1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/CallSite.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/InstIterator.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/Support/Casting.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cassert>
28 #include <iterator>
29 
30 #define DEBUG_TYPE "cgscc"
31 
32 using namespace llvm;
33 
34 // Explicit template instantiations and specialization definitions for core
35 // template typedefs.
36 namespace llvm {
37 
38 // Explicit instantiations for the core proxy templates.
39 template class AllAnalysesOn<LazyCallGraph::SCC>;
40 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
41 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
42                            LazyCallGraph &, CGSCCUpdateResult &>;
43 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
44 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
45                                          LazyCallGraph::SCC, LazyCallGraph &>;
46 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
47 
48 /// Explicitly specialize the pass manager run method to handle call graph
49 /// updates.
50 template <>
51 PreservedAnalyses
52 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
53             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
54                                       CGSCCAnalysisManager &AM,
55                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
56   // Request PassInstrumentation from analysis manager, will use it to run
57   // instrumenting callbacks for the passes later.
58   PassInstrumentation PI =
59       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
60 
61   PreservedAnalyses PA = PreservedAnalyses::all();
62 
63   if (DebugLogging)
64     dbgs() << "Starting CGSCC pass manager run.\n";
65 
66   // The SCC may be refined while we are running passes over it, so set up
67   // a pointer that we can update.
68   LazyCallGraph::SCC *C = &InitialC;
69 
70   for (auto &Pass : Passes) {
71     if (DebugLogging)
72       dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
73 
74     // Check the PassInstrumentation's BeforePass callbacks before running the
75     // pass, skip its execution completely if asked to (callback returns false).
76     if (!PI.runBeforePass(*Pass, *C))
77       continue;
78 
79     PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
80 
81     if (UR.InvalidatedSCCs.count(C))
82       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass);
83     else
84       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C);
85 
86     // Update the SCC if necessary.
87     C = UR.UpdatedC ? UR.UpdatedC : C;
88 
89     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
90     // current SCC may simply need to be skipped if invalid.
91     if (UR.InvalidatedSCCs.count(C)) {
92       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
93       break;
94     }
95     // Check that we didn't miss any update scenario.
96     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
97 
98     // Update the analysis manager as each pass runs and potentially
99     // invalidates analyses.
100     AM.invalidate(*C, PassPA);
101 
102     // Finally, we intersect the final preserved analyses to compute the
103     // aggregate preserved set for this pass manager.
104     PA.intersect(std::move(PassPA));
105 
106     // FIXME: Historically, the pass managers all called the LLVM context's
107     // yield function here. We don't have a generic way to acquire the
108     // context and it isn't yet clear what the right pattern is for yielding
109     // in the new pass manager so it is currently omitted.
110     // ...getContext().yield();
111   }
112 
113   // Before we mark all of *this* SCC's analyses as preserved below, intersect
114   // this with the cross-SCC preserved analysis set. This is used to allow
115   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
116   // for them.
117   UR.CrossSCCPA.intersect(PA);
118 
119   // Invalidation was handled after each pass in the above loop for the current
120   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
121   // preserved. We mark this with a set so that we don't need to inspect each
122   // one individually.
123   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
124 
125   if (DebugLogging)
126     dbgs() << "Finished CGSCC pass manager run.\n";
127 
128   return PA;
129 }
130 
131 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
132     Module &M, const PreservedAnalyses &PA,
133     ModuleAnalysisManager::Invalidator &Inv) {
134   // If literally everything is preserved, we're done.
135   if (PA.areAllPreserved())
136     return false; // This is still a valid proxy.
137 
138   // If this proxy or the call graph is going to be invalidated, we also need
139   // to clear all the keys coming from that analysis.
140   //
141   // We also directly invalidate the FAM's module proxy if necessary, and if
142   // that proxy isn't preserved we can't preserve this proxy either. We rely on
143   // it to handle module -> function analysis invalidation in the face of
144   // structural changes and so if it's unavailable we conservatively clear the
145   // entire SCC layer as well rather than trying to do invalidation ourselves.
146   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
147   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
148       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
149       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
150     InnerAM->clear();
151 
152     // And the proxy itself should be marked as invalid so that we can observe
153     // the new call graph. This isn't strictly necessary because we cheat
154     // above, but is still useful.
155     return true;
156   }
157 
158   // Directly check if the relevant set is preserved so we can short circuit
159   // invalidating SCCs below.
160   bool AreSCCAnalysesPreserved =
161       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
162 
163   // Ok, we have a graph, so we can propagate the invalidation down into it.
164   G->buildRefSCCs();
165   for (auto &RC : G->postorder_ref_sccs())
166     for (auto &C : RC) {
167       Optional<PreservedAnalyses> InnerPA;
168 
169       // Check to see whether the preserved set needs to be adjusted based on
170       // module-level analysis invalidation triggering deferred invalidation
171       // for this SCC.
172       if (auto *OuterProxy =
173               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
174         for (const auto &OuterInvalidationPair :
175              OuterProxy->getOuterInvalidations()) {
176           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
177           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
178           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
179             if (!InnerPA)
180               InnerPA = PA;
181             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
182               InnerPA->abandon(InnerAnalysisID);
183           }
184         }
185 
186       // Check if we needed a custom PA set. If so we'll need to run the inner
187       // invalidation.
188       if (InnerPA) {
189         InnerAM->invalidate(C, *InnerPA);
190         continue;
191       }
192 
193       // Otherwise we only need to do invalidation if the original PA set didn't
194       // preserve all SCC analyses.
195       if (!AreSCCAnalysesPreserved)
196         InnerAM->invalidate(C, PA);
197     }
198 
199   // Return false to indicate that this result is still a valid proxy.
200   return false;
201 }
202 
203 template <>
204 CGSCCAnalysisManagerModuleProxy::Result
205 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
206   // Force the Function analysis manager to also be available so that it can
207   // be accessed in an SCC analysis and proxied onward to function passes.
208   // FIXME: It is pretty awkward to just drop the result here and assert that
209   // we can find it again later.
210   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
211 
212   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
213 }
214 
215 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
216 
217 FunctionAnalysisManagerCGSCCProxy::Result
218 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
219                                        CGSCCAnalysisManager &AM,
220                                        LazyCallGraph &CG) {
221   // Collect the FunctionAnalysisManager from the Module layer and use that to
222   // build the proxy result.
223   //
224   // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
225   // invalidate the function analyses.
226   auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
227   Module &M = *C.begin()->getFunction().getParent();
228   auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
229   assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
230                      "proxy is run on the module prior to entering the CGSCC "
231                      "walk.");
232 
233   // Note that we special-case invalidation handling of this proxy in the CGSCC
234   // analysis manager's Module proxy. This avoids the need to do anything
235   // special here to recompute all of this if ever the FAM's module proxy goes
236   // away.
237   return Result(FAMProxy->getManager());
238 }
239 
240 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
241     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
242     CGSCCAnalysisManager::Invalidator &Inv) {
243   // If literally everything is preserved, we're done.
244   if (PA.areAllPreserved())
245     return false; // This is still a valid proxy.
246 
247   // If this proxy isn't marked as preserved, then even if the result remains
248   // valid, the key itself may no longer be valid, so we clear everything.
249   //
250   // Note that in order to preserve this proxy, a module pass must ensure that
251   // the FAM has been completely updated to handle the deletion of functions.
252   // Specifically, any FAM-cached results for those functions need to have been
253   // forcibly cleared. When preserved, this proxy will only invalidate results
254   // cached on functions *still in the module* at the end of the module pass.
255   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
256   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
257     for (LazyCallGraph::Node &N : C)
258       FAM->clear(N.getFunction(), N.getFunction().getName());
259 
260     return true;
261   }
262 
263   // Directly check if the relevant set is preserved.
264   bool AreFunctionAnalysesPreserved =
265       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
266 
267   // Now walk all the functions to see if any inner analysis invalidation is
268   // necessary.
269   for (LazyCallGraph::Node &N : C) {
270     Function &F = N.getFunction();
271     Optional<PreservedAnalyses> FunctionPA;
272 
273     // Check to see whether the preserved set needs to be pruned based on
274     // SCC-level analysis invalidation that triggers deferred invalidation
275     // registered with the outer analysis manager proxy for this function.
276     if (auto *OuterProxy =
277             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
278       for (const auto &OuterInvalidationPair :
279            OuterProxy->getOuterInvalidations()) {
280         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
281         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
282         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
283           if (!FunctionPA)
284             FunctionPA = PA;
285           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
286             FunctionPA->abandon(InnerAnalysisID);
287         }
288       }
289 
290     // Check if we needed a custom PA set, and if so we'll need to run the
291     // inner invalidation.
292     if (FunctionPA) {
293       FAM->invalidate(F, *FunctionPA);
294       continue;
295     }
296 
297     // Otherwise we only need to do invalidation if the original PA set didn't
298     // preserve all function analyses.
299     if (!AreFunctionAnalysesPreserved)
300       FAM->invalidate(F, PA);
301   }
302 
303   // Return false to indicate that this result is still a valid proxy.
304   return false;
305 }
306 
307 } // end namespace llvm
308 
309 /// When a new SCC is created for the graph and there might be function
310 /// analysis results cached for the functions now in that SCC two forms of
311 /// updates are required.
312 ///
313 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
314 /// created so that any subsequent invalidation events to the SCC are
315 /// propagated to the function analysis results cached for functions within it.
316 ///
317 /// Second, if any of the functions within the SCC have analysis results with
318 /// outer analysis dependencies, then those dependencies would point to the
319 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
320 /// function analyses so that they don't retain stale handles.
321 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
322                                          LazyCallGraph &G,
323                                          CGSCCAnalysisManager &AM) {
324   // Get the relevant function analysis manager.
325   auto &FAM =
326       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
327 
328   // Now walk the functions in this SCC and invalidate any function analysis
329   // results that might have outer dependencies on an SCC analysis.
330   for (LazyCallGraph::Node &N : C) {
331     Function &F = N.getFunction();
332 
333     auto *OuterProxy =
334         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
335     if (!OuterProxy)
336       // No outer analyses were queried, nothing to do.
337       continue;
338 
339     // Forcibly abandon all the inner analyses with dependencies, but
340     // invalidate nothing else.
341     auto PA = PreservedAnalyses::all();
342     for (const auto &OuterInvalidationPair :
343          OuterProxy->getOuterInvalidations()) {
344       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
345       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
346         PA.abandon(InnerAnalysisID);
347     }
348 
349     // Now invalidate anything we found.
350     FAM.invalidate(F, PA);
351   }
352 }
353 
354 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
355 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
356 /// added SCCs.
357 ///
358 /// The range of new SCCs must be in postorder already. The SCC they were split
359 /// out of must be provided as \p C. The current node being mutated and
360 /// triggering updates must be passed as \p N.
361 ///
362 /// This function returns the SCC containing \p N. This will be either \p C if
363 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
364 template <typename SCCRangeT>
365 static LazyCallGraph::SCC *
366 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
367                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
368                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
369   using SCC = LazyCallGraph::SCC;
370 
371   if (NewSCCRange.begin() == NewSCCRange.end())
372     return C;
373 
374   // Add the current SCC to the worklist as its shape has changed.
375   UR.CWorklist.insert(C);
376   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
377                     << "\n");
378 
379   SCC *OldC = C;
380 
381   // Update the current SCC. Note that if we have new SCCs, this must actually
382   // change the SCC.
383   assert(C != &*NewSCCRange.begin() &&
384          "Cannot insert new SCCs without changing current SCC!");
385   C = &*NewSCCRange.begin();
386   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
387 
388   // If we had a cached FAM proxy originally, we will want to create more of
389   // them for each SCC that was split off.
390   bool NeedFAMProxy =
391       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
392 
393   // We need to propagate an invalidation call to all but the newly current SCC
394   // because the outer pass manager won't do that for us after splitting them.
395   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
396   // there are preserved analysis we can avoid invalidating them here for
397   // split-off SCCs.
398   // We know however that this will preserve any FAM proxy so go ahead and mark
399   // that.
400   PreservedAnalyses PA;
401   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
402   AM.invalidate(*OldC, PA);
403 
404   // Ensure the now-current SCC's function analyses are updated.
405   if (NeedFAMProxy)
406     updateNewSCCFunctionAnalyses(*C, G, AM);
407 
408   for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
409                                             NewSCCRange.end()))) {
410     assert(C != &NewC && "No need to re-visit the current SCC!");
411     assert(OldC != &NewC && "Already handled the original SCC!");
412     UR.CWorklist.insert(&NewC);
413     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
414 
415     // Ensure new SCCs' function analyses are updated.
416     if (NeedFAMProxy)
417       updateNewSCCFunctionAnalyses(NewC, G, AM);
418 
419     // Also propagate a normal invalidation to the new SCC as only the current
420     // will get one from the pass manager infrastructure.
421     AM.invalidate(NewC, PA);
422   }
423   return C;
424 }
425 
426 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
427     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
428     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
429   using Node = LazyCallGraph::Node;
430   using Edge = LazyCallGraph::Edge;
431   using SCC = LazyCallGraph::SCC;
432   using RefSCC = LazyCallGraph::RefSCC;
433 
434   RefSCC &InitialRC = InitialC.getOuterRefSCC();
435   SCC *C = &InitialC;
436   RefSCC *RC = &InitialRC;
437   Function &F = N.getFunction();
438 
439   // Walk the function body and build up the set of retained, promoted, and
440   // demoted edges.
441   SmallVector<Constant *, 16> Worklist;
442   SmallPtrSet<Constant *, 16> Visited;
443   SmallPtrSet<Node *, 16> RetainedEdges;
444   SmallSetVector<Node *, 4> PromotedRefTargets;
445   SmallSetVector<Node *, 4> DemotedCallTargets;
446 
447   // First walk the function and handle all called functions. We do this first
448   // because if there is a single call edge, whether there are ref edges is
449   // irrelevant.
450   for (Instruction &I : instructions(F))
451     if (auto CS = CallSite(&I))
452       if (Function *Callee = CS.getCalledFunction())
453         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
454           Node &CalleeN = *G.lookup(*Callee);
455           Edge *E = N->lookup(CalleeN);
456           // FIXME: We should really handle adding new calls. While it will
457           // make downstream usage more complex, there is no fundamental
458           // limitation and it will allow passes within the CGSCC to be a bit
459           // more flexible in what transforms they can do. Until then, we
460           // verify that new calls haven't been introduced.
461           assert(E && "No function transformations should introduce *new* "
462                       "call edges! Any new calls should be modeled as "
463                       "promoted existing ref edges!");
464           bool Inserted = RetainedEdges.insert(&CalleeN).second;
465           (void)Inserted;
466           assert(Inserted && "We should never visit a function twice.");
467           if (!E->isCall())
468             PromotedRefTargets.insert(&CalleeN);
469         }
470 
471   // Now walk all references.
472   for (Instruction &I : instructions(F))
473     for (Value *Op : I.operand_values())
474       if (auto *C = dyn_cast<Constant>(Op))
475         if (Visited.insert(C).second)
476           Worklist.push_back(C);
477 
478   auto VisitRef = [&](Function &Referee) {
479     Node &RefereeN = *G.lookup(Referee);
480     Edge *E = N->lookup(RefereeN);
481     // FIXME: Similarly to new calls, we also currently preclude
482     // introducing new references. See above for details.
483     assert(E && "No function transformations should introduce *new* ref "
484                 "edges! Any new ref edges would require IPO which "
485                 "function passes aren't allowed to do!");
486     bool Inserted = RetainedEdges.insert(&RefereeN).second;
487     (void)Inserted;
488     assert(Inserted && "We should never visit a function twice.");
489     if (E->isCall())
490       DemotedCallTargets.insert(&RefereeN);
491   };
492   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
493 
494   // Include synthetic reference edges to known, defined lib functions.
495   for (auto *F : G.getLibFunctions())
496     // While the list of lib functions doesn't have repeats, don't re-visit
497     // anything handled above.
498     if (!Visited.count(F))
499       VisitRef(*F);
500 
501   // First remove all of the edges that are no longer present in this function.
502   // The first step makes these edges uniformly ref edges and accumulates them
503   // into a separate data structure so removal doesn't invalidate anything.
504   SmallVector<Node *, 4> DeadTargets;
505   for (Edge &E : *N) {
506     if (RetainedEdges.count(&E.getNode()))
507       continue;
508 
509     SCC &TargetC = *G.lookupSCC(E.getNode());
510     RefSCC &TargetRC = TargetC.getOuterRefSCC();
511     if (&TargetRC == RC && E.isCall()) {
512       if (C != &TargetC) {
513         // For separate SCCs this is trivial.
514         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
515       } else {
516         // Now update the call graph.
517         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
518                                    G, N, C, AM, UR);
519       }
520     }
521 
522     // Now that this is ready for actual removal, put it into our list.
523     DeadTargets.push_back(&E.getNode());
524   }
525   // Remove the easy cases quickly and actually pull them out of our list.
526   DeadTargets.erase(
527       llvm::remove_if(DeadTargets,
528                       [&](Node *TargetN) {
529                         SCC &TargetC = *G.lookupSCC(*TargetN);
530                         RefSCC &TargetRC = TargetC.getOuterRefSCC();
531 
532                         // We can't trivially remove internal targets, so skip
533                         // those.
534                         if (&TargetRC == RC)
535                           return false;
536 
537                         RC->removeOutgoingEdge(N, *TargetN);
538                         LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
539                                           << N << "' to '" << TargetN << "'\n");
540                         return true;
541                       }),
542       DeadTargets.end());
543 
544   // Now do a batch removal of the internal ref edges left.
545   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
546   if (!NewRefSCCs.empty()) {
547     // The old RefSCC is dead, mark it as such.
548     UR.InvalidatedRefSCCs.insert(RC);
549 
550     // Note that we don't bother to invalidate analyses as ref-edge
551     // connectivity is not really observable in any way and is intended
552     // exclusively to be used for ordering of transforms rather than for
553     // analysis conclusions.
554 
555     // Update RC to the "bottom".
556     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
557     RC = &C->getOuterRefSCC();
558     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
559 
560     // The RC worklist is in reverse postorder, so we enqueue the new ones in
561     // RPO except for the one which contains the source node as that is the
562     // "bottom" we will continue processing in the bottom-up walk.
563     assert(NewRefSCCs.front() == RC &&
564            "New current RefSCC not first in the returned list!");
565     for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
566                                                   NewRefSCCs.end()))) {
567       assert(NewRC != RC && "Should not encounter the current RefSCC further "
568                             "in the postorder list of new RefSCCs.");
569       UR.RCWorklist.insert(NewRC);
570       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
571                         << *NewRC << "\n");
572     }
573   }
574 
575   // Next demote all the call edges that are now ref edges. This helps make
576   // the SCCs small which should minimize the work below as we don't want to
577   // form cycles that this would break.
578   for (Node *RefTarget : DemotedCallTargets) {
579     SCC &TargetC = *G.lookupSCC(*RefTarget);
580     RefSCC &TargetRC = TargetC.getOuterRefSCC();
581 
582     // The easy case is when the target RefSCC is not this RefSCC. This is
583     // only supported when the target RefSCC is a child of this RefSCC.
584     if (&TargetRC != RC) {
585       assert(RC->isAncestorOf(TargetRC) &&
586              "Cannot potentially form RefSCC cycles here!");
587       RC->switchOutgoingEdgeToRef(N, *RefTarget);
588       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
589                         << "' to '" << *RefTarget << "'\n");
590       continue;
591     }
592 
593     // We are switching an internal call edge to a ref edge. This may split up
594     // some SCCs.
595     if (C != &TargetC) {
596       // For separate SCCs this is trivial.
597       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
598       continue;
599     }
600 
601     // Now update the call graph.
602     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
603                                C, AM, UR);
604   }
605 
606   // Now promote ref edges into call edges.
607   for (Node *CallTarget : PromotedRefTargets) {
608     SCC &TargetC = *G.lookupSCC(*CallTarget);
609     RefSCC &TargetRC = TargetC.getOuterRefSCC();
610 
611     // The easy case is when the target RefSCC is not this RefSCC. This is
612     // only supported when the target RefSCC is a child of this RefSCC.
613     if (&TargetRC != RC) {
614       assert(RC->isAncestorOf(TargetRC) &&
615              "Cannot potentially form RefSCC cycles here!");
616       RC->switchOutgoingEdgeToCall(N, *CallTarget);
617       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
618                         << "' to '" << *CallTarget << "'\n");
619       continue;
620     }
621     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
622                       << N << "' to '" << *CallTarget << "'\n");
623 
624     // Otherwise we are switching an internal ref edge to a call edge. This
625     // may merge away some SCCs, and we add those to the UpdateResult. We also
626     // need to make sure to update the worklist in the event SCCs have moved
627     // before the current one in the post-order sequence
628     bool HasFunctionAnalysisProxy = false;
629     auto InitialSCCIndex = RC->find(*C) - RC->begin();
630     bool FormedCycle = RC->switchInternalEdgeToCall(
631         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
632           for (SCC *MergedC : MergedSCCs) {
633             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
634 
635             HasFunctionAnalysisProxy |=
636                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
637                     *MergedC) != nullptr;
638 
639             // Mark that this SCC will no longer be valid.
640             UR.InvalidatedSCCs.insert(MergedC);
641 
642             // FIXME: We should really do a 'clear' here to forcibly release
643             // memory, but we don't have a good way of doing that and
644             // preserving the function analyses.
645             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
646             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
647             AM.invalidate(*MergedC, PA);
648           }
649         });
650 
651     // If we formed a cycle by creating this call, we need to update more data
652     // structures.
653     if (FormedCycle) {
654       C = &TargetC;
655       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
656 
657       // If one of the invalidated SCCs had a cached proxy to a function
658       // analysis manager, we need to create a proxy in the new current SCC as
659       // the invalidated SCCs had their functions moved.
660       if (HasFunctionAnalysisProxy)
661         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
662 
663       // Any analyses cached for this SCC are no longer precise as the shape
664       // has changed by introducing this cycle. However, we have taken care to
665       // update the proxies so it remains valide.
666       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
667       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
668       AM.invalidate(*C, PA);
669     }
670     auto NewSCCIndex = RC->find(*C) - RC->begin();
671     // If we have actually moved an SCC to be topologically "below" the current
672     // one due to merging, we will need to revisit the current SCC after
673     // visiting those moved SCCs.
674     //
675     // It is critical that we *do not* revisit the current SCC unless we
676     // actually move SCCs in the process of merging because otherwise we may
677     // form a cycle where an SCC is split apart, merged, split, merged and so
678     // on infinitely.
679     if (InitialSCCIndex < NewSCCIndex) {
680       // Put our current SCC back onto the worklist as we'll visit other SCCs
681       // that are now definitively ordered prior to the current one in the
682       // post-order sequence, and may end up observing more precise context to
683       // optimize the current SCC.
684       UR.CWorklist.insert(C);
685       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
686                         << "\n");
687       // Enqueue in reverse order as we pop off the back of the worklist.
688       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
689                                                   RC->begin() + NewSCCIndex))) {
690         UR.CWorklist.insert(&MovedC);
691         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
692                           << MovedC << "\n");
693       }
694     }
695   }
696 
697   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
698   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
699   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
700 
701   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
702   // manager now that all the updates have been applied.
703   if (RC != &InitialRC)
704     UR.UpdatedRC = RC;
705   if (C != &InitialC)
706     UR.UpdatedC = C;
707 
708   return *C;
709 }
710