1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/PriorityWorklist.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cassert>
31 #include <iterator>
32 #include <optional>
33 
34 #define DEBUG_TYPE "cgscc"
35 
36 using namespace llvm;
37 
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
42     "abort-on-max-devirt-iterations-reached",
43     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
44              "pass is reached"));
45 
46 AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key;
47 
48 // Explicit instantiations for the core proxy templates.
49 template class AllAnalysesOn<LazyCallGraph::SCC>;
50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
52                            LazyCallGraph &, CGSCCUpdateResult &>;
53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
55                                          LazyCallGraph::SCC, LazyCallGraph &>;
56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
57 
58 /// Explicitly specialize the pass manager run method to handle call graph
59 /// updates.
60 template <>
61 PreservedAnalyses
62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
63             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
64                                       CGSCCAnalysisManager &AM,
65                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
66   // Request PassInstrumentation from analysis manager, will use it to run
67   // instrumenting callbacks for the passes later.
68   PassInstrumentation PI =
69       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
70 
71   PreservedAnalyses PA = PreservedAnalyses::all();
72 
73   // The SCC may be refined while we are running passes over it, so set up
74   // a pointer that we can update.
75   LazyCallGraph::SCC *C = &InitialC;
76 
77   // Get Function analysis manager from its proxy.
78   FunctionAnalysisManager &FAM =
79       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
80 
81   for (auto &Pass : Passes) {
82     // Check the PassInstrumentation's BeforePass callbacks before running the
83     // pass, skip its execution completely if asked to (callback returns false).
84     if (!PI.runBeforePass(*Pass, *C))
85       continue;
86 
87     PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
88 
89     if (UR.InvalidatedSCCs.count(C))
90       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
91     else
92       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
93 
94     // Update the SCC if necessary.
95     C = UR.UpdatedC ? UR.UpdatedC : C;
96     if (UR.UpdatedC) {
97       // If C is updated, also create a proxy and update FAM inside the result.
98       auto *ResultFAMCP =
99           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
100       ResultFAMCP->updateFAM(FAM);
101     }
102 
103     // Intersect the final preserved analyses to compute the aggregate
104     // preserved set for this pass manager.
105     PA.intersect(PassPA);
106 
107     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
108     // current SCC may simply need to be skipped if invalid.
109     if (UR.InvalidatedSCCs.count(C)) {
110       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
111       break;
112     }
113 
114     // Check that we didn't miss any update scenario.
115     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
116 
117     // Update the analysis manager as each pass runs and potentially
118     // invalidates analyses.
119     AM.invalidate(*C, PassPA);
120   }
121 
122   // Before we mark all of *this* SCC's analyses as preserved below, intersect
123   // this with the cross-SCC preserved analysis set. This is used to allow
124   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
125   // for them.
126   UR.CrossSCCPA.intersect(PA);
127 
128   // Invalidation was handled after each pass in the above loop for the current
129   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
130   // preserved. We mark this with a set so that we don't need to inspect each
131   // one individually.
132   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
133 
134   return PA;
135 }
136 
137 PreservedAnalyses
138 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
139   // Setup the CGSCC analysis manager from its proxy.
140   CGSCCAnalysisManager &CGAM =
141       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
142 
143   // Get the call graph for this module.
144   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
145 
146   // Get Function analysis manager from its proxy.
147   FunctionAnalysisManager &FAM =
148       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
149 
150   // We keep worklists to allow us to push more work onto the pass manager as
151   // the passes are run.
152   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
153   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
154 
155   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
156   // iterating off the worklists.
157   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
158   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
159 
160   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
161       InlinedInternalEdges;
162 
163   CGSCCUpdateResult UR = {
164       RCWorklist,           CWorklist, InvalidRefSCCSet,
165       InvalidSCCSet,        nullptr,   PreservedAnalyses::all(),
166       InlinedInternalEdges, {}};
167 
168   // Request PassInstrumentation from analysis manager, will use it to run
169   // instrumenting callbacks for the passes later.
170   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
171 
172   PreservedAnalyses PA = PreservedAnalyses::all();
173   CG.buildRefSCCs();
174   for (LazyCallGraph::RefSCC &RC :
175        llvm::make_early_inc_range(CG.postorder_ref_sccs())) {
176     assert(RCWorklist.empty() &&
177            "Should always start with an empty RefSCC worklist");
178     // The postorder_ref_sccs range we are walking is lazily constructed, so
179     // we only push the first one onto the worklist. The worklist allows us
180     // to capture *new* RefSCCs created during transformations.
181     //
182     // We really want to form RefSCCs lazily because that makes them cheaper
183     // to update as the program is simplified and allows us to have greater
184     // cache locality as forming a RefSCC touches all the parts of all the
185     // functions within that RefSCC.
186     //
187     // We also eagerly increment the iterator to the next position because
188     // the CGSCC passes below may delete the current RefSCC.
189     RCWorklist.insert(&RC);
190 
191     do {
192       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
193       if (InvalidRefSCCSet.count(RC)) {
194         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
195         continue;
196       }
197 
198       assert(CWorklist.empty() &&
199              "Should always start with an empty SCC worklist");
200 
201       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
202                         << "\n");
203 
204       // The top of the worklist may *also* be the same SCC we just ran over
205       // (and invalidated for). Keep track of that last SCC we processed due
206       // to SCC update to avoid redundant processing when an SCC is both just
207       // updated itself and at the top of the worklist.
208       LazyCallGraph::SCC *LastUpdatedC = nullptr;
209 
210       // Push the initial SCCs in reverse post-order as we'll pop off the
211       // back and so see this in post-order.
212       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
213         CWorklist.insert(&C);
214 
215       do {
216         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
217         // Due to call graph mutations, we may have invalid SCCs or SCCs from
218         // other RefSCCs in the worklist. The invalid ones are dead and the
219         // other RefSCCs should be queued above, so we just need to skip both
220         // scenarios here.
221         if (InvalidSCCSet.count(C)) {
222           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
223           continue;
224         }
225         if (LastUpdatedC == C) {
226           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
227           continue;
228         }
229         // We used to also check if the current SCC is part of the current
230         // RefSCC and bail if it wasn't, since it should be in RCWorklist.
231         // However, this can cause compile time explosions in some cases on
232         // modules with a huge RefSCC. If a non-trivial amount of SCCs in the
233         // huge RefSCC can become their own child RefSCC, we create one child
234         // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit
235         // the huge RefSCC, and repeat. By visiting all SCCs in the original
236         // RefSCC we create all the child RefSCCs in one pass of the RefSCC,
237         // rather one pass of the RefSCC creating one child RefSCC at a time.
238 
239         // Ensure we can proxy analysis updates from the CGSCC analysis manager
240         // into the the Function analysis manager by getting a proxy here.
241         // This also needs to update the FunctionAnalysisManager, as this may be
242         // the first time we see this SCC.
243         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
244             FAM);
245 
246         // Each time we visit a new SCC pulled off the worklist,
247         // a transformation of a child SCC may have also modified this parent
248         // and invalidated analyses. So we invalidate using the update record's
249         // cross-SCC preserved set. This preserved set is intersected by any
250         // CGSCC pass that handles invalidation (primarily pass managers) prior
251         // to marking its SCC as preserved. That lets us track everything that
252         // might need invalidation across SCCs without excessive invalidations
253         // on a single SCC.
254         //
255         // This essentially allows SCC passes to freely invalidate analyses
256         // of any ancestor SCC. If this becomes detrimental to successfully
257         // caching analyses, we could force each SCC pass to manually
258         // invalidate the analyses for any SCCs other than themselves which
259         // are mutated. However, that seems to lose the robustness of the
260         // pass-manager driven invalidation scheme.
261         CGAM.invalidate(*C, UR.CrossSCCPA);
262 
263         do {
264           // Check that we didn't miss any update scenario.
265           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
266           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
267 
268           LastUpdatedC = UR.UpdatedC;
269           UR.UpdatedC = nullptr;
270 
271           // Check the PassInstrumentation's BeforePass callbacks before
272           // running the pass, skip its execution completely if asked to
273           // (callback returns false).
274           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
275             continue;
276 
277           PreservedAnalyses PassPA = Pass->run(*C, CGAM, CG, UR);
278 
279           if (UR.InvalidatedSCCs.count(C))
280             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
281           else
282             PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
283 
284           // Update the SCC and RefSCC if necessary.
285           C = UR.UpdatedC ? UR.UpdatedC : C;
286 
287           if (UR.UpdatedC) {
288             // If we're updating the SCC, also update the FAM inside the proxy's
289             // result.
290             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
291                 FAM);
292           }
293 
294           // Intersect with the cross-SCC preserved set to capture any
295           // cross-SCC invalidation.
296           UR.CrossSCCPA.intersect(PassPA);
297           // Intersect the preserved set so that invalidation of module
298           // analyses will eventually occur when the module pass completes.
299           PA.intersect(PassPA);
300 
301           // If the CGSCC pass wasn't able to provide a valid updated SCC,
302           // the current SCC may simply need to be skipped if invalid.
303           if (UR.InvalidatedSCCs.count(C)) {
304             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
305             break;
306           }
307 
308           // Check that we didn't miss any update scenario.
309           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
310 
311           // We handle invalidating the CGSCC analysis manager's information
312           // for the (potentially updated) SCC here. Note that any other SCCs
313           // whose structure has changed should have been invalidated by
314           // whatever was updating the call graph. This SCC gets invalidated
315           // late as it contains the nodes that were actively being
316           // processed.
317           CGAM.invalidate(*C, PassPA);
318 
319           // The pass may have restructured the call graph and refined the
320           // current SCC and/or RefSCC. We need to update our current SCC and
321           // RefSCC pointers to follow these. Also, when the current SCC is
322           // refined, re-run the SCC pass over the newly refined SCC in order
323           // to observe the most precise SCC model available. This inherently
324           // cannot cycle excessively as it only happens when we split SCCs
325           // apart, at most converging on a DAG of single nodes.
326           // FIXME: If we ever start having RefSCC passes, we'll want to
327           // iterate there too.
328           if (UR.UpdatedC)
329             LLVM_DEBUG(dbgs()
330                        << "Re-running SCC passes after a refinement of the "
331                           "current SCC: "
332                        << *UR.UpdatedC << "\n");
333 
334           // Note that both `C` and `RC` may at this point refer to deleted,
335           // invalid SCC and RefSCCs respectively. But we will short circuit
336           // the processing when we check them in the loop above.
337         } while (UR.UpdatedC);
338       } while (!CWorklist.empty());
339 
340       // We only need to keep internal inlined edge information within
341       // a RefSCC, clear it to save on space and let the next time we visit
342       // any of these functions have a fresh start.
343       InlinedInternalEdges.clear();
344     } while (!RCWorklist.empty());
345   }
346 
347   // By definition we preserve the call garph, all SCC analyses, and the
348   // analysis proxies by handling them above and in any nested pass managers.
349   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
350   PA.preserve<LazyCallGraphAnalysis>();
351   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
352   PA.preserve<FunctionAnalysisManagerModuleProxy>();
353   return PA;
354 }
355 
356 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
357                                              CGSCCAnalysisManager &AM,
358                                              LazyCallGraph &CG,
359                                              CGSCCUpdateResult &UR) {
360   PreservedAnalyses PA = PreservedAnalyses::all();
361   PassInstrumentation PI =
362       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
363 
364   // The SCC may be refined while we are running passes over it, so set up
365   // a pointer that we can update.
366   LazyCallGraph::SCC *C = &InitialC;
367 
368   // Struct to track the counts of direct and indirect calls in each function
369   // of the SCC.
370   struct CallCount {
371     int Direct;
372     int Indirect;
373   };
374 
375   // Put value handles on all of the indirect calls and return the number of
376   // direct calls for each function in the SCC.
377   auto ScanSCC = [](LazyCallGraph::SCC &C,
378                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
379     assert(CallHandles.empty() && "Must start with a clear set of handles.");
380 
381     SmallDenseMap<Function *, CallCount> CallCounts;
382     CallCount CountLocal = {0, 0};
383     for (LazyCallGraph::Node &N : C) {
384       CallCount &Count =
385           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
386               .first->second;
387       for (Instruction &I : instructions(N.getFunction()))
388         if (auto *CB = dyn_cast<CallBase>(&I)) {
389           if (CB->getCalledFunction()) {
390             ++Count.Direct;
391           } else {
392             ++Count.Indirect;
393             CallHandles.insert({CB, WeakTrackingVH(CB)});
394           }
395         }
396     }
397 
398     return CallCounts;
399   };
400 
401   UR.IndirectVHs.clear();
402   // Populate the initial call handles and get the initial call counts.
403   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
404 
405   for (int Iteration = 0;; ++Iteration) {
406     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
407       continue;
408 
409     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
410 
411     if (UR.InvalidatedSCCs.count(C))
412       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
413     else
414       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
415 
416     PA.intersect(PassPA);
417 
418     // If the SCC structure has changed, bail immediately and let the outer
419     // CGSCC layer handle any iteration to reflect the refined structure.
420     if (UR.UpdatedC && UR.UpdatedC != C)
421       break;
422 
423     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
424     // current SCC may simply need to be skipped if invalid.
425     if (UR.InvalidatedSCCs.count(C)) {
426       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
427       break;
428     }
429 
430     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
431 
432     // Check whether any of the handles were devirtualized.
433     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
434       if (P.second) {
435         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
436           if (CB->getCalledFunction()) {
437             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
438             return true;
439           }
440         }
441       }
442       return false;
443     });
444 
445     // Rescan to build up a new set of handles and count how many direct
446     // calls remain. If we decide to iterate, this also sets up the input to
447     // the next iteration.
448     UR.IndirectVHs.clear();
449     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
450 
451     // If we haven't found an explicit devirtualization already see if we
452     // have decreased the number of indirect calls and increased the number
453     // of direct calls for any function in the SCC. This can be fooled by all
454     // manner of transformations such as DCE and other things, but seems to
455     // work well in practice.
456     if (!Devirt)
457       // Iterate over the keys in NewCallCounts, if Function also exists in
458       // CallCounts, make the check below.
459       for (auto &Pair : NewCallCounts) {
460         auto &CallCountNew = Pair.second;
461         auto CountIt = CallCounts.find(Pair.first);
462         if (CountIt != CallCounts.end()) {
463           const auto &CallCountOld = CountIt->second;
464           if (CallCountOld.Indirect > CallCountNew.Indirect &&
465               CallCountOld.Direct < CallCountNew.Direct) {
466             Devirt = true;
467             break;
468           }
469         }
470       }
471 
472     if (!Devirt) {
473       break;
474     }
475 
476     // Otherwise, if we've already hit our max, we're done.
477     if (Iteration >= MaxIterations) {
478       if (AbortOnMaxDevirtIterationsReached)
479         report_fatal_error("Max devirtualization iterations reached");
480       LLVM_DEBUG(
481           dbgs() << "Found another devirtualization after hitting the max "
482                     "number of repetitions ("
483                  << MaxIterations << ") on SCC: " << *C << "\n");
484       break;
485     }
486 
487     LLVM_DEBUG(
488         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
489                << *C << "\n");
490 
491     // Move over the new call counts in preparation for iterating.
492     CallCounts = std::move(NewCallCounts);
493 
494     // Update the analysis manager with each run and intersect the total set
495     // of preserved analyses so we're ready to iterate.
496     AM.invalidate(*C, PassPA);
497   }
498 
499   // Note that we don't add any preserved entries here unlike a more normal
500   // "pass manager" because we only handle invalidation *between* iterations,
501   // not after the last iteration.
502   return PA;
503 }
504 
505 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
506                                                   CGSCCAnalysisManager &AM,
507                                                   LazyCallGraph &CG,
508                                                   CGSCCUpdateResult &UR) {
509   // Setup the function analysis manager from its proxy.
510   FunctionAnalysisManager &FAM =
511       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
512 
513   SmallVector<LazyCallGraph::Node *, 4> Nodes;
514   for (LazyCallGraph::Node &N : C)
515     Nodes.push_back(&N);
516 
517   // The SCC may get split while we are optimizing functions due to deleting
518   // edges. If this happens, the current SCC can shift, so keep track of
519   // a pointer we can overwrite.
520   LazyCallGraph::SCC *CurrentC = &C;
521 
522   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
523 
524   PreservedAnalyses PA = PreservedAnalyses::all();
525   for (LazyCallGraph::Node *N : Nodes) {
526     // Skip nodes from other SCCs. These may have been split out during
527     // processing. We'll eventually visit those SCCs and pick up the nodes
528     // there.
529     if (CG.lookupSCC(*N) != CurrentC)
530       continue;
531 
532     Function &F = N->getFunction();
533 
534     if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F))
535       continue;
536 
537     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
538     if (!PI.runBeforePass<Function>(*Pass, F))
539       continue;
540 
541     PreservedAnalyses PassPA = Pass->run(F, FAM);
542     PI.runAfterPass<Function>(*Pass, F, PassPA);
543 
544     // We know that the function pass couldn't have invalidated any other
545     // function's analyses (that's the contract of a function pass), so
546     // directly handle the function analysis manager's invalidation here.
547     FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA);
548     if (NoRerun)
549       (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F);
550 
551     // Then intersect the preserved set so that invalidation of module
552     // analyses will eventually occur when the module pass completes.
553     PA.intersect(std::move(PassPA));
554 
555     // If the call graph hasn't been preserved, update it based on this
556     // function pass. This may also update the current SCC to point to
557     // a smaller, more refined SCC.
558     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
559     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
560       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
561                                                             AM, UR, FAM);
562       assert(CG.lookupSCC(*N) == CurrentC &&
563              "Current SCC not updated to the SCC containing the current node!");
564     }
565   }
566 
567   // By definition we preserve the proxy. And we preserve all analyses on
568   // Functions. This precludes *any* invalidation of function analyses by the
569   // proxy, but that's OK because we've taken care to invalidate analyses in
570   // the function analysis manager incrementally above.
571   PA.preserveSet<AllAnalysesOn<Function>>();
572   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
573 
574   // We've also ensured that we updated the call graph along the way.
575   PA.preserve<LazyCallGraphAnalysis>();
576 
577   return PA;
578 }
579 
580 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
581     Module &M, const PreservedAnalyses &PA,
582     ModuleAnalysisManager::Invalidator &Inv) {
583   // If literally everything is preserved, we're done.
584   if (PA.areAllPreserved())
585     return false; // This is still a valid proxy.
586 
587   // If this proxy or the call graph is going to be invalidated, we also need
588   // to clear all the keys coming from that analysis.
589   //
590   // We also directly invalidate the FAM's module proxy if necessary, and if
591   // that proxy isn't preserved we can't preserve this proxy either. We rely on
592   // it to handle module -> function analysis invalidation in the face of
593   // structural changes and so if it's unavailable we conservatively clear the
594   // entire SCC layer as well rather than trying to do invalidation ourselves.
595   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
596   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
597       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
598       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
599     InnerAM->clear();
600 
601     // And the proxy itself should be marked as invalid so that we can observe
602     // the new call graph. This isn't strictly necessary because we cheat
603     // above, but is still useful.
604     return true;
605   }
606 
607   // Directly check if the relevant set is preserved so we can short circuit
608   // invalidating SCCs below.
609   bool AreSCCAnalysesPreserved =
610       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
611 
612   // Ok, we have a graph, so we can propagate the invalidation down into it.
613   G->buildRefSCCs();
614   for (auto &RC : G->postorder_ref_sccs())
615     for (auto &C : RC) {
616       std::optional<PreservedAnalyses> InnerPA;
617 
618       // Check to see whether the preserved set needs to be adjusted based on
619       // module-level analysis invalidation triggering deferred invalidation
620       // for this SCC.
621       if (auto *OuterProxy =
622               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
623         for (const auto &OuterInvalidationPair :
624              OuterProxy->getOuterInvalidations()) {
625           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
626           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
627           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
628             if (!InnerPA)
629               InnerPA = PA;
630             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
631               InnerPA->abandon(InnerAnalysisID);
632           }
633         }
634 
635       // Check if we needed a custom PA set. If so we'll need to run the inner
636       // invalidation.
637       if (InnerPA) {
638         InnerAM->invalidate(C, *InnerPA);
639         continue;
640       }
641 
642       // Otherwise we only need to do invalidation if the original PA set didn't
643       // preserve all SCC analyses.
644       if (!AreSCCAnalysesPreserved)
645         InnerAM->invalidate(C, PA);
646     }
647 
648   // Return false to indicate that this result is still a valid proxy.
649   return false;
650 }
651 
652 template <>
653 CGSCCAnalysisManagerModuleProxy::Result
654 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
655   // Force the Function analysis manager to also be available so that it can
656   // be accessed in an SCC analysis and proxied onward to function passes.
657   // FIXME: It is pretty awkward to just drop the result here and assert that
658   // we can find it again later.
659   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
660 
661   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
662 }
663 
664 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
665 
666 FunctionAnalysisManagerCGSCCProxy::Result
667 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
668                                        CGSCCAnalysisManager &AM,
669                                        LazyCallGraph &CG) {
670   // Note: unconditionally getting checking that the proxy exists may get it at
671   // this point. There are cases when this is being run unnecessarily, but
672   // it is cheap and having the assertion in place is more valuable.
673   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
674   Module &M = *C.begin()->getFunction().getParent();
675   bool ProxyExists =
676       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
677   assert(ProxyExists &&
678          "The CGSCC pass manager requires that the FAM module proxy is run "
679          "on the module prior to entering the CGSCC walk");
680   (void)ProxyExists;
681 
682   // We just return an empty result. The caller will use the updateFAM interface
683   // to correctly register the relevant FunctionAnalysisManager based on the
684   // context in which this proxy is run.
685   return Result();
686 }
687 
688 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
689     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
690     CGSCCAnalysisManager::Invalidator &Inv) {
691   // If literally everything is preserved, we're done.
692   if (PA.areAllPreserved())
693     return false; // This is still a valid proxy.
694 
695   // All updates to preserve valid results are done below, so we don't need to
696   // invalidate this proxy.
697   //
698   // Note that in order to preserve this proxy, a module pass must ensure that
699   // the FAM has been completely updated to handle the deletion of functions.
700   // Specifically, any FAM-cached results for those functions need to have been
701   // forcibly cleared. When preserved, this proxy will only invalidate results
702   // cached on functions *still in the module* at the end of the module pass.
703   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
704   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
705     for (LazyCallGraph::Node &N : C)
706       FAM->invalidate(N.getFunction(), PA);
707 
708     return false;
709   }
710 
711   // Directly check if the relevant set is preserved.
712   bool AreFunctionAnalysesPreserved =
713       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
714 
715   // Now walk all the functions to see if any inner analysis invalidation is
716   // necessary.
717   for (LazyCallGraph::Node &N : C) {
718     Function &F = N.getFunction();
719     std::optional<PreservedAnalyses> FunctionPA;
720 
721     // Check to see whether the preserved set needs to be pruned based on
722     // SCC-level analysis invalidation that triggers deferred invalidation
723     // registered with the outer analysis manager proxy for this function.
724     if (auto *OuterProxy =
725             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
726       for (const auto &OuterInvalidationPair :
727            OuterProxy->getOuterInvalidations()) {
728         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
729         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
730         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
731           if (!FunctionPA)
732             FunctionPA = PA;
733           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
734             FunctionPA->abandon(InnerAnalysisID);
735         }
736       }
737 
738     // Check if we needed a custom PA set, and if so we'll need to run the
739     // inner invalidation.
740     if (FunctionPA) {
741       FAM->invalidate(F, *FunctionPA);
742       continue;
743     }
744 
745     // Otherwise we only need to do invalidation if the original PA set didn't
746     // preserve all function analyses.
747     if (!AreFunctionAnalysesPreserved)
748       FAM->invalidate(F, PA);
749   }
750 
751   // Return false to indicate that this result is still a valid proxy.
752   return false;
753 }
754 
755 } // end namespace llvm
756 
757 /// When a new SCC is created for the graph we first update the
758 /// FunctionAnalysisManager in the Proxy's result.
759 /// As there might be function analysis results cached for the functions now in
760 /// that SCC, two forms of  updates are required.
761 ///
762 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
763 /// created so that any subsequent invalidation events to the SCC are
764 /// propagated to the function analysis results cached for functions within it.
765 ///
766 /// Second, if any of the functions within the SCC have analysis results with
767 /// outer analysis dependencies, then those dependencies would point to the
768 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
769 /// function analyses so that they don't retain stale handles.
770 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
771                                          LazyCallGraph &G,
772                                          CGSCCAnalysisManager &AM,
773                                          FunctionAnalysisManager &FAM) {
774   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
775 
776   // Now walk the functions in this SCC and invalidate any function analysis
777   // results that might have outer dependencies on an SCC analysis.
778   for (LazyCallGraph::Node &N : C) {
779     Function &F = N.getFunction();
780 
781     auto *OuterProxy =
782         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
783     if (!OuterProxy)
784       // No outer analyses were queried, nothing to do.
785       continue;
786 
787     // Forcibly abandon all the inner analyses with dependencies, but
788     // invalidate nothing else.
789     auto PA = PreservedAnalyses::all();
790     for (const auto &OuterInvalidationPair :
791          OuterProxy->getOuterInvalidations()) {
792       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
793       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
794         PA.abandon(InnerAnalysisID);
795     }
796 
797     // Now invalidate anything we found.
798     FAM.invalidate(F, PA);
799   }
800 }
801 
802 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
803 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
804 /// added SCCs.
805 ///
806 /// The range of new SCCs must be in postorder already. The SCC they were split
807 /// out of must be provided as \p C. The current node being mutated and
808 /// triggering updates must be passed as \p N.
809 ///
810 /// This function returns the SCC containing \p N. This will be either \p C if
811 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
812 template <typename SCCRangeT>
813 static LazyCallGraph::SCC *
814 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
815                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
816                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
817   using SCC = LazyCallGraph::SCC;
818 
819   if (NewSCCRange.empty())
820     return C;
821 
822   // Add the current SCC to the worklist as its shape has changed.
823   UR.CWorklist.insert(C);
824   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
825                     << "\n");
826 
827   SCC *OldC = C;
828 
829   // Update the current SCC. Note that if we have new SCCs, this must actually
830   // change the SCC.
831   assert(C != &*NewSCCRange.begin() &&
832          "Cannot insert new SCCs without changing current SCC!");
833   C = &*NewSCCRange.begin();
834   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
835 
836   // If we had a cached FAM proxy originally, we will want to create more of
837   // them for each SCC that was split off.
838   FunctionAnalysisManager *FAM = nullptr;
839   if (auto *FAMProxy =
840           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
841     FAM = &FAMProxy->getManager();
842 
843   // We need to propagate an invalidation call to all but the newly current SCC
844   // because the outer pass manager won't do that for us after splitting them.
845   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
846   // there are preserved analysis we can avoid invalidating them here for
847   // split-off SCCs.
848   // We know however that this will preserve any FAM proxy so go ahead and mark
849   // that.
850   auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
851   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
852   AM.invalidate(*OldC, PA);
853 
854   // Ensure the now-current SCC's function analyses are updated.
855   if (FAM)
856     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
857 
858   for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
859     assert(C != &NewC && "No need to re-visit the current SCC!");
860     assert(OldC != &NewC && "Already handled the original SCC!");
861     UR.CWorklist.insert(&NewC);
862     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
863 
864     // Ensure new SCCs' function analyses are updated.
865     if (FAM)
866       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
867 
868     // Also propagate a normal invalidation to the new SCC as only the current
869     // will get one from the pass manager infrastructure.
870     AM.invalidate(NewC, PA);
871   }
872   return C;
873 }
874 
875 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
876     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
877     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
878     FunctionAnalysisManager &FAM, bool FunctionPass) {
879   using Node = LazyCallGraph::Node;
880   using Edge = LazyCallGraph::Edge;
881   using SCC = LazyCallGraph::SCC;
882   using RefSCC = LazyCallGraph::RefSCC;
883 
884   RefSCC &InitialRC = InitialC.getOuterRefSCC();
885   SCC *C = &InitialC;
886   RefSCC *RC = &InitialRC;
887   Function &F = N.getFunction();
888 
889   // Walk the function body and build up the set of retained, promoted, and
890   // demoted edges.
891   SmallVector<Constant *, 16> Worklist;
892   SmallPtrSet<Constant *, 16> Visited;
893   SmallPtrSet<Node *, 16> RetainedEdges;
894   SmallSetVector<Node *, 4> PromotedRefTargets;
895   SmallSetVector<Node *, 4> DemotedCallTargets;
896   SmallSetVector<Node *, 4> NewCallEdges;
897   SmallSetVector<Node *, 4> NewRefEdges;
898 
899   // First walk the function and handle all called functions. We do this first
900   // because if there is a single call edge, whether there are ref edges is
901   // irrelevant.
902   for (Instruction &I : instructions(F)) {
903     if (auto *CB = dyn_cast<CallBase>(&I)) {
904       if (Function *Callee = CB->getCalledFunction()) {
905         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
906           Node *CalleeN = G.lookup(*Callee);
907           assert(CalleeN &&
908                  "Visited function should already have an associated node");
909           Edge *E = N->lookup(*CalleeN);
910           assert((E || !FunctionPass) &&
911                  "No function transformations should introduce *new* "
912                  "call edges! Any new calls should be modeled as "
913                  "promoted existing ref edges!");
914           bool Inserted = RetainedEdges.insert(CalleeN).second;
915           (void)Inserted;
916           assert(Inserted && "We should never visit a function twice.");
917           if (!E)
918             NewCallEdges.insert(CalleeN);
919           else if (!E->isCall())
920             PromotedRefTargets.insert(CalleeN);
921         }
922       } else {
923         // We can miss devirtualization if an indirect call is created then
924         // promoted before updateCGAndAnalysisManagerForPass runs.
925         auto *Entry = UR.IndirectVHs.find(CB);
926         if (Entry == UR.IndirectVHs.end())
927           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
928         else if (!Entry->second)
929           Entry->second = WeakTrackingVH(CB);
930       }
931     }
932   }
933 
934   // Now walk all references.
935   for (Instruction &I : instructions(F))
936     for (Value *Op : I.operand_values())
937       if (auto *OpC = dyn_cast<Constant>(Op))
938         if (Visited.insert(OpC).second)
939           Worklist.push_back(OpC);
940 
941   auto VisitRef = [&](Function &Referee) {
942     Node *RefereeN = G.lookup(Referee);
943     assert(RefereeN &&
944            "Visited function should already have an associated node");
945     Edge *E = N->lookup(*RefereeN);
946     assert((E || !FunctionPass) &&
947            "No function transformations should introduce *new* ref "
948            "edges! Any new ref edges would require IPO which "
949            "function passes aren't allowed to do!");
950     bool Inserted = RetainedEdges.insert(RefereeN).second;
951     (void)Inserted;
952     assert(Inserted && "We should never visit a function twice.");
953     if (!E)
954       NewRefEdges.insert(RefereeN);
955     else if (E->isCall())
956       DemotedCallTargets.insert(RefereeN);
957   };
958   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
959 
960   // Handle new ref edges.
961   for (Node *RefTarget : NewRefEdges) {
962     SCC &TargetC = *G.lookupSCC(*RefTarget);
963     RefSCC &TargetRC = TargetC.getOuterRefSCC();
964     (void)TargetRC;
965     // TODO: This only allows trivial edges to be added for now.
966 #ifdef EXPENSIVE_CHECKS
967     assert((RC == &TargetRC ||
968            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
969 #endif
970     RC->insertTrivialRefEdge(N, *RefTarget);
971   }
972 
973   // Handle new call edges.
974   for (Node *CallTarget : NewCallEdges) {
975     SCC &TargetC = *G.lookupSCC(*CallTarget);
976     RefSCC &TargetRC = TargetC.getOuterRefSCC();
977     (void)TargetRC;
978     // TODO: This only allows trivial edges to be added for now.
979 #ifdef EXPENSIVE_CHECKS
980     assert((RC == &TargetRC ||
981            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
982 #endif
983     // Add a trivial ref edge to be promoted later on alongside
984     // PromotedRefTargets.
985     RC->insertTrivialRefEdge(N, *CallTarget);
986   }
987 
988   // Include synthetic reference edges to known, defined lib functions.
989   for (auto *LibFn : G.getLibFunctions())
990     // While the list of lib functions doesn't have repeats, don't re-visit
991     // anything handled above.
992     if (!Visited.count(LibFn))
993       VisitRef(*LibFn);
994 
995   // First remove all of the edges that are no longer present in this function.
996   // The first step makes these edges uniformly ref edges and accumulates them
997   // into a separate data structure so removal doesn't invalidate anything.
998   SmallVector<Node *, 4> DeadTargets;
999   for (Edge &E : *N) {
1000     if (RetainedEdges.count(&E.getNode()))
1001       continue;
1002 
1003     SCC &TargetC = *G.lookupSCC(E.getNode());
1004     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1005     if (&TargetRC == RC && E.isCall()) {
1006       if (C != &TargetC) {
1007         // For separate SCCs this is trivial.
1008         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1009       } else {
1010         // Now update the call graph.
1011         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1012                                    G, N, C, AM, UR);
1013       }
1014     }
1015 
1016     // Now that this is ready for actual removal, put it into our list.
1017     DeadTargets.push_back(&E.getNode());
1018   }
1019   // Remove the easy cases quickly and actually pull them out of our list.
1020   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1021     SCC &TargetC = *G.lookupSCC(*TargetN);
1022     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1023 
1024     // We can't trivially remove internal targets, so skip
1025     // those.
1026     if (&TargetRC == RC)
1027       return false;
1028 
1029     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1030                       << *TargetN << "'\n");
1031     RC->removeOutgoingEdge(N, *TargetN);
1032     return true;
1033   });
1034 
1035   // Now do a batch removal of the internal ref edges left.
1036   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1037   if (!NewRefSCCs.empty()) {
1038     // The old RefSCC is dead, mark it as such.
1039     UR.InvalidatedRefSCCs.insert(RC);
1040 
1041     // Note that we don't bother to invalidate analyses as ref-edge
1042     // connectivity is not really observable in any way and is intended
1043     // exclusively to be used for ordering of transforms rather than for
1044     // analysis conclusions.
1045 
1046     // Update RC to the "bottom".
1047     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1048     RC = &C->getOuterRefSCC();
1049     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1050 
1051     // The RC worklist is in reverse postorder, so we enqueue the new ones in
1052     // RPO except for the one which contains the source node as that is the
1053     // "bottom" we will continue processing in the bottom-up walk.
1054     assert(NewRefSCCs.front() == RC &&
1055            "New current RefSCC not first in the returned list!");
1056     for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1057       assert(NewRC != RC && "Should not encounter the current RefSCC further "
1058                             "in the postorder list of new RefSCCs.");
1059       UR.RCWorklist.insert(NewRC);
1060       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1061                         << *NewRC << "\n");
1062     }
1063   }
1064 
1065   // Next demote all the call edges that are now ref edges. This helps make
1066   // the SCCs small which should minimize the work below as we don't want to
1067   // form cycles that this would break.
1068   for (Node *RefTarget : DemotedCallTargets) {
1069     SCC &TargetC = *G.lookupSCC(*RefTarget);
1070     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1071 
1072     // The easy case is when the target RefSCC is not this RefSCC. This is
1073     // only supported when the target RefSCC is a child of this RefSCC.
1074     if (&TargetRC != RC) {
1075 #ifdef EXPENSIVE_CHECKS
1076       assert(RC->isAncestorOf(TargetRC) &&
1077              "Cannot potentially form RefSCC cycles here!");
1078 #endif
1079       RC->switchOutgoingEdgeToRef(N, *RefTarget);
1080       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1081                         << "' to '" << *RefTarget << "'\n");
1082       continue;
1083     }
1084 
1085     // We are switching an internal call edge to a ref edge. This may split up
1086     // some SCCs.
1087     if (C != &TargetC) {
1088       // For separate SCCs this is trivial.
1089       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1090       continue;
1091     }
1092 
1093     // Now update the call graph.
1094     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1095                                C, AM, UR);
1096   }
1097 
1098   // We added a ref edge earlier for new call edges, promote those to call edges
1099   // alongside PromotedRefTargets.
1100   for (Node *E : NewCallEdges)
1101     PromotedRefTargets.insert(E);
1102 
1103   // Now promote ref edges into call edges.
1104   for (Node *CallTarget : PromotedRefTargets) {
1105     SCC &TargetC = *G.lookupSCC(*CallTarget);
1106     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1107 
1108     // The easy case is when the target RefSCC is not this RefSCC. This is
1109     // only supported when the target RefSCC is a child of this RefSCC.
1110     if (&TargetRC != RC) {
1111 #ifdef EXPENSIVE_CHECKS
1112       assert(RC->isAncestorOf(TargetRC) &&
1113              "Cannot potentially form RefSCC cycles here!");
1114 #endif
1115       RC->switchOutgoingEdgeToCall(N, *CallTarget);
1116       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1117                         << "' to '" << *CallTarget << "'\n");
1118       continue;
1119     }
1120     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1121                       << N << "' to '" << *CallTarget << "'\n");
1122 
1123     // Otherwise we are switching an internal ref edge to a call edge. This
1124     // may merge away some SCCs, and we add those to the UpdateResult. We also
1125     // need to make sure to update the worklist in the event SCCs have moved
1126     // before the current one in the post-order sequence
1127     bool HasFunctionAnalysisProxy = false;
1128     auto InitialSCCIndex = RC->find(*C) - RC->begin();
1129     bool FormedCycle = RC->switchInternalEdgeToCall(
1130         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1131           for (SCC *MergedC : MergedSCCs) {
1132             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1133 
1134             HasFunctionAnalysisProxy |=
1135                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1136                     *MergedC) != nullptr;
1137 
1138             // Mark that this SCC will no longer be valid.
1139             UR.InvalidatedSCCs.insert(MergedC);
1140 
1141             // FIXME: We should really do a 'clear' here to forcibly release
1142             // memory, but we don't have a good way of doing that and
1143             // preserving the function analyses.
1144             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1145             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1146             AM.invalidate(*MergedC, PA);
1147           }
1148         });
1149 
1150     // If we formed a cycle by creating this call, we need to update more data
1151     // structures.
1152     if (FormedCycle) {
1153       C = &TargetC;
1154       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1155 
1156       // If one of the invalidated SCCs had a cached proxy to a function
1157       // analysis manager, we need to create a proxy in the new current SCC as
1158       // the invalidated SCCs had their functions moved.
1159       if (HasFunctionAnalysisProxy)
1160         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1161 
1162       // Any analyses cached for this SCC are no longer precise as the shape
1163       // has changed by introducing this cycle. However, we have taken care to
1164       // update the proxies so it remains valide.
1165       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1166       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1167       AM.invalidate(*C, PA);
1168     }
1169     auto NewSCCIndex = RC->find(*C) - RC->begin();
1170     // If we have actually moved an SCC to be topologically "below" the current
1171     // one due to merging, we will need to revisit the current SCC after
1172     // visiting those moved SCCs.
1173     //
1174     // It is critical that we *do not* revisit the current SCC unless we
1175     // actually move SCCs in the process of merging because otherwise we may
1176     // form a cycle where an SCC is split apart, merged, split, merged and so
1177     // on infinitely.
1178     if (InitialSCCIndex < NewSCCIndex) {
1179       // Put our current SCC back onto the worklist as we'll visit other SCCs
1180       // that are now definitively ordered prior to the current one in the
1181       // post-order sequence, and may end up observing more precise context to
1182       // optimize the current SCC.
1183       UR.CWorklist.insert(C);
1184       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1185                         << "\n");
1186       // Enqueue in reverse order as we pop off the back of the worklist.
1187       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1188                                                   RC->begin() + NewSCCIndex))) {
1189         UR.CWorklist.insert(&MovedC);
1190         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1191                           << MovedC << "\n");
1192       }
1193     }
1194   }
1195 
1196   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1197   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1198   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1199 
1200   // Record the current SCC for higher layers of the CGSCC pass manager now that
1201   // all the updates have been applied.
1202   if (C != &InitialC)
1203     UR.UpdatedC = C;
1204 
1205   return *C;
1206 }
1207 
1208 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1209     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1210     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1211     FunctionAnalysisManager &FAM) {
1212   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1213                                            /* FunctionPass */ true);
1214 }
1215 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1216     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1217     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1218     FunctionAnalysisManager &FAM) {
1219   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1220                                            /* FunctionPass */ false);
1221 }
1222