1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/Config/config.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/IntrinsicsX86.h"
42 #include "llvm/IR/Operator.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/KnownBits.h"
48 #include "llvm/Support/MathExtras.h"
49 #include <cassert>
50 #include <cerrno>
51 #include <cfenv>
52 #include <cmath>
53 #include <cstddef>
54 #include <cstdint>
55 
56 using namespace llvm;
57 
58 namespace {
59 
60 //===----------------------------------------------------------------------===//
61 // Constant Folding internal helper functions
62 //===----------------------------------------------------------------------===//
63 
64 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
65                                         Constant *C, Type *SrcEltTy,
66                                         unsigned NumSrcElts,
67                                         const DataLayout &DL) {
68   // Now that we know that the input value is a vector of integers, just shift
69   // and insert them into our result.
70   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
71   for (unsigned i = 0; i != NumSrcElts; ++i) {
72     Constant *Element;
73     if (DL.isLittleEndian())
74       Element = C->getAggregateElement(NumSrcElts - i - 1);
75     else
76       Element = C->getAggregateElement(i);
77 
78     if (Element && isa<UndefValue>(Element)) {
79       Result <<= BitShift;
80       continue;
81     }
82 
83     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
84     if (!ElementCI)
85       return ConstantExpr::getBitCast(C, DestTy);
86 
87     Result <<= BitShift;
88     Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
89   }
90 
91   return nullptr;
92 }
93 
94 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
95 /// This always returns a non-null constant, but it may be a
96 /// ConstantExpr if unfoldable.
97 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
98   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
99          "Invalid constantexpr bitcast!");
100 
101   // Catch the obvious splat cases.
102   if (C->isNullValue() && !DestTy->isX86_MMXTy())
103     return Constant::getNullValue(DestTy);
104   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
105       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
106     return Constant::getAllOnesValue(DestTy);
107 
108   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
109     // Handle a vector->scalar integer/fp cast.
110     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
111       unsigned NumSrcElts = VTy->getNumElements();
112       Type *SrcEltTy = VTy->getElementType();
113 
114       // If the vector is a vector of floating point, convert it to vector of int
115       // to simplify things.
116       if (SrcEltTy->isFloatingPointTy()) {
117         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
118         Type *SrcIVTy =
119           VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
120         // Ask IR to do the conversion now that #elts line up.
121         C = ConstantExpr::getBitCast(C, SrcIVTy);
122       }
123 
124       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
125       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
126                                                 SrcEltTy, NumSrcElts, DL))
127         return CE;
128 
129       if (isa<IntegerType>(DestTy))
130         return ConstantInt::get(DestTy, Result);
131 
132       APFloat FP(DestTy->getFltSemantics(), Result);
133       return ConstantFP::get(DestTy->getContext(), FP);
134     }
135   }
136 
137   // The code below only handles casts to vectors currently.
138   auto *DestVTy = dyn_cast<VectorType>(DestTy);
139   if (!DestVTy)
140     return ConstantExpr::getBitCast(C, DestTy);
141 
142   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
143   // vector so the code below can handle it uniformly.
144   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
145     Constant *Ops = C; // don't take the address of C!
146     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
147   }
148 
149   // If this is a bitcast from constant vector -> vector, fold it.
150   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
151     return ConstantExpr::getBitCast(C, DestTy);
152 
153   // If the element types match, IR can fold it.
154   unsigned NumDstElt = DestVTy->getNumElements();
155   unsigned NumSrcElt = C->getType()->getVectorNumElements();
156   if (NumDstElt == NumSrcElt)
157     return ConstantExpr::getBitCast(C, DestTy);
158 
159   Type *SrcEltTy = C->getType()->getVectorElementType();
160   Type *DstEltTy = DestVTy->getElementType();
161 
162   // Otherwise, we're changing the number of elements in a vector, which
163   // requires endianness information to do the right thing.  For example,
164   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
165   // folds to (little endian):
166   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
167   // and to (big endian):
168   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
169 
170   // First thing is first.  We only want to think about integer here, so if
171   // we have something in FP form, recast it as integer.
172   if (DstEltTy->isFloatingPointTy()) {
173     // Fold to an vector of integers with same size as our FP type.
174     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
175     Type *DestIVTy =
176       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
177     // Recursively handle this integer conversion, if possible.
178     C = FoldBitCast(C, DestIVTy, DL);
179 
180     // Finally, IR can handle this now that #elts line up.
181     return ConstantExpr::getBitCast(C, DestTy);
182   }
183 
184   // Okay, we know the destination is integer, if the input is FP, convert
185   // it to integer first.
186   if (SrcEltTy->isFloatingPointTy()) {
187     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
188     Type *SrcIVTy =
189       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
190     // Ask IR to do the conversion now that #elts line up.
191     C = ConstantExpr::getBitCast(C, SrcIVTy);
192     // If IR wasn't able to fold it, bail out.
193     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
194         !isa<ConstantDataVector>(C))
195       return C;
196   }
197 
198   // Now we know that the input and output vectors are both integer vectors
199   // of the same size, and that their #elements is not the same.  Do the
200   // conversion here, which depends on whether the input or output has
201   // more elements.
202   bool isLittleEndian = DL.isLittleEndian();
203 
204   SmallVector<Constant*, 32> Result;
205   if (NumDstElt < NumSrcElt) {
206     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
207     Constant *Zero = Constant::getNullValue(DstEltTy);
208     unsigned Ratio = NumSrcElt/NumDstElt;
209     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
210     unsigned SrcElt = 0;
211     for (unsigned i = 0; i != NumDstElt; ++i) {
212       // Build each element of the result.
213       Constant *Elt = Zero;
214       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
215       for (unsigned j = 0; j != Ratio; ++j) {
216         Constant *Src = C->getAggregateElement(SrcElt++);
217         if (Src && isa<UndefValue>(Src))
218           Src = Constant::getNullValue(C->getType()->getVectorElementType());
219         else
220           Src = dyn_cast_or_null<ConstantInt>(Src);
221         if (!Src)  // Reject constantexpr elements.
222           return ConstantExpr::getBitCast(C, DestTy);
223 
224         // Zero extend the element to the right size.
225         Src = ConstantExpr::getZExt(Src, Elt->getType());
226 
227         // Shift it to the right place, depending on endianness.
228         Src = ConstantExpr::getShl(Src,
229                                    ConstantInt::get(Src->getType(), ShiftAmt));
230         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
231 
232         // Mix it in.
233         Elt = ConstantExpr::getOr(Elt, Src);
234       }
235       Result.push_back(Elt);
236     }
237     return ConstantVector::get(Result);
238   }
239 
240   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
241   unsigned Ratio = NumDstElt/NumSrcElt;
242   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
243 
244   // Loop over each source value, expanding into multiple results.
245   for (unsigned i = 0; i != NumSrcElt; ++i) {
246     auto *Element = C->getAggregateElement(i);
247 
248     if (!Element) // Reject constantexpr elements.
249       return ConstantExpr::getBitCast(C, DestTy);
250 
251     if (isa<UndefValue>(Element)) {
252       // Correctly Propagate undef values.
253       Result.append(Ratio, UndefValue::get(DstEltTy));
254       continue;
255     }
256 
257     auto *Src = dyn_cast<ConstantInt>(Element);
258     if (!Src)
259       return ConstantExpr::getBitCast(C, DestTy);
260 
261     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
262     for (unsigned j = 0; j != Ratio; ++j) {
263       // Shift the piece of the value into the right place, depending on
264       // endianness.
265       Constant *Elt = ConstantExpr::getLShr(Src,
266                                   ConstantInt::get(Src->getType(), ShiftAmt));
267       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
268 
269       // Truncate the element to an integer with the same pointer size and
270       // convert the element back to a pointer using a inttoptr.
271       if (DstEltTy->isPointerTy()) {
272         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
273         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
274         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
275         continue;
276       }
277 
278       // Truncate and remember this piece.
279       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
280     }
281   }
282 
283   return ConstantVector::get(Result);
284 }
285 
286 } // end anonymous namespace
287 
288 /// If this constant is a constant offset from a global, return the global and
289 /// the constant. Because of constantexprs, this function is recursive.
290 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
291                                       APInt &Offset, const DataLayout &DL) {
292   // Trivial case, constant is the global.
293   if ((GV = dyn_cast<GlobalValue>(C))) {
294     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
295     Offset = APInt(BitWidth, 0);
296     return true;
297   }
298 
299   // Otherwise, if this isn't a constant expr, bail out.
300   auto *CE = dyn_cast<ConstantExpr>(C);
301   if (!CE) return false;
302 
303   // Look through ptr->int and ptr->ptr casts.
304   if (CE->getOpcode() == Instruction::PtrToInt ||
305       CE->getOpcode() == Instruction::BitCast)
306     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
307 
308   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
309   auto *GEP = dyn_cast<GEPOperator>(CE);
310   if (!GEP)
311     return false;
312 
313   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
314   APInt TmpOffset(BitWidth, 0);
315 
316   // If the base isn't a global+constant, we aren't either.
317   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
318     return false;
319 
320   // Otherwise, add any offset that our operands provide.
321   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
322     return false;
323 
324   Offset = TmpOffset;
325   return true;
326 }
327 
328 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
329                                          const DataLayout &DL) {
330   do {
331     Type *SrcTy = C->getType();
332 
333     // If the type sizes are the same and a cast is legal, just directly
334     // cast the constant.
335     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
336       Instruction::CastOps Cast = Instruction::BitCast;
337       // If we are going from a pointer to int or vice versa, we spell the cast
338       // differently.
339       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
340         Cast = Instruction::IntToPtr;
341       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
342         Cast = Instruction::PtrToInt;
343 
344       if (CastInst::castIsValid(Cast, C, DestTy))
345         return ConstantExpr::getCast(Cast, C, DestTy);
346     }
347 
348     // If this isn't an aggregate type, there is nothing we can do to drill down
349     // and find a bitcastable constant.
350     if (!SrcTy->isAggregateType())
351       return nullptr;
352 
353     // We're simulating a load through a pointer that was bitcast to point to
354     // a different type, so we can try to walk down through the initial
355     // elements of an aggregate to see if some part of the aggregate is
356     // castable to implement the "load" semantic model.
357     if (SrcTy->isStructTy()) {
358       // Struct types might have leading zero-length elements like [0 x i32],
359       // which are certainly not what we are looking for, so skip them.
360       unsigned Elem = 0;
361       Constant *ElemC;
362       do {
363         ElemC = C->getAggregateElement(Elem++);
364       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0);
365       C = ElemC;
366     } else {
367       C = C->getAggregateElement(0u);
368     }
369   } while (C);
370 
371   return nullptr;
372 }
373 
374 namespace {
375 
376 /// Recursive helper to read bits out of global. C is the constant being copied
377 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
378 /// results into and BytesLeft is the number of bytes left in
379 /// the CurPtr buffer. DL is the DataLayout.
380 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
381                         unsigned BytesLeft, const DataLayout &DL) {
382   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
383          "Out of range access");
384 
385   // If this element is zero or undefined, we can just return since *CurPtr is
386   // zero initialized.
387   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
388     return true;
389 
390   if (auto *CI = dyn_cast<ConstantInt>(C)) {
391     if (CI->getBitWidth() > 64 ||
392         (CI->getBitWidth() & 7) != 0)
393       return false;
394 
395     uint64_t Val = CI->getZExtValue();
396     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
397 
398     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
399       int n = ByteOffset;
400       if (!DL.isLittleEndian())
401         n = IntBytes - n - 1;
402       CurPtr[i] = (unsigned char)(Val >> (n * 8));
403       ++ByteOffset;
404     }
405     return true;
406   }
407 
408   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
409     if (CFP->getType()->isDoubleTy()) {
410       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
411       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
412     }
413     if (CFP->getType()->isFloatTy()){
414       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
415       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
416     }
417     if (CFP->getType()->isHalfTy()){
418       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
419       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
420     }
421     return false;
422   }
423 
424   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
425     const StructLayout *SL = DL.getStructLayout(CS->getType());
426     unsigned Index = SL->getElementContainingOffset(ByteOffset);
427     uint64_t CurEltOffset = SL->getElementOffset(Index);
428     ByteOffset -= CurEltOffset;
429 
430     while (true) {
431       // If the element access is to the element itself and not to tail padding,
432       // read the bytes from the element.
433       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
434 
435       if (ByteOffset < EltSize &&
436           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
437                               BytesLeft, DL))
438         return false;
439 
440       ++Index;
441 
442       // Check to see if we read from the last struct element, if so we're done.
443       if (Index == CS->getType()->getNumElements())
444         return true;
445 
446       // If we read all of the bytes we needed from this element we're done.
447       uint64_t NextEltOffset = SL->getElementOffset(Index);
448 
449       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
450         return true;
451 
452       // Move to the next element of the struct.
453       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
454       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
455       ByteOffset = 0;
456       CurEltOffset = NextEltOffset;
457     }
458     // not reached.
459   }
460 
461   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
462       isa<ConstantDataSequential>(C)) {
463     Type *EltTy = C->getType()->getSequentialElementType();
464     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
465     uint64_t Index = ByteOffset / EltSize;
466     uint64_t Offset = ByteOffset - Index * EltSize;
467     uint64_t NumElts;
468     if (auto *AT = dyn_cast<ArrayType>(C->getType()))
469       NumElts = AT->getNumElements();
470     else
471       NumElts = C->getType()->getVectorNumElements();
472 
473     for (; Index != NumElts; ++Index) {
474       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
475                               BytesLeft, DL))
476         return false;
477 
478       uint64_t BytesWritten = EltSize - Offset;
479       assert(BytesWritten <= EltSize && "Not indexing into this element?");
480       if (BytesWritten >= BytesLeft)
481         return true;
482 
483       Offset = 0;
484       BytesLeft -= BytesWritten;
485       CurPtr += BytesWritten;
486     }
487     return true;
488   }
489 
490   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
491     if (CE->getOpcode() == Instruction::IntToPtr &&
492         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
493       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
494                                 BytesLeft, DL);
495     }
496   }
497 
498   // Otherwise, unknown initializer type.
499   return false;
500 }
501 
502 Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
503                                           const DataLayout &DL) {
504   auto *PTy = cast<PointerType>(C->getType());
505   auto *IntType = dyn_cast<IntegerType>(LoadTy);
506 
507   // If this isn't an integer load we can't fold it directly.
508   if (!IntType) {
509     unsigned AS = PTy->getAddressSpace();
510 
511     // If this is a float/double load, we can try folding it as an int32/64 load
512     // and then bitcast the result.  This can be useful for union cases.  Note
513     // that address spaces don't matter here since we're not going to result in
514     // an actual new load.
515     Type *MapTy;
516     if (LoadTy->isHalfTy())
517       MapTy = Type::getInt16Ty(C->getContext());
518     else if (LoadTy->isFloatTy())
519       MapTy = Type::getInt32Ty(C->getContext());
520     else if (LoadTy->isDoubleTy())
521       MapTy = Type::getInt64Ty(C->getContext());
522     else if (LoadTy->isVectorTy()) {
523       MapTy = PointerType::getIntNTy(C->getContext(),
524                                      DL.getTypeSizeInBits(LoadTy));
525     } else
526       return nullptr;
527 
528     C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
529     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) {
530       if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
531         // Materializing a zero can be done trivially without a bitcast
532         return Constant::getNullValue(LoadTy);
533       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
534       Res = FoldBitCast(Res, CastTy, DL);
535       if (LoadTy->isPtrOrPtrVectorTy()) {
536         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
537         if (Res->isNullValue() && !LoadTy->isX86_MMXTy())
538           return Constant::getNullValue(LoadTy);
539         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
540           // Be careful not to replace a load of an addrspace value with an inttoptr here
541           return nullptr;
542         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
543       }
544       return Res;
545     }
546     return nullptr;
547   }
548 
549   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
550   if (BytesLoaded > 32 || BytesLoaded == 0)
551     return nullptr;
552 
553   GlobalValue *GVal;
554   APInt OffsetAI;
555   if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
556     return nullptr;
557 
558   auto *GV = dyn_cast<GlobalVariable>(GVal);
559   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
560       !GV->getInitializer()->getType()->isSized())
561     return nullptr;
562 
563   int64_t Offset = OffsetAI.getSExtValue();
564   int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
565 
566   // If we're not accessing anything in this constant, the result is undefined.
567   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
568     return UndefValue::get(IntType);
569 
570   // If we're not accessing anything in this constant, the result is undefined.
571   if (Offset >= InitializerSize)
572     return UndefValue::get(IntType);
573 
574   unsigned char RawBytes[32] = {0};
575   unsigned char *CurPtr = RawBytes;
576   unsigned BytesLeft = BytesLoaded;
577 
578   // If we're loading off the beginning of the global, some bytes may be valid.
579   if (Offset < 0) {
580     CurPtr += -Offset;
581     BytesLeft += Offset;
582     Offset = 0;
583   }
584 
585   if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
586     return nullptr;
587 
588   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
589   if (DL.isLittleEndian()) {
590     ResultVal = RawBytes[BytesLoaded - 1];
591     for (unsigned i = 1; i != BytesLoaded; ++i) {
592       ResultVal <<= 8;
593       ResultVal |= RawBytes[BytesLoaded - 1 - i];
594     }
595   } else {
596     ResultVal = RawBytes[0];
597     for (unsigned i = 1; i != BytesLoaded; ++i) {
598       ResultVal <<= 8;
599       ResultVal |= RawBytes[i];
600     }
601   }
602 
603   return ConstantInt::get(IntType->getContext(), ResultVal);
604 }
605 
606 Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
607                                              const DataLayout &DL) {
608   auto *SrcPtr = CE->getOperand(0);
609   auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
610   if (!SrcPtrTy)
611     return nullptr;
612   Type *SrcTy = SrcPtrTy->getPointerElementType();
613 
614   Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
615   if (!C)
616     return nullptr;
617 
618   return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
619 }
620 
621 } // end anonymous namespace
622 
623 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
624                                              const DataLayout &DL) {
625   // First, try the easy cases:
626   if (auto *GV = dyn_cast<GlobalVariable>(C))
627     if (GV->isConstant() && GV->hasDefinitiveInitializer())
628       return GV->getInitializer();
629 
630   if (auto *GA = dyn_cast<GlobalAlias>(C))
631     if (GA->getAliasee() && !GA->isInterposable())
632       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
633 
634   // If the loaded value isn't a constant expr, we can't handle it.
635   auto *CE = dyn_cast<ConstantExpr>(C);
636   if (!CE)
637     return nullptr;
638 
639   if (CE->getOpcode() == Instruction::GetElementPtr) {
640     if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
641       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
642         if (Constant *V =
643              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
644           return V;
645       }
646     }
647   }
648 
649   if (CE->getOpcode() == Instruction::BitCast)
650     if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
651       return LoadedC;
652 
653   // Instead of loading constant c string, use corresponding integer value
654   // directly if string length is small enough.
655   StringRef Str;
656   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
657     size_t StrLen = Str.size();
658     unsigned NumBits = Ty->getPrimitiveSizeInBits();
659     // Replace load with immediate integer if the result is an integer or fp
660     // value.
661     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
662         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
663       APInt StrVal(NumBits, 0);
664       APInt SingleChar(NumBits, 0);
665       if (DL.isLittleEndian()) {
666         for (unsigned char C : reverse(Str.bytes())) {
667           SingleChar = static_cast<uint64_t>(C);
668           StrVal = (StrVal << 8) | SingleChar;
669         }
670       } else {
671         for (unsigned char C : Str.bytes()) {
672           SingleChar = static_cast<uint64_t>(C);
673           StrVal = (StrVal << 8) | SingleChar;
674         }
675         // Append NULL at the end.
676         SingleChar = 0;
677         StrVal = (StrVal << 8) | SingleChar;
678       }
679 
680       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
681       if (Ty->isFloatingPointTy())
682         Res = ConstantExpr::getBitCast(Res, Ty);
683       return Res;
684     }
685   }
686 
687   // If this load comes from anywhere in a constant global, and if the global
688   // is all undef or zero, we know what it loads.
689   if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
690     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
691       if (GV->getInitializer()->isNullValue())
692         return Constant::getNullValue(Ty);
693       if (isa<UndefValue>(GV->getInitializer()))
694         return UndefValue::get(Ty);
695     }
696   }
697 
698   // Try hard to fold loads from bitcasted strange and non-type-safe things.
699   return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
700 }
701 
702 namespace {
703 
704 Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
705   if (LI->isVolatile()) return nullptr;
706 
707   if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
708     return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
709 
710   return nullptr;
711 }
712 
713 /// One of Op0/Op1 is a constant expression.
714 /// Attempt to symbolically evaluate the result of a binary operator merging
715 /// these together.  If target data info is available, it is provided as DL,
716 /// otherwise DL is null.
717 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
718                                     const DataLayout &DL) {
719   // SROA
720 
721   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
722   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
723   // bits.
724 
725   if (Opc == Instruction::And) {
726     KnownBits Known0 = computeKnownBits(Op0, DL);
727     KnownBits Known1 = computeKnownBits(Op1, DL);
728     if ((Known1.One | Known0.Zero).isAllOnesValue()) {
729       // All the bits of Op0 that the 'and' could be masking are already zero.
730       return Op0;
731     }
732     if ((Known0.One | Known1.Zero).isAllOnesValue()) {
733       // All the bits of Op1 that the 'and' could be masking are already zero.
734       return Op1;
735     }
736 
737     Known0.Zero |= Known1.Zero;
738     Known0.One &= Known1.One;
739     if (Known0.isConstant())
740       return ConstantInt::get(Op0->getType(), Known0.getConstant());
741   }
742 
743   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
744   // constant.  This happens frequently when iterating over a global array.
745   if (Opc == Instruction::Sub) {
746     GlobalValue *GV1, *GV2;
747     APInt Offs1, Offs2;
748 
749     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
750       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
751         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
752 
753         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
754         // PtrToInt may change the bitwidth so we have convert to the right size
755         // first.
756         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
757                                                 Offs2.zextOrTrunc(OpSize));
758       }
759   }
760 
761   return nullptr;
762 }
763 
764 /// If array indices are not pointer-sized integers, explicitly cast them so
765 /// that they aren't implicitly casted by the getelementptr.
766 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
767                          Type *ResultTy, Optional<unsigned> InRangeIndex,
768                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
769   Type *IntIdxTy = DL.getIndexType(ResultTy);
770   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
771 
772   bool Any = false;
773   SmallVector<Constant*, 32> NewIdxs;
774   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
775     if ((i == 1 ||
776          !isa<StructType>(GetElementPtrInst::getIndexedType(
777              SrcElemTy, Ops.slice(1, i - 1)))) &&
778         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
779       Any = true;
780       Type *NewType = Ops[i]->getType()->isVectorTy()
781                           ? IntIdxTy
782                           : IntIdxScalarTy;
783       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
784                                                                       true,
785                                                                       NewType,
786                                                                       true),
787                                               Ops[i], NewType));
788     } else
789       NewIdxs.push_back(Ops[i]);
790   }
791 
792   if (!Any)
793     return nullptr;
794 
795   Constant *C = ConstantExpr::getGetElementPtr(
796       SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
797   if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
798     C = Folded;
799 
800   return C;
801 }
802 
803 /// Strip the pointer casts, but preserve the address space information.
804 Constant *StripPtrCastKeepAS(Constant *Ptr, Type *&ElemTy) {
805   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
806   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
807   Ptr = cast<Constant>(Ptr->stripPointerCasts());
808   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
809 
810   ElemTy = NewPtrTy->getPointerElementType();
811 
812   // Preserve the address space number of the pointer.
813   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
814     NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
815     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
816   }
817   return Ptr;
818 }
819 
820 /// If we can symbolically evaluate the GEP constant expression, do so.
821 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
822                                   ArrayRef<Constant *> Ops,
823                                   const DataLayout &DL,
824                                   const TargetLibraryInfo *TLI) {
825   const GEPOperator *InnermostGEP = GEP;
826   bool InBounds = GEP->isInBounds();
827 
828   Type *SrcElemTy = GEP->getSourceElementType();
829   Type *ResElemTy = GEP->getResultElementType();
830   Type *ResTy = GEP->getType();
831   if (!SrcElemTy->isSized())
832     return nullptr;
833 
834   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
835                                    GEP->getInRangeIndex(), DL, TLI))
836     return C;
837 
838   Constant *Ptr = Ops[0];
839   if (!Ptr->getType()->isPointerTy())
840     return nullptr;
841 
842   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
843 
844   // If this is a constant expr gep that is effectively computing an
845   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
846   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
847       if (!isa<ConstantInt>(Ops[i])) {
848 
849         // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
850         // "inttoptr (sub (ptrtoint Ptr), V)"
851         if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
852           auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
853           assert((!CE || CE->getType() == IntIdxTy) &&
854                  "CastGEPIndices didn't canonicalize index types!");
855           if (CE && CE->getOpcode() == Instruction::Sub &&
856               CE->getOperand(0)->isNullValue()) {
857             Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
858             Res = ConstantExpr::getSub(Res, CE->getOperand(1));
859             Res = ConstantExpr::getIntToPtr(Res, ResTy);
860             if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
861               Res = FoldedRes;
862             return Res;
863           }
864         }
865         return nullptr;
866       }
867 
868   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
869   APInt Offset =
870       APInt(BitWidth,
871             DL.getIndexedOffsetInType(
872                 SrcElemTy,
873                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
874   Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
875 
876   // If this is a GEP of a GEP, fold it all into a single GEP.
877   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
878     InnermostGEP = GEP;
879     InBounds &= GEP->isInBounds();
880 
881     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
882 
883     // Do not try the incorporate the sub-GEP if some index is not a number.
884     bool AllConstantInt = true;
885     for (Value *NestedOp : NestedOps)
886       if (!isa<ConstantInt>(NestedOp)) {
887         AllConstantInt = false;
888         break;
889       }
890     if (!AllConstantInt)
891       break;
892 
893     Ptr = cast<Constant>(GEP->getOperand(0));
894     SrcElemTy = GEP->getSourceElementType();
895     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
896     Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
897   }
898 
899   // If the base value for this address is a literal integer value, fold the
900   // getelementptr to the resulting integer value casted to the pointer type.
901   APInt BasePtr(BitWidth, 0);
902   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
903     if (CE->getOpcode() == Instruction::IntToPtr) {
904       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
905         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
906     }
907   }
908 
909   auto *PTy = cast<PointerType>(Ptr->getType());
910   if ((Ptr->isNullValue() || BasePtr != 0) &&
911       !DL.isNonIntegralPointerType(PTy)) {
912     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
913     return ConstantExpr::getIntToPtr(C, ResTy);
914   }
915 
916   // Otherwise form a regular getelementptr. Recompute the indices so that
917   // we eliminate over-indexing of the notional static type array bounds.
918   // This makes it easy to determine if the getelementptr is "inbounds".
919   // Also, this helps GlobalOpt do SROA on GlobalVariables.
920   Type *Ty = PTy;
921   SmallVector<Constant *, 32> NewIdxs;
922 
923   do {
924     if (!Ty->isStructTy()) {
925       if (Ty->isPointerTy()) {
926         // The only pointer indexing we'll do is on the first index of the GEP.
927         if (!NewIdxs.empty())
928           break;
929 
930         Ty = SrcElemTy;
931 
932         // Only handle pointers to sized types, not pointers to functions.
933         if (!Ty->isSized())
934           return nullptr;
935       } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
936         Ty = ATy->getElementType();
937       } else {
938         // We've reached some non-indexable type.
939         break;
940       }
941 
942       // Determine which element of the array the offset points into.
943       APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
944       if (ElemSize == 0) {
945         // The element size is 0. This may be [0 x Ty]*, so just use a zero
946         // index for this level and proceed to the next level to see if it can
947         // accommodate the offset.
948         NewIdxs.push_back(ConstantInt::get(IntIdxTy, 0));
949       } else {
950         // The element size is non-zero divide the offset by the element
951         // size (rounding down), to compute the index at this level.
952         bool Overflow;
953         APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
954         if (Overflow)
955           break;
956         Offset -= NewIdx * ElemSize;
957         NewIdxs.push_back(ConstantInt::get(IntIdxTy, NewIdx));
958       }
959     } else {
960       auto *STy = cast<StructType>(Ty);
961       // If we end up with an offset that isn't valid for this struct type, we
962       // can't re-form this GEP in a regular form, so bail out. The pointer
963       // operand likely went through casts that are necessary to make the GEP
964       // sensible.
965       const StructLayout &SL = *DL.getStructLayout(STy);
966       if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
967         break;
968 
969       // Determine which field of the struct the offset points into. The
970       // getZExtValue is fine as we've already ensured that the offset is
971       // within the range representable by the StructLayout API.
972       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
973       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
974                                          ElIdx));
975       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
976       Ty = STy->getTypeAtIndex(ElIdx);
977     }
978   } while (Ty != ResElemTy);
979 
980   // If we haven't used up the entire offset by descending the static
981   // type, then the offset is pointing into the middle of an indivisible
982   // member, so we can't simplify it.
983   if (Offset != 0)
984     return nullptr;
985 
986   // Preserve the inrange index from the innermost GEP if possible. We must
987   // have calculated the same indices up to and including the inrange index.
988   Optional<unsigned> InRangeIndex;
989   if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
990     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
991         NewIdxs.size() > *LastIRIndex) {
992       InRangeIndex = LastIRIndex;
993       for (unsigned I = 0; I <= *LastIRIndex; ++I)
994         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
995           return nullptr;
996     }
997 
998   // Create a GEP.
999   Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
1000                                                InBounds, InRangeIndex);
1001   assert(C->getType()->getPointerElementType() == Ty &&
1002          "Computed GetElementPtr has unexpected type!");
1003 
1004   // If we ended up indexing a member with a type that doesn't match
1005   // the type of what the original indices indexed, add a cast.
1006   if (Ty != ResElemTy)
1007     C = FoldBitCast(C, ResTy, DL);
1008 
1009   return C;
1010 }
1011 
1012 /// Attempt to constant fold an instruction with the
1013 /// specified opcode and operands.  If successful, the constant result is
1014 /// returned, if not, null is returned.  Note that this function can fail when
1015 /// attempting to fold instructions like loads and stores, which have no
1016 /// constant expression form.
1017 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1018                                        ArrayRef<Constant *> Ops,
1019                                        const DataLayout &DL,
1020                                        const TargetLibraryInfo *TLI) {
1021   Type *DestTy = InstOrCE->getType();
1022 
1023   if (Instruction::isUnaryOp(Opcode))
1024     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1025 
1026   if (Instruction::isBinaryOp(Opcode))
1027     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1028 
1029   if (Instruction::isCast(Opcode))
1030     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1031 
1032   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1033     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1034       return C;
1035 
1036     return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
1037                                           Ops.slice(1), GEP->isInBounds(),
1038                                           GEP->getInRangeIndex());
1039   }
1040 
1041   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1042     return CE->getWithOperands(Ops);
1043 
1044   switch (Opcode) {
1045   default: return nullptr;
1046   case Instruction::ICmp:
1047   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1048   case Instruction::Call:
1049     if (auto *F = dyn_cast<Function>(Ops.back())) {
1050       const auto *Call = cast<CallBase>(InstOrCE);
1051       if (canConstantFoldCallTo(Call, F))
1052         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1053     }
1054     return nullptr;
1055   case Instruction::Select:
1056     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1057   case Instruction::ExtractElement:
1058     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1059   case Instruction::ExtractValue:
1060     return ConstantExpr::getExtractValue(
1061         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1062   case Instruction::InsertElement:
1063     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1064   case Instruction::ShuffleVector:
1065     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1066   }
1067 }
1068 
1069 } // end anonymous namespace
1070 
1071 //===----------------------------------------------------------------------===//
1072 // Constant Folding public APIs
1073 //===----------------------------------------------------------------------===//
1074 
1075 namespace {
1076 
1077 Constant *
1078 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1079                          const TargetLibraryInfo *TLI,
1080                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1081   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1082     return nullptr;
1083 
1084   SmallVector<Constant *, 8> Ops;
1085   for (const Use &NewU : C->operands()) {
1086     auto *NewC = cast<Constant>(&NewU);
1087     // Recursively fold the ConstantExpr's operands. If we have already folded
1088     // a ConstantExpr, we don't have to process it again.
1089     if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
1090       auto It = FoldedOps.find(NewC);
1091       if (It == FoldedOps.end()) {
1092         if (auto *FoldedC =
1093                 ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
1094           FoldedOps.insert({NewC, FoldedC});
1095           NewC = FoldedC;
1096         } else {
1097           FoldedOps.insert({NewC, NewC});
1098         }
1099       } else {
1100         NewC = It->second;
1101       }
1102     }
1103     Ops.push_back(NewC);
1104   }
1105 
1106   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1107     if (CE->isCompare())
1108       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1109                                              DL, TLI);
1110 
1111     return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
1112   }
1113 
1114   assert(isa<ConstantVector>(C));
1115   return ConstantVector::get(Ops);
1116 }
1117 
1118 } // end anonymous namespace
1119 
1120 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1121                                         const TargetLibraryInfo *TLI) {
1122   // Handle PHI nodes quickly here...
1123   if (auto *PN = dyn_cast<PHINode>(I)) {
1124     Constant *CommonValue = nullptr;
1125 
1126     SmallDenseMap<Constant *, Constant *> FoldedOps;
1127     for (Value *Incoming : PN->incoming_values()) {
1128       // If the incoming value is undef then skip it.  Note that while we could
1129       // skip the value if it is equal to the phi node itself we choose not to
1130       // because that would break the rule that constant folding only applies if
1131       // all operands are constants.
1132       if (isa<UndefValue>(Incoming))
1133         continue;
1134       // If the incoming value is not a constant, then give up.
1135       auto *C = dyn_cast<Constant>(Incoming);
1136       if (!C)
1137         return nullptr;
1138       // Fold the PHI's operands.
1139       if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
1140         C = FoldedC;
1141       // If the incoming value is a different constant to
1142       // the one we saw previously, then give up.
1143       if (CommonValue && C != CommonValue)
1144         return nullptr;
1145       CommonValue = C;
1146     }
1147 
1148     // If we reach here, all incoming values are the same constant or undef.
1149     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1150   }
1151 
1152   // Scan the operand list, checking to see if they are all constants, if so,
1153   // hand off to ConstantFoldInstOperandsImpl.
1154   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1155     return nullptr;
1156 
1157   SmallDenseMap<Constant *, Constant *> FoldedOps;
1158   SmallVector<Constant *, 8> Ops;
1159   for (const Use &OpU : I->operands()) {
1160     auto *Op = cast<Constant>(&OpU);
1161     // Fold the Instruction's operands.
1162     if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
1163       Op = FoldedOp;
1164 
1165     Ops.push_back(Op);
1166   }
1167 
1168   if (const auto *CI = dyn_cast<CmpInst>(I))
1169     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
1170                                            DL, TLI);
1171 
1172   if (const auto *LI = dyn_cast<LoadInst>(I))
1173     return ConstantFoldLoadInst(LI, DL);
1174 
1175   if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
1176     return ConstantExpr::getInsertValue(
1177                                 cast<Constant>(IVI->getAggregateOperand()),
1178                                 cast<Constant>(IVI->getInsertedValueOperand()),
1179                                 IVI->getIndices());
1180   }
1181 
1182   if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
1183     return ConstantExpr::getExtractValue(
1184                                     cast<Constant>(EVI->getAggregateOperand()),
1185                                     EVI->getIndices());
1186   }
1187 
1188   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1189 }
1190 
1191 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1192                                      const TargetLibraryInfo *TLI) {
1193   SmallDenseMap<Constant *, Constant *> FoldedOps;
1194   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1195 }
1196 
1197 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1198                                          ArrayRef<Constant *> Ops,
1199                                          const DataLayout &DL,
1200                                          const TargetLibraryInfo *TLI) {
1201   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1202 }
1203 
1204 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1205                                                 Constant *Ops0, Constant *Ops1,
1206                                                 const DataLayout &DL,
1207                                                 const TargetLibraryInfo *TLI) {
1208   // fold: icmp (inttoptr x), null         -> icmp x, 0
1209   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1210   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1211   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1212   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1213   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1214   //
1215   // FIXME: The following comment is out of data and the DataLayout is here now.
1216   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1217   // around to know if bit truncation is happening.
1218   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1219     if (Ops1->isNullValue()) {
1220       if (CE0->getOpcode() == Instruction::IntToPtr) {
1221         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1222         // Convert the integer value to the right size to ensure we get the
1223         // proper extension or truncation.
1224         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1225                                                    IntPtrTy, false);
1226         Constant *Null = Constant::getNullValue(C->getType());
1227         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1228       }
1229 
1230       // Only do this transformation if the int is intptrty in size, otherwise
1231       // there is a truncation or extension that we aren't modeling.
1232       if (CE0->getOpcode() == Instruction::PtrToInt) {
1233         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1234         if (CE0->getType() == IntPtrTy) {
1235           Constant *C = CE0->getOperand(0);
1236           Constant *Null = Constant::getNullValue(C->getType());
1237           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1238         }
1239       }
1240     }
1241 
1242     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1243       if (CE0->getOpcode() == CE1->getOpcode()) {
1244         if (CE0->getOpcode() == Instruction::IntToPtr) {
1245           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1246 
1247           // Convert the integer value to the right size to ensure we get the
1248           // proper extension or truncation.
1249           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1250                                                       IntPtrTy, false);
1251           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1252                                                       IntPtrTy, false);
1253           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1254         }
1255 
1256         // Only do this transformation if the int is intptrty in size, otherwise
1257         // there is a truncation or extension that we aren't modeling.
1258         if (CE0->getOpcode() == Instruction::PtrToInt) {
1259           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1260           if (CE0->getType() == IntPtrTy &&
1261               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1262             return ConstantFoldCompareInstOperands(
1263                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1264           }
1265         }
1266       }
1267     }
1268 
1269     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1270     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1271     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1272         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1273       Constant *LHS = ConstantFoldCompareInstOperands(
1274           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1275       Constant *RHS = ConstantFoldCompareInstOperands(
1276           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1277       unsigned OpC =
1278         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1279       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1280     }
1281   } else if (isa<ConstantExpr>(Ops1)) {
1282     // If RHS is a constant expression, but the left side isn't, swap the
1283     // operands and try again.
1284     Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
1285     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1286   }
1287 
1288   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1289 }
1290 
1291 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1292                                            const DataLayout &DL) {
1293   assert(Instruction::isUnaryOp(Opcode));
1294 
1295   return ConstantExpr::get(Opcode, Op);
1296 }
1297 
1298 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1299                                              Constant *RHS,
1300                                              const DataLayout &DL) {
1301   assert(Instruction::isBinaryOp(Opcode));
1302   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1303     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1304       return C;
1305 
1306   return ConstantExpr::get(Opcode, LHS, RHS);
1307 }
1308 
1309 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1310                                         Type *DestTy, const DataLayout &DL) {
1311   assert(Instruction::isCast(Opcode));
1312   switch (Opcode) {
1313   default:
1314     llvm_unreachable("Missing case");
1315   case Instruction::PtrToInt:
1316     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1317     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1318     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1319       if (CE->getOpcode() == Instruction::IntToPtr) {
1320         Constant *Input = CE->getOperand(0);
1321         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1322         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1323         if (PtrWidth < InWidth) {
1324           Constant *Mask =
1325             ConstantInt::get(CE->getContext(),
1326                              APInt::getLowBitsSet(InWidth, PtrWidth));
1327           Input = ConstantExpr::getAnd(Input, Mask);
1328         }
1329         // Do a zext or trunc to get to the dest size.
1330         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1331       }
1332     }
1333     return ConstantExpr::getCast(Opcode, C, DestTy);
1334   case Instruction::IntToPtr:
1335     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1336     // the int size is >= the ptr size and the address spaces are the same.
1337     // This requires knowing the width of a pointer, so it can't be done in
1338     // ConstantExpr::getCast.
1339     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1340       if (CE->getOpcode() == Instruction::PtrToInt) {
1341         Constant *SrcPtr = CE->getOperand(0);
1342         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1343         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1344 
1345         if (MidIntSize >= SrcPtrSize) {
1346           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1347           if (SrcAS == DestTy->getPointerAddressSpace())
1348             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1349         }
1350       }
1351     }
1352 
1353     return ConstantExpr::getCast(Opcode, C, DestTy);
1354   case Instruction::Trunc:
1355   case Instruction::ZExt:
1356   case Instruction::SExt:
1357   case Instruction::FPTrunc:
1358   case Instruction::FPExt:
1359   case Instruction::UIToFP:
1360   case Instruction::SIToFP:
1361   case Instruction::FPToUI:
1362   case Instruction::FPToSI:
1363   case Instruction::AddrSpaceCast:
1364       return ConstantExpr::getCast(Opcode, C, DestTy);
1365   case Instruction::BitCast:
1366     return FoldBitCast(C, DestTy, DL);
1367   }
1368 }
1369 
1370 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1371                                                        ConstantExpr *CE) {
1372   if (!CE->getOperand(1)->isNullValue())
1373     return nullptr;  // Do not allow stepping over the value!
1374 
1375   // Loop over all of the operands, tracking down which value we are
1376   // addressing.
1377   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1378     C = C->getAggregateElement(CE->getOperand(i));
1379     if (!C)
1380       return nullptr;
1381   }
1382   return C;
1383 }
1384 
1385 Constant *
1386 llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1387                                         ArrayRef<Constant *> Indices) {
1388   // Loop over all of the operands, tracking down which value we are
1389   // addressing.
1390   for (Constant *Index : Indices) {
1391     C = C->getAggregateElement(Index);
1392     if (!C)
1393       return nullptr;
1394   }
1395   return C;
1396 }
1397 
1398 //===----------------------------------------------------------------------===//
1399 //  Constant Folding for Calls
1400 //
1401 
1402 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1403   if (Call->isNoBuiltin() || Call->isStrictFP())
1404     return false;
1405   switch (F->getIntrinsicID()) {
1406   case Intrinsic::fabs:
1407   case Intrinsic::minnum:
1408   case Intrinsic::maxnum:
1409   case Intrinsic::minimum:
1410   case Intrinsic::maximum:
1411   case Intrinsic::log:
1412   case Intrinsic::log2:
1413   case Intrinsic::log10:
1414   case Intrinsic::exp:
1415   case Intrinsic::exp2:
1416   case Intrinsic::floor:
1417   case Intrinsic::ceil:
1418   case Intrinsic::sqrt:
1419   case Intrinsic::sin:
1420   case Intrinsic::cos:
1421   case Intrinsic::trunc:
1422   case Intrinsic::rint:
1423   case Intrinsic::nearbyint:
1424   case Intrinsic::pow:
1425   case Intrinsic::powi:
1426   case Intrinsic::bswap:
1427   case Intrinsic::ctpop:
1428   case Intrinsic::ctlz:
1429   case Intrinsic::cttz:
1430   case Intrinsic::fshl:
1431   case Intrinsic::fshr:
1432   case Intrinsic::fma:
1433   case Intrinsic::fmuladd:
1434   case Intrinsic::copysign:
1435   case Intrinsic::launder_invariant_group:
1436   case Intrinsic::strip_invariant_group:
1437   case Intrinsic::round:
1438   case Intrinsic::masked_load:
1439   case Intrinsic::sadd_with_overflow:
1440   case Intrinsic::uadd_with_overflow:
1441   case Intrinsic::ssub_with_overflow:
1442   case Intrinsic::usub_with_overflow:
1443   case Intrinsic::smul_with_overflow:
1444   case Intrinsic::umul_with_overflow:
1445   case Intrinsic::sadd_sat:
1446   case Intrinsic::uadd_sat:
1447   case Intrinsic::ssub_sat:
1448   case Intrinsic::usub_sat:
1449   case Intrinsic::smul_fix:
1450   case Intrinsic::smul_fix_sat:
1451   case Intrinsic::convert_from_fp16:
1452   case Intrinsic::convert_to_fp16:
1453   case Intrinsic::bitreverse:
1454   case Intrinsic::x86_sse_cvtss2si:
1455   case Intrinsic::x86_sse_cvtss2si64:
1456   case Intrinsic::x86_sse_cvttss2si:
1457   case Intrinsic::x86_sse_cvttss2si64:
1458   case Intrinsic::x86_sse2_cvtsd2si:
1459   case Intrinsic::x86_sse2_cvtsd2si64:
1460   case Intrinsic::x86_sse2_cvttsd2si:
1461   case Intrinsic::x86_sse2_cvttsd2si64:
1462   case Intrinsic::x86_avx512_vcvtss2si32:
1463   case Intrinsic::x86_avx512_vcvtss2si64:
1464   case Intrinsic::x86_avx512_cvttss2si:
1465   case Intrinsic::x86_avx512_cvttss2si64:
1466   case Intrinsic::x86_avx512_vcvtsd2si32:
1467   case Intrinsic::x86_avx512_vcvtsd2si64:
1468   case Intrinsic::x86_avx512_cvttsd2si:
1469   case Intrinsic::x86_avx512_cvttsd2si64:
1470   case Intrinsic::x86_avx512_vcvtss2usi32:
1471   case Intrinsic::x86_avx512_vcvtss2usi64:
1472   case Intrinsic::x86_avx512_cvttss2usi:
1473   case Intrinsic::x86_avx512_cvttss2usi64:
1474   case Intrinsic::x86_avx512_vcvtsd2usi32:
1475   case Intrinsic::x86_avx512_vcvtsd2usi64:
1476   case Intrinsic::x86_avx512_cvttsd2usi:
1477   case Intrinsic::x86_avx512_cvttsd2usi64:
1478   case Intrinsic::is_constant:
1479     return true;
1480   default:
1481     return false;
1482   case Intrinsic::not_intrinsic: break;
1483   }
1484 
1485   if (!F->hasName())
1486     return false;
1487 
1488   // In these cases, the check of the length is required.  We don't want to
1489   // return true for a name like "cos\0blah" which strcmp would return equal to
1490   // "cos", but has length 8.
1491   StringRef Name = F->getName();
1492   switch (Name[0]) {
1493   default:
1494     return false;
1495   case 'a':
1496     return Name == "acos" || Name == "acosf" ||
1497            Name == "asin" || Name == "asinf" ||
1498            Name == "atan" || Name == "atanf" ||
1499            Name == "atan2" || Name == "atan2f";
1500   case 'c':
1501     return Name == "ceil" || Name == "ceilf" ||
1502            Name == "cos" || Name == "cosf" ||
1503            Name == "cosh" || Name == "coshf";
1504   case 'e':
1505     return Name == "exp" || Name == "expf" ||
1506            Name == "exp2" || Name == "exp2f";
1507   case 'f':
1508     return Name == "fabs" || Name == "fabsf" ||
1509            Name == "floor" || Name == "floorf" ||
1510            Name == "fmod" || Name == "fmodf";
1511   case 'l':
1512     return Name == "log" || Name == "logf" ||
1513            Name == "log2" || Name == "log2f" ||
1514            Name == "log10" || Name == "log10f";
1515   case 'n':
1516     return Name == "nearbyint" || Name == "nearbyintf";
1517   case 'p':
1518     return Name == "pow" || Name == "powf";
1519   case 'r':
1520     return Name == "rint" || Name == "rintf" ||
1521            Name == "round" || Name == "roundf";
1522   case 's':
1523     return Name == "sin" || Name == "sinf" ||
1524            Name == "sinh" || Name == "sinhf" ||
1525            Name == "sqrt" || Name == "sqrtf";
1526   case 't':
1527     return Name == "tan" || Name == "tanf" ||
1528            Name == "tanh" || Name == "tanhf" ||
1529            Name == "trunc" || Name == "truncf";
1530   case '_':
1531     // Check for various function names that get used for the math functions
1532     // when the header files are preprocessed with the macro
1533     // __FINITE_MATH_ONLY__ enabled.
1534     // The '12' here is the length of the shortest name that can match.
1535     // We need to check the size before looking at Name[1] and Name[2]
1536     // so we may as well check a limit that will eliminate mismatches.
1537     if (Name.size() < 12 || Name[1] != '_')
1538       return false;
1539     switch (Name[2]) {
1540     default:
1541       return false;
1542     case 'a':
1543       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1544              Name == "__asin_finite" || Name == "__asinf_finite" ||
1545              Name == "__atan2_finite" || Name == "__atan2f_finite";
1546     case 'c':
1547       return Name == "__cosh_finite" || Name == "__coshf_finite";
1548     case 'e':
1549       return Name == "__exp_finite" || Name == "__expf_finite" ||
1550              Name == "__exp2_finite" || Name == "__exp2f_finite";
1551     case 'l':
1552       return Name == "__log_finite" || Name == "__logf_finite" ||
1553              Name == "__log10_finite" || Name == "__log10f_finite";
1554     case 'p':
1555       return Name == "__pow_finite" || Name == "__powf_finite";
1556     case 's':
1557       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1558     }
1559   }
1560 }
1561 
1562 namespace {
1563 
1564 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1565   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1566     APFloat APF(V);
1567     bool unused;
1568     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1569     return ConstantFP::get(Ty->getContext(), APF);
1570   }
1571   if (Ty->isDoubleTy())
1572     return ConstantFP::get(Ty->getContext(), APFloat(V));
1573   llvm_unreachable("Can only constant fold half/float/double");
1574 }
1575 
1576 /// Clear the floating-point exception state.
1577 inline void llvm_fenv_clearexcept() {
1578 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1579   feclearexcept(FE_ALL_EXCEPT);
1580 #endif
1581   errno = 0;
1582 }
1583 
1584 /// Test if a floating-point exception was raised.
1585 inline bool llvm_fenv_testexcept() {
1586   int errno_val = errno;
1587   if (errno_val == ERANGE || errno_val == EDOM)
1588     return true;
1589 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1590   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1591     return true;
1592 #endif
1593   return false;
1594 }
1595 
1596 Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
1597   llvm_fenv_clearexcept();
1598   V = NativeFP(V);
1599   if (llvm_fenv_testexcept()) {
1600     llvm_fenv_clearexcept();
1601     return nullptr;
1602   }
1603 
1604   return GetConstantFoldFPValue(V, Ty);
1605 }
1606 
1607 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
1608                                double W, Type *Ty) {
1609   llvm_fenv_clearexcept();
1610   V = NativeFP(V, W);
1611   if (llvm_fenv_testexcept()) {
1612     llvm_fenv_clearexcept();
1613     return nullptr;
1614   }
1615 
1616   return GetConstantFoldFPValue(V, Ty);
1617 }
1618 
1619 /// Attempt to fold an SSE floating point to integer conversion of a constant
1620 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1621 /// used (toward nearest, ties to even). This matches the behavior of the
1622 /// non-truncating SSE instructions in the default rounding mode. The desired
1623 /// integer type Ty is used to select how many bits are available for the
1624 /// result. Returns null if the conversion cannot be performed, otherwise
1625 /// returns the Constant value resulting from the conversion.
1626 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1627                                       Type *Ty, bool IsSigned) {
1628   // All of these conversion intrinsics form an integer of at most 64bits.
1629   unsigned ResultWidth = Ty->getIntegerBitWidth();
1630   assert(ResultWidth <= 64 &&
1631          "Can only constant fold conversions to 64 and 32 bit ints");
1632 
1633   uint64_t UIntVal;
1634   bool isExact = false;
1635   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1636                                               : APFloat::rmNearestTiesToEven;
1637   APFloat::opStatus status =
1638       Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
1639                            IsSigned, mode, &isExact);
1640   if (status != APFloat::opOK &&
1641       (!roundTowardZero || status != APFloat::opInexact))
1642     return nullptr;
1643   return ConstantInt::get(Ty, UIntVal, IsSigned);
1644 }
1645 
1646 double getValueAsDouble(ConstantFP *Op) {
1647   Type *Ty = Op->getType();
1648 
1649   if (Ty->isFloatTy())
1650     return Op->getValueAPF().convertToFloat();
1651 
1652   if (Ty->isDoubleTy())
1653     return Op->getValueAPF().convertToDouble();
1654 
1655   bool unused;
1656   APFloat APF = Op->getValueAPF();
1657   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1658   return APF.convertToDouble();
1659 }
1660 
1661 static bool isManifestConstant(const Constant *c) {
1662   if (isa<ConstantData>(c)) {
1663     return true;
1664   } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
1665     for (const Value *subc : c->operand_values()) {
1666       if (!isManifestConstant(cast<Constant>(subc)))
1667         return false;
1668     }
1669     return true;
1670   }
1671   return false;
1672 }
1673 
1674 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1675   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1676     C = &CI->getValue();
1677     return true;
1678   }
1679   if (isa<UndefValue>(Op)) {
1680     C = nullptr;
1681     return true;
1682   }
1683   return false;
1684 }
1685 
1686 static Constant *ConstantFoldScalarCall1(StringRef Name,
1687                                          Intrinsic::ID IntrinsicID,
1688                                          Type *Ty,
1689                                          ArrayRef<Constant *> Operands,
1690                                          const TargetLibraryInfo *TLI,
1691                                          const CallBase *Call) {
1692   assert(Operands.size() == 1 && "Wrong number of operands.");
1693 
1694   if (IntrinsicID == Intrinsic::is_constant) {
1695     // We know we have a "Constant" argument. But we want to only
1696     // return true for manifest constants, not those that depend on
1697     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
1698     if (isManifestConstant(Operands[0]))
1699       return ConstantInt::getTrue(Ty->getContext());
1700     return nullptr;
1701   }
1702   if (isa<UndefValue>(Operands[0])) {
1703     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
1704     // ctpop() is between 0 and bitwidth, pick 0 for undef.
1705     if (IntrinsicID == Intrinsic::cos ||
1706         IntrinsicID == Intrinsic::ctpop)
1707       return Constant::getNullValue(Ty);
1708     if (IntrinsicID == Intrinsic::bswap ||
1709         IntrinsicID == Intrinsic::bitreverse ||
1710         IntrinsicID == Intrinsic::launder_invariant_group ||
1711         IntrinsicID == Intrinsic::strip_invariant_group)
1712       return Operands[0];
1713   }
1714 
1715   if (isa<ConstantPointerNull>(Operands[0])) {
1716     // launder(null) == null == strip(null) iff in addrspace 0
1717     if (IntrinsicID == Intrinsic::launder_invariant_group ||
1718         IntrinsicID == Intrinsic::strip_invariant_group) {
1719       // If instruction is not yet put in a basic block (e.g. when cloning
1720       // a function during inlining), Call's caller may not be available.
1721       // So check Call's BB first before querying Call->getCaller.
1722       const Function *Caller =
1723           Call->getParent() ? Call->getCaller() : nullptr;
1724       if (Caller &&
1725           !NullPointerIsDefined(
1726               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
1727         return Operands[0];
1728       }
1729       return nullptr;
1730     }
1731   }
1732 
1733   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
1734     if (IntrinsicID == Intrinsic::convert_to_fp16) {
1735       APFloat Val(Op->getValueAPF());
1736 
1737       bool lost = false;
1738       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
1739 
1740       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1741     }
1742 
1743     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1744       return nullptr;
1745 
1746     // Use internal versions of these intrinsics.
1747     APFloat U = Op->getValueAPF();
1748 
1749     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
1750       U.roundToIntegral(APFloat::rmNearestTiesToEven);
1751       return ConstantFP::get(Ty->getContext(), U);
1752     }
1753 
1754     if (IntrinsicID == Intrinsic::round) {
1755       U.roundToIntegral(APFloat::rmNearestTiesToAway);
1756       return ConstantFP::get(Ty->getContext(), U);
1757     }
1758 
1759     if (IntrinsicID == Intrinsic::ceil) {
1760       U.roundToIntegral(APFloat::rmTowardPositive);
1761       return ConstantFP::get(Ty->getContext(), U);
1762     }
1763 
1764     if (IntrinsicID == Intrinsic::floor) {
1765       U.roundToIntegral(APFloat::rmTowardNegative);
1766       return ConstantFP::get(Ty->getContext(), U);
1767     }
1768 
1769     if (IntrinsicID == Intrinsic::trunc) {
1770       U.roundToIntegral(APFloat::rmTowardZero);
1771       return ConstantFP::get(Ty->getContext(), U);
1772     }
1773 
1774     if (IntrinsicID == Intrinsic::fabs) {
1775       U.clearSign();
1776       return ConstantFP::get(Ty->getContext(), U);
1777     }
1778 
1779     /// We only fold functions with finite arguments. Folding NaN and inf is
1780     /// likely to be aborted with an exception anyway, and some host libms
1781     /// have known errors raising exceptions.
1782     if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1783       return nullptr;
1784 
1785     /// Currently APFloat versions of these functions do not exist, so we use
1786     /// the host native double versions.  Float versions are not called
1787     /// directly but for all these it is true (float)(f((double)arg)) ==
1788     /// f(arg).  Long double not supported yet.
1789     double V = getValueAsDouble(Op);
1790 
1791     switch (IntrinsicID) {
1792       default: break;
1793       case Intrinsic::log:
1794         return ConstantFoldFP(log, V, Ty);
1795       case Intrinsic::log2:
1796         // TODO: What about hosts that lack a C99 library?
1797         return ConstantFoldFP(Log2, V, Ty);
1798       case Intrinsic::log10:
1799         // TODO: What about hosts that lack a C99 library?
1800         return ConstantFoldFP(log10, V, Ty);
1801       case Intrinsic::exp:
1802         return ConstantFoldFP(exp, V, Ty);
1803       case Intrinsic::exp2:
1804         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1805         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1806       case Intrinsic::sin:
1807         return ConstantFoldFP(sin, V, Ty);
1808       case Intrinsic::cos:
1809         return ConstantFoldFP(cos, V, Ty);
1810       case Intrinsic::sqrt:
1811         return ConstantFoldFP(sqrt, V, Ty);
1812     }
1813 
1814     if (!TLI)
1815       return nullptr;
1816 
1817     LibFunc Func = NotLibFunc;
1818     TLI->getLibFunc(Name, Func);
1819     switch (Func) {
1820     default:
1821       break;
1822     case LibFunc_acos:
1823     case LibFunc_acosf:
1824     case LibFunc_acos_finite:
1825     case LibFunc_acosf_finite:
1826       if (TLI->has(Func))
1827         return ConstantFoldFP(acos, V, Ty);
1828       break;
1829     case LibFunc_asin:
1830     case LibFunc_asinf:
1831     case LibFunc_asin_finite:
1832     case LibFunc_asinf_finite:
1833       if (TLI->has(Func))
1834         return ConstantFoldFP(asin, V, Ty);
1835       break;
1836     case LibFunc_atan:
1837     case LibFunc_atanf:
1838       if (TLI->has(Func))
1839         return ConstantFoldFP(atan, V, Ty);
1840       break;
1841     case LibFunc_ceil:
1842     case LibFunc_ceilf:
1843       if (TLI->has(Func)) {
1844         U.roundToIntegral(APFloat::rmTowardPositive);
1845         return ConstantFP::get(Ty->getContext(), U);
1846       }
1847       break;
1848     case LibFunc_cos:
1849     case LibFunc_cosf:
1850       if (TLI->has(Func))
1851         return ConstantFoldFP(cos, V, Ty);
1852       break;
1853     case LibFunc_cosh:
1854     case LibFunc_coshf:
1855     case LibFunc_cosh_finite:
1856     case LibFunc_coshf_finite:
1857       if (TLI->has(Func))
1858         return ConstantFoldFP(cosh, V, Ty);
1859       break;
1860     case LibFunc_exp:
1861     case LibFunc_expf:
1862     case LibFunc_exp_finite:
1863     case LibFunc_expf_finite:
1864       if (TLI->has(Func))
1865         return ConstantFoldFP(exp, V, Ty);
1866       break;
1867     case LibFunc_exp2:
1868     case LibFunc_exp2f:
1869     case LibFunc_exp2_finite:
1870     case LibFunc_exp2f_finite:
1871       if (TLI->has(Func))
1872         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
1873         return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1874       break;
1875     case LibFunc_fabs:
1876     case LibFunc_fabsf:
1877       if (TLI->has(Func)) {
1878         U.clearSign();
1879         return ConstantFP::get(Ty->getContext(), U);
1880       }
1881       break;
1882     case LibFunc_floor:
1883     case LibFunc_floorf:
1884       if (TLI->has(Func)) {
1885         U.roundToIntegral(APFloat::rmTowardNegative);
1886         return ConstantFP::get(Ty->getContext(), U);
1887       }
1888       break;
1889     case LibFunc_log:
1890     case LibFunc_logf:
1891     case LibFunc_log_finite:
1892     case LibFunc_logf_finite:
1893       if (V > 0.0 && TLI->has(Func))
1894         return ConstantFoldFP(log, V, Ty);
1895       break;
1896     case LibFunc_log2:
1897     case LibFunc_log2f:
1898     case LibFunc_log2_finite:
1899     case LibFunc_log2f_finite:
1900       if (V > 0.0 && TLI->has(Func))
1901         // TODO: What about hosts that lack a C99 library?
1902         return ConstantFoldFP(Log2, V, Ty);
1903       break;
1904     case LibFunc_log10:
1905     case LibFunc_log10f:
1906     case LibFunc_log10_finite:
1907     case LibFunc_log10f_finite:
1908       if (V > 0.0 && TLI->has(Func))
1909         // TODO: What about hosts that lack a C99 library?
1910         return ConstantFoldFP(log10, V, Ty);
1911       break;
1912     case LibFunc_nearbyint:
1913     case LibFunc_nearbyintf:
1914     case LibFunc_rint:
1915     case LibFunc_rintf:
1916       if (TLI->has(Func)) {
1917         U.roundToIntegral(APFloat::rmNearestTiesToEven);
1918         return ConstantFP::get(Ty->getContext(), U);
1919       }
1920       break;
1921     case LibFunc_round:
1922     case LibFunc_roundf:
1923       if (TLI->has(Func)) {
1924         U.roundToIntegral(APFloat::rmNearestTiesToAway);
1925         return ConstantFP::get(Ty->getContext(), U);
1926       }
1927       break;
1928     case LibFunc_sin:
1929     case LibFunc_sinf:
1930       if (TLI->has(Func))
1931         return ConstantFoldFP(sin, V, Ty);
1932       break;
1933     case LibFunc_sinh:
1934     case LibFunc_sinhf:
1935     case LibFunc_sinh_finite:
1936     case LibFunc_sinhf_finite:
1937       if (TLI->has(Func))
1938         return ConstantFoldFP(sinh, V, Ty);
1939       break;
1940     case LibFunc_sqrt:
1941     case LibFunc_sqrtf:
1942       if (V >= 0.0 && TLI->has(Func))
1943         return ConstantFoldFP(sqrt, V, Ty);
1944       break;
1945     case LibFunc_tan:
1946     case LibFunc_tanf:
1947       if (TLI->has(Func))
1948         return ConstantFoldFP(tan, V, Ty);
1949       break;
1950     case LibFunc_tanh:
1951     case LibFunc_tanhf:
1952       if (TLI->has(Func))
1953         return ConstantFoldFP(tanh, V, Ty);
1954       break;
1955     case LibFunc_trunc:
1956     case LibFunc_truncf:
1957       if (TLI->has(Func)) {
1958         U.roundToIntegral(APFloat::rmTowardZero);
1959         return ConstantFP::get(Ty->getContext(), U);
1960       }
1961       break;
1962     }
1963     return nullptr;
1964   }
1965 
1966   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
1967     switch (IntrinsicID) {
1968     case Intrinsic::bswap:
1969       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1970     case Intrinsic::ctpop:
1971       return ConstantInt::get(Ty, Op->getValue().countPopulation());
1972     case Intrinsic::bitreverse:
1973       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
1974     case Intrinsic::convert_from_fp16: {
1975       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
1976 
1977       bool lost = false;
1978       APFloat::opStatus status = Val.convert(
1979           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1980 
1981       // Conversion is always precise.
1982       (void)status;
1983       assert(status == APFloat::opOK && !lost &&
1984              "Precision lost during fp16 constfolding");
1985 
1986       return ConstantFP::get(Ty->getContext(), Val);
1987     }
1988     default:
1989       return nullptr;
1990     }
1991   }
1992 
1993   // Support ConstantVector in case we have an Undef in the top.
1994   if (isa<ConstantVector>(Operands[0]) ||
1995       isa<ConstantDataVector>(Operands[0])) {
1996     auto *Op = cast<Constant>(Operands[0]);
1997     switch (IntrinsicID) {
1998     default: break;
1999     case Intrinsic::x86_sse_cvtss2si:
2000     case Intrinsic::x86_sse_cvtss2si64:
2001     case Intrinsic::x86_sse2_cvtsd2si:
2002     case Intrinsic::x86_sse2_cvtsd2si64:
2003       if (ConstantFP *FPOp =
2004               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2005         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2006                                            /*roundTowardZero=*/false, Ty,
2007                                            /*IsSigned*/true);
2008       break;
2009     case Intrinsic::x86_sse_cvttss2si:
2010     case Intrinsic::x86_sse_cvttss2si64:
2011     case Intrinsic::x86_sse2_cvttsd2si:
2012     case Intrinsic::x86_sse2_cvttsd2si64:
2013       if (ConstantFP *FPOp =
2014               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2015         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2016                                            /*roundTowardZero=*/true, Ty,
2017                                            /*IsSigned*/true);
2018       break;
2019     }
2020   }
2021 
2022   return nullptr;
2023 }
2024 
2025 static Constant *ConstantFoldScalarCall2(StringRef Name,
2026                                          Intrinsic::ID IntrinsicID,
2027                                          Type *Ty,
2028                                          ArrayRef<Constant *> Operands,
2029                                          const TargetLibraryInfo *TLI,
2030                                          const CallBase *Call) {
2031   assert(Operands.size() == 2 && "Wrong number of operands.");
2032 
2033   if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2034     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2035       return nullptr;
2036     double Op1V = getValueAsDouble(Op1);
2037 
2038     if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2039       if (Op2->getType() != Op1->getType())
2040         return nullptr;
2041 
2042       double Op2V = getValueAsDouble(Op2);
2043       if (IntrinsicID == Intrinsic::pow) {
2044         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2045       }
2046       if (IntrinsicID == Intrinsic::copysign) {
2047         APFloat V1 = Op1->getValueAPF();
2048         const APFloat &V2 = Op2->getValueAPF();
2049         V1.copySign(V2);
2050         return ConstantFP::get(Ty->getContext(), V1);
2051       }
2052 
2053       if (IntrinsicID == Intrinsic::minnum) {
2054         const APFloat &C1 = Op1->getValueAPF();
2055         const APFloat &C2 = Op2->getValueAPF();
2056         return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
2057       }
2058 
2059       if (IntrinsicID == Intrinsic::maxnum) {
2060         const APFloat &C1 = Op1->getValueAPF();
2061         const APFloat &C2 = Op2->getValueAPF();
2062         return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
2063       }
2064 
2065       if (IntrinsicID == Intrinsic::minimum) {
2066         const APFloat &C1 = Op1->getValueAPF();
2067         const APFloat &C2 = Op2->getValueAPF();
2068         return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
2069       }
2070 
2071       if (IntrinsicID == Intrinsic::maximum) {
2072         const APFloat &C1 = Op1->getValueAPF();
2073         const APFloat &C2 = Op2->getValueAPF();
2074         return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
2075       }
2076 
2077       if (!TLI)
2078         return nullptr;
2079 
2080       LibFunc Func = NotLibFunc;
2081       TLI->getLibFunc(Name, Func);
2082       switch (Func) {
2083       default:
2084         break;
2085       case LibFunc_pow:
2086       case LibFunc_powf:
2087       case LibFunc_pow_finite:
2088       case LibFunc_powf_finite:
2089         if (TLI->has(Func))
2090           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2091         break;
2092       case LibFunc_fmod:
2093       case LibFunc_fmodf:
2094         if (TLI->has(Func)) {
2095           APFloat V = Op1->getValueAPF();
2096           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2097             return ConstantFP::get(Ty->getContext(), V);
2098         }
2099         break;
2100       case LibFunc_atan2:
2101       case LibFunc_atan2f:
2102       case LibFunc_atan2_finite:
2103       case LibFunc_atan2f_finite:
2104         if (TLI->has(Func))
2105           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2106         break;
2107       }
2108     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2109       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2110         return ConstantFP::get(Ty->getContext(),
2111                                APFloat((float)std::pow((float)Op1V,
2112                                                (int)Op2C->getZExtValue())));
2113       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2114         return ConstantFP::get(Ty->getContext(),
2115                                APFloat((float)std::pow((float)Op1V,
2116                                                (int)Op2C->getZExtValue())));
2117       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2118         return ConstantFP::get(Ty->getContext(),
2119                                APFloat((double)std::pow((double)Op1V,
2120                                                  (int)Op2C->getZExtValue())));
2121     }
2122     return nullptr;
2123   }
2124 
2125   if (Operands[0]->getType()->isIntegerTy() &&
2126       Operands[1]->getType()->isIntegerTy()) {
2127     const APInt *C0, *C1;
2128     if (!getConstIntOrUndef(Operands[0], C0) ||
2129         !getConstIntOrUndef(Operands[1], C1))
2130       return nullptr;
2131 
2132     switch (IntrinsicID) {
2133     default: break;
2134     case Intrinsic::usub_with_overflow:
2135     case Intrinsic::ssub_with_overflow:
2136     case Intrinsic::uadd_with_overflow:
2137     case Intrinsic::sadd_with_overflow:
2138       // X - undef -> { undef, false }
2139       // undef - X -> { undef, false }
2140       // X + undef -> { undef, false }
2141       // undef + x -> { undef, false }
2142       if (!C0 || !C1) {
2143         return ConstantStruct::get(
2144             cast<StructType>(Ty),
2145             {UndefValue::get(Ty->getStructElementType(0)),
2146              Constant::getNullValue(Ty->getStructElementType(1))});
2147       }
2148       LLVM_FALLTHROUGH;
2149     case Intrinsic::smul_with_overflow:
2150     case Intrinsic::umul_with_overflow: {
2151       // undef * X -> { 0, false }
2152       // X * undef -> { 0, false }
2153       if (!C0 || !C1)
2154         return Constant::getNullValue(Ty);
2155 
2156       APInt Res;
2157       bool Overflow;
2158       switch (IntrinsicID) {
2159       default: llvm_unreachable("Invalid case");
2160       case Intrinsic::sadd_with_overflow:
2161         Res = C0->sadd_ov(*C1, Overflow);
2162         break;
2163       case Intrinsic::uadd_with_overflow:
2164         Res = C0->uadd_ov(*C1, Overflow);
2165         break;
2166       case Intrinsic::ssub_with_overflow:
2167         Res = C0->ssub_ov(*C1, Overflow);
2168         break;
2169       case Intrinsic::usub_with_overflow:
2170         Res = C0->usub_ov(*C1, Overflow);
2171         break;
2172       case Intrinsic::smul_with_overflow:
2173         Res = C0->smul_ov(*C1, Overflow);
2174         break;
2175       case Intrinsic::umul_with_overflow:
2176         Res = C0->umul_ov(*C1, Overflow);
2177         break;
2178       }
2179       Constant *Ops[] = {
2180         ConstantInt::get(Ty->getContext(), Res),
2181         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2182       };
2183       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2184     }
2185     case Intrinsic::uadd_sat:
2186     case Intrinsic::sadd_sat:
2187       if (!C0 && !C1)
2188         return UndefValue::get(Ty);
2189       if (!C0 || !C1)
2190         return Constant::getAllOnesValue(Ty);
2191       if (IntrinsicID == Intrinsic::uadd_sat)
2192         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2193       else
2194         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2195     case Intrinsic::usub_sat:
2196     case Intrinsic::ssub_sat:
2197       if (!C0 && !C1)
2198         return UndefValue::get(Ty);
2199       if (!C0 || !C1)
2200         return Constant::getNullValue(Ty);
2201       if (IntrinsicID == Intrinsic::usub_sat)
2202         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2203       else
2204         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2205     case Intrinsic::cttz:
2206     case Intrinsic::ctlz:
2207       assert(C1 && "Must be constant int");
2208 
2209       // cttz(0, 1) and ctlz(0, 1) are undef.
2210       if (C1->isOneValue() && (!C0 || C0->isNullValue()))
2211         return UndefValue::get(Ty);
2212       if (!C0)
2213         return Constant::getNullValue(Ty);
2214       if (IntrinsicID == Intrinsic::cttz)
2215         return ConstantInt::get(Ty, C0->countTrailingZeros());
2216       else
2217         return ConstantInt::get(Ty, C0->countLeadingZeros());
2218     }
2219 
2220     return nullptr;
2221   }
2222 
2223   // Support ConstantVector in case we have an Undef in the top.
2224   if ((isa<ConstantVector>(Operands[0]) ||
2225        isa<ConstantDataVector>(Operands[0])) &&
2226       // Check for default rounding mode.
2227       // FIXME: Support other rounding modes?
2228       isa<ConstantInt>(Operands[1]) &&
2229       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2230     auto *Op = cast<Constant>(Operands[0]);
2231     switch (IntrinsicID) {
2232     default: break;
2233     case Intrinsic::x86_avx512_vcvtss2si32:
2234     case Intrinsic::x86_avx512_vcvtss2si64:
2235     case Intrinsic::x86_avx512_vcvtsd2si32:
2236     case Intrinsic::x86_avx512_vcvtsd2si64:
2237       if (ConstantFP *FPOp =
2238               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2239         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2240                                            /*roundTowardZero=*/false, Ty,
2241                                            /*IsSigned*/true);
2242       break;
2243     case Intrinsic::x86_avx512_vcvtss2usi32:
2244     case Intrinsic::x86_avx512_vcvtss2usi64:
2245     case Intrinsic::x86_avx512_vcvtsd2usi32:
2246     case Intrinsic::x86_avx512_vcvtsd2usi64:
2247       if (ConstantFP *FPOp =
2248               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2249         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2250                                            /*roundTowardZero=*/false, Ty,
2251                                            /*IsSigned*/false);
2252       break;
2253     case Intrinsic::x86_avx512_cvttss2si:
2254     case Intrinsic::x86_avx512_cvttss2si64:
2255     case Intrinsic::x86_avx512_cvttsd2si:
2256     case Intrinsic::x86_avx512_cvttsd2si64:
2257       if (ConstantFP *FPOp =
2258               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2259         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2260                                            /*roundTowardZero=*/true, Ty,
2261                                            /*IsSigned*/true);
2262       break;
2263     case Intrinsic::x86_avx512_cvttss2usi:
2264     case Intrinsic::x86_avx512_cvttss2usi64:
2265     case Intrinsic::x86_avx512_cvttsd2usi:
2266     case Intrinsic::x86_avx512_cvttsd2usi64:
2267       if (ConstantFP *FPOp =
2268               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2269         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2270                                            /*roundTowardZero=*/true, Ty,
2271                                            /*IsSigned*/false);
2272       break;
2273     }
2274   }
2275   return nullptr;
2276 }
2277 
2278 static Constant *ConstantFoldScalarCall3(StringRef Name,
2279                                          Intrinsic::ID IntrinsicID,
2280                                          Type *Ty,
2281                                          ArrayRef<Constant *> Operands,
2282                                          const TargetLibraryInfo *TLI,
2283                                          const CallBase *Call) {
2284   assert(Operands.size() == 3 && "Wrong number of operands.");
2285 
2286   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2287     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2288       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
2289         switch (IntrinsicID) {
2290         default: break;
2291         case Intrinsic::fma:
2292         case Intrinsic::fmuladd: {
2293           APFloat V = Op1->getValueAPF();
2294           V.fusedMultiplyAdd(Op2->getValueAPF(), Op3->getValueAPF(),
2295                              APFloat::rmNearestTiesToEven);
2296           return ConstantFP::get(Ty->getContext(), V);
2297         }
2298         }
2299       }
2300     }
2301   }
2302 
2303   if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
2304     if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
2305       if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
2306         switch (IntrinsicID) {
2307         default: break;
2308         case Intrinsic::smul_fix:
2309         case Intrinsic::smul_fix_sat: {
2310           // This code performs rounding towards negative infinity in case the
2311           // result cannot be represented exactly for the given scale. Targets
2312           // that do care about rounding should use a target hook for specifying
2313           // how rounding should be done, and provide their own folding to be
2314           // consistent with rounding. This is the same approach as used by
2315           // DAGTypeLegalizer::ExpandIntRes_MULFIX.
2316           APInt Lhs = Op1->getValue();
2317           APInt Rhs = Op2->getValue();
2318           unsigned Scale = Op3->getValue().getZExtValue();
2319           unsigned Width = Lhs.getBitWidth();
2320           assert(Scale < Width && "Illegal scale.");
2321           unsigned ExtendedWidth = Width * 2;
2322           APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
2323                            Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
2324           if (IntrinsicID == Intrinsic::smul_fix_sat) {
2325             APInt MaxValue =
2326               APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
2327             APInt MinValue =
2328               APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
2329             Product = APIntOps::smin(Product, MaxValue);
2330             Product = APIntOps::smax(Product, MinValue);
2331           }
2332           return ConstantInt::get(Ty->getContext(),
2333                                   Product.sextOrTrunc(Width));
2334         }
2335         }
2336       }
2337     }
2338   }
2339 
2340   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
2341     const APInt *C0, *C1, *C2;
2342     if (!getConstIntOrUndef(Operands[0], C0) ||
2343         !getConstIntOrUndef(Operands[1], C1) ||
2344         !getConstIntOrUndef(Operands[2], C2))
2345       return nullptr;
2346 
2347     bool IsRight = IntrinsicID == Intrinsic::fshr;
2348     if (!C2)
2349       return Operands[IsRight ? 1 : 0];
2350     if (!C0 && !C1)
2351       return UndefValue::get(Ty);
2352 
2353     // The shift amount is interpreted as modulo the bitwidth. If the shift
2354     // amount is effectively 0, avoid UB due to oversized inverse shift below.
2355     unsigned BitWidth = C2->getBitWidth();
2356     unsigned ShAmt = C2->urem(BitWidth);
2357     if (!ShAmt)
2358       return Operands[IsRight ? 1 : 0];
2359 
2360     // (C0 << ShlAmt) | (C1 >> LshrAmt)
2361     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
2362     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
2363     if (!C0)
2364       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
2365     if (!C1)
2366       return ConstantInt::get(Ty, C0->shl(ShlAmt));
2367     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
2368   }
2369 
2370   return nullptr;
2371 }
2372 
2373 static Constant *ConstantFoldScalarCall(StringRef Name,
2374                                         Intrinsic::ID IntrinsicID,
2375                                         Type *Ty,
2376                                         ArrayRef<Constant *> Operands,
2377                                         const TargetLibraryInfo *TLI,
2378                                         const CallBase *Call) {
2379   if (Operands.size() == 1)
2380     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
2381 
2382   if (Operands.size() == 2)
2383     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
2384 
2385   if (Operands.size() == 3)
2386     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
2387 
2388   return nullptr;
2389 }
2390 
2391 static Constant *ConstantFoldVectorCall(StringRef Name,
2392                                         Intrinsic::ID IntrinsicID,
2393                                         VectorType *VTy,
2394                                         ArrayRef<Constant *> Operands,
2395                                         const DataLayout &DL,
2396                                         const TargetLibraryInfo *TLI,
2397                                         const CallBase *Call) {
2398   SmallVector<Constant *, 4> Result(VTy->getNumElements());
2399   SmallVector<Constant *, 4> Lane(Operands.size());
2400   Type *Ty = VTy->getElementType();
2401 
2402   if (IntrinsicID == Intrinsic::masked_load) {
2403     auto *SrcPtr = Operands[0];
2404     auto *Mask = Operands[2];
2405     auto *Passthru = Operands[3];
2406 
2407     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
2408 
2409     SmallVector<Constant *, 32> NewElements;
2410     for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2411       auto *MaskElt = Mask->getAggregateElement(I);
2412       if (!MaskElt)
2413         break;
2414       auto *PassthruElt = Passthru->getAggregateElement(I);
2415       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
2416       if (isa<UndefValue>(MaskElt)) {
2417         if (PassthruElt)
2418           NewElements.push_back(PassthruElt);
2419         else if (VecElt)
2420           NewElements.push_back(VecElt);
2421         else
2422           return nullptr;
2423       }
2424       if (MaskElt->isNullValue()) {
2425         if (!PassthruElt)
2426           return nullptr;
2427         NewElements.push_back(PassthruElt);
2428       } else if (MaskElt->isOneValue()) {
2429         if (!VecElt)
2430           return nullptr;
2431         NewElements.push_back(VecElt);
2432       } else {
2433         return nullptr;
2434       }
2435     }
2436     if (NewElements.size() != VTy->getNumElements())
2437       return nullptr;
2438     return ConstantVector::get(NewElements);
2439   }
2440 
2441   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
2442     // Gather a column of constants.
2443     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
2444       // Some intrinsics use a scalar type for certain arguments.
2445       if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
2446         Lane[J] = Operands[J];
2447         continue;
2448       }
2449 
2450       Constant *Agg = Operands[J]->getAggregateElement(I);
2451       if (!Agg)
2452         return nullptr;
2453 
2454       Lane[J] = Agg;
2455     }
2456 
2457     // Use the regular scalar folding to simplify this column.
2458     Constant *Folded =
2459         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
2460     if (!Folded)
2461       return nullptr;
2462     Result[I] = Folded;
2463   }
2464 
2465   return ConstantVector::get(Result);
2466 }
2467 
2468 } // end anonymous namespace
2469 
2470 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
2471                                  ArrayRef<Constant *> Operands,
2472                                  const TargetLibraryInfo *TLI) {
2473   if (Call->isNoBuiltin() || Call->isStrictFP())
2474     return nullptr;
2475   if (!F->hasName())
2476     return nullptr;
2477   StringRef Name = F->getName();
2478 
2479   Type *Ty = F->getReturnType();
2480 
2481   if (auto *VTy = dyn_cast<VectorType>(Ty))
2482     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
2483                                   F->getParent()->getDataLayout(), TLI, Call);
2484 
2485   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
2486                                 Call);
2487 }
2488 
2489 bool llvm::isMathLibCallNoop(const CallBase *Call,
2490                              const TargetLibraryInfo *TLI) {
2491   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
2492   // (and to some extent ConstantFoldScalarCall).
2493   if (Call->isNoBuiltin() || Call->isStrictFP())
2494     return false;
2495   Function *F = Call->getCalledFunction();
2496   if (!F)
2497     return false;
2498 
2499   LibFunc Func;
2500   if (!TLI || !TLI->getLibFunc(*F, Func))
2501     return false;
2502 
2503   if (Call->getNumArgOperands() == 1) {
2504     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
2505       const APFloat &Op = OpC->getValueAPF();
2506       switch (Func) {
2507       case LibFunc_logl:
2508       case LibFunc_log:
2509       case LibFunc_logf:
2510       case LibFunc_log2l:
2511       case LibFunc_log2:
2512       case LibFunc_log2f:
2513       case LibFunc_log10l:
2514       case LibFunc_log10:
2515       case LibFunc_log10f:
2516         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
2517 
2518       case LibFunc_expl:
2519       case LibFunc_exp:
2520       case LibFunc_expf:
2521         // FIXME: These boundaries are slightly conservative.
2522         if (OpC->getType()->isDoubleTy())
2523           return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
2524                  Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
2525         if (OpC->getType()->isFloatTy())
2526           return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
2527                  Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
2528         break;
2529 
2530       case LibFunc_exp2l:
2531       case LibFunc_exp2:
2532       case LibFunc_exp2f:
2533         // FIXME: These boundaries are slightly conservative.
2534         if (OpC->getType()->isDoubleTy())
2535           return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
2536                  Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
2537         if (OpC->getType()->isFloatTy())
2538           return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
2539                  Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
2540         break;
2541 
2542       case LibFunc_sinl:
2543       case LibFunc_sin:
2544       case LibFunc_sinf:
2545       case LibFunc_cosl:
2546       case LibFunc_cos:
2547       case LibFunc_cosf:
2548         return !Op.isInfinity();
2549 
2550       case LibFunc_tanl:
2551       case LibFunc_tan:
2552       case LibFunc_tanf: {
2553         // FIXME: Stop using the host math library.
2554         // FIXME: The computation isn't done in the right precision.
2555         Type *Ty = OpC->getType();
2556         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2557           double OpV = getValueAsDouble(OpC);
2558           return ConstantFoldFP(tan, OpV, Ty) != nullptr;
2559         }
2560         break;
2561       }
2562 
2563       case LibFunc_asinl:
2564       case LibFunc_asin:
2565       case LibFunc_asinf:
2566       case LibFunc_acosl:
2567       case LibFunc_acos:
2568       case LibFunc_acosf:
2569         return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
2570                    APFloat::cmpLessThan &&
2571                Op.compare(APFloat(Op.getSemantics(), "1")) !=
2572                    APFloat::cmpGreaterThan;
2573 
2574       case LibFunc_sinh:
2575       case LibFunc_cosh:
2576       case LibFunc_sinhf:
2577       case LibFunc_coshf:
2578       case LibFunc_sinhl:
2579       case LibFunc_coshl:
2580         // FIXME: These boundaries are slightly conservative.
2581         if (OpC->getType()->isDoubleTy())
2582           return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
2583                  Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
2584         if (OpC->getType()->isFloatTy())
2585           return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
2586                  Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
2587         break;
2588 
2589       case LibFunc_sqrtl:
2590       case LibFunc_sqrt:
2591       case LibFunc_sqrtf:
2592         return Op.isNaN() || Op.isZero() || !Op.isNegative();
2593 
2594       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
2595       // maybe others?
2596       default:
2597         break;
2598       }
2599     }
2600   }
2601 
2602   if (Call->getNumArgOperands() == 2) {
2603     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
2604     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
2605     if (Op0C && Op1C) {
2606       const APFloat &Op0 = Op0C->getValueAPF();
2607       const APFloat &Op1 = Op1C->getValueAPF();
2608 
2609       switch (Func) {
2610       case LibFunc_powl:
2611       case LibFunc_pow:
2612       case LibFunc_powf: {
2613         // FIXME: Stop using the host math library.
2614         // FIXME: The computation isn't done in the right precision.
2615         Type *Ty = Op0C->getType();
2616         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
2617           if (Ty == Op1C->getType()) {
2618             double Op0V = getValueAsDouble(Op0C);
2619             double Op1V = getValueAsDouble(Op1C);
2620             return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
2621           }
2622         }
2623         break;
2624       }
2625 
2626       case LibFunc_fmodl:
2627       case LibFunc_fmod:
2628       case LibFunc_fmodf:
2629         return Op0.isNaN() || Op1.isNaN() ||
2630                (!Op0.isInfinity() && !Op1.isZero());
2631 
2632       default:
2633         break;
2634       }
2635     }
2636   }
2637 
2638   return false;
2639 }
2640