1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/PostDominators.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/BranchProbability.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <map>
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "branch-prob"
52 
53 static cl::opt<bool> PrintBranchProb(
54     "print-bpi", cl::init(false), cl::Hidden,
55     cl::desc("Print the branch probability info."));
56 
57 cl::opt<std::string> PrintBranchProbFuncName(
58     "print-bpi-func-name", cl::Hidden,
59     cl::desc("The option to specify the name of the function "
60              "whose branch probability info is printed."));
61 
62 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
63                       "Branch Probability Analysis", false, true)
64 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
68 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
69                     "Branch Probability Analysis", false, true)
70 
71 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
72     : FunctionPass(ID) {
73   initializeBranchProbabilityInfoWrapperPassPass(
74       *PassRegistry::getPassRegistry());
75 }
76 
77 char BranchProbabilityInfoWrapperPass::ID = 0;
78 
79 // Weights are for internal use only. They are used by heuristics to help to
80 // estimate edges' probability. Example:
81 //
82 // Using "Loop Branch Heuristics" we predict weights of edges for the
83 // block BB2.
84 //         ...
85 //          |
86 //          V
87 //         BB1<-+
88 //          |   |
89 //          |   | (Weight = 124)
90 //          V   |
91 //         BB2--+
92 //          |
93 //          | (Weight = 4)
94 //          V
95 //         BB3
96 //
97 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
98 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
99 static const uint32_t LBH_TAKEN_WEIGHT = 124;
100 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
101 
102 /// Unreachable-terminating branch taken probability.
103 ///
104 /// This is the probability for a branch being taken to a block that terminates
105 /// (eventually) in unreachable. These are predicted as unlikely as possible.
106 /// All reachable probability will proportionally share the remaining part.
107 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
108 
109 /// Heuristics and lookup tables for non-loop branches:
110 /// Pointer Heuristics (PH)
111 static const uint32_t PH_TAKEN_WEIGHT = 20;
112 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
113 static const BranchProbability
114     PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
115 static const BranchProbability
116     PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
117 
118 using ProbabilityList = SmallVector<BranchProbability>;
119 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
120 
121 /// Pointer comparisons:
122 static const ProbabilityTable PointerTable{
123     {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
124     {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
125 };
126 
127 /// Zero Heuristics (ZH)
128 static const uint32_t ZH_TAKEN_WEIGHT = 20;
129 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
130 static const BranchProbability
131     ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
132 static const BranchProbability
133     ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
134 
135 /// Integer compares with 0:
136 static const ProbabilityTable ICmpWithZeroTable{
137     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
138     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
139     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
140     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
141 };
142 
143 /// Integer compares with -1:
144 static const ProbabilityTable ICmpWithMinusOneTable{
145     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
146     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
147     // InstCombine canonicalizes X >= 0 into X > -1
148     {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
149 };
150 
151 /// Integer compares with 1:
152 static const ProbabilityTable ICmpWithOneTable{
153     // InstCombine canonicalizes X <= 0 into X < 1
154     {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
155 };
156 
157 /// strcmp and similar functions return zero, negative, or positive, if the
158 /// first string is equal, less, or greater than the second. We consider it
159 /// likely that the strings are not equal, so a comparison with zero is
160 /// probably false, but also a comparison with any other number is also
161 /// probably false given that what exactly is returned for nonzero values is
162 /// not specified. Any kind of comparison other than equality we know
163 /// nothing about.
164 static const ProbabilityTable ICmpWithLibCallTable{
165     {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
166     {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
167 };
168 
169 // Floating-Point Heuristics (FPH)
170 static const uint32_t FPH_TAKEN_WEIGHT = 20;
171 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
172 
173 /// This is the probability for an ordered floating point comparison.
174 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
175 /// This is the probability for an unordered floating point comparison, it means
176 /// one or two of the operands are NaN. Usually it is used to test for an
177 /// exceptional case, so the result is unlikely.
178 static const uint32_t FPH_UNO_WEIGHT = 1;
179 
180 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
181                                               FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
182 static const BranchProbability
183     FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
184 static const BranchProbability
185     FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
186 static const BranchProbability
187     FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
188 
189 /// Floating-Point compares:
190 static const ProbabilityTable FCmpTable{
191     {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
192     {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
193 };
194 
195 /// Set of dedicated "absolute" execution weights for a block. These weights are
196 /// meaningful relative to each other and their derivatives only.
197 enum class BlockExecWeight : std::uint32_t {
198   /// Special weight used for cases with exact zero probability.
199   ZERO = 0x0,
200   /// Minimal possible non zero weight.
201   LOWEST_NON_ZERO = 0x1,
202   /// Weight to an 'unreachable' block.
203   UNREACHABLE = ZERO,
204   /// Weight to a block containing non returning call.
205   NORETURN = LOWEST_NON_ZERO,
206   /// Weight to 'unwind' block of an invoke instruction.
207   UNWIND = LOWEST_NON_ZERO,
208   /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
209   /// with attribute 'cold'.
210   COLD = 0xffff,
211   /// Default weight is used in cases when there is no dedicated execution
212   /// weight set. It is not propagated through the domination line either.
213   DEFAULT = 0xfffff
214 };
215 
216 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
217   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
218   // FIXME: We could only calculate this if the CFG is known to be irreducible
219   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
220   int SccNum = 0;
221   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
222        ++It, ++SccNum) {
223     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
224     // catch them.
225     const std::vector<const BasicBlock *> &Scc = *It;
226     if (Scc.size() == 1)
227       continue;
228 
229     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
230     for (const auto *BB : Scc) {
231       LLVM_DEBUG(dbgs() << " " << BB->getName());
232       SccNums[BB] = SccNum;
233       calculateSccBlockType(BB, SccNum);
234     }
235     LLVM_DEBUG(dbgs() << "\n");
236   }
237 }
238 
239 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
240   auto SccIt = SccNums.find(BB);
241   if (SccIt == SccNums.end())
242     return -1;
243   return SccIt->second;
244 }
245 
246 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
247     int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
248 
249   for (auto MapIt : SccBlocks[SccNum]) {
250     const auto *BB = MapIt.first;
251     if (isSCCHeader(BB, SccNum))
252       for (const auto *Pred : predecessors(BB))
253         if (getSCCNum(Pred) != SccNum)
254           Enters.push_back(const_cast<BasicBlock *>(BB));
255   }
256 }
257 
258 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
259     int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
260   for (auto MapIt : SccBlocks[SccNum]) {
261     const auto *BB = MapIt.first;
262     if (isSCCExitingBlock(BB, SccNum))
263       for (const auto *Succ : successors(BB))
264         if (getSCCNum(Succ) != SccNum)
265           Exits.push_back(const_cast<BasicBlock *>(Succ));
266   }
267 }
268 
269 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
270                                                          int SccNum) const {
271   assert(getSCCNum(BB) == SccNum);
272 
273   assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
274   const auto &SccBlockTypes = SccBlocks[SccNum];
275 
276   auto It = SccBlockTypes.find(BB);
277   if (It != SccBlockTypes.end()) {
278     return It->second;
279   }
280   return Inner;
281 }
282 
283 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
284                                                            int SccNum) {
285   assert(getSCCNum(BB) == SccNum);
286   uint32_t BlockType = Inner;
287 
288   if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
289         // Consider any block that is an entry point to the SCC as
290         // a header.
291         return getSCCNum(Pred) != SccNum;
292       }))
293     BlockType |= Header;
294 
295   if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
296         return getSCCNum(Succ) != SccNum;
297       }))
298     BlockType |= Exiting;
299 
300   // Lazily compute the set of headers for a given SCC and cache the results
301   // in the SccHeaderMap.
302   if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
303     SccBlocks.resize(SccNum + 1);
304   auto &SccBlockTypes = SccBlocks[SccNum];
305 
306   if (BlockType != Inner) {
307     bool IsInserted;
308     std::tie(std::ignore, IsInserted) =
309         SccBlockTypes.insert(std::make_pair(BB, BlockType));
310     assert(IsInserted && "Duplicated block in SCC");
311   }
312 }
313 
314 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
315                                             const LoopInfo &LI,
316                                             const SccInfo &SccI)
317     : BB(BB) {
318   LD.first = LI.getLoopFor(BB);
319   if (!LD.first) {
320     LD.second = SccI.getSCCNum(BB);
321   }
322 }
323 
324 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
325   const auto &SrcBlock = Edge.first;
326   const auto &DstBlock = Edge.second;
327   return (DstBlock.getLoop() &&
328           !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
329          // Assume that SCCs can't be nested.
330          (DstBlock.getSccNum() != -1 &&
331           SrcBlock.getSccNum() != DstBlock.getSccNum());
332 }
333 
334 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
335   return isLoopEnteringEdge({Edge.second, Edge.first});
336 }
337 
338 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
339     const LoopEdge &Edge) const {
340   return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
341 }
342 
343 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
344   const auto &SrcBlock = Edge.first;
345   const auto &DstBlock = Edge.second;
346   return SrcBlock.belongsToSameLoop(DstBlock) &&
347          ((DstBlock.getLoop() &&
348            DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
349           (DstBlock.getSccNum() != -1 &&
350            SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
351 }
352 
353 void BranchProbabilityInfo::getLoopEnterBlocks(
354     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
355   if (LB.getLoop()) {
356     auto *Header = LB.getLoop()->getHeader();
357     Enters.append(pred_begin(Header), pred_end(Header));
358   } else {
359     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
360     SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
361   }
362 }
363 
364 void BranchProbabilityInfo::getLoopExitBlocks(
365     const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
366   if (LB.getLoop()) {
367     LB.getLoop()->getExitBlocks(Exits);
368   } else {
369     assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
370     SccI->getSccExitBlocks(LB.getSccNum(), Exits);
371   }
372 }
373 
374 // Propagate existing explicit probabilities from either profile data or
375 // 'expect' intrinsic processing. Examine metadata against unreachable
376 // heuristic. The probability of the edge coming to unreachable block is
377 // set to min of metadata and unreachable heuristic.
378 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
379   const Instruction *TI = BB->getTerminator();
380   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
381   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
382         isa<InvokeInst>(TI)))
383     return false;
384 
385   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
386   if (!WeightsNode)
387     return false;
388 
389   // Check that the number of successors is manageable.
390   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
391 
392   // Ensure there are weights for all of the successors. Note that the first
393   // operand to the metadata node is a name, not a weight.
394   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
395     return false;
396 
397   // Build up the final weights that will be used in a temporary buffer.
398   // Compute the sum of all weights to later decide whether they need to
399   // be scaled to fit in 32 bits.
400   uint64_t WeightSum = 0;
401   SmallVector<uint32_t, 2> Weights;
402   SmallVector<unsigned, 2> UnreachableIdxs;
403   SmallVector<unsigned, 2> ReachableIdxs;
404   Weights.reserve(TI->getNumSuccessors());
405   for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
406     ConstantInt *Weight =
407         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
408     if (!Weight)
409       return false;
410     assert(Weight->getValue().getActiveBits() <= 32 &&
411            "Too many bits for uint32_t");
412     Weights.push_back(Weight->getZExtValue());
413     WeightSum += Weights.back();
414     const LoopBlock SrcLoopBB = getLoopBlock(BB);
415     const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
416     auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
417     if (EstimatedWeight &&
418         *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
419       UnreachableIdxs.push_back(I - 1);
420     else
421       ReachableIdxs.push_back(I - 1);
422   }
423   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
424 
425   // If the sum of weights does not fit in 32 bits, scale every weight down
426   // accordingly.
427   uint64_t ScalingFactor =
428       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
429 
430   if (ScalingFactor > 1) {
431     WeightSum = 0;
432     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
433       Weights[I] /= ScalingFactor;
434       WeightSum += Weights[I];
435     }
436   }
437   assert(WeightSum <= UINT32_MAX &&
438          "Expected weights to scale down to 32 bits");
439 
440   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
441     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
442       Weights[I] = 1;
443     WeightSum = TI->getNumSuccessors();
444   }
445 
446   // Set the probability.
447   SmallVector<BranchProbability, 2> BP;
448   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
449     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
450 
451   // Examine the metadata against unreachable heuristic.
452   // If the unreachable heuristic is more strong then we use it for this edge.
453   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
454     setEdgeProbability(BB, BP);
455     return true;
456   }
457 
458   auto UnreachableProb = UR_TAKEN_PROB;
459   for (auto I : UnreachableIdxs)
460     if (UnreachableProb < BP[I]) {
461       BP[I] = UnreachableProb;
462     }
463 
464   // Sum of all edge probabilities must be 1.0. If we modified the probability
465   // of some edges then we must distribute the introduced difference over the
466   // reachable blocks.
467   //
468   // Proportional distribution: the relation between probabilities of the
469   // reachable edges is kept unchanged. That is for any reachable edges i and j:
470   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
471   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
472   // Where K is independent of i,j.
473   //   newBP[i] == oldBP[i] * K
474   // We need to find K.
475   // Make sum of all reachables of the left and right parts:
476   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
477   // Sum of newBP must be equal to 1.0:
478   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
479   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
480   // Where sum_of_unreachable(newBP) is what has been just changed.
481   // Finally:
482   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
483   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
484   BranchProbability NewUnreachableSum = BranchProbability::getZero();
485   for (auto I : UnreachableIdxs)
486     NewUnreachableSum += BP[I];
487 
488   BranchProbability NewReachableSum =
489       BranchProbability::getOne() - NewUnreachableSum;
490 
491   BranchProbability OldReachableSum = BranchProbability::getZero();
492   for (auto I : ReachableIdxs)
493     OldReachableSum += BP[I];
494 
495   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
496     if (OldReachableSum.isZero()) {
497       // If all oldBP[i] are zeroes then the proportional distribution results
498       // in all zero probabilities and the error stays big. In this case we
499       // evenly spread NewReachableSum over the reachable edges.
500       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
501       for (auto I : ReachableIdxs)
502         BP[I] = PerEdge;
503     } else {
504       for (auto I : ReachableIdxs) {
505         // We use uint64_t to avoid double rounding error of the following
506         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
507         // The formula is taken from the private constructor
508         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
509         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
510                        BP[I].getNumerator();
511         uint32_t Div = static_cast<uint32_t>(
512             divideNearest(Mul, OldReachableSum.getNumerator()));
513         BP[I] = BranchProbability::getRaw(Div);
514       }
515     }
516   }
517 
518   setEdgeProbability(BB, BP);
519 
520   return true;
521 }
522 
523 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
524 // between two pointer or pointer and NULL will fail.
525 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
526   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
527   if (!BI || !BI->isConditional())
528     return false;
529 
530   Value *Cond = BI->getCondition();
531   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
532   if (!CI || !CI->isEquality())
533     return false;
534 
535   Value *LHS = CI->getOperand(0);
536 
537   if (!LHS->getType()->isPointerTy())
538     return false;
539 
540   assert(CI->getOperand(1)->getType()->isPointerTy());
541 
542   auto Search = PointerTable.find(CI->getPredicate());
543   if (Search == PointerTable.end())
544     return false;
545   setEdgeProbability(BB, Search->second);
546   return true;
547 }
548 
549 // Compute the unlikely successors to the block BB in the loop L, specifically
550 // those that are unlikely because this is a loop, and add them to the
551 // UnlikelyBlocks set.
552 static void
553 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
554                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
555   // Sometimes in a loop we have a branch whose condition is made false by
556   // taking it. This is typically something like
557   //  int n = 0;
558   //  while (...) {
559   //    if (++n >= MAX) {
560   //      n = 0;
561   //    }
562   //  }
563   // In this sort of situation taking the branch means that at the very least it
564   // won't be taken again in the next iteration of the loop, so we should
565   // consider it less likely than a typical branch.
566   //
567   // We detect this by looking back through the graph of PHI nodes that sets the
568   // value that the condition depends on, and seeing if we can reach a successor
569   // block which can be determined to make the condition false.
570   //
571   // FIXME: We currently consider unlikely blocks to be half as likely as other
572   // blocks, but if we consider the example above the likelyhood is actually
573   // 1/MAX. We could therefore be more precise in how unlikely we consider
574   // blocks to be, but it would require more careful examination of the form
575   // of the comparison expression.
576   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
577   if (!BI || !BI->isConditional())
578     return;
579 
580   // Check if the branch is based on an instruction compared with a constant
581   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
582   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
583       !isa<Constant>(CI->getOperand(1)))
584     return;
585 
586   // Either the instruction must be a PHI, or a chain of operations involving
587   // constants that ends in a PHI which we can then collapse into a single value
588   // if the PHI value is known.
589   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
590   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
591   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
592   // Collect the instructions until we hit a PHI
593   SmallVector<BinaryOperator *, 1> InstChain;
594   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
595          isa<Constant>(CmpLHS->getOperand(1))) {
596     // Stop if the chain extends outside of the loop
597     if (!L->contains(CmpLHS))
598       return;
599     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
600     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
601     if (CmpLHS)
602       CmpPHI = dyn_cast<PHINode>(CmpLHS);
603   }
604   if (!CmpPHI || !L->contains(CmpPHI))
605     return;
606 
607   // Trace the phi node to find all values that come from successors of BB
608   SmallPtrSet<PHINode*, 8> VisitedInsts;
609   SmallVector<PHINode*, 8> WorkList;
610   WorkList.push_back(CmpPHI);
611   VisitedInsts.insert(CmpPHI);
612   while (!WorkList.empty()) {
613     PHINode *P = WorkList.pop_back_val();
614     for (BasicBlock *B : P->blocks()) {
615       // Skip blocks that aren't part of the loop
616       if (!L->contains(B))
617         continue;
618       Value *V = P->getIncomingValueForBlock(B);
619       // If the source is a PHI add it to the work list if we haven't
620       // already visited it.
621       if (PHINode *PN = dyn_cast<PHINode>(V)) {
622         if (VisitedInsts.insert(PN).second)
623           WorkList.push_back(PN);
624         continue;
625       }
626       // If this incoming value is a constant and B is a successor of BB, then
627       // we can constant-evaluate the compare to see if it makes the branch be
628       // taken or not.
629       Constant *CmpLHSConst = dyn_cast<Constant>(V);
630       if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
631         continue;
632       // First collapse InstChain
633       const DataLayout &DL = BB->getModule()->getDataLayout();
634       for (Instruction *I : llvm::reverse(InstChain)) {
635         CmpLHSConst = ConstantFoldBinaryOpOperands(
636             I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL);
637         if (!CmpLHSConst)
638           break;
639       }
640       if (!CmpLHSConst)
641         continue;
642       // Now constant-evaluate the compare
643       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
644                                                   CmpLHSConst, CmpConst, true);
645       // If the result means we don't branch to the block then that block is
646       // unlikely.
647       if (Result &&
648           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
649            (Result->isOneValue() && B == BI->getSuccessor(1))))
650         UnlikelyBlocks.insert(B);
651     }
652   }
653 }
654 
655 Optional<uint32_t>
656 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
657   auto WeightIt = EstimatedBlockWeight.find(BB);
658   if (WeightIt == EstimatedBlockWeight.end())
659     return None;
660   return WeightIt->second;
661 }
662 
663 Optional<uint32_t>
664 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
665   auto WeightIt = EstimatedLoopWeight.find(L);
666   if (WeightIt == EstimatedLoopWeight.end())
667     return None;
668   return WeightIt->second;
669 }
670 
671 Optional<uint32_t>
672 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
673   // For edges entering a loop take weight of a loop rather than an individual
674   // block in the loop.
675   return isLoopEnteringEdge(Edge)
676              ? getEstimatedLoopWeight(Edge.second.getLoopData())
677              : getEstimatedBlockWeight(Edge.second.getBlock());
678 }
679 
680 template <class IterT>
681 Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
682     const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
683   SmallVector<uint32_t, 4> Weights;
684   Optional<uint32_t> MaxWeight;
685   for (const BasicBlock *DstBB : Successors) {
686     const LoopBlock DstLoopBB = getLoopBlock(DstBB);
687     auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
688 
689     if (!Weight)
690       return None;
691 
692     if (!MaxWeight || *MaxWeight < *Weight)
693       MaxWeight = Weight;
694   }
695 
696   return MaxWeight;
697 }
698 
699 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
700 // an associated weight it is unchanged and false is returned.
701 //
702 // Please note by the algorithm the weight is not expected to change once set
703 // thus 'false' status is used to track visited blocks.
704 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
705     LoopBlock &LoopBB, uint32_t BBWeight,
706     SmallVectorImpl<BasicBlock *> &BlockWorkList,
707     SmallVectorImpl<LoopBlock> &LoopWorkList) {
708   BasicBlock *BB = LoopBB.getBlock();
709 
710   // In general, weight is assigned to a block when it has final value and
711   // can't/shouldn't be changed.  However, there are cases when a block
712   // inherently has several (possibly "contradicting") weights. For example,
713   // "unwind" block may also contain "cold" call. In that case the first
714   // set weight is favored and all consequent weights are ignored.
715   if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
716     return false;
717 
718   for (BasicBlock *PredBlock : predecessors(BB)) {
719     LoopBlock PredLoop = getLoopBlock(PredBlock);
720     // Add affected block/loop to a working list.
721     if (isLoopExitingEdge({PredLoop, LoopBB})) {
722       if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
723         LoopWorkList.push_back(PredLoop);
724     } else if (!EstimatedBlockWeight.count(PredBlock))
725       BlockWorkList.push_back(PredBlock);
726   }
727   return true;
728 }
729 
730 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
731 // to all such blocks that are post dominated by \BB. In other words to all
732 // blocks that the one is executed if and only if another one is executed.
733 // Importantly, we skip loops here for two reasons. First weights of blocks in
734 // a loop should be scaled by trip count (yet possibly unknown). Second there is
735 // no any value in doing that because that doesn't give any additional
736 // information regarding distribution of probabilities inside the loop.
737 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
738 // at calcEstimatedHeuristics.
739 //
740 // In addition, \p WorkList is populated with basic blocks if at leas one
741 // successor has updated estimated weight.
742 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
743     const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
744     uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
745     SmallVectorImpl<LoopBlock> &LoopWorkList) {
746   const BasicBlock *BB = LoopBB.getBlock();
747   const auto *DTStartNode = DT->getNode(BB);
748   const auto *PDTStartNode = PDT->getNode(BB);
749 
750   // TODO: Consider propagating weight down the domination line as well.
751   for (const auto *DTNode = DTStartNode; DTNode != nullptr;
752        DTNode = DTNode->getIDom()) {
753     auto *DomBB = DTNode->getBlock();
754     // Consider blocks which lie on one 'line'.
755     if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
756       // If BB doesn't post dominate DomBB it will not post dominate dominators
757       // of DomBB as well.
758       break;
759 
760     LoopBlock DomLoopBB = getLoopBlock(DomBB);
761     const LoopEdge Edge{DomLoopBB, LoopBB};
762     // Don't propagate weight to blocks belonging to different loops.
763     if (!isLoopEnteringExitingEdge(Edge)) {
764       if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
765                                       LoopWorkList))
766         // If DomBB has weight set then all it's predecessors are already
767         // processed (since we propagate weight up to the top of IR each time).
768         break;
769     } else if (isLoopExitingEdge(Edge)) {
770       LoopWorkList.push_back(DomLoopBB);
771     }
772   }
773 }
774 
775 Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
776     const BasicBlock *BB) {
777   // Returns true if \p BB has call marked with "NoReturn" attribute.
778   auto hasNoReturn = [&](const BasicBlock *BB) {
779     for (const auto &I : reverse(*BB))
780       if (const CallInst *CI = dyn_cast<CallInst>(&I))
781         if (CI->hasFnAttr(Attribute::NoReturn))
782           return true;
783 
784     return false;
785   };
786 
787   // Important note regarding the order of checks. They are ordered by weight
788   // from lowest to highest. Doing that allows to avoid "unstable" results
789   // when several conditions heuristics can be applied simultaneously.
790   if (isa<UnreachableInst>(BB->getTerminator()) ||
791       // If this block is terminated by a call to
792       // @llvm.experimental.deoptimize then treat it like an unreachable
793       // since it is expected to practically never execute.
794       // TODO: Should we actually treat as never returning call?
795       BB->getTerminatingDeoptimizeCall())
796     return hasNoReturn(BB)
797                ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
798                : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
799 
800   // Check if the block is 'unwind' handler of  some invoke instruction.
801   for (const auto *Pred : predecessors(BB))
802     if (Pred)
803       if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
804         if (II->getUnwindDest() == BB)
805           return static_cast<uint32_t>(BlockExecWeight::UNWIND);
806 
807   // Check if the block contains 'cold' call.
808   for (const auto &I : *BB)
809     if (const CallInst *CI = dyn_cast<CallInst>(&I))
810       if (CI->hasFnAttr(Attribute::Cold))
811         return static_cast<uint32_t>(BlockExecWeight::COLD);
812 
813   return None;
814 }
815 
816 // Does RPO traversal over all blocks in \p F and assigns weights to
817 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
818 // best to propagate the weight to up/down the IR.
819 void BranchProbabilityInfo::computeEestimateBlockWeight(
820     const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
821   SmallVector<BasicBlock *, 8> BlockWorkList;
822   SmallVector<LoopBlock, 8> LoopWorkList;
823 
824   // By doing RPO we make sure that all predecessors already have weights
825   // calculated before visiting theirs successors.
826   ReversePostOrderTraversal<const Function *> RPOT(&F);
827   for (const auto *BB : RPOT)
828     if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
829       // If we were able to find estimated weight for the block set it to this
830       // block and propagate up the IR.
831       propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, BBWeight.value(),
832                                     BlockWorkList, LoopWorkList);
833 
834   // BlockWorklist/LoopWorkList contains blocks/loops with at least one
835   // successor/exit having estimated weight. Try to propagate weight to such
836   // blocks/loops from successors/exits.
837   // Process loops and blocks. Order is not important.
838   do {
839     while (!LoopWorkList.empty()) {
840       const LoopBlock LoopBB = LoopWorkList.pop_back_val();
841 
842       if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
843         continue;
844 
845       SmallVector<BasicBlock *, 4> Exits;
846       getLoopExitBlocks(LoopBB, Exits);
847       auto LoopWeight = getMaxEstimatedEdgeWeight(
848           LoopBB, make_range(Exits.begin(), Exits.end()));
849 
850       if (LoopWeight) {
851         // If we never exit the loop then we can enter it once at maximum.
852         if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
853           LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
854 
855         EstimatedLoopWeight.insert({LoopBB.getLoopData(), *LoopWeight});
856         // Add all blocks entering the loop into working list.
857         getLoopEnterBlocks(LoopBB, BlockWorkList);
858       }
859     }
860 
861     while (!BlockWorkList.empty()) {
862       // We can reach here only if BlockWorkList is not empty.
863       const BasicBlock *BB = BlockWorkList.pop_back_val();
864       if (EstimatedBlockWeight.count(BB))
865         continue;
866 
867       // We take maximum over all weights of successors. In other words we take
868       // weight of "hot" path. In theory we can probably find a better function
869       // which gives higher accuracy results (comparing to "maximum") but I
870       // can't
871       // think of any right now. And I doubt it will make any difference in
872       // practice.
873       const LoopBlock LoopBB = getLoopBlock(BB);
874       auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
875 
876       if (MaxWeight)
877         propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight,
878                                       BlockWorkList, LoopWorkList);
879     }
880   } while (!BlockWorkList.empty() || !LoopWorkList.empty());
881 }
882 
883 // Calculate edge probabilities based on block's estimated weight.
884 // Note that gathered weights were not scaled for loops. Thus edges entering
885 // and exiting loops requires special processing.
886 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
887   assert(BB->getTerminator()->getNumSuccessors() > 1 &&
888          "expected more than one successor!");
889 
890   const LoopBlock LoopBB = getLoopBlock(BB);
891 
892   SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
893   uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
894   if (LoopBB.getLoop())
895     computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
896 
897   // Changed to 'true' if at least one successor has estimated weight.
898   bool FoundEstimatedWeight = false;
899   SmallVector<uint32_t, 4> SuccWeights;
900   uint64_t TotalWeight = 0;
901   // Go over all successors of BB and put their weights into SuccWeights.
902   for (const BasicBlock *SuccBB : successors(BB)) {
903     Optional<uint32_t> Weight;
904     const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
905     const LoopEdge Edge{LoopBB, SuccLoopBB};
906 
907     Weight = getEstimatedEdgeWeight(Edge);
908 
909     if (isLoopExitingEdge(Edge) &&
910         // Avoid adjustment of ZERO weight since it should remain unchanged.
911         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
912       // Scale down loop exiting weight by trip count.
913       Weight = std::max(
914           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
915           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
916               TC);
917     }
918     bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
919     if (IsUnlikelyEdge &&
920         // Avoid adjustment of ZERO weight since it should remain unchanged.
921         Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
922       // 'Unlikely' blocks have twice lower weight.
923       Weight = std::max(
924           static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
925           Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2);
926     }
927 
928     if (Weight)
929       FoundEstimatedWeight = true;
930 
931     auto WeightVal =
932         Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
933     TotalWeight += WeightVal;
934     SuccWeights.push_back(WeightVal);
935   }
936 
937   // If non of blocks have estimated weight bail out.
938   // If TotalWeight is 0 that means weight of each successor is 0 as well and
939   // equally likely. Bail out early to not deal with devision by zero.
940   if (!FoundEstimatedWeight || TotalWeight == 0)
941     return false;
942 
943   assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
944   const unsigned SuccCount = SuccWeights.size();
945 
946   // If the sum of weights does not fit in 32 bits, scale every weight down
947   // accordingly.
948   if (TotalWeight > UINT32_MAX) {
949     uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
950     TotalWeight = 0;
951     for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
952       SuccWeights[Idx] /= ScalingFactor;
953       if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
954         SuccWeights[Idx] =
955             static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
956       TotalWeight += SuccWeights[Idx];
957     }
958     assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
959   }
960 
961   // Finally set probabilities to edges according to estimated block weights.
962   SmallVector<BranchProbability, 4> EdgeProbabilities(
963       SuccCount, BranchProbability::getUnknown());
964 
965   for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
966     EdgeProbabilities[Idx] =
967         BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
968   }
969   setEdgeProbability(BB, EdgeProbabilities);
970   return true;
971 }
972 
973 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
974                                                const TargetLibraryInfo *TLI) {
975   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
976   if (!BI || !BI->isConditional())
977     return false;
978 
979   Value *Cond = BI->getCondition();
980   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
981   if (!CI)
982     return false;
983 
984   auto GetConstantInt = [](Value *V) {
985     if (auto *I = dyn_cast<BitCastInst>(V))
986       return dyn_cast<ConstantInt>(I->getOperand(0));
987     return dyn_cast<ConstantInt>(V);
988   };
989 
990   Value *RHS = CI->getOperand(1);
991   ConstantInt *CV = GetConstantInt(RHS);
992   if (!CV)
993     return false;
994 
995   // If the LHS is the result of AND'ing a value with a single bit bitmask,
996   // we don't have information about probabilities.
997   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
998     if (LHS->getOpcode() == Instruction::And)
999       if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
1000         if (AndRHS->getValue().isPowerOf2())
1001           return false;
1002 
1003   // Check if the LHS is the return value of a library function
1004   LibFunc Func = NumLibFuncs;
1005   if (TLI)
1006     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
1007       if (Function *CalledFn = Call->getCalledFunction())
1008         TLI->getLibFunc(*CalledFn, Func);
1009 
1010   ProbabilityTable::const_iterator Search;
1011   if (Func == LibFunc_strcasecmp ||
1012       Func == LibFunc_strcmp ||
1013       Func == LibFunc_strncasecmp ||
1014       Func == LibFunc_strncmp ||
1015       Func == LibFunc_memcmp ||
1016       Func == LibFunc_bcmp) {
1017     Search = ICmpWithLibCallTable.find(CI->getPredicate());
1018     if (Search == ICmpWithLibCallTable.end())
1019       return false;
1020   } else if (CV->isZero()) {
1021     Search = ICmpWithZeroTable.find(CI->getPredicate());
1022     if (Search == ICmpWithZeroTable.end())
1023       return false;
1024   } else if (CV->isOne()) {
1025     Search = ICmpWithOneTable.find(CI->getPredicate());
1026     if (Search == ICmpWithOneTable.end())
1027       return false;
1028   } else if (CV->isMinusOne()) {
1029     Search = ICmpWithMinusOneTable.find(CI->getPredicate());
1030     if (Search == ICmpWithMinusOneTable.end())
1031       return false;
1032   } else {
1033     return false;
1034   }
1035 
1036   setEdgeProbability(BB, Search->second);
1037   return true;
1038 }
1039 
1040 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1041   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1042   if (!BI || !BI->isConditional())
1043     return false;
1044 
1045   Value *Cond = BI->getCondition();
1046   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1047   if (!FCmp)
1048     return false;
1049 
1050   ProbabilityList ProbList;
1051   if (FCmp->isEquality()) {
1052     ProbList = !FCmp->isTrueWhenEqual() ?
1053       // f1 == f2 -> Unlikely
1054       ProbabilityList({FPTakenProb, FPUntakenProb}) :
1055       // f1 != f2 -> Likely
1056       ProbabilityList({FPUntakenProb, FPTakenProb});
1057   } else {
1058     auto Search = FCmpTable.find(FCmp->getPredicate());
1059     if (Search == FCmpTable.end())
1060       return false;
1061     ProbList = Search->second;
1062   }
1063 
1064   setEdgeProbability(BB, ProbList);
1065   return true;
1066 }
1067 
1068 void BranchProbabilityInfo::releaseMemory() {
1069   Probs.clear();
1070   Handles.clear();
1071 }
1072 
1073 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1074                                        FunctionAnalysisManager::Invalidator &) {
1075   // Check whether the analysis, all analyses on functions, or the function's
1076   // CFG have been preserved.
1077   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1078   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1079            PAC.preservedSet<CFGAnalyses>());
1080 }
1081 
1082 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1083   OS << "---- Branch Probabilities ----\n";
1084   // We print the probabilities from the last function the analysis ran over,
1085   // or the function it is currently running over.
1086   assert(LastF && "Cannot print prior to running over a function");
1087   for (const auto &BI : *LastF) {
1088     for (const BasicBlock *Succ : successors(&BI))
1089       printEdgeProbability(OS << "  ", &BI, Succ);
1090   }
1091 }
1092 
1093 bool BranchProbabilityInfo::
1094 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1095   // Hot probability is at least 4/5 = 80%
1096   // FIXME: Compare against a static "hot" BranchProbability.
1097   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1098 }
1099 
1100 /// Get the raw edge probability for the edge. If can't find it, return a
1101 /// default probability 1/N where N is the number of successors. Here an edge is
1102 /// specified using PredBlock and an
1103 /// index to the successors.
1104 BranchProbability
1105 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1106                                           unsigned IndexInSuccessors) const {
1107   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1108   assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1109              (Probs.end() == I) &&
1110          "Probability for I-th successor must always be defined along with the "
1111          "probability for the first successor");
1112 
1113   if (I != Probs.end())
1114     return I->second;
1115 
1116   return {1, static_cast<uint32_t>(succ_size(Src))};
1117 }
1118 
1119 BranchProbability
1120 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1121                                           const_succ_iterator Dst) const {
1122   return getEdgeProbability(Src, Dst.getSuccessorIndex());
1123 }
1124 
1125 /// Get the raw edge probability calculated for the block pair. This returns the
1126 /// sum of all raw edge probabilities from Src to Dst.
1127 BranchProbability
1128 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1129                                           const BasicBlock *Dst) const {
1130   if (!Probs.count(std::make_pair(Src, 0)))
1131     return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1132 
1133   auto Prob = BranchProbability::getZero();
1134   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1135     if (*I == Dst)
1136       Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1137 
1138   return Prob;
1139 }
1140 
1141 /// Set the edge probability for all edges at once.
1142 void BranchProbabilityInfo::setEdgeProbability(
1143     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1144   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1145   eraseBlock(Src); // Erase stale data if any.
1146   if (Probs.size() == 0)
1147     return; // Nothing to set.
1148 
1149   Handles.insert(BasicBlockCallbackVH(Src, this));
1150   uint64_t TotalNumerator = 0;
1151   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1152     this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1153     LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1154                       << " successor probability to " << Probs[SuccIdx]
1155                       << "\n");
1156     TotalNumerator += Probs[SuccIdx].getNumerator();
1157   }
1158 
1159   // Because of rounding errors the total probability cannot be checked to be
1160   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1161   // Instead, every single probability in Probs must be as accurate as possible.
1162   // This results in error 1/denominator at most, thus the total absolute error
1163   // should be within Probs.size / BranchProbability::getDenominator.
1164   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1165   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1166   (void)TotalNumerator;
1167 }
1168 
1169 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1170                                                   BasicBlock *Dst) {
1171   eraseBlock(Dst); // Erase stale data if any.
1172   unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1173   assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1174   if (NumSuccessors == 0)
1175     return; // Nothing to set.
1176   if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1177     return; // No probability is set for edges from Src. Keep the same for Dst.
1178 
1179   Handles.insert(BasicBlockCallbackVH(Dst, this));
1180   for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1181     auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1182     this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1183     LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1184                       << " successor probability to " << Prob << "\n");
1185   }
1186 }
1187 
1188 raw_ostream &
1189 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1190                                             const BasicBlock *Src,
1191                                             const BasicBlock *Dst) const {
1192   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1193   OS << "edge " << Src->getName() << " -> " << Dst->getName()
1194      << " probability is " << Prob
1195      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1196 
1197   return OS;
1198 }
1199 
1200 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1201   LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1202 
1203   // Note that we cannot use successors of BB because the terminator of BB may
1204   // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1205   // Instead we remove prob data for the block by iterating successors by their
1206   // indices from 0 till the last which exists. There could not be prob data for
1207   // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1208   // set for all successors from 0 to M at once by the method
1209   // setEdgeProbability().
1210   Handles.erase(BasicBlockCallbackVH(BB, this));
1211   for (unsigned I = 0;; ++I) {
1212     auto MapI = Probs.find(std::make_pair(BB, I));
1213     if (MapI == Probs.end()) {
1214       assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1215              "Must be no more successors");
1216       return;
1217     }
1218     Probs.erase(MapI);
1219   }
1220 }
1221 
1222 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1223                                       const TargetLibraryInfo *TLI,
1224                                       DominatorTree *DT,
1225                                       PostDominatorTree *PDT) {
1226   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1227                     << " ----\n\n");
1228   LastF = &F; // Store the last function we ran on for printing.
1229   LI = &LoopI;
1230 
1231   SccI = std::make_unique<SccInfo>(F);
1232 
1233   assert(EstimatedBlockWeight.empty());
1234   assert(EstimatedLoopWeight.empty());
1235 
1236   std::unique_ptr<DominatorTree> DTPtr;
1237   std::unique_ptr<PostDominatorTree> PDTPtr;
1238 
1239   if (!DT) {
1240     DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1241     DT = DTPtr.get();
1242   }
1243 
1244   if (!PDT) {
1245     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1246     PDT = PDTPtr.get();
1247   }
1248 
1249   computeEestimateBlockWeight(F, DT, PDT);
1250 
1251   // Walk the basic blocks in post-order so that we can build up state about
1252   // the successors of a block iteratively.
1253   for (const auto *BB : post_order(&F.getEntryBlock())) {
1254     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1255                       << "\n");
1256     // If there is no at least two successors, no sense to set probability.
1257     if (BB->getTerminator()->getNumSuccessors() < 2)
1258       continue;
1259     if (calcMetadataWeights(BB))
1260       continue;
1261     if (calcEstimatedHeuristics(BB))
1262       continue;
1263     if (calcPointerHeuristics(BB))
1264       continue;
1265     if (calcZeroHeuristics(BB, TLI))
1266       continue;
1267     if (calcFloatingPointHeuristics(BB))
1268       continue;
1269   }
1270 
1271   EstimatedLoopWeight.clear();
1272   EstimatedBlockWeight.clear();
1273   SccI.reset();
1274 
1275   if (PrintBranchProb &&
1276       (PrintBranchProbFuncName.empty() ||
1277        F.getName().equals(PrintBranchProbFuncName))) {
1278     print(dbgs());
1279   }
1280 }
1281 
1282 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1283     AnalysisUsage &AU) const {
1284   // We require DT so it's available when LI is available. The LI updating code
1285   // asserts that DT is also present so if we don't make sure that we have DT
1286   // here, that assert will trigger.
1287   AU.addRequired<DominatorTreeWrapperPass>();
1288   AU.addRequired<LoopInfoWrapperPass>();
1289   AU.addRequired<TargetLibraryInfoWrapperPass>();
1290   AU.addRequired<DominatorTreeWrapperPass>();
1291   AU.addRequired<PostDominatorTreeWrapperPass>();
1292   AU.setPreservesAll();
1293 }
1294 
1295 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1296   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1297   const TargetLibraryInfo &TLI =
1298       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1299   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1300   PostDominatorTree &PDT =
1301       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1302   BPI.calculate(F, LI, &TLI, &DT, &PDT);
1303   return false;
1304 }
1305 
1306 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1307 
1308 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1309                                              const Module *) const {
1310   BPI.print(OS);
1311 }
1312 
1313 AnalysisKey BranchProbabilityAnalysis::Key;
1314 BranchProbabilityInfo
1315 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1316   BranchProbabilityInfo BPI;
1317   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1318                 &AM.getResult<TargetLibraryAnalysis>(F),
1319                 &AM.getResult<DominatorTreeAnalysis>(F),
1320                 &AM.getResult<PostDominatorTreeAnalysis>(F));
1321   return BPI;
1322 }
1323 
1324 PreservedAnalyses
1325 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1326   OS << "Printing analysis results of BPI for function "
1327      << "'" << F.getName() << "':"
1328      << "\n";
1329   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1330   return PreservedAnalyses::all();
1331 }
1332