1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <cassert>
58 #include <cerrno>
59 #include <cfenv>
60 #include <cmath>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70 
71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72                                         Constant *C, Type *SrcEltTy,
73                                         unsigned NumSrcElts,
74                                         const DataLayout &DL) {
75   // Now that we know that the input value is a vector of integers, just shift
76   // and insert them into our result.
77   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78   for (unsigned i = 0; i != NumSrcElts; ++i) {
79     Constant *Element;
80     if (DL.isLittleEndian())
81       Element = C->getAggregateElement(NumSrcElts - i - 1);
82     else
83       Element = C->getAggregateElement(i);
84 
85     if (Element && isa<UndefValue>(Element)) {
86       Result <<= BitShift;
87       continue;
88     }
89 
90     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91     if (!ElementCI)
92       return ConstantExpr::getBitCast(C, DestTy);
93 
94     Result <<= BitShift;
95     Result |= ElementCI->getValue().zext(Result.getBitWidth());
96   }
97 
98   return nullptr;
99 }
100 
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106          "Invalid constantexpr bitcast!");
107 
108   // Catch the obvious splat cases.
109   if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
110     return Res;
111 
112   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113     // Handle a vector->scalar integer/fp cast.
114     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116       Type *SrcEltTy = VTy->getElementType();
117 
118       // If the vector is a vector of floating point, convert it to vector of int
119       // to simplify things.
120       if (SrcEltTy->isFloatingPointTy()) {
121         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122         auto *SrcIVTy = FixedVectorType::get(
123             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124         // Ask IR to do the conversion now that #elts line up.
125         C = ConstantExpr::getBitCast(C, SrcIVTy);
126       }
127 
128       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130                                                 SrcEltTy, NumSrcElts, DL))
131         return CE;
132 
133       if (isa<IntegerType>(DestTy))
134         return ConstantInt::get(DestTy, Result);
135 
136       APFloat FP(DestTy->getFltSemantics(), Result);
137       return ConstantFP::get(DestTy->getContext(), FP);
138     }
139   }
140 
141   // The code below only handles casts to vectors currently.
142   auto *DestVTy = dyn_cast<VectorType>(DestTy);
143   if (!DestVTy)
144     return ConstantExpr::getBitCast(C, DestTy);
145 
146   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147   // vector so the code below can handle it uniformly.
148   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149     Constant *Ops = C; // don't take the address of C!
150     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151   }
152 
153   // If this is a bitcast from constant vector -> vector, fold it.
154   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155     return ConstantExpr::getBitCast(C, DestTy);
156 
157   // If the element types match, IR can fold it.
158   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160   if (NumDstElt == NumSrcElt)
161     return ConstantExpr::getBitCast(C, DestTy);
162 
163   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164   Type *DstEltTy = DestVTy->getElementType();
165 
166   // Otherwise, we're changing the number of elements in a vector, which
167   // requires endianness information to do the right thing.  For example,
168   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169   // folds to (little endian):
170   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171   // and to (big endian):
172   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173 
174   // First thing is first.  We only want to think about integer here, so if
175   // we have something in FP form, recast it as integer.
176   if (DstEltTy->isFloatingPointTy()) {
177     // Fold to an vector of integers with same size as our FP type.
178     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179     auto *DestIVTy = FixedVectorType::get(
180         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181     // Recursively handle this integer conversion, if possible.
182     C = FoldBitCast(C, DestIVTy, DL);
183 
184     // Finally, IR can handle this now that #elts line up.
185     return ConstantExpr::getBitCast(C, DestTy);
186   }
187 
188   // Okay, we know the destination is integer, if the input is FP, convert
189   // it to integer first.
190   if (SrcEltTy->isFloatingPointTy()) {
191     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192     auto *SrcIVTy = FixedVectorType::get(
193         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194     // Ask IR to do the conversion now that #elts line up.
195     C = ConstantExpr::getBitCast(C, SrcIVTy);
196     // If IR wasn't able to fold it, bail out.
197     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
198         !isa<ConstantDataVector>(C))
199       return C;
200   }
201 
202   // Now we know that the input and output vectors are both integer vectors
203   // of the same size, and that their #elements is not the same.  Do the
204   // conversion here, which depends on whether the input or output has
205   // more elements.
206   bool isLittleEndian = DL.isLittleEndian();
207 
208   SmallVector<Constant*, 32> Result;
209   if (NumDstElt < NumSrcElt) {
210     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211     Constant *Zero = Constant::getNullValue(DstEltTy);
212     unsigned Ratio = NumSrcElt/NumDstElt;
213     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214     unsigned SrcElt = 0;
215     for (unsigned i = 0; i != NumDstElt; ++i) {
216       // Build each element of the result.
217       Constant *Elt = Zero;
218       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219       for (unsigned j = 0; j != Ratio; ++j) {
220         Constant *Src = C->getAggregateElement(SrcElt++);
221         if (Src && isa<UndefValue>(Src))
222           Src = Constant::getNullValue(
223               cast<VectorType>(C->getType())->getElementType());
224         else
225           Src = dyn_cast_or_null<ConstantInt>(Src);
226         if (!Src)  // Reject constantexpr elements.
227           return ConstantExpr::getBitCast(C, DestTy);
228 
229         // Zero extend the element to the right size.
230         Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
231                                       DL);
232         assert(Src && "Constant folding cannot fail on plain integers");
233 
234         // Shift it to the right place, depending on endianness.
235         Src = ConstantFoldBinaryOpOperands(
236             Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
237             DL);
238         assert(Src && "Constant folding cannot fail on plain integers");
239 
240         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
241 
242         // Mix it in.
243         Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
244         assert(Elt && "Constant folding cannot fail on plain integers");
245       }
246       Result.push_back(Elt);
247     }
248     return ConstantVector::get(Result);
249   }
250 
251   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
252   unsigned Ratio = NumDstElt/NumSrcElt;
253   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
254 
255   // Loop over each source value, expanding into multiple results.
256   for (unsigned i = 0; i != NumSrcElt; ++i) {
257     auto *Element = C->getAggregateElement(i);
258 
259     if (!Element) // Reject constantexpr elements.
260       return ConstantExpr::getBitCast(C, DestTy);
261 
262     if (isa<UndefValue>(Element)) {
263       // Correctly Propagate undef values.
264       Result.append(Ratio, UndefValue::get(DstEltTy));
265       continue;
266     }
267 
268     auto *Src = dyn_cast<ConstantInt>(Element);
269     if (!Src)
270       return ConstantExpr::getBitCast(C, DestTy);
271 
272     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
273     for (unsigned j = 0; j != Ratio; ++j) {
274       // Shift the piece of the value into the right place, depending on
275       // endianness.
276       APInt Elt = Src->getValue().lshr(ShiftAmt);
277       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
278 
279       // Truncate and remember this piece.
280       Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
281     }
282   }
283 
284   return ConstantVector::get(Result);
285 }
286 
287 } // end anonymous namespace
288 
289 /// If this constant is a constant offset from a global, return the global and
290 /// the constant. Because of constantexprs, this function is recursive.
291 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
292                                       APInt &Offset, const DataLayout &DL,
293                                       DSOLocalEquivalent **DSOEquiv) {
294   if (DSOEquiv)
295     *DSOEquiv = nullptr;
296 
297   // Trivial case, constant is the global.
298   if ((GV = dyn_cast<GlobalValue>(C))) {
299     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
300     Offset = APInt(BitWidth, 0);
301     return true;
302   }
303 
304   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
305     if (DSOEquiv)
306       *DSOEquiv = FoundDSOEquiv;
307     GV = FoundDSOEquiv->getGlobalValue();
308     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
309     Offset = APInt(BitWidth, 0);
310     return true;
311   }
312 
313   // Otherwise, if this isn't a constant expr, bail out.
314   auto *CE = dyn_cast<ConstantExpr>(C);
315   if (!CE) return false;
316 
317   // Look through ptr->int and ptr->ptr casts.
318   if (CE->getOpcode() == Instruction::PtrToInt ||
319       CE->getOpcode() == Instruction::BitCast)
320     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
321                                       DSOEquiv);
322 
323   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
324   auto *GEP = dyn_cast<GEPOperator>(CE);
325   if (!GEP)
326     return false;
327 
328   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
329   APInt TmpOffset(BitWidth, 0);
330 
331   // If the base isn't a global+constant, we aren't either.
332   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
333                                   DSOEquiv))
334     return false;
335 
336   // Otherwise, add any offset that our operands provide.
337   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
338     return false;
339 
340   Offset = TmpOffset;
341   return true;
342 }
343 
344 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
345                                          const DataLayout &DL) {
346   do {
347     Type *SrcTy = C->getType();
348     if (SrcTy == DestTy)
349       return C;
350 
351     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
352     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
353     if (!TypeSize::isKnownGE(SrcSize, DestSize))
354       return nullptr;
355 
356     // Catch the obvious splat cases (since all-zeros can coerce non-integral
357     // pointers legally).
358     if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
359       return Res;
360 
361     // If the type sizes are the same and a cast is legal, just directly
362     // cast the constant.
363     // But be careful not to coerce non-integral pointers illegally.
364     if (SrcSize == DestSize &&
365         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
366             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
367       Instruction::CastOps Cast = Instruction::BitCast;
368       // If we are going from a pointer to int or vice versa, we spell the cast
369       // differently.
370       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
371         Cast = Instruction::IntToPtr;
372       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
373         Cast = Instruction::PtrToInt;
374 
375       if (CastInst::castIsValid(Cast, C, DestTy))
376         return ConstantFoldCastOperand(Cast, C, DestTy, DL);
377     }
378 
379     // If this isn't an aggregate type, there is nothing we can do to drill down
380     // and find a bitcastable constant.
381     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
382       return nullptr;
383 
384     // We're simulating a load through a pointer that was bitcast to point to
385     // a different type, so we can try to walk down through the initial
386     // elements of an aggregate to see if some part of the aggregate is
387     // castable to implement the "load" semantic model.
388     if (SrcTy->isStructTy()) {
389       // Struct types might have leading zero-length elements like [0 x i32],
390       // which are certainly not what we are looking for, so skip them.
391       unsigned Elem = 0;
392       Constant *ElemC;
393       do {
394         ElemC = C->getAggregateElement(Elem++);
395       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
396       C = ElemC;
397     } else {
398       // For non-byte-sized vector elements, the first element is not
399       // necessarily located at the vector base address.
400       if (auto *VT = dyn_cast<VectorType>(SrcTy))
401         if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
402           return nullptr;
403 
404       C = C->getAggregateElement(0u);
405     }
406   } while (C);
407 
408   return nullptr;
409 }
410 
411 namespace {
412 
413 /// Recursive helper to read bits out of global. C is the constant being copied
414 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
415 /// results into and BytesLeft is the number of bytes left in
416 /// the CurPtr buffer. DL is the DataLayout.
417 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
418                         unsigned BytesLeft, const DataLayout &DL) {
419   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
420          "Out of range access");
421 
422   // If this element is zero or undefined, we can just return since *CurPtr is
423   // zero initialized.
424   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
425     return true;
426 
427   if (auto *CI = dyn_cast<ConstantInt>(C)) {
428     if ((CI->getBitWidth() & 7) != 0)
429       return false;
430     const APInt &Val = CI->getValue();
431     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
432 
433     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
434       unsigned n = ByteOffset;
435       if (!DL.isLittleEndian())
436         n = IntBytes - n - 1;
437       CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
438       ++ByteOffset;
439     }
440     return true;
441   }
442 
443   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
444     if (CFP->getType()->isDoubleTy()) {
445       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
446       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
447     }
448     if (CFP->getType()->isFloatTy()){
449       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
450       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
451     }
452     if (CFP->getType()->isHalfTy()){
453       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
454       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455     }
456     return false;
457   }
458 
459   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
460     const StructLayout *SL = DL.getStructLayout(CS->getType());
461     unsigned Index = SL->getElementContainingOffset(ByteOffset);
462     uint64_t CurEltOffset = SL->getElementOffset(Index);
463     ByteOffset -= CurEltOffset;
464 
465     while (true) {
466       // If the element access is to the element itself and not to tail padding,
467       // read the bytes from the element.
468       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
469 
470       if (ByteOffset < EltSize &&
471           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
472                               BytesLeft, DL))
473         return false;
474 
475       ++Index;
476 
477       // Check to see if we read from the last struct element, if so we're done.
478       if (Index == CS->getType()->getNumElements())
479         return true;
480 
481       // If we read all of the bytes we needed from this element we're done.
482       uint64_t NextEltOffset = SL->getElementOffset(Index);
483 
484       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
485         return true;
486 
487       // Move to the next element of the struct.
488       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
489       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
490       ByteOffset = 0;
491       CurEltOffset = NextEltOffset;
492     }
493     // not reached.
494   }
495 
496   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
497       isa<ConstantDataSequential>(C)) {
498     uint64_t NumElts, EltSize;
499     Type *EltTy;
500     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
501       NumElts = AT->getNumElements();
502       EltTy = AT->getElementType();
503       EltSize = DL.getTypeAllocSize(EltTy);
504     } else {
505       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
506       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
507       // TODO: For non-byte-sized vectors, current implementation assumes there is
508       // padding to the next byte boundary between elements.
509       if (!DL.typeSizeEqualsStoreSize(EltTy))
510         return false;
511 
512       EltSize = DL.getTypeStoreSize(EltTy);
513     }
514     uint64_t Index = ByteOffset / EltSize;
515     uint64_t Offset = ByteOffset - Index * EltSize;
516 
517     for (; Index != NumElts; ++Index) {
518       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519                               BytesLeft, DL))
520         return false;
521 
522       uint64_t BytesWritten = EltSize - Offset;
523       assert(BytesWritten <= EltSize && "Not indexing into this element?");
524       if (BytesWritten >= BytesLeft)
525         return true;
526 
527       Offset = 0;
528       BytesLeft -= BytesWritten;
529       CurPtr += BytesWritten;
530     }
531     return true;
532   }
533 
534   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535     if (CE->getOpcode() == Instruction::IntToPtr &&
536         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538                                 BytesLeft, DL);
539     }
540   }
541 
542   // Otherwise, unknown initializer type.
543   return false;
544 }
545 
546 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547                                        int64_t Offset, const DataLayout &DL) {
548   // Bail out early. Not expect to load from scalable global variable.
549   if (isa<ScalableVectorType>(LoadTy))
550     return nullptr;
551 
552   auto *IntType = dyn_cast<IntegerType>(LoadTy);
553 
554   // If this isn't an integer load we can't fold it directly.
555   if (!IntType) {
556     // If this is a non-integer load, we can try folding it as an int load and
557     // then bitcast the result.  This can be useful for union cases.  Note
558     // that address spaces don't matter here since we're not going to result in
559     // an actual new load.
560     if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561         !LoadTy->isVectorTy())
562       return nullptr;
563 
564     Type *MapTy = Type::getIntNTy(C->getContext(),
565                                   DL.getTypeSizeInBits(LoadTy).getFixedValue());
566     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568           !LoadTy->isX86_AMXTy())
569         // Materializing a zero can be done trivially without a bitcast
570         return Constant::getNullValue(LoadTy);
571       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572       Res = FoldBitCast(Res, CastTy, DL);
573       if (LoadTy->isPtrOrPtrVectorTy()) {
574         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576             !LoadTy->isX86_AMXTy())
577           return Constant::getNullValue(LoadTy);
578         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579           // Be careful not to replace a load of an addrspace value with an inttoptr here
580           return nullptr;
581         Res = ConstantExpr::getIntToPtr(Res, LoadTy);
582       }
583       return Res;
584     }
585     return nullptr;
586   }
587 
588   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589   if (BytesLoaded > 32 || BytesLoaded == 0)
590     return nullptr;
591 
592   // If we're not accessing anything in this constant, the result is undefined.
593   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594     return PoisonValue::get(IntType);
595 
596   // TODO: We should be able to support scalable types.
597   TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598   if (InitializerSize.isScalable())
599     return nullptr;
600 
601   // If we're not accessing anything in this constant, the result is undefined.
602   if (Offset >= (int64_t)InitializerSize.getFixedValue())
603     return PoisonValue::get(IntType);
604 
605   unsigned char RawBytes[32] = {0};
606   unsigned char *CurPtr = RawBytes;
607   unsigned BytesLeft = BytesLoaded;
608 
609   // If we're loading off the beginning of the global, some bytes may be valid.
610   if (Offset < 0) {
611     CurPtr += -Offset;
612     BytesLeft += Offset;
613     Offset = 0;
614   }
615 
616   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617     return nullptr;
618 
619   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620   if (DL.isLittleEndian()) {
621     ResultVal = RawBytes[BytesLoaded - 1];
622     for (unsigned i = 1; i != BytesLoaded; ++i) {
623       ResultVal <<= 8;
624       ResultVal |= RawBytes[BytesLoaded - 1 - i];
625     }
626   } else {
627     ResultVal = RawBytes[0];
628     for (unsigned i = 1; i != BytesLoaded; ++i) {
629       ResultVal <<= 8;
630       ResultVal |= RawBytes[i];
631     }
632   }
633 
634   return ConstantInt::get(IntType->getContext(), ResultVal);
635 }
636 
637 } // anonymous namespace
638 
639 // If GV is a constant with an initializer read its representation starting
640 // at Offset and return it as a constant array of unsigned char.  Otherwise
641 // return null.
642 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643                                         uint64_t Offset) {
644   if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645     return nullptr;
646 
647   const DataLayout &DL = GV->getParent()->getDataLayout();
648   Constant *Init = const_cast<Constant *>(GV->getInitializer());
649   TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650   if (InitSize < Offset)
651     return nullptr;
652 
653   uint64_t NBytes = InitSize - Offset;
654   if (NBytes > UINT16_MAX)
655     // Bail for large initializers in excess of 64K to avoid allocating
656     // too much memory.
657     // Offset is assumed to be less than or equal than InitSize (this
658     // is enforced in ReadDataFromGlobal).
659     return nullptr;
660 
661   SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662   unsigned char *CurPtr = RawBytes.data();
663 
664   if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665     return nullptr;
666 
667   return ConstantDataArray::get(GV->getContext(), RawBytes);
668 }
669 
670 /// If this Offset points exactly to the start of an aggregate element, return
671 /// that element, otherwise return nullptr.
672 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673                               const DataLayout &DL) {
674   if (Offset.isZero())
675     return Base;
676 
677   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678     return nullptr;
679 
680   Type *ElemTy = Base->getType();
681   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682   if (!Offset.isZero() || !Indices[0].isZero())
683     return nullptr;
684 
685   Constant *C = Base;
686   for (const APInt &Index : drop_begin(Indices)) {
687     if (Index.isNegative() || Index.getActiveBits() >= 32)
688       return nullptr;
689 
690     C = C->getAggregateElement(Index.getZExtValue());
691     if (!C)
692       return nullptr;
693   }
694 
695   return C;
696 }
697 
698 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699                                           const APInt &Offset,
700                                           const DataLayout &DL) {
701   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703       return Result;
704 
705   // Explicitly check for out-of-bounds access, so we return poison even if the
706   // constant is a uniform value.
707   TypeSize Size = DL.getTypeAllocSize(C->getType());
708   if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
709     return PoisonValue::get(Ty);
710 
711   // Try an offset-independent fold of a uniform value.
712   if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
713     return Result;
714 
715   // Try hard to fold loads from bitcasted strange and non-type-safe things.
716   if (Offset.getSignificantBits() <= 64)
717     if (Constant *Result =
718             FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719       return Result;
720 
721   return nullptr;
722 }
723 
724 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725                                           const DataLayout &DL) {
726   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727 }
728 
729 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730                                              APInt Offset,
731                                              const DataLayout &DL) {
732   // We can only fold loads from constant globals with a definitive initializer.
733   // Check this upfront, to skip expensive offset calculations.
734   auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
735   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
736     return nullptr;
737 
738   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
739           DL, Offset, /* AllowNonInbounds */ true));
740 
741   if (C == GV)
742     if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
743                                                      Offset, DL))
744       return Result;
745 
746   // If this load comes from anywhere in a uniform constant global, the value
747   // is always the same, regardless of the loaded offset.
748   return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty);
749 }
750 
751 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
752                                              const DataLayout &DL) {
753   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
754   return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
755 }
756 
757 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
758   if (isa<PoisonValue>(C))
759     return PoisonValue::get(Ty);
760   if (isa<UndefValue>(C))
761     return UndefValue::get(Ty);
762   if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
763     return Constant::getNullValue(Ty);
764   if (C->isAllOnesValue() &&
765       (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
766     return Constant::getAllOnesValue(Ty);
767   return nullptr;
768 }
769 
770 namespace {
771 
772 /// One of Op0/Op1 is a constant expression.
773 /// Attempt to symbolically evaluate the result of a binary operator merging
774 /// these together.  If target data info is available, it is provided as DL,
775 /// otherwise DL is null.
776 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
777                                     const DataLayout &DL) {
778   // SROA
779 
780   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
781   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
782   // bits.
783 
784   if (Opc == Instruction::And) {
785     KnownBits Known0 = computeKnownBits(Op0, DL);
786     KnownBits Known1 = computeKnownBits(Op1, DL);
787     if ((Known1.One | Known0.Zero).isAllOnes()) {
788       // All the bits of Op0 that the 'and' could be masking are already zero.
789       return Op0;
790     }
791     if ((Known0.One | Known1.Zero).isAllOnes()) {
792       // All the bits of Op1 that the 'and' could be masking are already zero.
793       return Op1;
794     }
795 
796     Known0 &= Known1;
797     if (Known0.isConstant())
798       return ConstantInt::get(Op0->getType(), Known0.getConstant());
799   }
800 
801   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
802   // constant.  This happens frequently when iterating over a global array.
803   if (Opc == Instruction::Sub) {
804     GlobalValue *GV1, *GV2;
805     APInt Offs1, Offs2;
806 
807     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
808       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
809         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
810 
811         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
812         // PtrToInt may change the bitwidth so we have convert to the right size
813         // first.
814         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
815                                                 Offs2.zextOrTrunc(OpSize));
816       }
817   }
818 
819   return nullptr;
820 }
821 
822 /// If array indices are not pointer-sized integers, explicitly cast them so
823 /// that they aren't implicitly casted by the getelementptr.
824 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
825                          Type *ResultTy, bool InBounds,
826                          std::optional<unsigned> InRangeIndex,
827                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
828   Type *IntIdxTy = DL.getIndexType(ResultTy);
829   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
830 
831   bool Any = false;
832   SmallVector<Constant*, 32> NewIdxs;
833   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
834     if ((i == 1 ||
835          !isa<StructType>(GetElementPtrInst::getIndexedType(
836              SrcElemTy, Ops.slice(1, i - 1)))) &&
837         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
838       Any = true;
839       Type *NewType =
840           Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
841       Constant *NewIdx = ConstantFoldCastOperand(
842           CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
843           DL);
844       if (!NewIdx)
845         return nullptr;
846       NewIdxs.push_back(NewIdx);
847     } else
848       NewIdxs.push_back(Ops[i]);
849   }
850 
851   if (!Any)
852     return nullptr;
853 
854   Constant *C = ConstantExpr::getGetElementPtr(
855       SrcElemTy, Ops[0], NewIdxs, InBounds, InRangeIndex);
856   return ConstantFoldConstant(C, DL, TLI);
857 }
858 
859 /// If we can symbolically evaluate the GEP constant expression, do so.
860 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
861                                   ArrayRef<Constant *> Ops,
862                                   const DataLayout &DL,
863                                   const TargetLibraryInfo *TLI) {
864   const GEPOperator *InnermostGEP = GEP;
865   bool InBounds = GEP->isInBounds();
866 
867   Type *SrcElemTy = GEP->getSourceElementType();
868   Type *ResElemTy = GEP->getResultElementType();
869   Type *ResTy = GEP->getType();
870   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
871     return nullptr;
872 
873   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
874                                    GEP->isInBounds(), GEP->getInRangeIndex(),
875                                    DL, TLI))
876     return C;
877 
878   Constant *Ptr = Ops[0];
879   if (!Ptr->getType()->isPointerTy())
880     return nullptr;
881 
882   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
883 
884   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
885     if (!isa<ConstantInt>(Ops[i]))
886       return nullptr;
887 
888   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
889   APInt Offset = APInt(
890       BitWidth,
891       DL.getIndexedOffsetInType(
892           SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
893 
894   // If this is a GEP of a GEP, fold it all into a single GEP.
895   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
896     InnermostGEP = GEP;
897     InBounds &= GEP->isInBounds();
898 
899     SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
900 
901     // Do not try the incorporate the sub-GEP if some index is not a number.
902     bool AllConstantInt = true;
903     for (Value *NestedOp : NestedOps)
904       if (!isa<ConstantInt>(NestedOp)) {
905         AllConstantInt = false;
906         break;
907       }
908     if (!AllConstantInt)
909       break;
910 
911     Ptr = cast<Constant>(GEP->getOperand(0));
912     SrcElemTy = GEP->getSourceElementType();
913     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
914   }
915 
916   // If the base value for this address is a literal integer value, fold the
917   // getelementptr to the resulting integer value casted to the pointer type.
918   APInt BasePtr(BitWidth, 0);
919   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
920     if (CE->getOpcode() == Instruction::IntToPtr) {
921       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
922         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
923     }
924   }
925 
926   auto *PTy = cast<PointerType>(Ptr->getType());
927   if ((Ptr->isNullValue() || BasePtr != 0) &&
928       !DL.isNonIntegralPointerType(PTy)) {
929     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
930     return ConstantExpr::getIntToPtr(C, ResTy);
931   }
932 
933   // Otherwise form a regular getelementptr. Recompute the indices so that
934   // we eliminate over-indexing of the notional static type array bounds.
935   // This makes it easy to determine if the getelementptr is "inbounds".
936 
937   // For GEPs of GlobalValues, use the value type, otherwise use an i8 GEP.
938   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
939     SrcElemTy = GV->getValueType();
940   else
941     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
942 
943   if (!SrcElemTy->isSized())
944     return nullptr;
945 
946   Type *ElemTy = SrcElemTy;
947   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
948   if (Offset != 0)
949     return nullptr;
950 
951   // Try to add additional zero indices to reach the desired result element
952   // type.
953   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
954   // we'll have to insert a bitcast anyway?
955   while (ElemTy != ResElemTy) {
956     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
957     if (!NextTy)
958       break;
959 
960     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
961     ElemTy = NextTy;
962   }
963 
964   SmallVector<Constant *, 32> NewIdxs;
965   for (const APInt &Index : Indices)
966     NewIdxs.push_back(ConstantInt::get(
967         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
968 
969   // Preserve the inrange index from the innermost GEP if possible. We must
970   // have calculated the same indices up to and including the inrange index.
971   std::optional<unsigned> InRangeIndex;
972   if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
973     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
974         NewIdxs.size() > *LastIRIndex) {
975       InRangeIndex = LastIRIndex;
976       for (unsigned I = 0; I <= *LastIRIndex; ++I)
977         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
978           return nullptr;
979     }
980 
981   // Create a GEP.
982   return ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, InBounds,
983                                         InRangeIndex);
984 }
985 
986 /// Attempt to constant fold an instruction with the
987 /// specified opcode and operands.  If successful, the constant result is
988 /// returned, if not, null is returned.  Note that this function can fail when
989 /// attempting to fold instructions like loads and stores, which have no
990 /// constant expression form.
991 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
992                                        ArrayRef<Constant *> Ops,
993                                        const DataLayout &DL,
994                                        const TargetLibraryInfo *TLI) {
995   Type *DestTy = InstOrCE->getType();
996 
997   if (Instruction::isUnaryOp(Opcode))
998     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
999 
1000   if (Instruction::isBinaryOp(Opcode)) {
1001     switch (Opcode) {
1002     default:
1003       break;
1004     case Instruction::FAdd:
1005     case Instruction::FSub:
1006     case Instruction::FMul:
1007     case Instruction::FDiv:
1008     case Instruction::FRem:
1009       // Handle floating point instructions separately to account for denormals
1010       // TODO: If a constant expression is being folded rather than an
1011       // instruction, denormals will not be flushed/treated as zero
1012       if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1013         return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
1014       }
1015     }
1016     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1017   }
1018 
1019   if (Instruction::isCast(Opcode))
1020     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1021 
1022   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1023     Type *SrcElemTy = GEP->getSourceElementType();
1024     if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
1025       return nullptr;
1026 
1027     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1028       return C;
1029 
1030     return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1031                                           GEP->isInBounds(),
1032                                           GEP->getInRangeIndex());
1033   }
1034 
1035   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
1036     if (CE->isCompare())
1037       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1038                                              DL, TLI);
1039     return CE->getWithOperands(Ops);
1040   }
1041 
1042   switch (Opcode) {
1043   default: return nullptr;
1044   case Instruction::ICmp:
1045   case Instruction::FCmp: {
1046     auto *C = cast<CmpInst>(InstOrCE);
1047     return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1048                                            DL, TLI, C);
1049   }
1050   case Instruction::Freeze:
1051     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1052   case Instruction::Call:
1053     if (auto *F = dyn_cast<Function>(Ops.back())) {
1054       const auto *Call = cast<CallBase>(InstOrCE);
1055       if (canConstantFoldCallTo(Call, F))
1056         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1057     }
1058     return nullptr;
1059   case Instruction::Select:
1060     return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1061   case Instruction::ExtractElement:
1062     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1063   case Instruction::ExtractValue:
1064     return ConstantFoldExtractValueInstruction(
1065         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1066   case Instruction::InsertElement:
1067     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1068   case Instruction::InsertValue:
1069     return ConstantFoldInsertValueInstruction(
1070         Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1071   case Instruction::ShuffleVector:
1072     return ConstantExpr::getShuffleVector(
1073         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1074   case Instruction::Load: {
1075     const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1076     if (LI->isVolatile())
1077       return nullptr;
1078     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1079   }
1080   }
1081 }
1082 
1083 } // end anonymous namespace
1084 
1085 //===----------------------------------------------------------------------===//
1086 // Constant Folding public APIs
1087 //===----------------------------------------------------------------------===//
1088 
1089 namespace {
1090 
1091 Constant *
1092 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1093                          const TargetLibraryInfo *TLI,
1094                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1095   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1096     return const_cast<Constant *>(C);
1097 
1098   SmallVector<Constant *, 8> Ops;
1099   for (const Use &OldU : C->operands()) {
1100     Constant *OldC = cast<Constant>(&OldU);
1101     Constant *NewC = OldC;
1102     // Recursively fold the ConstantExpr's operands. If we have already folded
1103     // a ConstantExpr, we don't have to process it again.
1104     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1105       auto It = FoldedOps.find(OldC);
1106       if (It == FoldedOps.end()) {
1107         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1108         FoldedOps.insert({OldC, NewC});
1109       } else {
1110         NewC = It->second;
1111       }
1112     }
1113     Ops.push_back(NewC);
1114   }
1115 
1116   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1117     if (Constant *Res =
1118             ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
1119       return Res;
1120     return const_cast<Constant *>(C);
1121   }
1122 
1123   assert(isa<ConstantVector>(C));
1124   return ConstantVector::get(Ops);
1125 }
1126 
1127 } // end anonymous namespace
1128 
1129 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1130                                         const TargetLibraryInfo *TLI) {
1131   // Handle PHI nodes quickly here...
1132   if (auto *PN = dyn_cast<PHINode>(I)) {
1133     Constant *CommonValue = nullptr;
1134 
1135     SmallDenseMap<Constant *, Constant *> FoldedOps;
1136     for (Value *Incoming : PN->incoming_values()) {
1137       // If the incoming value is undef then skip it.  Note that while we could
1138       // skip the value if it is equal to the phi node itself we choose not to
1139       // because that would break the rule that constant folding only applies if
1140       // all operands are constants.
1141       if (isa<UndefValue>(Incoming))
1142         continue;
1143       // If the incoming value is not a constant, then give up.
1144       auto *C = dyn_cast<Constant>(Incoming);
1145       if (!C)
1146         return nullptr;
1147       // Fold the PHI's operands.
1148       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1149       // If the incoming value is a different constant to
1150       // the one we saw previously, then give up.
1151       if (CommonValue && C != CommonValue)
1152         return nullptr;
1153       CommonValue = C;
1154     }
1155 
1156     // If we reach here, all incoming values are the same constant or undef.
1157     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1158   }
1159 
1160   // Scan the operand list, checking to see if they are all constants, if so,
1161   // hand off to ConstantFoldInstOperandsImpl.
1162   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1163     return nullptr;
1164 
1165   SmallDenseMap<Constant *, Constant *> FoldedOps;
1166   SmallVector<Constant *, 8> Ops;
1167   for (const Use &OpU : I->operands()) {
1168     auto *Op = cast<Constant>(&OpU);
1169     // Fold the Instruction's operands.
1170     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1171     Ops.push_back(Op);
1172   }
1173 
1174   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1175 }
1176 
1177 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1178                                      const TargetLibraryInfo *TLI) {
1179   SmallDenseMap<Constant *, Constant *> FoldedOps;
1180   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1181 }
1182 
1183 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1184                                          ArrayRef<Constant *> Ops,
1185                                          const DataLayout &DL,
1186                                          const TargetLibraryInfo *TLI) {
1187   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1188 }
1189 
1190 Constant *llvm::ConstantFoldCompareInstOperands(
1191     unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1192     const TargetLibraryInfo *TLI, const Instruction *I) {
1193   CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1194   // fold: icmp (inttoptr x), null         -> icmp x, 0
1195   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1196   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1197   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1198   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1199   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1200   //
1201   // FIXME: The following comment is out of data and the DataLayout is here now.
1202   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1203   // around to know if bit truncation is happening.
1204   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1205     if (Ops1->isNullValue()) {
1206       if (CE0->getOpcode() == Instruction::IntToPtr) {
1207         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1208         // Convert the integer value to the right size to ensure we get the
1209         // proper extension or truncation.
1210         if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1211                                                   /*IsSigned*/ false, DL)) {
1212           Constant *Null = Constant::getNullValue(C->getType());
1213           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1214         }
1215       }
1216 
1217       // Only do this transformation if the int is intptrty in size, otherwise
1218       // there is a truncation or extension that we aren't modeling.
1219       if (CE0->getOpcode() == Instruction::PtrToInt) {
1220         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1221         if (CE0->getType() == IntPtrTy) {
1222           Constant *C = CE0->getOperand(0);
1223           Constant *Null = Constant::getNullValue(C->getType());
1224           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1225         }
1226       }
1227     }
1228 
1229     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1230       if (CE0->getOpcode() == CE1->getOpcode()) {
1231         if (CE0->getOpcode() == Instruction::IntToPtr) {
1232           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1233 
1234           // Convert the integer value to the right size to ensure we get the
1235           // proper extension or truncation.
1236           Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1237                                                  /*IsSigned*/ false, DL);
1238           Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1239                                                  /*IsSigned*/ false, DL);
1240           if (C0 && C1)
1241             return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1242         }
1243 
1244         // Only do this transformation if the int is intptrty in size, otherwise
1245         // there is a truncation or extension that we aren't modeling.
1246         if (CE0->getOpcode() == Instruction::PtrToInt) {
1247           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1248           if (CE0->getType() == IntPtrTy &&
1249               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1250             return ConstantFoldCompareInstOperands(
1251                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1252           }
1253         }
1254       }
1255     }
1256 
1257     // Convert pointer comparison (base+offset1) pred (base+offset2) into
1258     // offset1 pred offset2, for the case where the offset is inbounds. This
1259     // only works for equality and unsigned comparison, as inbounds permits
1260     // crossing the sign boundary. However, the offset comparison itself is
1261     // signed.
1262     if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1263       unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1264       APInt Offset0(IndexWidth, 0);
1265       Value *Stripped0 =
1266           Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1267       APInt Offset1(IndexWidth, 0);
1268       Value *Stripped1 =
1269           Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1270       if (Stripped0 == Stripped1)
1271         return ConstantExpr::getCompare(
1272             ICmpInst::getSignedPredicate(Predicate),
1273             ConstantInt::get(CE0->getContext(), Offset0),
1274             ConstantInt::get(CE0->getContext(), Offset1));
1275     }
1276   } else if (isa<ConstantExpr>(Ops1)) {
1277     // If RHS is a constant expression, but the left side isn't, swap the
1278     // operands and try again.
1279     Predicate = ICmpInst::getSwappedPredicate(Predicate);
1280     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1281   }
1282 
1283   // Flush any denormal constant float input according to denormal handling
1284   // mode.
1285   Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1286   if (!Ops0)
1287     return nullptr;
1288   Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1289   if (!Ops1)
1290     return nullptr;
1291 
1292   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1293 }
1294 
1295 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1296                                            const DataLayout &DL) {
1297   assert(Instruction::isUnaryOp(Opcode));
1298 
1299   return ConstantFoldUnaryInstruction(Opcode, Op);
1300 }
1301 
1302 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1303                                              Constant *RHS,
1304                                              const DataLayout &DL) {
1305   assert(Instruction::isBinaryOp(Opcode));
1306   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1307     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1308       return C;
1309 
1310   if (ConstantExpr::isDesirableBinOp(Opcode))
1311     return ConstantExpr::get(Opcode, LHS, RHS);
1312   return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1313 }
1314 
1315 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1316                                 bool IsOutput) {
1317   if (!I || !I->getParent() || !I->getFunction())
1318     return Operand;
1319 
1320   ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1321   if (!CFP)
1322     return Operand;
1323 
1324   const APFloat &APF = CFP->getValueAPF();
1325   // TODO: Should this canonicalize nans?
1326   if (!APF.isDenormal())
1327     return Operand;
1328 
1329   Type *Ty = CFP->getType();
1330   DenormalMode DenormMode =
1331       I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1332   DenormalMode::DenormalModeKind Mode =
1333       IsOutput ? DenormMode.Output : DenormMode.Input;
1334   switch (Mode) {
1335   default:
1336     llvm_unreachable("unknown denormal mode");
1337   case DenormalMode::Dynamic:
1338     return nullptr;
1339   case DenormalMode::IEEE:
1340     return Operand;
1341   case DenormalMode::PreserveSign:
1342     if (APF.isDenormal()) {
1343       return ConstantFP::get(
1344           Ty->getContext(),
1345           APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1346     }
1347     return Operand;
1348   case DenormalMode::PositiveZero:
1349     if (APF.isDenormal()) {
1350       return ConstantFP::get(Ty->getContext(),
1351                              APFloat::getZero(Ty->getFltSemantics(), false));
1352     }
1353     return Operand;
1354   }
1355   return Operand;
1356 }
1357 
1358 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1359                                            Constant *RHS, const DataLayout &DL,
1360                                            const Instruction *I) {
1361   if (Instruction::isBinaryOp(Opcode)) {
1362     // Flush denormal inputs if needed.
1363     Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1364     if (!Op0)
1365       return nullptr;
1366     Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1367     if (!Op1)
1368       return nullptr;
1369 
1370     // Calculate constant result.
1371     Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1372     if (!C)
1373       return nullptr;
1374 
1375     // Flush denormal output if needed.
1376     return FlushFPConstant(C, I, /* IsOutput */ true);
1377   }
1378   // If instruction lacks a parent/function and the denormal mode cannot be
1379   // determined, use the default (IEEE).
1380   return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1381 }
1382 
1383 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1384                                         Type *DestTy, const DataLayout &DL) {
1385   assert(Instruction::isCast(Opcode));
1386   switch (Opcode) {
1387   default:
1388     llvm_unreachable("Missing case");
1389   case Instruction::PtrToInt:
1390     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1391       Constant *FoldedValue = nullptr;
1392       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1393       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1394       if (CE->getOpcode() == Instruction::IntToPtr) {
1395         // zext/trunc the inttoptr to pointer size.
1396         FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
1397                                               DL.getIntPtrType(CE->getType()),
1398                                               /*IsSigned=*/false, DL);
1399       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1400         // If we have GEP, we can perform the following folds:
1401         // (ptrtoint (gep null, x)) -> x
1402         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1403         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1404         APInt BaseOffset(BitWidth, 0);
1405         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1406             DL, BaseOffset, /*AllowNonInbounds=*/true));
1407         if (Base->isNullValue()) {
1408           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1409         } else {
1410           // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1411           if (GEP->getNumIndices() == 1 &&
1412               GEP->getSourceElementType()->isIntegerTy(8)) {
1413             auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1414             auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1415             Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1416             if (Sub && Sub->getType() == IntIdxTy &&
1417                 Sub->getOpcode() == Instruction::Sub &&
1418                 Sub->getOperand(0)->isNullValue())
1419               FoldedValue = ConstantExpr::getSub(
1420                   ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1421           }
1422         }
1423       }
1424       if (FoldedValue) {
1425         // Do a zext or trunc to get to the ptrtoint dest size.
1426         return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1427                                        DL);
1428       }
1429     }
1430     break;
1431   case Instruction::IntToPtr:
1432     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1433     // the int size is >= the ptr size and the address spaces are the same.
1434     // This requires knowing the width of a pointer, so it can't be done in
1435     // ConstantExpr::getCast.
1436     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1437       if (CE->getOpcode() == Instruction::PtrToInt) {
1438         Constant *SrcPtr = CE->getOperand(0);
1439         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1440         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1441 
1442         if (MidIntSize >= SrcPtrSize) {
1443           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1444           if (SrcAS == DestTy->getPointerAddressSpace())
1445             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1446         }
1447       }
1448     }
1449     break;
1450   case Instruction::Trunc:
1451   case Instruction::ZExt:
1452   case Instruction::SExt:
1453   case Instruction::FPTrunc:
1454   case Instruction::FPExt:
1455   case Instruction::UIToFP:
1456   case Instruction::SIToFP:
1457   case Instruction::FPToUI:
1458   case Instruction::FPToSI:
1459   case Instruction::AddrSpaceCast:
1460     break;
1461   case Instruction::BitCast:
1462     return FoldBitCast(C, DestTy, DL);
1463   }
1464 
1465   if (ConstantExpr::isDesirableCastOp(Opcode))
1466     return ConstantExpr::getCast(Opcode, C, DestTy);
1467   return ConstantFoldCastInstruction(Opcode, C, DestTy);
1468 }
1469 
1470 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy,
1471                                         bool IsSigned, const DataLayout &DL) {
1472   Type *SrcTy = C->getType();
1473   if (SrcTy == DestTy)
1474     return C;
1475   if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1476     return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1477   if (IsSigned)
1478     return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1479   return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 //  Constant Folding for Calls
1484 //
1485 
1486 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1487   if (Call->isNoBuiltin())
1488     return false;
1489   if (Call->getFunctionType() != F->getFunctionType())
1490     return false;
1491   switch (F->getIntrinsicID()) {
1492   // Operations that do not operate floating-point numbers and do not depend on
1493   // FP environment can be folded even in strictfp functions.
1494   case Intrinsic::bswap:
1495   case Intrinsic::ctpop:
1496   case Intrinsic::ctlz:
1497   case Intrinsic::cttz:
1498   case Intrinsic::fshl:
1499   case Intrinsic::fshr:
1500   case Intrinsic::launder_invariant_group:
1501   case Intrinsic::strip_invariant_group:
1502   case Intrinsic::masked_load:
1503   case Intrinsic::get_active_lane_mask:
1504   case Intrinsic::abs:
1505   case Intrinsic::smax:
1506   case Intrinsic::smin:
1507   case Intrinsic::umax:
1508   case Intrinsic::umin:
1509   case Intrinsic::sadd_with_overflow:
1510   case Intrinsic::uadd_with_overflow:
1511   case Intrinsic::ssub_with_overflow:
1512   case Intrinsic::usub_with_overflow:
1513   case Intrinsic::smul_with_overflow:
1514   case Intrinsic::umul_with_overflow:
1515   case Intrinsic::sadd_sat:
1516   case Intrinsic::uadd_sat:
1517   case Intrinsic::ssub_sat:
1518   case Intrinsic::usub_sat:
1519   case Intrinsic::smul_fix:
1520   case Intrinsic::smul_fix_sat:
1521   case Intrinsic::bitreverse:
1522   case Intrinsic::is_constant:
1523   case Intrinsic::vector_reduce_add:
1524   case Intrinsic::vector_reduce_mul:
1525   case Intrinsic::vector_reduce_and:
1526   case Intrinsic::vector_reduce_or:
1527   case Intrinsic::vector_reduce_xor:
1528   case Intrinsic::vector_reduce_smin:
1529   case Intrinsic::vector_reduce_smax:
1530   case Intrinsic::vector_reduce_umin:
1531   case Intrinsic::vector_reduce_umax:
1532   // Target intrinsics
1533   case Intrinsic::amdgcn_perm:
1534   case Intrinsic::amdgcn_wave_reduce_umin:
1535   case Intrinsic::amdgcn_wave_reduce_umax:
1536   case Intrinsic::amdgcn_s_wqm:
1537   case Intrinsic::amdgcn_s_quadmask:
1538   case Intrinsic::amdgcn_s_bitreplicate:
1539   case Intrinsic::arm_mve_vctp8:
1540   case Intrinsic::arm_mve_vctp16:
1541   case Intrinsic::arm_mve_vctp32:
1542   case Intrinsic::arm_mve_vctp64:
1543   case Intrinsic::aarch64_sve_convert_from_svbool:
1544   // WebAssembly float semantics are always known
1545   case Intrinsic::wasm_trunc_signed:
1546   case Intrinsic::wasm_trunc_unsigned:
1547     return true;
1548 
1549   // Floating point operations cannot be folded in strictfp functions in
1550   // general case. They can be folded if FP environment is known to compiler.
1551   case Intrinsic::minnum:
1552   case Intrinsic::maxnum:
1553   case Intrinsic::minimum:
1554   case Intrinsic::maximum:
1555   case Intrinsic::log:
1556   case Intrinsic::log2:
1557   case Intrinsic::log10:
1558   case Intrinsic::exp:
1559   case Intrinsic::exp2:
1560   case Intrinsic::exp10:
1561   case Intrinsic::sqrt:
1562   case Intrinsic::sin:
1563   case Intrinsic::cos:
1564   case Intrinsic::pow:
1565   case Intrinsic::powi:
1566   case Intrinsic::ldexp:
1567   case Intrinsic::fma:
1568   case Intrinsic::fmuladd:
1569   case Intrinsic::frexp:
1570   case Intrinsic::fptoui_sat:
1571   case Intrinsic::fptosi_sat:
1572   case Intrinsic::convert_from_fp16:
1573   case Intrinsic::convert_to_fp16:
1574   case Intrinsic::amdgcn_cos:
1575   case Intrinsic::amdgcn_cubeid:
1576   case Intrinsic::amdgcn_cubema:
1577   case Intrinsic::amdgcn_cubesc:
1578   case Intrinsic::amdgcn_cubetc:
1579   case Intrinsic::amdgcn_fmul_legacy:
1580   case Intrinsic::amdgcn_fma_legacy:
1581   case Intrinsic::amdgcn_fract:
1582   case Intrinsic::amdgcn_sin:
1583   // The intrinsics below depend on rounding mode in MXCSR.
1584   case Intrinsic::x86_sse_cvtss2si:
1585   case Intrinsic::x86_sse_cvtss2si64:
1586   case Intrinsic::x86_sse_cvttss2si:
1587   case Intrinsic::x86_sse_cvttss2si64:
1588   case Intrinsic::x86_sse2_cvtsd2si:
1589   case Intrinsic::x86_sse2_cvtsd2si64:
1590   case Intrinsic::x86_sse2_cvttsd2si:
1591   case Intrinsic::x86_sse2_cvttsd2si64:
1592   case Intrinsic::x86_avx512_vcvtss2si32:
1593   case Intrinsic::x86_avx512_vcvtss2si64:
1594   case Intrinsic::x86_avx512_cvttss2si:
1595   case Intrinsic::x86_avx512_cvttss2si64:
1596   case Intrinsic::x86_avx512_vcvtsd2si32:
1597   case Intrinsic::x86_avx512_vcvtsd2si64:
1598   case Intrinsic::x86_avx512_cvttsd2si:
1599   case Intrinsic::x86_avx512_cvttsd2si64:
1600   case Intrinsic::x86_avx512_vcvtss2usi32:
1601   case Intrinsic::x86_avx512_vcvtss2usi64:
1602   case Intrinsic::x86_avx512_cvttss2usi:
1603   case Intrinsic::x86_avx512_cvttss2usi64:
1604   case Intrinsic::x86_avx512_vcvtsd2usi32:
1605   case Intrinsic::x86_avx512_vcvtsd2usi64:
1606   case Intrinsic::x86_avx512_cvttsd2usi:
1607   case Intrinsic::x86_avx512_cvttsd2usi64:
1608     return !Call->isStrictFP();
1609 
1610   // Sign operations are actually bitwise operations, they do not raise
1611   // exceptions even for SNANs.
1612   case Intrinsic::fabs:
1613   case Intrinsic::copysign:
1614   case Intrinsic::is_fpclass:
1615   // Non-constrained variants of rounding operations means default FP
1616   // environment, they can be folded in any case.
1617   case Intrinsic::ceil:
1618   case Intrinsic::floor:
1619   case Intrinsic::round:
1620   case Intrinsic::roundeven:
1621   case Intrinsic::trunc:
1622   case Intrinsic::nearbyint:
1623   case Intrinsic::rint:
1624   case Intrinsic::canonicalize:
1625   // Constrained intrinsics can be folded if FP environment is known
1626   // to compiler.
1627   case Intrinsic::experimental_constrained_fma:
1628   case Intrinsic::experimental_constrained_fmuladd:
1629   case Intrinsic::experimental_constrained_fadd:
1630   case Intrinsic::experimental_constrained_fsub:
1631   case Intrinsic::experimental_constrained_fmul:
1632   case Intrinsic::experimental_constrained_fdiv:
1633   case Intrinsic::experimental_constrained_frem:
1634   case Intrinsic::experimental_constrained_ceil:
1635   case Intrinsic::experimental_constrained_floor:
1636   case Intrinsic::experimental_constrained_round:
1637   case Intrinsic::experimental_constrained_roundeven:
1638   case Intrinsic::experimental_constrained_trunc:
1639   case Intrinsic::experimental_constrained_nearbyint:
1640   case Intrinsic::experimental_constrained_rint:
1641   case Intrinsic::experimental_constrained_fcmp:
1642   case Intrinsic::experimental_constrained_fcmps:
1643     return true;
1644   default:
1645     return false;
1646   case Intrinsic::not_intrinsic: break;
1647   }
1648 
1649   if (!F->hasName() || Call->isStrictFP())
1650     return false;
1651 
1652   // In these cases, the check of the length is required.  We don't want to
1653   // return true for a name like "cos\0blah" which strcmp would return equal to
1654   // "cos", but has length 8.
1655   StringRef Name = F->getName();
1656   switch (Name[0]) {
1657   default:
1658     return false;
1659   case 'a':
1660     return Name == "acos" || Name == "acosf" ||
1661            Name == "asin" || Name == "asinf" ||
1662            Name == "atan" || Name == "atanf" ||
1663            Name == "atan2" || Name == "atan2f";
1664   case 'c':
1665     return Name == "ceil" || Name == "ceilf" ||
1666            Name == "cos" || Name == "cosf" ||
1667            Name == "cosh" || Name == "coshf";
1668   case 'e':
1669     return Name == "exp" || Name == "expf" ||
1670            Name == "exp2" || Name == "exp2f";
1671   case 'f':
1672     return Name == "fabs" || Name == "fabsf" ||
1673            Name == "floor" || Name == "floorf" ||
1674            Name == "fmod" || Name == "fmodf";
1675   case 'l':
1676     return Name == "log" || Name == "logf" ||
1677            Name == "log2" || Name == "log2f" ||
1678            Name == "log10" || Name == "log10f";
1679   case 'n':
1680     return Name == "nearbyint" || Name == "nearbyintf";
1681   case 'p':
1682     return Name == "pow" || Name == "powf";
1683   case 'r':
1684     return Name == "remainder" || Name == "remainderf" ||
1685            Name == "rint" || Name == "rintf" ||
1686            Name == "round" || Name == "roundf";
1687   case 's':
1688     return Name == "sin" || Name == "sinf" ||
1689            Name == "sinh" || Name == "sinhf" ||
1690            Name == "sqrt" || Name == "sqrtf";
1691   case 't':
1692     return Name == "tan" || Name == "tanf" ||
1693            Name == "tanh" || Name == "tanhf" ||
1694            Name == "trunc" || Name == "truncf";
1695   case '_':
1696     // Check for various function names that get used for the math functions
1697     // when the header files are preprocessed with the macro
1698     // __FINITE_MATH_ONLY__ enabled.
1699     // The '12' here is the length of the shortest name that can match.
1700     // We need to check the size before looking at Name[1] and Name[2]
1701     // so we may as well check a limit that will eliminate mismatches.
1702     if (Name.size() < 12 || Name[1] != '_')
1703       return false;
1704     switch (Name[2]) {
1705     default:
1706       return false;
1707     case 'a':
1708       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1709              Name == "__asin_finite" || Name == "__asinf_finite" ||
1710              Name == "__atan2_finite" || Name == "__atan2f_finite";
1711     case 'c':
1712       return Name == "__cosh_finite" || Name == "__coshf_finite";
1713     case 'e':
1714       return Name == "__exp_finite" || Name == "__expf_finite" ||
1715              Name == "__exp2_finite" || Name == "__exp2f_finite";
1716     case 'l':
1717       return Name == "__log_finite" || Name == "__logf_finite" ||
1718              Name == "__log10_finite" || Name == "__log10f_finite";
1719     case 'p':
1720       return Name == "__pow_finite" || Name == "__powf_finite";
1721     case 's':
1722       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1723     }
1724   }
1725 }
1726 
1727 namespace {
1728 
1729 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1730   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1731     APFloat APF(V);
1732     bool unused;
1733     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1734     return ConstantFP::get(Ty->getContext(), APF);
1735   }
1736   if (Ty->isDoubleTy())
1737     return ConstantFP::get(Ty->getContext(), APFloat(V));
1738   llvm_unreachable("Can only constant fold half/float/double");
1739 }
1740 
1741 /// Clear the floating-point exception state.
1742 inline void llvm_fenv_clearexcept() {
1743 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1744   feclearexcept(FE_ALL_EXCEPT);
1745 #endif
1746   errno = 0;
1747 }
1748 
1749 /// Test if a floating-point exception was raised.
1750 inline bool llvm_fenv_testexcept() {
1751   int errno_val = errno;
1752   if (errno_val == ERANGE || errno_val == EDOM)
1753     return true;
1754 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1755   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1756     return true;
1757 #endif
1758   return false;
1759 }
1760 
1761 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1762                          Type *Ty) {
1763   llvm_fenv_clearexcept();
1764   double Result = NativeFP(V.convertToDouble());
1765   if (llvm_fenv_testexcept()) {
1766     llvm_fenv_clearexcept();
1767     return nullptr;
1768   }
1769 
1770   return GetConstantFoldFPValue(Result, Ty);
1771 }
1772 
1773 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1774                                const APFloat &V, const APFloat &W, Type *Ty) {
1775   llvm_fenv_clearexcept();
1776   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1777   if (llvm_fenv_testexcept()) {
1778     llvm_fenv_clearexcept();
1779     return nullptr;
1780   }
1781 
1782   return GetConstantFoldFPValue(Result, Ty);
1783 }
1784 
1785 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1786   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1787   if (!VT)
1788     return nullptr;
1789 
1790   // This isn't strictly necessary, but handle the special/common case of zero:
1791   // all integer reductions of a zero input produce zero.
1792   if (isa<ConstantAggregateZero>(Op))
1793     return ConstantInt::get(VT->getElementType(), 0);
1794 
1795   // This is the same as the underlying binops - poison propagates.
1796   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1797     return PoisonValue::get(VT->getElementType());
1798 
1799   // TODO: Handle undef.
1800   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1801     return nullptr;
1802 
1803   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1804   if (!EltC)
1805     return nullptr;
1806 
1807   APInt Acc = EltC->getValue();
1808   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1809     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1810       return nullptr;
1811     const APInt &X = EltC->getValue();
1812     switch (IID) {
1813     case Intrinsic::vector_reduce_add:
1814       Acc = Acc + X;
1815       break;
1816     case Intrinsic::vector_reduce_mul:
1817       Acc = Acc * X;
1818       break;
1819     case Intrinsic::vector_reduce_and:
1820       Acc = Acc & X;
1821       break;
1822     case Intrinsic::vector_reduce_or:
1823       Acc = Acc | X;
1824       break;
1825     case Intrinsic::vector_reduce_xor:
1826       Acc = Acc ^ X;
1827       break;
1828     case Intrinsic::vector_reduce_smin:
1829       Acc = APIntOps::smin(Acc, X);
1830       break;
1831     case Intrinsic::vector_reduce_smax:
1832       Acc = APIntOps::smax(Acc, X);
1833       break;
1834     case Intrinsic::vector_reduce_umin:
1835       Acc = APIntOps::umin(Acc, X);
1836       break;
1837     case Intrinsic::vector_reduce_umax:
1838       Acc = APIntOps::umax(Acc, X);
1839       break;
1840     }
1841   }
1842 
1843   return ConstantInt::get(Op->getContext(), Acc);
1844 }
1845 
1846 /// Attempt to fold an SSE floating point to integer conversion of a constant
1847 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1848 /// used (toward nearest, ties to even). This matches the behavior of the
1849 /// non-truncating SSE instructions in the default rounding mode. The desired
1850 /// integer type Ty is used to select how many bits are available for the
1851 /// result. Returns null if the conversion cannot be performed, otherwise
1852 /// returns the Constant value resulting from the conversion.
1853 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1854                                       Type *Ty, bool IsSigned) {
1855   // All of these conversion intrinsics form an integer of at most 64bits.
1856   unsigned ResultWidth = Ty->getIntegerBitWidth();
1857   assert(ResultWidth <= 64 &&
1858          "Can only constant fold conversions to 64 and 32 bit ints");
1859 
1860   uint64_t UIntVal;
1861   bool isExact = false;
1862   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1863                                               : APFloat::rmNearestTiesToEven;
1864   APFloat::opStatus status =
1865       Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1866                            IsSigned, mode, &isExact);
1867   if (status != APFloat::opOK &&
1868       (!roundTowardZero || status != APFloat::opInexact))
1869     return nullptr;
1870   return ConstantInt::get(Ty, UIntVal, IsSigned);
1871 }
1872 
1873 double getValueAsDouble(ConstantFP *Op) {
1874   Type *Ty = Op->getType();
1875 
1876   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1877     return Op->getValueAPF().convertToDouble();
1878 
1879   bool unused;
1880   APFloat APF = Op->getValueAPF();
1881   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1882   return APF.convertToDouble();
1883 }
1884 
1885 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1886   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1887     C = &CI->getValue();
1888     return true;
1889   }
1890   if (isa<UndefValue>(Op)) {
1891     C = nullptr;
1892     return true;
1893   }
1894   return false;
1895 }
1896 
1897 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1898 /// to be folded.
1899 ///
1900 /// \param CI Constrained intrinsic call.
1901 /// \param St Exception flags raised during constant evaluation.
1902 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1903                                APFloat::opStatus St) {
1904   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1905   std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1906 
1907   // If the operation does not change exception status flags, it is safe
1908   // to fold.
1909   if (St == APFloat::opStatus::opOK)
1910     return true;
1911 
1912   // If evaluation raised FP exception, the result can depend on rounding
1913   // mode. If the latter is unknown, folding is not possible.
1914   if (ORM && *ORM == RoundingMode::Dynamic)
1915     return false;
1916 
1917   // If FP exceptions are ignored, fold the call, even if such exception is
1918   // raised.
1919   if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1920     return true;
1921 
1922   // Leave the calculation for runtime so that exception flags be correctly set
1923   // in hardware.
1924   return false;
1925 }
1926 
1927 /// Returns the rounding mode that should be used for constant evaluation.
1928 static RoundingMode
1929 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1930   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1931   if (!ORM || *ORM == RoundingMode::Dynamic)
1932     // Even if the rounding mode is unknown, try evaluating the operation.
1933     // If it does not raise inexact exception, rounding was not applied,
1934     // so the result is exact and does not depend on rounding mode. Whether
1935     // other FP exceptions are raised, it does not depend on rounding mode.
1936     return RoundingMode::NearestTiesToEven;
1937   return *ORM;
1938 }
1939 
1940 /// Try to constant fold llvm.canonicalize for the given caller and value.
1941 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1942                                           const APFloat &Src) {
1943   // Zero, positive and negative, is always OK to fold.
1944   if (Src.isZero()) {
1945     // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1946     return ConstantFP::get(
1947         CI->getContext(),
1948         APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1949   }
1950 
1951   if (!Ty->isIEEELikeFPTy())
1952     return nullptr;
1953 
1954   // Zero is always canonical and the sign must be preserved.
1955   //
1956   // Denorms and nans may have special encodings, but it should be OK to fold a
1957   // totally average number.
1958   if (Src.isNormal() || Src.isInfinity())
1959     return ConstantFP::get(CI->getContext(), Src);
1960 
1961   if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1962     DenormalMode DenormMode =
1963         CI->getFunction()->getDenormalMode(Src.getSemantics());
1964 
1965     if (DenormMode == DenormalMode::getIEEE())
1966       return ConstantFP::get(CI->getContext(), Src);
1967 
1968     if (DenormMode.Input == DenormalMode::Dynamic)
1969       return nullptr;
1970 
1971     // If we know if either input or output is flushed, we can fold.
1972     if ((DenormMode.Input == DenormalMode::Dynamic &&
1973          DenormMode.Output == DenormalMode::IEEE) ||
1974         (DenormMode.Input == DenormalMode::IEEE &&
1975          DenormMode.Output == DenormalMode::Dynamic))
1976       return nullptr;
1977 
1978     bool IsPositive =
1979         (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
1980          (DenormMode.Output == DenormalMode::PositiveZero &&
1981           DenormMode.Input == DenormalMode::IEEE));
1982 
1983     return ConstantFP::get(CI->getContext(),
1984                            APFloat::getZero(Src.getSemantics(), !IsPositive));
1985   }
1986 
1987   return nullptr;
1988 }
1989 
1990 static Constant *ConstantFoldScalarCall1(StringRef Name,
1991                                          Intrinsic::ID IntrinsicID,
1992                                          Type *Ty,
1993                                          ArrayRef<Constant *> Operands,
1994                                          const TargetLibraryInfo *TLI,
1995                                          const CallBase *Call) {
1996   assert(Operands.size() == 1 && "Wrong number of operands.");
1997 
1998   if (IntrinsicID == Intrinsic::is_constant) {
1999     // We know we have a "Constant" argument. But we want to only
2000     // return true for manifest constants, not those that depend on
2001     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2002     if (Operands[0]->isManifestConstant())
2003       return ConstantInt::getTrue(Ty->getContext());
2004     return nullptr;
2005   }
2006 
2007   if (isa<PoisonValue>(Operands[0])) {
2008     // TODO: All of these operations should probably propagate poison.
2009     if (IntrinsicID == Intrinsic::canonicalize)
2010       return PoisonValue::get(Ty);
2011   }
2012 
2013   if (isa<UndefValue>(Operands[0])) {
2014     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2015     // ctpop() is between 0 and bitwidth, pick 0 for undef.
2016     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2017     if (IntrinsicID == Intrinsic::cos ||
2018         IntrinsicID == Intrinsic::ctpop ||
2019         IntrinsicID == Intrinsic::fptoui_sat ||
2020         IntrinsicID == Intrinsic::fptosi_sat ||
2021         IntrinsicID == Intrinsic::canonicalize)
2022       return Constant::getNullValue(Ty);
2023     if (IntrinsicID == Intrinsic::bswap ||
2024         IntrinsicID == Intrinsic::bitreverse ||
2025         IntrinsicID == Intrinsic::launder_invariant_group ||
2026         IntrinsicID == Intrinsic::strip_invariant_group)
2027       return Operands[0];
2028   }
2029 
2030   if (isa<ConstantPointerNull>(Operands[0])) {
2031     // launder(null) == null == strip(null) iff in addrspace 0
2032     if (IntrinsicID == Intrinsic::launder_invariant_group ||
2033         IntrinsicID == Intrinsic::strip_invariant_group) {
2034       // If instruction is not yet put in a basic block (e.g. when cloning
2035       // a function during inlining), Call's caller may not be available.
2036       // So check Call's BB first before querying Call->getCaller.
2037       const Function *Caller =
2038           Call->getParent() ? Call->getCaller() : nullptr;
2039       if (Caller &&
2040           !NullPointerIsDefined(
2041               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2042         return Operands[0];
2043       }
2044       return nullptr;
2045     }
2046   }
2047 
2048   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2049     if (IntrinsicID == Intrinsic::convert_to_fp16) {
2050       APFloat Val(Op->getValueAPF());
2051 
2052       bool lost = false;
2053       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2054 
2055       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2056     }
2057 
2058     APFloat U = Op->getValueAPF();
2059 
2060     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2061         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2062       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2063 
2064       if (U.isNaN())
2065         return nullptr;
2066 
2067       unsigned Width = Ty->getIntegerBitWidth();
2068       APSInt Int(Width, !Signed);
2069       bool IsExact = false;
2070       APFloat::opStatus Status =
2071           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2072 
2073       if (Status == APFloat::opOK || Status == APFloat::opInexact)
2074         return ConstantInt::get(Ty, Int);
2075 
2076       return nullptr;
2077     }
2078 
2079     if (IntrinsicID == Intrinsic::fptoui_sat ||
2080         IntrinsicID == Intrinsic::fptosi_sat) {
2081       // convertToInteger() already has the desired saturation semantics.
2082       APSInt Int(Ty->getIntegerBitWidth(),
2083                  IntrinsicID == Intrinsic::fptoui_sat);
2084       bool IsExact;
2085       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2086       return ConstantInt::get(Ty, Int);
2087     }
2088 
2089     if (IntrinsicID == Intrinsic::canonicalize)
2090       return constantFoldCanonicalize(Ty, Call, U);
2091 
2092     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2093       return nullptr;
2094 
2095     // Use internal versions of these intrinsics.
2096 
2097     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2098       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2099       return ConstantFP::get(Ty->getContext(), U);
2100     }
2101 
2102     if (IntrinsicID == Intrinsic::round) {
2103       U.roundToIntegral(APFloat::rmNearestTiesToAway);
2104       return ConstantFP::get(Ty->getContext(), U);
2105     }
2106 
2107     if (IntrinsicID == Intrinsic::roundeven) {
2108       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2109       return ConstantFP::get(Ty->getContext(), U);
2110     }
2111 
2112     if (IntrinsicID == Intrinsic::ceil) {
2113       U.roundToIntegral(APFloat::rmTowardPositive);
2114       return ConstantFP::get(Ty->getContext(), U);
2115     }
2116 
2117     if (IntrinsicID == Intrinsic::floor) {
2118       U.roundToIntegral(APFloat::rmTowardNegative);
2119       return ConstantFP::get(Ty->getContext(), U);
2120     }
2121 
2122     if (IntrinsicID == Intrinsic::trunc) {
2123       U.roundToIntegral(APFloat::rmTowardZero);
2124       return ConstantFP::get(Ty->getContext(), U);
2125     }
2126 
2127     if (IntrinsicID == Intrinsic::fabs) {
2128       U.clearSign();
2129       return ConstantFP::get(Ty->getContext(), U);
2130     }
2131 
2132     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2133       // The v_fract instruction behaves like the OpenCL spec, which defines
2134       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2135       //   there to prevent fract(-small) from returning 1.0. It returns the
2136       //   largest positive floating-point number less than 1.0."
2137       APFloat FloorU(U);
2138       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2139       APFloat FractU(U - FloorU);
2140       APFloat AlmostOne(U.getSemantics(), 1);
2141       AlmostOne.next(/*nextDown*/ true);
2142       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2143     }
2144 
2145     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2146     // raise FP exceptions, unless the argument is signaling NaN.
2147 
2148     std::optional<APFloat::roundingMode> RM;
2149     switch (IntrinsicID) {
2150     default:
2151       break;
2152     case Intrinsic::experimental_constrained_nearbyint:
2153     case Intrinsic::experimental_constrained_rint: {
2154       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2155       RM = CI->getRoundingMode();
2156       if (!RM || *RM == RoundingMode::Dynamic)
2157         return nullptr;
2158       break;
2159     }
2160     case Intrinsic::experimental_constrained_round:
2161       RM = APFloat::rmNearestTiesToAway;
2162       break;
2163     case Intrinsic::experimental_constrained_ceil:
2164       RM = APFloat::rmTowardPositive;
2165       break;
2166     case Intrinsic::experimental_constrained_floor:
2167       RM = APFloat::rmTowardNegative;
2168       break;
2169     case Intrinsic::experimental_constrained_trunc:
2170       RM = APFloat::rmTowardZero;
2171       break;
2172     }
2173     if (RM) {
2174       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2175       if (U.isFinite()) {
2176         APFloat::opStatus St = U.roundToIntegral(*RM);
2177         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2178             St == APFloat::opInexact) {
2179           std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2180           if (EB && *EB == fp::ebStrict)
2181             return nullptr;
2182         }
2183       } else if (U.isSignaling()) {
2184         std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2185         if (EB && *EB != fp::ebIgnore)
2186           return nullptr;
2187         U = APFloat::getQNaN(U.getSemantics());
2188       }
2189       return ConstantFP::get(Ty->getContext(), U);
2190     }
2191 
2192     /// We only fold functions with finite arguments. Folding NaN and inf is
2193     /// likely to be aborted with an exception anyway, and some host libms
2194     /// have known errors raising exceptions.
2195     if (!U.isFinite())
2196       return nullptr;
2197 
2198     /// Currently APFloat versions of these functions do not exist, so we use
2199     /// the host native double versions.  Float versions are not called
2200     /// directly but for all these it is true (float)(f((double)arg)) ==
2201     /// f(arg).  Long double not supported yet.
2202     const APFloat &APF = Op->getValueAPF();
2203 
2204     switch (IntrinsicID) {
2205       default: break;
2206       case Intrinsic::log:
2207         return ConstantFoldFP(log, APF, Ty);
2208       case Intrinsic::log2:
2209         // TODO: What about hosts that lack a C99 library?
2210         return ConstantFoldFP(log2, APF, Ty);
2211       case Intrinsic::log10:
2212         // TODO: What about hosts that lack a C99 library?
2213         return ConstantFoldFP(log10, APF, Ty);
2214       case Intrinsic::exp:
2215         return ConstantFoldFP(exp, APF, Ty);
2216       case Intrinsic::exp2:
2217         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2218         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2219       case Intrinsic::exp10:
2220         // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2221         return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2222       case Intrinsic::sin:
2223         return ConstantFoldFP(sin, APF, Ty);
2224       case Intrinsic::cos:
2225         return ConstantFoldFP(cos, APF, Ty);
2226       case Intrinsic::sqrt:
2227         return ConstantFoldFP(sqrt, APF, Ty);
2228       case Intrinsic::amdgcn_cos:
2229       case Intrinsic::amdgcn_sin: {
2230         double V = getValueAsDouble(Op);
2231         if (V < -256.0 || V > 256.0)
2232           // The gfx8 and gfx9 architectures handle arguments outside the range
2233           // [-256, 256] differently. This should be a rare case so bail out
2234           // rather than trying to handle the difference.
2235           return nullptr;
2236         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2237         double V4 = V * 4.0;
2238         if (V4 == floor(V4)) {
2239           // Force exact results for quarter-integer inputs.
2240           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2241           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2242         } else {
2243           if (IsCos)
2244             V = cos(V * 2.0 * numbers::pi);
2245           else
2246             V = sin(V * 2.0 * numbers::pi);
2247         }
2248         return GetConstantFoldFPValue(V, Ty);
2249       }
2250     }
2251 
2252     if (!TLI)
2253       return nullptr;
2254 
2255     LibFunc Func = NotLibFunc;
2256     if (!TLI->getLibFunc(Name, Func))
2257       return nullptr;
2258 
2259     switch (Func) {
2260     default:
2261       break;
2262     case LibFunc_acos:
2263     case LibFunc_acosf:
2264     case LibFunc_acos_finite:
2265     case LibFunc_acosf_finite:
2266       if (TLI->has(Func))
2267         return ConstantFoldFP(acos, APF, Ty);
2268       break;
2269     case LibFunc_asin:
2270     case LibFunc_asinf:
2271     case LibFunc_asin_finite:
2272     case LibFunc_asinf_finite:
2273       if (TLI->has(Func))
2274         return ConstantFoldFP(asin, APF, Ty);
2275       break;
2276     case LibFunc_atan:
2277     case LibFunc_atanf:
2278       if (TLI->has(Func))
2279         return ConstantFoldFP(atan, APF, Ty);
2280       break;
2281     case LibFunc_ceil:
2282     case LibFunc_ceilf:
2283       if (TLI->has(Func)) {
2284         U.roundToIntegral(APFloat::rmTowardPositive);
2285         return ConstantFP::get(Ty->getContext(), U);
2286       }
2287       break;
2288     case LibFunc_cos:
2289     case LibFunc_cosf:
2290       if (TLI->has(Func))
2291         return ConstantFoldFP(cos, APF, Ty);
2292       break;
2293     case LibFunc_cosh:
2294     case LibFunc_coshf:
2295     case LibFunc_cosh_finite:
2296     case LibFunc_coshf_finite:
2297       if (TLI->has(Func))
2298         return ConstantFoldFP(cosh, APF, Ty);
2299       break;
2300     case LibFunc_exp:
2301     case LibFunc_expf:
2302     case LibFunc_exp_finite:
2303     case LibFunc_expf_finite:
2304       if (TLI->has(Func))
2305         return ConstantFoldFP(exp, APF, Ty);
2306       break;
2307     case LibFunc_exp2:
2308     case LibFunc_exp2f:
2309     case LibFunc_exp2_finite:
2310     case LibFunc_exp2f_finite:
2311       if (TLI->has(Func))
2312         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2313         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2314       break;
2315     case LibFunc_fabs:
2316     case LibFunc_fabsf:
2317       if (TLI->has(Func)) {
2318         U.clearSign();
2319         return ConstantFP::get(Ty->getContext(), U);
2320       }
2321       break;
2322     case LibFunc_floor:
2323     case LibFunc_floorf:
2324       if (TLI->has(Func)) {
2325         U.roundToIntegral(APFloat::rmTowardNegative);
2326         return ConstantFP::get(Ty->getContext(), U);
2327       }
2328       break;
2329     case LibFunc_log:
2330     case LibFunc_logf:
2331     case LibFunc_log_finite:
2332     case LibFunc_logf_finite:
2333       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2334         return ConstantFoldFP(log, APF, Ty);
2335       break;
2336     case LibFunc_log2:
2337     case LibFunc_log2f:
2338     case LibFunc_log2_finite:
2339     case LibFunc_log2f_finite:
2340       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2341         // TODO: What about hosts that lack a C99 library?
2342         return ConstantFoldFP(log2, APF, Ty);
2343       break;
2344     case LibFunc_log10:
2345     case LibFunc_log10f:
2346     case LibFunc_log10_finite:
2347     case LibFunc_log10f_finite:
2348       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2349         // TODO: What about hosts that lack a C99 library?
2350         return ConstantFoldFP(log10, APF, Ty);
2351       break;
2352     case LibFunc_nearbyint:
2353     case LibFunc_nearbyintf:
2354     case LibFunc_rint:
2355     case LibFunc_rintf:
2356       if (TLI->has(Func)) {
2357         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2358         return ConstantFP::get(Ty->getContext(), U);
2359       }
2360       break;
2361     case LibFunc_round:
2362     case LibFunc_roundf:
2363       if (TLI->has(Func)) {
2364         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2365         return ConstantFP::get(Ty->getContext(), U);
2366       }
2367       break;
2368     case LibFunc_sin:
2369     case LibFunc_sinf:
2370       if (TLI->has(Func))
2371         return ConstantFoldFP(sin, APF, Ty);
2372       break;
2373     case LibFunc_sinh:
2374     case LibFunc_sinhf:
2375     case LibFunc_sinh_finite:
2376     case LibFunc_sinhf_finite:
2377       if (TLI->has(Func))
2378         return ConstantFoldFP(sinh, APF, Ty);
2379       break;
2380     case LibFunc_sqrt:
2381     case LibFunc_sqrtf:
2382       if (!APF.isNegative() && TLI->has(Func))
2383         return ConstantFoldFP(sqrt, APF, Ty);
2384       break;
2385     case LibFunc_tan:
2386     case LibFunc_tanf:
2387       if (TLI->has(Func))
2388         return ConstantFoldFP(tan, APF, Ty);
2389       break;
2390     case LibFunc_tanh:
2391     case LibFunc_tanhf:
2392       if (TLI->has(Func))
2393         return ConstantFoldFP(tanh, APF, Ty);
2394       break;
2395     case LibFunc_trunc:
2396     case LibFunc_truncf:
2397       if (TLI->has(Func)) {
2398         U.roundToIntegral(APFloat::rmTowardZero);
2399         return ConstantFP::get(Ty->getContext(), U);
2400       }
2401       break;
2402     }
2403     return nullptr;
2404   }
2405 
2406   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2407     switch (IntrinsicID) {
2408     case Intrinsic::bswap:
2409       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2410     case Intrinsic::ctpop:
2411       return ConstantInt::get(Ty, Op->getValue().popcount());
2412     case Intrinsic::bitreverse:
2413       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2414     case Intrinsic::convert_from_fp16: {
2415       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2416 
2417       bool lost = false;
2418       APFloat::opStatus status = Val.convert(
2419           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2420 
2421       // Conversion is always precise.
2422       (void)status;
2423       assert(status != APFloat::opInexact && !lost &&
2424              "Precision lost during fp16 constfolding");
2425 
2426       return ConstantFP::get(Ty->getContext(), Val);
2427     }
2428 
2429     case Intrinsic::amdgcn_s_wqm: {
2430       uint64_t Val = Op->getZExtValue();
2431       Val |= (Val & 0x5555555555555555ULL) << 1 |
2432              ((Val >> 1) & 0x5555555555555555ULL);
2433       Val |= (Val & 0x3333333333333333ULL) << 2 |
2434              ((Val >> 2) & 0x3333333333333333ULL);
2435       return ConstantInt::get(Ty, Val);
2436     }
2437 
2438     case Intrinsic::amdgcn_s_quadmask: {
2439       uint64_t Val = Op->getZExtValue();
2440       uint64_t QuadMask = 0;
2441       for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
2442         if (!(Val & 0xF))
2443           continue;
2444 
2445         QuadMask |= (1ULL << I);
2446       }
2447       return ConstantInt::get(Ty, QuadMask);
2448     }
2449 
2450     case Intrinsic::amdgcn_s_bitreplicate: {
2451       uint64_t Val = Op->getZExtValue();
2452       Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
2453       Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
2454       Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
2455       Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
2456       Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
2457       Val = Val | Val << 1;
2458       return ConstantInt::get(Ty, Val);
2459     }
2460 
2461     default:
2462       return nullptr;
2463     }
2464   }
2465 
2466   switch (IntrinsicID) {
2467   default: break;
2468   case Intrinsic::vector_reduce_add:
2469   case Intrinsic::vector_reduce_mul:
2470   case Intrinsic::vector_reduce_and:
2471   case Intrinsic::vector_reduce_or:
2472   case Intrinsic::vector_reduce_xor:
2473   case Intrinsic::vector_reduce_smin:
2474   case Intrinsic::vector_reduce_smax:
2475   case Intrinsic::vector_reduce_umin:
2476   case Intrinsic::vector_reduce_umax:
2477     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2478       return C;
2479     break;
2480   }
2481 
2482   // Support ConstantVector in case we have an Undef in the top.
2483   if (isa<ConstantVector>(Operands[0]) ||
2484       isa<ConstantDataVector>(Operands[0])) {
2485     auto *Op = cast<Constant>(Operands[0]);
2486     switch (IntrinsicID) {
2487     default: break;
2488     case Intrinsic::x86_sse_cvtss2si:
2489     case Intrinsic::x86_sse_cvtss2si64:
2490     case Intrinsic::x86_sse2_cvtsd2si:
2491     case Intrinsic::x86_sse2_cvtsd2si64:
2492       if (ConstantFP *FPOp =
2493               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2494         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2495                                            /*roundTowardZero=*/false, Ty,
2496                                            /*IsSigned*/true);
2497       break;
2498     case Intrinsic::x86_sse_cvttss2si:
2499     case Intrinsic::x86_sse_cvttss2si64:
2500     case Intrinsic::x86_sse2_cvttsd2si:
2501     case Intrinsic::x86_sse2_cvttsd2si64:
2502       if (ConstantFP *FPOp =
2503               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2504         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2505                                            /*roundTowardZero=*/true, Ty,
2506                                            /*IsSigned*/true);
2507       break;
2508     }
2509   }
2510 
2511   return nullptr;
2512 }
2513 
2514 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2515                                  const ConstrainedFPIntrinsic *Call) {
2516   APFloat::opStatus St = APFloat::opOK;
2517   auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2518   FCmpInst::Predicate Cond = FCmp->getPredicate();
2519   if (FCmp->isSignaling()) {
2520     if (Op1.isNaN() || Op2.isNaN())
2521       St = APFloat::opInvalidOp;
2522   } else {
2523     if (Op1.isSignaling() || Op2.isSignaling())
2524       St = APFloat::opInvalidOp;
2525   }
2526   bool Result = FCmpInst::compare(Op1, Op2, Cond);
2527   if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2528     return ConstantInt::get(Call->getType()->getScalarType(), Result);
2529   return nullptr;
2530 }
2531 
2532 static Constant *ConstantFoldScalarCall2(StringRef Name,
2533                                          Intrinsic::ID IntrinsicID,
2534                                          Type *Ty,
2535                                          ArrayRef<Constant *> Operands,
2536                                          const TargetLibraryInfo *TLI,
2537                                          const CallBase *Call) {
2538   assert(Operands.size() == 2 && "Wrong number of operands.");
2539 
2540   if (Ty->isFloatingPointTy()) {
2541     // TODO: We should have undef handling for all of the FP intrinsics that
2542     //       are attempted to be folded in this function.
2543     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2544     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2545     switch (IntrinsicID) {
2546     case Intrinsic::maxnum:
2547     case Intrinsic::minnum:
2548     case Intrinsic::maximum:
2549     case Intrinsic::minimum:
2550       // If one argument is undef, return the other argument.
2551       if (IsOp0Undef)
2552         return Operands[1];
2553       if (IsOp1Undef)
2554         return Operands[0];
2555       break;
2556     }
2557   }
2558 
2559   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2560     const APFloat &Op1V = Op1->getValueAPF();
2561 
2562     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2563       if (Op2->getType() != Op1->getType())
2564         return nullptr;
2565       const APFloat &Op2V = Op2->getValueAPF();
2566 
2567       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2568         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2569         APFloat Res = Op1V;
2570         APFloat::opStatus St;
2571         switch (IntrinsicID) {
2572         default:
2573           return nullptr;
2574         case Intrinsic::experimental_constrained_fadd:
2575           St = Res.add(Op2V, RM);
2576           break;
2577         case Intrinsic::experimental_constrained_fsub:
2578           St = Res.subtract(Op2V, RM);
2579           break;
2580         case Intrinsic::experimental_constrained_fmul:
2581           St = Res.multiply(Op2V, RM);
2582           break;
2583         case Intrinsic::experimental_constrained_fdiv:
2584           St = Res.divide(Op2V, RM);
2585           break;
2586         case Intrinsic::experimental_constrained_frem:
2587           St = Res.mod(Op2V);
2588           break;
2589         case Intrinsic::experimental_constrained_fcmp:
2590         case Intrinsic::experimental_constrained_fcmps:
2591           return evaluateCompare(Op1V, Op2V, ConstrIntr);
2592         }
2593         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2594                                St))
2595           return ConstantFP::get(Ty->getContext(), Res);
2596         return nullptr;
2597       }
2598 
2599       switch (IntrinsicID) {
2600       default:
2601         break;
2602       case Intrinsic::copysign:
2603         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2604       case Intrinsic::minnum:
2605         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2606       case Intrinsic::maxnum:
2607         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2608       case Intrinsic::minimum:
2609         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2610       case Intrinsic::maximum:
2611         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2612       }
2613 
2614       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2615         return nullptr;
2616 
2617       switch (IntrinsicID) {
2618       default:
2619         break;
2620       case Intrinsic::pow:
2621         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2622       case Intrinsic::amdgcn_fmul_legacy:
2623         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2624         // NaN or infinity, gives +0.0.
2625         if (Op1V.isZero() || Op2V.isZero())
2626           return ConstantFP::getZero(Ty);
2627         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2628       }
2629 
2630       if (!TLI)
2631         return nullptr;
2632 
2633       LibFunc Func = NotLibFunc;
2634       if (!TLI->getLibFunc(Name, Func))
2635         return nullptr;
2636 
2637       switch (Func) {
2638       default:
2639         break;
2640       case LibFunc_pow:
2641       case LibFunc_powf:
2642       case LibFunc_pow_finite:
2643       case LibFunc_powf_finite:
2644         if (TLI->has(Func))
2645           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2646         break;
2647       case LibFunc_fmod:
2648       case LibFunc_fmodf:
2649         if (TLI->has(Func)) {
2650           APFloat V = Op1->getValueAPF();
2651           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2652             return ConstantFP::get(Ty->getContext(), V);
2653         }
2654         break;
2655       case LibFunc_remainder:
2656       case LibFunc_remainderf:
2657         if (TLI->has(Func)) {
2658           APFloat V = Op1->getValueAPF();
2659           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2660             return ConstantFP::get(Ty->getContext(), V);
2661         }
2662         break;
2663       case LibFunc_atan2:
2664       case LibFunc_atan2f:
2665         // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2666         // (Solaris), so we do not assume a known result for that.
2667         if (Op1V.isZero() && Op2V.isZero())
2668           return nullptr;
2669         [[fallthrough]];
2670       case LibFunc_atan2_finite:
2671       case LibFunc_atan2f_finite:
2672         if (TLI->has(Func))
2673           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2674         break;
2675       }
2676     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2677       switch (IntrinsicID) {
2678       case Intrinsic::ldexp: {
2679         return ConstantFP::get(
2680             Ty->getContext(),
2681             scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
2682       }
2683       case Intrinsic::is_fpclass: {
2684         FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
2685         bool Result =
2686           ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2687           ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2688           ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
2689           ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2690           ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2691           ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2692           ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2693           ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2694           ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2695           ((Mask & fcPosInf) && Op1V.isPosInfinity());
2696         return ConstantInt::get(Ty, Result);
2697       }
2698       default:
2699         break;
2700       }
2701 
2702       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2703         return nullptr;
2704       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2705         return ConstantFP::get(
2706             Ty->getContext(),
2707             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2708                                     (int)Op2C->getZExtValue())));
2709       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2710         return ConstantFP::get(
2711             Ty->getContext(),
2712             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2713                                     (int)Op2C->getZExtValue())));
2714       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2715         return ConstantFP::get(
2716             Ty->getContext(),
2717             APFloat((double)std::pow(Op1V.convertToDouble(),
2718                                      (int)Op2C->getZExtValue())));
2719     }
2720     return nullptr;
2721   }
2722 
2723   if (Operands[0]->getType()->isIntegerTy() &&
2724       Operands[1]->getType()->isIntegerTy()) {
2725     const APInt *C0, *C1;
2726     if (!getConstIntOrUndef(Operands[0], C0) ||
2727         !getConstIntOrUndef(Operands[1], C1))
2728       return nullptr;
2729 
2730     switch (IntrinsicID) {
2731     default: break;
2732     case Intrinsic::smax:
2733     case Intrinsic::smin:
2734     case Intrinsic::umax:
2735     case Intrinsic::umin:
2736       // This is the same as for binary ops - poison propagates.
2737       // TODO: Poison handling should be consolidated.
2738       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2739         return PoisonValue::get(Ty);
2740 
2741       if (!C0 && !C1)
2742         return UndefValue::get(Ty);
2743       if (!C0 || !C1)
2744         return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2745       return ConstantInt::get(
2746           Ty, ICmpInst::compare(*C0, *C1,
2747                                 MinMaxIntrinsic::getPredicate(IntrinsicID))
2748                   ? *C0
2749                   : *C1);
2750 
2751     case Intrinsic::usub_with_overflow:
2752     case Intrinsic::ssub_with_overflow:
2753       // X - undef -> { 0, false }
2754       // undef - X -> { 0, false }
2755       if (!C0 || !C1)
2756         return Constant::getNullValue(Ty);
2757       [[fallthrough]];
2758     case Intrinsic::uadd_with_overflow:
2759     case Intrinsic::sadd_with_overflow:
2760       // X + undef -> { -1, false }
2761       // undef + x -> { -1, false }
2762       if (!C0 || !C1) {
2763         return ConstantStruct::get(
2764             cast<StructType>(Ty),
2765             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2766              Constant::getNullValue(Ty->getStructElementType(1))});
2767       }
2768       [[fallthrough]];
2769     case Intrinsic::smul_with_overflow:
2770     case Intrinsic::umul_with_overflow: {
2771       // undef * X -> { 0, false }
2772       // X * undef -> { 0, false }
2773       if (!C0 || !C1)
2774         return Constant::getNullValue(Ty);
2775 
2776       APInt Res;
2777       bool Overflow;
2778       switch (IntrinsicID) {
2779       default: llvm_unreachable("Invalid case");
2780       case Intrinsic::sadd_with_overflow:
2781         Res = C0->sadd_ov(*C1, Overflow);
2782         break;
2783       case Intrinsic::uadd_with_overflow:
2784         Res = C0->uadd_ov(*C1, Overflow);
2785         break;
2786       case Intrinsic::ssub_with_overflow:
2787         Res = C0->ssub_ov(*C1, Overflow);
2788         break;
2789       case Intrinsic::usub_with_overflow:
2790         Res = C0->usub_ov(*C1, Overflow);
2791         break;
2792       case Intrinsic::smul_with_overflow:
2793         Res = C0->smul_ov(*C1, Overflow);
2794         break;
2795       case Intrinsic::umul_with_overflow:
2796         Res = C0->umul_ov(*C1, Overflow);
2797         break;
2798       }
2799       Constant *Ops[] = {
2800         ConstantInt::get(Ty->getContext(), Res),
2801         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2802       };
2803       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2804     }
2805     case Intrinsic::uadd_sat:
2806     case Intrinsic::sadd_sat:
2807       // This is the same as for binary ops - poison propagates.
2808       // TODO: Poison handling should be consolidated.
2809       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2810         return PoisonValue::get(Ty);
2811 
2812       if (!C0 && !C1)
2813         return UndefValue::get(Ty);
2814       if (!C0 || !C1)
2815         return Constant::getAllOnesValue(Ty);
2816       if (IntrinsicID == Intrinsic::uadd_sat)
2817         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2818       else
2819         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2820     case Intrinsic::usub_sat:
2821     case Intrinsic::ssub_sat:
2822       // This is the same as for binary ops - poison propagates.
2823       // TODO: Poison handling should be consolidated.
2824       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2825         return PoisonValue::get(Ty);
2826 
2827       if (!C0 && !C1)
2828         return UndefValue::get(Ty);
2829       if (!C0 || !C1)
2830         return Constant::getNullValue(Ty);
2831       if (IntrinsicID == Intrinsic::usub_sat)
2832         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2833       else
2834         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2835     case Intrinsic::cttz:
2836     case Intrinsic::ctlz:
2837       assert(C1 && "Must be constant int");
2838 
2839       // cttz(0, 1) and ctlz(0, 1) are poison.
2840       if (C1->isOne() && (!C0 || C0->isZero()))
2841         return PoisonValue::get(Ty);
2842       if (!C0)
2843         return Constant::getNullValue(Ty);
2844       if (IntrinsicID == Intrinsic::cttz)
2845         return ConstantInt::get(Ty, C0->countr_zero());
2846       else
2847         return ConstantInt::get(Ty, C0->countl_zero());
2848 
2849     case Intrinsic::abs:
2850       assert(C1 && "Must be constant int");
2851       assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2852 
2853       // Undef or minimum val operand with poison min --> undef
2854       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2855         return UndefValue::get(Ty);
2856 
2857       // Undef operand with no poison min --> 0 (sign bit must be clear)
2858       if (!C0)
2859         return Constant::getNullValue(Ty);
2860 
2861       return ConstantInt::get(Ty, C0->abs());
2862     case Intrinsic::amdgcn_wave_reduce_umin:
2863     case Intrinsic::amdgcn_wave_reduce_umax:
2864       return dyn_cast<Constant>(Operands[0]);
2865     }
2866 
2867     return nullptr;
2868   }
2869 
2870   // Support ConstantVector in case we have an Undef in the top.
2871   if ((isa<ConstantVector>(Operands[0]) ||
2872        isa<ConstantDataVector>(Operands[0])) &&
2873       // Check for default rounding mode.
2874       // FIXME: Support other rounding modes?
2875       isa<ConstantInt>(Operands[1]) &&
2876       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2877     auto *Op = cast<Constant>(Operands[0]);
2878     switch (IntrinsicID) {
2879     default: break;
2880     case Intrinsic::x86_avx512_vcvtss2si32:
2881     case Intrinsic::x86_avx512_vcvtss2si64:
2882     case Intrinsic::x86_avx512_vcvtsd2si32:
2883     case Intrinsic::x86_avx512_vcvtsd2si64:
2884       if (ConstantFP *FPOp =
2885               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2886         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2887                                            /*roundTowardZero=*/false, Ty,
2888                                            /*IsSigned*/true);
2889       break;
2890     case Intrinsic::x86_avx512_vcvtss2usi32:
2891     case Intrinsic::x86_avx512_vcvtss2usi64:
2892     case Intrinsic::x86_avx512_vcvtsd2usi32:
2893     case Intrinsic::x86_avx512_vcvtsd2usi64:
2894       if (ConstantFP *FPOp =
2895               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2896         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2897                                            /*roundTowardZero=*/false, Ty,
2898                                            /*IsSigned*/false);
2899       break;
2900     case Intrinsic::x86_avx512_cvttss2si:
2901     case Intrinsic::x86_avx512_cvttss2si64:
2902     case Intrinsic::x86_avx512_cvttsd2si:
2903     case Intrinsic::x86_avx512_cvttsd2si64:
2904       if (ConstantFP *FPOp =
2905               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2906         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2907                                            /*roundTowardZero=*/true, Ty,
2908                                            /*IsSigned*/true);
2909       break;
2910     case Intrinsic::x86_avx512_cvttss2usi:
2911     case Intrinsic::x86_avx512_cvttss2usi64:
2912     case Intrinsic::x86_avx512_cvttsd2usi:
2913     case Intrinsic::x86_avx512_cvttsd2usi64:
2914       if (ConstantFP *FPOp =
2915               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2916         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2917                                            /*roundTowardZero=*/true, Ty,
2918                                            /*IsSigned*/false);
2919       break;
2920     }
2921   }
2922   return nullptr;
2923 }
2924 
2925 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2926                                                const APFloat &S0,
2927                                                const APFloat &S1,
2928                                                const APFloat &S2) {
2929   unsigned ID;
2930   const fltSemantics &Sem = S0.getSemantics();
2931   APFloat MA(Sem), SC(Sem), TC(Sem);
2932   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2933     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2934       // S2 < 0
2935       ID = 5;
2936       SC = -S0;
2937     } else {
2938       ID = 4;
2939       SC = S0;
2940     }
2941     MA = S2;
2942     TC = -S1;
2943   } else if (abs(S1) >= abs(S0)) {
2944     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2945       // S1 < 0
2946       ID = 3;
2947       TC = -S2;
2948     } else {
2949       ID = 2;
2950       TC = S2;
2951     }
2952     MA = S1;
2953     SC = S0;
2954   } else {
2955     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2956       // S0 < 0
2957       ID = 1;
2958       SC = S2;
2959     } else {
2960       ID = 0;
2961       SC = -S2;
2962     }
2963     MA = S0;
2964     TC = -S1;
2965   }
2966   switch (IntrinsicID) {
2967   default:
2968     llvm_unreachable("unhandled amdgcn cube intrinsic");
2969   case Intrinsic::amdgcn_cubeid:
2970     return APFloat(Sem, ID);
2971   case Intrinsic::amdgcn_cubema:
2972     return MA + MA;
2973   case Intrinsic::amdgcn_cubesc:
2974     return SC;
2975   case Intrinsic::amdgcn_cubetc:
2976     return TC;
2977   }
2978 }
2979 
2980 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2981                                                  Type *Ty) {
2982   const APInt *C0, *C1, *C2;
2983   if (!getConstIntOrUndef(Operands[0], C0) ||
2984       !getConstIntOrUndef(Operands[1], C1) ||
2985       !getConstIntOrUndef(Operands[2], C2))
2986     return nullptr;
2987 
2988   if (!C2)
2989     return UndefValue::get(Ty);
2990 
2991   APInt Val(32, 0);
2992   unsigned NumUndefBytes = 0;
2993   for (unsigned I = 0; I < 32; I += 8) {
2994     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2995     unsigned B = 0;
2996 
2997     if (Sel >= 13)
2998       B = 0xff;
2999     else if (Sel == 12)
3000       B = 0x00;
3001     else {
3002       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3003       if (!Src)
3004         ++NumUndefBytes;
3005       else if (Sel < 8)
3006         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3007       else
3008         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3009     }
3010 
3011     Val.insertBits(B, I, 8);
3012   }
3013 
3014   if (NumUndefBytes == 4)
3015     return UndefValue::get(Ty);
3016 
3017   return ConstantInt::get(Ty, Val);
3018 }
3019 
3020 static Constant *ConstantFoldScalarCall3(StringRef Name,
3021                                          Intrinsic::ID IntrinsicID,
3022                                          Type *Ty,
3023                                          ArrayRef<Constant *> Operands,
3024                                          const TargetLibraryInfo *TLI,
3025                                          const CallBase *Call) {
3026   assert(Operands.size() == 3 && "Wrong number of operands.");
3027 
3028   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3029     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3030       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3031         const APFloat &C1 = Op1->getValueAPF();
3032         const APFloat &C2 = Op2->getValueAPF();
3033         const APFloat &C3 = Op3->getValueAPF();
3034 
3035         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3036           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3037           APFloat Res = C1;
3038           APFloat::opStatus St;
3039           switch (IntrinsicID) {
3040           default:
3041             return nullptr;
3042           case Intrinsic::experimental_constrained_fma:
3043           case Intrinsic::experimental_constrained_fmuladd:
3044             St = Res.fusedMultiplyAdd(C2, C3, RM);
3045             break;
3046           }
3047           if (mayFoldConstrained(
3048                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3049             return ConstantFP::get(Ty->getContext(), Res);
3050           return nullptr;
3051         }
3052 
3053         switch (IntrinsicID) {
3054         default: break;
3055         case Intrinsic::amdgcn_fma_legacy: {
3056           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3057           // NaN or infinity, gives +0.0.
3058           if (C1.isZero() || C2.isZero()) {
3059             // It's tempting to just return C3 here, but that would give the
3060             // wrong result if C3 was -0.0.
3061             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3062           }
3063           [[fallthrough]];
3064         }
3065         case Intrinsic::fma:
3066         case Intrinsic::fmuladd: {
3067           APFloat V = C1;
3068           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3069           return ConstantFP::get(Ty->getContext(), V);
3070         }
3071         case Intrinsic::amdgcn_cubeid:
3072         case Intrinsic::amdgcn_cubema:
3073         case Intrinsic::amdgcn_cubesc:
3074         case Intrinsic::amdgcn_cubetc: {
3075           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3076           return ConstantFP::get(Ty->getContext(), V);
3077         }
3078         }
3079       }
3080     }
3081   }
3082 
3083   if (IntrinsicID == Intrinsic::smul_fix ||
3084       IntrinsicID == Intrinsic::smul_fix_sat) {
3085     // poison * C -> poison
3086     // C * poison -> poison
3087     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3088       return PoisonValue::get(Ty);
3089 
3090     const APInt *C0, *C1;
3091     if (!getConstIntOrUndef(Operands[0], C0) ||
3092         !getConstIntOrUndef(Operands[1], C1))
3093       return nullptr;
3094 
3095     // undef * C -> 0
3096     // C * undef -> 0
3097     if (!C0 || !C1)
3098       return Constant::getNullValue(Ty);
3099 
3100     // This code performs rounding towards negative infinity in case the result
3101     // cannot be represented exactly for the given scale. Targets that do care
3102     // about rounding should use a target hook for specifying how rounding
3103     // should be done, and provide their own folding to be consistent with
3104     // rounding. This is the same approach as used by
3105     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3106     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3107     unsigned Width = C0->getBitWidth();
3108     assert(Scale < Width && "Illegal scale.");
3109     unsigned ExtendedWidth = Width * 2;
3110     APInt Product =
3111         (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3112     if (IntrinsicID == Intrinsic::smul_fix_sat) {
3113       APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3114       APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3115       Product = APIntOps::smin(Product, Max);
3116       Product = APIntOps::smax(Product, Min);
3117     }
3118     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3119   }
3120 
3121   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3122     const APInt *C0, *C1, *C2;
3123     if (!getConstIntOrUndef(Operands[0], C0) ||
3124         !getConstIntOrUndef(Operands[1], C1) ||
3125         !getConstIntOrUndef(Operands[2], C2))
3126       return nullptr;
3127 
3128     bool IsRight = IntrinsicID == Intrinsic::fshr;
3129     if (!C2)
3130       return Operands[IsRight ? 1 : 0];
3131     if (!C0 && !C1)
3132       return UndefValue::get(Ty);
3133 
3134     // The shift amount is interpreted as modulo the bitwidth. If the shift
3135     // amount is effectively 0, avoid UB due to oversized inverse shift below.
3136     unsigned BitWidth = C2->getBitWidth();
3137     unsigned ShAmt = C2->urem(BitWidth);
3138     if (!ShAmt)
3139       return Operands[IsRight ? 1 : 0];
3140 
3141     // (C0 << ShlAmt) | (C1 >> LshrAmt)
3142     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3143     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3144     if (!C0)
3145       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3146     if (!C1)
3147       return ConstantInt::get(Ty, C0->shl(ShlAmt));
3148     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3149   }
3150 
3151   if (IntrinsicID == Intrinsic::amdgcn_perm)
3152     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3153 
3154   return nullptr;
3155 }
3156 
3157 static Constant *ConstantFoldScalarCall(StringRef Name,
3158                                         Intrinsic::ID IntrinsicID,
3159                                         Type *Ty,
3160                                         ArrayRef<Constant *> Operands,
3161                                         const TargetLibraryInfo *TLI,
3162                                         const CallBase *Call) {
3163   if (Operands.size() == 1)
3164     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3165 
3166   if (Operands.size() == 2)
3167     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3168 
3169   if (Operands.size() == 3)
3170     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3171 
3172   return nullptr;
3173 }
3174 
3175 static Constant *ConstantFoldFixedVectorCall(
3176     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3177     ArrayRef<Constant *> Operands, const DataLayout &DL,
3178     const TargetLibraryInfo *TLI, const CallBase *Call) {
3179   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3180   SmallVector<Constant *, 4> Lane(Operands.size());
3181   Type *Ty = FVTy->getElementType();
3182 
3183   switch (IntrinsicID) {
3184   case Intrinsic::masked_load: {
3185     auto *SrcPtr = Operands[0];
3186     auto *Mask = Operands[2];
3187     auto *Passthru = Operands[3];
3188 
3189     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3190 
3191     SmallVector<Constant *, 32> NewElements;
3192     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3193       auto *MaskElt = Mask->getAggregateElement(I);
3194       if (!MaskElt)
3195         break;
3196       auto *PassthruElt = Passthru->getAggregateElement(I);
3197       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3198       if (isa<UndefValue>(MaskElt)) {
3199         if (PassthruElt)
3200           NewElements.push_back(PassthruElt);
3201         else if (VecElt)
3202           NewElements.push_back(VecElt);
3203         else
3204           return nullptr;
3205       }
3206       if (MaskElt->isNullValue()) {
3207         if (!PassthruElt)
3208           return nullptr;
3209         NewElements.push_back(PassthruElt);
3210       } else if (MaskElt->isOneValue()) {
3211         if (!VecElt)
3212           return nullptr;
3213         NewElements.push_back(VecElt);
3214       } else {
3215         return nullptr;
3216       }
3217     }
3218     if (NewElements.size() != FVTy->getNumElements())
3219       return nullptr;
3220     return ConstantVector::get(NewElements);
3221   }
3222   case Intrinsic::arm_mve_vctp8:
3223   case Intrinsic::arm_mve_vctp16:
3224   case Intrinsic::arm_mve_vctp32:
3225   case Intrinsic::arm_mve_vctp64: {
3226     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3227       unsigned Lanes = FVTy->getNumElements();
3228       uint64_t Limit = Op->getZExtValue();
3229 
3230       SmallVector<Constant *, 16> NCs;
3231       for (unsigned i = 0; i < Lanes; i++) {
3232         if (i < Limit)
3233           NCs.push_back(ConstantInt::getTrue(Ty));
3234         else
3235           NCs.push_back(ConstantInt::getFalse(Ty));
3236       }
3237       return ConstantVector::get(NCs);
3238     }
3239     return nullptr;
3240   }
3241   case Intrinsic::get_active_lane_mask: {
3242     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3243     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3244     if (Op0 && Op1) {
3245       unsigned Lanes = FVTy->getNumElements();
3246       uint64_t Base = Op0->getZExtValue();
3247       uint64_t Limit = Op1->getZExtValue();
3248 
3249       SmallVector<Constant *, 16> NCs;
3250       for (unsigned i = 0; i < Lanes; i++) {
3251         if (Base + i < Limit)
3252           NCs.push_back(ConstantInt::getTrue(Ty));
3253         else
3254           NCs.push_back(ConstantInt::getFalse(Ty));
3255       }
3256       return ConstantVector::get(NCs);
3257     }
3258     return nullptr;
3259   }
3260   default:
3261     break;
3262   }
3263 
3264   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3265     // Gather a column of constants.
3266     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3267       // Some intrinsics use a scalar type for certain arguments.
3268       if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3269         Lane[J] = Operands[J];
3270         continue;
3271       }
3272 
3273       Constant *Agg = Operands[J]->getAggregateElement(I);
3274       if (!Agg)
3275         return nullptr;
3276 
3277       Lane[J] = Agg;
3278     }
3279 
3280     // Use the regular scalar folding to simplify this column.
3281     Constant *Folded =
3282         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3283     if (!Folded)
3284       return nullptr;
3285     Result[I] = Folded;
3286   }
3287 
3288   return ConstantVector::get(Result);
3289 }
3290 
3291 static Constant *ConstantFoldScalableVectorCall(
3292     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3293     ArrayRef<Constant *> Operands, const DataLayout &DL,
3294     const TargetLibraryInfo *TLI, const CallBase *Call) {
3295   switch (IntrinsicID) {
3296   case Intrinsic::aarch64_sve_convert_from_svbool: {
3297     auto *Src = dyn_cast<Constant>(Operands[0]);
3298     if (!Src || !Src->isNullValue())
3299       break;
3300 
3301     return ConstantInt::getFalse(SVTy);
3302   }
3303   default:
3304     break;
3305   }
3306   return nullptr;
3307 }
3308 
3309 static std::pair<Constant *, Constant *>
3310 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
3311   if (isa<PoisonValue>(Op))
3312     return {Op, PoisonValue::get(IntTy)};
3313 
3314   auto *ConstFP = dyn_cast<ConstantFP>(Op);
3315   if (!ConstFP)
3316     return {};
3317 
3318   const APFloat &U = ConstFP->getValueAPF();
3319   int FrexpExp;
3320   APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
3321   Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
3322 
3323   // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3324   // using undef.
3325   Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp)
3326                                            : ConstantInt::getNullValue(IntTy);
3327   return {Result0, Result1};
3328 }
3329 
3330 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3331 static Constant *
3332 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
3333                        StructType *StTy, ArrayRef<Constant *> Operands,
3334                        const DataLayout &DL, const TargetLibraryInfo *TLI,
3335                        const CallBase *Call) {
3336 
3337   switch (IntrinsicID) {
3338   case Intrinsic::frexp: {
3339     Type *Ty0 = StTy->getContainedType(0);
3340     Type *Ty1 = StTy->getContainedType(1)->getScalarType();
3341 
3342     if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
3343       SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
3344       SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
3345 
3346       for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
3347         Constant *Lane = Operands[0]->getAggregateElement(I);
3348         std::tie(Results0[I], Results1[I]) =
3349             ConstantFoldScalarFrexpCall(Lane, Ty1);
3350         if (!Results0[I])
3351           return nullptr;
3352       }
3353 
3354       return ConstantStruct::get(StTy, ConstantVector::get(Results0),
3355                                  ConstantVector::get(Results1));
3356     }
3357 
3358     auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
3359     if (!Result0)
3360       return nullptr;
3361     return ConstantStruct::get(StTy, Result0, Result1);
3362   }
3363   default:
3364     // TODO: Constant folding of vector intrinsics that fall through here does
3365     // not work (e.g. overflow intrinsics)
3366     return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
3367   }
3368 
3369   return nullptr;
3370 }
3371 
3372 } // end anonymous namespace
3373 
3374 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3375                                  ArrayRef<Constant *> Operands,
3376                                  const TargetLibraryInfo *TLI) {
3377   if (Call->isNoBuiltin())
3378     return nullptr;
3379   if (!F->hasName())
3380     return nullptr;
3381 
3382   // If this is not an intrinsic and not recognized as a library call, bail out.
3383   Intrinsic::ID IID = F->getIntrinsicID();
3384   if (IID == Intrinsic::not_intrinsic) {
3385     if (!TLI)
3386       return nullptr;
3387     LibFunc LibF;
3388     if (!TLI->getLibFunc(*F, LibF))
3389       return nullptr;
3390   }
3391 
3392   StringRef Name = F->getName();
3393   Type *Ty = F->getReturnType();
3394   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3395     return ConstantFoldFixedVectorCall(
3396         Name, IID, FVTy, Operands, F->getParent()->getDataLayout(), TLI, Call);
3397 
3398   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3399     return ConstantFoldScalableVectorCall(
3400         Name, IID, SVTy, Operands, F->getParent()->getDataLayout(), TLI, Call);
3401 
3402   if (auto *StTy = dyn_cast<StructType>(Ty))
3403     return ConstantFoldStructCall(Name, IID, StTy, Operands,
3404                                   F->getParent()->getDataLayout(), TLI, Call);
3405 
3406   // TODO: If this is a library function, we already discovered that above,
3407   //       so we should pass the LibFunc, not the name (and it might be better
3408   //       still to separate intrinsic handling from libcalls).
3409   return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
3410 }
3411 
3412 bool llvm::isMathLibCallNoop(const CallBase *Call,
3413                              const TargetLibraryInfo *TLI) {
3414   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3415   // (and to some extent ConstantFoldScalarCall).
3416   if (Call->isNoBuiltin() || Call->isStrictFP())
3417     return false;
3418   Function *F = Call->getCalledFunction();
3419   if (!F)
3420     return false;
3421 
3422   LibFunc Func;
3423   if (!TLI || !TLI->getLibFunc(*F, Func))
3424     return false;
3425 
3426   if (Call->arg_size() == 1) {
3427     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3428       const APFloat &Op = OpC->getValueAPF();
3429       switch (Func) {
3430       case LibFunc_logl:
3431       case LibFunc_log:
3432       case LibFunc_logf:
3433       case LibFunc_log2l:
3434       case LibFunc_log2:
3435       case LibFunc_log2f:
3436       case LibFunc_log10l:
3437       case LibFunc_log10:
3438       case LibFunc_log10f:
3439         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3440 
3441       case LibFunc_expl:
3442       case LibFunc_exp:
3443       case LibFunc_expf:
3444         // FIXME: These boundaries are slightly conservative.
3445         if (OpC->getType()->isDoubleTy())
3446           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3447         if (OpC->getType()->isFloatTy())
3448           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3449         break;
3450 
3451       case LibFunc_exp2l:
3452       case LibFunc_exp2:
3453       case LibFunc_exp2f:
3454         // FIXME: These boundaries are slightly conservative.
3455         if (OpC->getType()->isDoubleTy())
3456           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3457         if (OpC->getType()->isFloatTy())
3458           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3459         break;
3460 
3461       case LibFunc_sinl:
3462       case LibFunc_sin:
3463       case LibFunc_sinf:
3464       case LibFunc_cosl:
3465       case LibFunc_cos:
3466       case LibFunc_cosf:
3467         return !Op.isInfinity();
3468 
3469       case LibFunc_tanl:
3470       case LibFunc_tan:
3471       case LibFunc_tanf: {
3472         // FIXME: Stop using the host math library.
3473         // FIXME: The computation isn't done in the right precision.
3474         Type *Ty = OpC->getType();
3475         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3476           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3477         break;
3478       }
3479 
3480       case LibFunc_atan:
3481       case LibFunc_atanf:
3482       case LibFunc_atanl:
3483         // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3484         return true;
3485 
3486 
3487       case LibFunc_asinl:
3488       case LibFunc_asin:
3489       case LibFunc_asinf:
3490       case LibFunc_acosl:
3491       case LibFunc_acos:
3492       case LibFunc_acosf:
3493         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3494                  Op > APFloat(Op.getSemantics(), "1"));
3495 
3496       case LibFunc_sinh:
3497       case LibFunc_cosh:
3498       case LibFunc_sinhf:
3499       case LibFunc_coshf:
3500       case LibFunc_sinhl:
3501       case LibFunc_coshl:
3502         // FIXME: These boundaries are slightly conservative.
3503         if (OpC->getType()->isDoubleTy())
3504           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3505         if (OpC->getType()->isFloatTy())
3506           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3507         break;
3508 
3509       case LibFunc_sqrtl:
3510       case LibFunc_sqrt:
3511       case LibFunc_sqrtf:
3512         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3513 
3514       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3515       // maybe others?
3516       default:
3517         break;
3518       }
3519     }
3520   }
3521 
3522   if (Call->arg_size() == 2) {
3523     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3524     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3525     if (Op0C && Op1C) {
3526       const APFloat &Op0 = Op0C->getValueAPF();
3527       const APFloat &Op1 = Op1C->getValueAPF();
3528 
3529       switch (Func) {
3530       case LibFunc_powl:
3531       case LibFunc_pow:
3532       case LibFunc_powf: {
3533         // FIXME: Stop using the host math library.
3534         // FIXME: The computation isn't done in the right precision.
3535         Type *Ty = Op0C->getType();
3536         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3537           if (Ty == Op1C->getType())
3538             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3539         }
3540         break;
3541       }
3542 
3543       case LibFunc_fmodl:
3544       case LibFunc_fmod:
3545       case LibFunc_fmodf:
3546       case LibFunc_remainderl:
3547       case LibFunc_remainder:
3548       case LibFunc_remainderf:
3549         return Op0.isNaN() || Op1.isNaN() ||
3550                (!Op0.isInfinity() && !Op1.isZero());
3551 
3552       case LibFunc_atan2:
3553       case LibFunc_atan2f:
3554       case LibFunc_atan2l:
3555         // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3556         // GLIBC and MSVC do not appear to raise an error on those, we
3557         // cannot rely on that behavior. POSIX and C11 say that a domain error
3558         // may occur, so allow for that possibility.
3559         return !Op0.isZero() || !Op1.isZero();
3560 
3561       default:
3562         break;
3563       }
3564     }
3565   }
3566 
3567   return false;
3568 }
3569 
3570 void TargetFolder::anchor() {}
3571