1 //===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions performs analyses on basic blocks, and instructions
10 // contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/CFG.h"
15 #include "llvm/Analysis/LoopInfo.h"
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/Support/CommandLine.h"
18 
19 using namespace llvm;
20 
21 // The max number of basic blocks explored during reachability analysis between
22 // two basic blocks. This is kept reasonably small to limit compile time when
23 // repeatedly used by clients of this analysis (such as captureTracking).
24 static cl::opt<unsigned> DefaultMaxBBsToExplore(
25     "dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26     cl::desc("Max number of BBs to explore for reachability analysis"),
27     cl::init(32));
28 
29 /// FindFunctionBackedges - Analyze the specified function to find all of the
30 /// loop backedges in the function and return them.  This is a relatively cheap
31 /// (compared to computing dominators and loop info) analysis.
32 ///
33 /// The output is added to Result, as pairs of <from,to> edge info.
FindFunctionBackedges(const Function & F,SmallVectorImpl<std::pair<const BasicBlock *,const BasicBlock * >> & Result)34 void llvm::FindFunctionBackedges(const Function &F,
35      SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36   const BasicBlock *BB = &F.getEntryBlock();
37   if (succ_empty(BB))
38     return;
39 
40   SmallPtrSet<const BasicBlock*, 8> Visited;
41   SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42   SmallPtrSet<const BasicBlock*, 8> InStack;
43 
44   Visited.insert(BB);
45   VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
46   InStack.insert(BB);
47   do {
48     std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49     const BasicBlock *ParentBB = Top.first;
50     const_succ_iterator &I = Top.second;
51 
52     bool FoundNew = false;
53     while (I != succ_end(ParentBB)) {
54       BB = *I++;
55       if (Visited.insert(BB).second) {
56         FoundNew = true;
57         break;
58       }
59       // Successor is in VisitStack, it's a back edge.
60       if (InStack.count(BB))
61         Result.push_back(std::make_pair(ParentBB, BB));
62     }
63 
64     if (FoundNew) {
65       // Go down one level if there is a unvisited successor.
66       InStack.insert(BB);
67       VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
68     } else {
69       // Go up one level.
70       InStack.erase(VisitStack.pop_back_val().first);
71     }
72   } while (!VisitStack.empty());
73 }
74 
75 /// GetSuccessorNumber - Search for the specified successor of basic block BB
76 /// and return its position in the terminator instruction's list of
77 /// successors.  It is an error to call this with a block that is not a
78 /// successor.
GetSuccessorNumber(const BasicBlock * BB,const BasicBlock * Succ)79 unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80     const BasicBlock *Succ) {
81   const Instruction *Term = BB->getTerminator();
82 #ifndef NDEBUG
83   unsigned e = Term->getNumSuccessors();
84 #endif
85   for (unsigned i = 0; ; ++i) {
86     assert(i != e && "Didn't find edge?");
87     if (Term->getSuccessor(i) == Succ)
88       return i;
89   }
90 }
91 
92 /// isCriticalEdge - Return true if the specified edge is a critical edge.
93 /// Critical edges are edges from a block with multiple successors to a block
94 /// with multiple predecessors.
isCriticalEdge(const Instruction * TI,unsigned SuccNum,bool AllowIdenticalEdges)95 bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96                           bool AllowIdenticalEdges) {
97   assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98   return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
99 }
100 
isCriticalEdge(const Instruction * TI,const BasicBlock * Dest,bool AllowIdenticalEdges)101 bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102                           bool AllowIdenticalEdges) {
103   assert(TI->isTerminator() && "Must be a terminator to have successors!");
104   if (TI->getNumSuccessors() == 1) return false;
105 
106   assert(is_contained(predecessors(Dest), TI->getParent()) &&
107          "No edge between TI's block and Dest.");
108 
109   const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
110 
111   // If there is more than one predecessor, this is a critical edge...
112   assert(I != E && "No preds, but we have an edge to the block?");
113   const BasicBlock *FirstPred = *I;
114   ++I;        // Skip one edge due to the incoming arc from TI.
115   if (!AllowIdenticalEdges)
116     return I != E;
117 
118   // If AllowIdenticalEdges is true, then we allow this edge to be considered
119   // non-critical iff all preds come from TI's block.
120   for (; I != E; ++I)
121     if (*I != FirstPred)
122       return true;
123   return false;
124 }
125 
126 // LoopInfo contains a mapping from basic block to the innermost loop. Find
127 // the outermost loop in the loop nest that contains BB.
getOutermostLoop(const LoopInfo * LI,const BasicBlock * BB)128 static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129   const Loop *L = LI->getLoopFor(BB);
130   return L ? L->getOutermostLoop() : nullptr;
131 }
132 
isPotentiallyReachableFromMany(SmallVectorImpl<BasicBlock * > & Worklist,const BasicBlock * StopBB,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)133 bool llvm::isPotentiallyReachableFromMany(
134     SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
135     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
136     const LoopInfo *LI) {
137   // When the stop block is unreachable, it's dominated from everywhere,
138   // regardless of whether there's a path between the two blocks.
139   if (DT && !DT->isReachableFromEntry(StopBB))
140     DT = nullptr;
141 
142   // We can't skip directly from a block that dominates the stop block if the
143   // exclusion block is potentially in between.
144   if (ExclusionSet && !ExclusionSet->empty())
145     DT = nullptr;
146 
147   // Normally any block in a loop is reachable from any other block in a loop,
148   // however excluded blocks might partition the body of a loop to make that
149   // untrue.
150   SmallPtrSet<const Loop *, 8> LoopsWithHoles;
151   if (LI && ExclusionSet) {
152     for (auto *BB : *ExclusionSet) {
153       if (const Loop *L = getOutermostLoop(LI, BB))
154         LoopsWithHoles.insert(L);
155     }
156   }
157 
158   const Loop *StopLoop = LI ? getOutermostLoop(LI, StopBB) : nullptr;
159 
160   unsigned Limit = DefaultMaxBBsToExplore;
161   SmallPtrSet<const BasicBlock*, 32> Visited;
162   do {
163     BasicBlock *BB = Worklist.pop_back_val();
164     if (!Visited.insert(BB).second)
165       continue;
166     if (BB == StopBB)
167       return true;
168     if (ExclusionSet && ExclusionSet->count(BB))
169       continue;
170     if (DT && DT->dominates(BB, StopBB))
171       return true;
172 
173     const Loop *Outer = nullptr;
174     if (LI) {
175       Outer = getOutermostLoop(LI, BB);
176       // If we're in a loop with a hole, not all blocks in the loop are
177       // reachable from all other blocks. That implies we can't simply jump to
178       // the loop's exit blocks, as that exit might need to pass through an
179       // excluded block. Clear Outer so we process BB's successors.
180       if (LoopsWithHoles.count(Outer))
181         Outer = nullptr;
182       if (StopLoop && Outer == StopLoop)
183         return true;
184     }
185 
186     if (!--Limit) {
187       // We haven't been able to prove it one way or the other. Conservatively
188       // answer true -- that there is potentially a path.
189       return true;
190     }
191 
192     if (Outer) {
193       // All blocks in a single loop are reachable from all other blocks. From
194       // any of these blocks, we can skip directly to the exits of the loop,
195       // ignoring any other blocks inside the loop body.
196       Outer->getExitBlocks(Worklist);
197     } else {
198       Worklist.append(succ_begin(BB), succ_end(BB));
199     }
200   } while (!Worklist.empty());
201 
202   // We have exhausted all possible paths and are certain that 'To' can not be
203   // reached from 'From'.
204   return false;
205 }
206 
isPotentiallyReachable(const BasicBlock * A,const BasicBlock * B,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)207 bool llvm::isPotentiallyReachable(
208     const BasicBlock *A, const BasicBlock *B,
209     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
210     const LoopInfo *LI) {
211   assert(A->getParent() == B->getParent() &&
212          "This analysis is function-local!");
213 
214   if (DT) {
215     if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
216       return false;
217     if (!ExclusionSet || ExclusionSet->empty()) {
218       if (A->isEntryBlock() && DT->isReachableFromEntry(B))
219         return true;
220       if (B->isEntryBlock() && DT->isReachableFromEntry(A))
221         return false;
222     }
223   }
224 
225   SmallVector<BasicBlock*, 32> Worklist;
226   Worklist.push_back(const_cast<BasicBlock*>(A));
227 
228   return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI);
229 }
230 
isPotentiallyReachable(const Instruction * A,const Instruction * B,const SmallPtrSetImpl<BasicBlock * > * ExclusionSet,const DominatorTree * DT,const LoopInfo * LI)231 bool llvm::isPotentiallyReachable(
232     const Instruction *A, const Instruction *B,
233     const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
234     const LoopInfo *LI) {
235   assert(A->getParent()->getParent() == B->getParent()->getParent() &&
236          "This analysis is function-local!");
237 
238   if (A->getParent() == B->getParent()) {
239     // The same block case is special because it's the only time we're looking
240     // within a single block to see which instruction comes first. Once we
241     // start looking at multiple blocks, the first instruction of the block is
242     // reachable, so we only need to determine reachability between whole
243     // blocks.
244     BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
245 
246     // If the block is in a loop then we can reach any instruction in the block
247     // from any other instruction in the block by going around a backedge.
248     if (LI && LI->getLoopFor(BB) != nullptr)
249       return true;
250 
251     // If A comes before B, then B is definitively reachable from A.
252     if (A == B || A->comesBefore(B))
253       return true;
254 
255     // Can't be in a loop if it's the entry block -- the entry block may not
256     // have predecessors.
257     if (BB->isEntryBlock())
258       return false;
259 
260     // Otherwise, continue doing the normal per-BB CFG walk.
261     SmallVector<BasicBlock*, 32> Worklist;
262     Worklist.append(succ_begin(BB), succ_end(BB));
263     if (Worklist.empty()) {
264       // We've proven that there's no path!
265       return false;
266     }
267 
268     return isPotentiallyReachableFromMany(Worklist, B->getParent(),
269                                           ExclusionSet, DT, LI);
270   }
271 
272   return isPotentiallyReachable(
273       A->getParent(), B->getParent(), ExclusionSet, DT, LI);
274 }
275