
733       // since it is expected to practically never execute.
734       // TODO: Should we actually treat as never returning call?
735       BB->getTerminatingDeoptimizeCall())
736     return hasNoReturn(BB)
737                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
738                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
739 
740   // Check if the block is 'unwind' handler of  some invoke instruction.
741   for (const auto *Pred : predecessors(BB))
742     if (Pred)
743       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
744         if (II->getUnwindDest() == BB)
745           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
746 
747   // Check if the block contains 'cold' call.
748   for (const auto &I : *BB)
749     if (const CallInst *CI = dyn_cast<CallInst>(&I))
750       if (CI->hasFnAttr(Attribute::Cold))
751         return static_cast<uint32_t>(BlockExecWeight::COLD);
752 
753   return None;
754 }
755 
756 // Does RPO traversal over all blocks in \p F and assigns weights to
757 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
758 // best to propagate the weight to up/down the IR.
759 void BranchProbabilityInfo::computeEestimateBlockWeight(
760     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
761   SmallVector<BasicBlock *, 8> BlockWorkList;
762   SmallVector<LoopBlock, 8> LoopWorkList;
763 
764   // By doing RPO we make sure that all predecessors already have weights
765   // calculated before visiting theirs successors.
766   ReversePostOrderTraversal<const Function *> RPOT(&F);
767   for (const auto *BB : RPOT)
768     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
769       // If we were able to find estimated weight for the block set it to this
770       // block and propagate up the IR.
771       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
772                                     BBWeight.getValue(), BlockWorkList,
773                                     LoopWorkList);
774 
775   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
776   // successor/exit having estimated weight. Try to propagate weight to such
777   // blocks/loops from successors/exits.
778   // Process loops and blocks. Order is not important.
779   do {
780     while (!LoopWorkList.empty()) {
781       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
782 
783       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
784         continue;
785 
786       SmallVector<BasicBlock *, 4> Exits;
787       getLoopExitBlocks(LoopBB, Exits);
788       auto LoopWeight = getMaxEstimatedEdgeWeight(
789           LoopBB, make_range(Exits.begin(), Exits.end()));
790 
791       if (LoopWeight) {
792         // If we never exit the loop then we can enter it once at maximum.
793         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
794           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
795 
796         EstimatedLoopWeight.insert(
797             {LoopBB.getLoopData(), LoopWeight.getValue()});
798         // Add all blocks entering the loop into working list.
799         getLoopEnterBlocks(LoopBB, BlockWorkList);
800       }
801     }
802 
803     while (!BlockWorkList.empty()) {
804       // We can reach here only if BlockWorkList is not empty.
805       const BasicBlock *BB = BlockWorkList.pop_back_val();
806       if (EstimatedBlockWeight.count(BB))
807         continue;
808 
809       // We take maximum over all weights of successors. In other words we take
810       // weight of "hot" path. In theory we can probably find a better function
811       // which gives higher accuracy results (comparing to "maximum") but I
812       // can't
813       // think of any right now. And I doubt it will make any difference in
814       // practice.
815       const LoopBlock LoopBB = getLoopBlock(BB);
816       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
817 
818       if (MaxWeight)
819         propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
820                                       BlockWorkList, LoopWorkList);
821     }
822   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
823 }
824 
825 // Calculate edge probabilities based on block's estimated weight.
826 // Note that gathered weights were not scaled for loops. Thus edges entering
827 // and exiting loops requires special processing.
828 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
829   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
830          "expected more than one successor!");
831 
832   const LoopBlock LoopBB = getLoopBlock(BB);
833 
834   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
835   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
836   if (LoopBB.getLoop())
837     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
838 
839   // Changed to 'true' if at least one successor has estimated weight.
840   bool FoundEstimatedWeight = false;
841   SmallVector<uint32_t, 4> SuccWeights;
842   uint64_t TotalWeight = 0;
843   // Go over all successors of BB and put their weights into SuccWeights.
844   for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
845     const BasicBlock *SuccBB = *I;
846     Optional<uint32_t> Weight;
847     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
848     const LoopEdge Edge{LoopBB, SuccLoopBB};
849 
850     Weight = getEstimatedEdgeWeight(Edge);
851 
852     if (isLoopExitingEdge(Edge) &&
853         // Avoid adjustment of ZERO weight since it should remain unchanged.
854         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
855       // Scale down loop exiting weight by trip count.
856       Weight = std::max(
857           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
858           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
859               TC);
860     }
861     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
862     if (IsUnlikelyEdge &&
863         // Avoid adjustment of ZERO weight since it should remain unchanged.
864         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
865       // 'Unlikely' blocks have twice lower weight.
866       Weight = std::max(
867           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
868           Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
869               2);
870     }
871 
872     if (Weight)
873       FoundEstimatedWeight = true;
874 
875     auto WeightVal =
876         Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
877     TotalWeight += WeightVal;
878     SuccWeights.push_back(WeightVal);
879   }
880 
881   // If non of blocks have estimated weight bail out.
882   // If TotalWeight is 0 that means weight of each successor is 0 as well and
883   // equally likely. Bail out early to not deal with devision by zero.
884   if (!FoundEstimatedWeight || TotalWeight == 0)
885     return false;
886 
887   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
888   const unsigned SuccCount = SuccWeights.size();
889 
890   // If the sum of weights does not fit in 32 bits, scale every weight down
891   // accordingly.
892   if (TotalWeight > UINT32_MAX) {
893     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
894     TotalWeight = 0;
895     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
896       SuccWeights[Idx] /= ScalingFactor;
897       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
898         SuccWeights[Idx] =
899             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
900       TotalWeight += SuccWeights[Idx];
901     }
902     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
903   }
904 
905   // Finally set probabilities to edges according to estimated block weights.
906   SmallVector<BranchProbability, 4> EdgeProbabilities(
907       SuccCount, BranchProbability::getUnknown());
908 
909   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
910     EdgeProbabilities[Idx] =
911         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
912   }
913   setEdgeProbability(BB, EdgeProbabilities);
914   return true;
915 }
916 
917 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
918                                                const TargetLibraryInfo *TLI) {
919   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
920   if (!BI || !BI->isConditional())
921     return false;
922 
923   Value *Cond = BI->getCondition();
924   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
925   if (!CI)
926     return false;
927 
928   auto GetConstantInt = [](Value *V) {
929     if (auto *I = dyn_cast<BitCastInst>(V))
930       return dyn_cast<ConstantInt>(I->getOperand(0));
931     return dyn_cast<ConstantInt>(V);
932   };
933 
934   Value *RHS = CI->getOperand(1);
935   ConstantInt *CV = GetConstantInt(RHS);
936   if (!CV)
937     return false;
938 
939   // If the LHS is the result of AND'ing a value with a single bit bitmask,
940   // we don't have information about probabilities.
941   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
942     if (LHS->getOpcode() == Instruction::And)
943       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
944         if (AndRHS->getValue().isPowerOf2())
945           return false;
946 
947   // Check if the LHS is the return value of a library function
948   LibFunc Func = NumLibFuncs;
949   if (TLI)
950     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
951       if (Function *CalledFn = Call->getCalledFunction())
952         TLI->getLibFunc(*CalledFn, Func);
953 
954   bool isProb;
955   if (Func == LibFunc_strcasecmp ||
956       Func == LibFunc_strcmp ||
957       Func == LibFunc_strncasecmp ||
958       Func == LibFunc_strncmp ||
959       Func == LibFunc_memcmp ||
960       Func == LibFunc_bcmp) {
961     // strcmp and similar functions return zero, negative, or positive, if the
962     // first string is equal, less, or greater than the second. We consider it
963     // likely that the strings are not equal, so a comparison with zero is
964     // probably false, but also a comparison with any other number is also
965     // probably false given that what exactly is returned for nonzero values is
966     // not specified. Any kind of comparison other than equality we know
967     // nothing about.
968     switch (CI->getPredicate()) {
969     case CmpInst::ICMP_EQ:
970       isProb = false;
971       break;
972     case CmpInst::ICMP_NE:
973       isProb = true;
974       break;
975     default:
976       return false;
977     }
978   } else if (CV->isZero()) {
979     switch (CI->getPredicate()) {
980     case CmpInst::ICMP_EQ:
981       // X == 0   ->  Unlikely
982       isProb = false;
983       break;
984     case CmpInst::ICMP_NE:
985       // X != 0   ->  Likely
986       isProb = true;
987       break;
988     case CmpInst::ICMP_SLT:
989       // X < 0   ->  Unlikely
990       isProb = false;
991       break;
992     case CmpInst::ICMP_SGT:
993       // X > 0   ->  Likely
994       isProb = true;
995       break;
996     default:
997       return false;
998     }
999   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
1000     // InstCombine canonicalizes X <= 0 into X < 1.
1001     // X <= 0   ->  Unlikely
1002     isProb = false;
1003   } else if (CV->isMinusOne()) {
1004     switch (CI->getPredicate()) {
1005     case CmpInst::ICMP_EQ:
1006       // X == -1  ->  Unlikely
1007       isProb = false;
1008       break;
1009     case CmpInst::ICMP_NE:
1010       // X != -1  ->  Likely
1011       isProb = true;
1012       break;
1013     case CmpInst::ICMP_SGT:
1014       // InstCombine canonicalizes X >= 0 into X > -1.
1015       // X >= 0   ->  Likely
1016       isProb = true;
1017       break;
1018     default:
1019       return false;
1020     }
1021   } else {
1022     return false;
1023   }
1024 
1025   BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
1026                               ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
1027   BranchProbability UntakenProb(ZH_NONTAKEN_WEIGHT,
1028                                 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
1029   if (!isProb)
1030     std::swap(TakenProb, UntakenProb);
1031 
1032   setEdgeProbability(
1033       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
1034   return true;
1035 }
1036 
1037 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1038   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1039   if (!BI || !BI->isConditional())
1040     return false;
1041 
1042   Value *Cond = BI->getCondition();
1043   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1044   if (!FCmp)
1045     return false;
1046 
1047   uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
1048   uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
1049   bool isProb;
1050   if (FCmp->isEquality()) {
1051     // f1 == f2 -> Unlikely
1052     // f1 != f2 -> Likely
1053     isProb = !FCmp->isTrueWhenEqual();
1054   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
1055     // !isnan -> Likely
1056     isProb = true;
1057     TakenWeight = FPH_ORD_WEIGHT;
1058     NontakenWeight = FPH_UNO_WEIGHT;
1059   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
1060     // isnan -> Unlikely
1061     isProb = false;
1062     TakenWeight = FPH_ORD_WEIGHT;
1063     NontakenWeight = FPH_UNO_WEIGHT;
1064   } else {
1065     return false;
1066   }
1067 
1068   BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
1069   BranchProbability UntakenProb(NontakenWeight, TakenWeight + NontakenWeight);
1070   if (!isProb)
1071     std::swap(TakenProb, UntakenProb);
1072 
1073   setEdgeProbability(
1074       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
1075   return true;
1076 }
1077 
1078 void BranchProbabilityInfo::releaseMemory() {
1079   Probs.clear();
1080   Handles.clear();
1081 }
1082 
1083 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1084                                        FunctionAnalysisManager::Invalidator &) {
1085   // Check whether the analysis, all analyses on functions, or the function's
1086   // CFG have been preserved.
1087   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1088   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1089            PAC.preservedSet<CFGAnalyses>());
1090 }
1091 
1092 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1093   OS << "---- Branch Probabilities ----\n";
1094   // We print the probabilities from the last function the analysis ran over,
1095   // or the function it is currently running over.
1096   assert(LastF && "Cannot print prior to running over a function");
1097   for (const auto &BI : *LastF) {
1098     for (const_succ_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
1099          ++SI) {
1100       printEdgeProbability(OS << "  ", &BI, *SI);
1101     }
1102   }
1103 }
1104 
1105 bool BranchProbabilityInfo::
1106 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1107   // Hot probability is at least 4/5 = 80%
1108   // FIXME: Compare against a static "hot" BranchProbability.
1109   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1110 }
1111 
1112 const BasicBlock *
1113 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
1114   auto MaxProb = BranchProbability::getZero();
1115   const BasicBlock *MaxSucc = nullptr;
1116 
1117   for (const auto *Succ : successors(BB)) {
1118     auto Prob = getEdgeProbability(BB, Succ);
1119     if (Prob > MaxProb) {
1120       MaxProb = Prob;
1121       MaxSucc = Succ;
1122     }
1123   }
1124 
1125   // Hot probability is at least 4/5 = 80%
1126   if (MaxProb > BranchProbability(4, 5))
1127     return MaxSucc;
1128 
1129   return nullptr;
1130 }
1131 
1132 /// Get the raw edge probability for the edge. If can't find it, return a
1133 /// default probability 1/N where N is the number of successors. Here an edge is
1134 /// specified using PredBlock and an
1135 /// index to the successors.
1136 BranchProbability
1137 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1138                                           unsigned IndexInSuccessors) const {
1139   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1140   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1141              (Probs.end() == I) &&
1142          "Probability for I-th successor must always be defined along with the "
1143          "probability for the first successor");
1144 
1145   if (I != Probs.end())
1146     return I->second;
1147 
1148   return {1, static_cast<uint32_t>(succ_size(Src))};
1149 }
1150 
1151 BranchProbability
1152 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1153                                           const_succ_iterator Dst) const {
1154   return getEdgeProbability(Src, Dst.getSuccessorIndex());
1155 }
1156 
1157 /// Get the raw edge probability calculated for the block pair. This returns the
1158 /// sum of all raw edge probabilities from Src to Dst.
1159 BranchProbability
1160 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1161                                           const BasicBlock *Dst) const {
1162   if (!Probs.count(std::make_pair(Src, 0)))
1163     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1164 
1165   auto Prob = BranchProbability::getZero();
1166   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1167     if (*I == Dst)
1168       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1169 
1170   return Prob;
1171 }
1172 
1173 /// Set the edge probability for all edges at once.
1174 void BranchProbabilityInfo::setEdgeProbability(
1175     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1176   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1177   eraseBlock(Src); // Erase stale data if any.
1178   if (Probs.size() == 0)
1179     return; // Nothing to set.
1180 
1181   Handles.insert(BasicBlockCallbackVH(Src, this));
1182   uint64_t TotalNumerator = 0;
1183   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1184     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1185     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1186                       << " successor probability to " << Probs[SuccIdx]
1187                       << "\n");
1188     TotalNumerator += Probs[SuccIdx].getNumerator();
1189   }
1190 
1191   // Because of rounding errors the total probability cannot be checked to be
1192   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1193   // Instead, every single probability in Probs must be as accurate as possible.
1194   // This results in error 1/denominator at most, thus the total absolute error
1195   // should be within Probs.size / BranchProbability::getDenominator.
1196   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1197   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1198 }
1199 
1200 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1201                                                   BasicBlock *Dst) {
1202   eraseBlock(Dst); // Erase stale data if any.
1203   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1204   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1205   if (NumSuccessors == 0)
1206     return; // Nothing to set.
1207   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1208     return; // No probability is set for edges from Src. Keep the same for Dst.
1209 
1210   Handles.insert(BasicBlockCallbackVH(Dst, this));
1211   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1212     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1213     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1214     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1215                       << " successor probability to " << Prob << "\n");
1216   }
1217 }
1218 
1219 raw_ostream &
1220 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1221                                             const BasicBlock *Src,
1222                                             const BasicBlock *Dst) const {
1223   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1224   OS << "edge " << Src->getName() << " -> " << Dst->getName()
1225      << " probability is " << Prob
1226      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1227 
1228   return OS;
1229 }
1230 
1231 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1232   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1233 
1234   // Note that we cannot use successors of BB because the terminator of BB may
1235   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1236   // Instead we remove prob data for the block by iterating successors by their
1237   // indices from 0 till the last which exists. There could not be prob data for
1238   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1239   // set for all successors from 0 to M at once by the method
1240   // setEdgeProbability().
1241   Handles.erase(BasicBlockCallbackVH(BB, this));
1242   for (unsigned I = 0;; ++I) {
1243     auto MapI = Probs.find(std::make_pair(BB, I));
1244     if (MapI == Probs.end()) {
1245       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1246              "Must be no more successors");
1247       return;
1248     }
1249     Probs.erase(MapI);
1250   }
1251 }
1252 
1253 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1254                                       const TargetLibraryInfo *TLI,
1255                                       DominatorTree *DT,
1256                                       PostDominatorTree *PDT) {
1257   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1258                     << " ----\n\n");
1259   LastF = &F; // Store the last function we ran on for printing.
1260   LI = &LoopI;
1261 
1262   SccI = std::make_unique<SccInfo>(F);
1263 
1264   assert(EstimatedBlockWeight.empty());
1265   assert(EstimatedLoopWeight.empty());
1266 
1267   std::unique_ptr<DominatorTree> DTPtr;
1268   std::unique_ptr<PostDominatorTree> PDTPtr;
1269 
1270   if (!DT) {
1271     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1272     DT = DTPtr.get();
1273   }
1274 
1275   if (!PDT) {
1276     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1277     PDT = PDTPtr.get();
1278   }
1279 
1280   computeEestimateBlockWeight(F, DT, PDT);
1281 
1282   // Walk the basic blocks in post-order so that we can build up state about
1283   // the successors of a block iteratively.
1284   for (auto BB : post_order(&F.getEntryBlock())) {
1285     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1286                       << "\n");
1287     // If there is no at least two successors, no sense to set probability.
1288     if (BB->getTerminator()->getNumSuccessors() < 2)
1289       continue;
1290     if (calcMetadataWeights(BB))
1291       continue;
1292     if (calcEstimatedHeuristics(BB))
1293       continue;
1294     if (calcPointerHeuristics(BB))
1295       continue;
1296     if (calcZeroHeuristics(BB, TLI))
1297       continue;
1298     if (calcFloatingPointHeuristics(BB))
1299       continue;
1300   }
1301 
1302   EstimatedLoopWeight.clear();
1303   EstimatedBlockWeight.clear();
1304   SccI.reset();
1305 
1306   if (PrintBranchProb &&
1307       (PrintBranchProbFuncName.empty() ||
1308        F.getName().equals(PrintBranchProbFuncName))) {
1309     print(dbgs());
1310   }
1311 }
1312 
1313 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1314     AnalysisUsage &AU) const {
1315   // We require DT so it's available when LI is available. The LI updating code
1316   // asserts that DT is also present so if we don't make sure that we have DT
1317   // here, that assert will trigger.
1318   AU.addRequired<DominatorTreeWrapperPass>();
1319   AU.addRequired<LoopInfoWrapperPass>();
1320   AU.addRequired<TargetLibraryInfoWrapperPass>();
1321   AU.addRequired<DominatorTreeWrapperPass>();
1322   AU.addRequired<PostDominatorTreeWrapperPass>();
1323   AU.setPreservesAll();
1324 }
1325 
1326 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1327   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1328   const TargetLibraryInfo &TLI =
1329       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1330   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1331   PostDominatorTree &PDT =
1332       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1333   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1334   return false;
1335 }
1336 
1337 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1338 
1339 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1340                                              const Module *) const {
1341   BPI.print(OS);
1342 }
1343 
1344 AnalysisKey BranchProbabilityAnalysis::Key;
1345 BranchProbabilityInfo
1346 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1347   BranchProbabilityInfo BPI;
1348   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1349                 &AM.getResult<TargetLibraryAnalysis>(F),
1350                 &AM.getResult<DominatorTreeAnalysis>(F),
1351                 &AM.getResult<PostDominatorTreeAnalysis>(F));
1352   return BPI;
1353 }
1354 
1355 PreservedAnalyses
1356 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1357   OS << "Printing analysis results of BPI for function "
1358      << "'" << F.getName() << "':"
1359      << "\n";
1360   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1361   return PreservedAnalyses::all();
1362 }
1363