1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines routines for folding instructions into constants.
10 //
11 // Also, to supplement the basic IR ConstantExpr simplifications,
12 // this file defines some additional folding routines that can make use of
13 // DataLayout information. These functions cannot go in IR due to library
14 // dependency issues.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/APSInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/Analysis/TargetFolder.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/Config/config.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantFold.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/IntrinsicsAMDGPU.h"
47 #include "llvm/IR/IntrinsicsARM.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/Operator.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/KnownBits.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <cassert>
58 #include <cerrno>
59 #include <cfenv>
60 #include <cmath>
61 #include <cstdint>
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 //===----------------------------------------------------------------------===//
68 // Constant Folding internal helper functions
69 //===----------------------------------------------------------------------===//
70 
71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72                                         Constant *C, Type *SrcEltTy,
73                                         unsigned NumSrcElts,
74                                         const DataLayout &DL) {
75   // Now that we know that the input value is a vector of integers, just shift
76   // and insert them into our result.
77   unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78   for (unsigned i = 0; i != NumSrcElts; ++i) {
79     Constant *Element;
80     if (DL.isLittleEndian())
81       Element = C->getAggregateElement(NumSrcElts - i - 1);
82     else
83       Element = C->getAggregateElement(i);
84 
85     if (Element && isa<UndefValue>(Element)) {
86       Result <<= BitShift;
87       continue;
88     }
89 
90     auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91     if (!ElementCI)
92       return ConstantExpr::getBitCast(C, DestTy);
93 
94     Result <<= BitShift;
95     Result |= ElementCI->getValue().zext(Result.getBitWidth());
96   }
97 
98   return nullptr;
99 }
100 
101 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
102 /// This always returns a non-null constant, but it may be a
103 /// ConstantExpr if unfoldable.
104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105   assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106          "Invalid constantexpr bitcast!");
107 
108   // Catch the obvious splat cases.
109   if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
110     return Res;
111 
112   if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113     // Handle a vector->scalar integer/fp cast.
114     if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115       unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116       Type *SrcEltTy = VTy->getElementType();
117 
118       // If the vector is a vector of floating point, convert it to vector of int
119       // to simplify things.
120       if (SrcEltTy->isFloatingPointTy()) {
121         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122         auto *SrcIVTy = FixedVectorType::get(
123             IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124         // Ask IR to do the conversion now that #elts line up.
125         C = ConstantExpr::getBitCast(C, SrcIVTy);
126       }
127 
128       APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129       if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130                                                 SrcEltTy, NumSrcElts, DL))
131         return CE;
132 
133       if (isa<IntegerType>(DestTy))
134         return ConstantInt::get(DestTy, Result);
135 
136       APFloat FP(DestTy->getFltSemantics(), Result);
137       return ConstantFP::get(DestTy->getContext(), FP);
138     }
139   }
140 
141   // The code below only handles casts to vectors currently.
142   auto *DestVTy = dyn_cast<VectorType>(DestTy);
143   if (!DestVTy)
144     return ConstantExpr::getBitCast(C, DestTy);
145 
146   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147   // vector so the code below can handle it uniformly.
148   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149     Constant *Ops = C; // don't take the address of C!
150     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151   }
152 
153   // If this is a bitcast from constant vector -> vector, fold it.
154   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155     return ConstantExpr::getBitCast(C, DestTy);
156 
157   // If the element types match, IR can fold it.
158   unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159   unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160   if (NumDstElt == NumSrcElt)
161     return ConstantExpr::getBitCast(C, DestTy);
162 
163   Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164   Type *DstEltTy = DestVTy->getElementType();
165 
166   // Otherwise, we're changing the number of elements in a vector, which
167   // requires endianness information to do the right thing.  For example,
168   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169   // folds to (little endian):
170   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171   // and to (big endian):
172   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173 
174   // First thing is first.  We only want to think about integer here, so if
175   // we have something in FP form, recast it as integer.
176   if (DstEltTy->isFloatingPointTy()) {
177     // Fold to an vector of integers with same size as our FP type.
178     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179     auto *DestIVTy = FixedVectorType::get(
180         IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181     // Recursively handle this integer conversion, if possible.
182     C = FoldBitCast(C, DestIVTy, DL);
183 
184     // Finally, IR can handle this now that #elts line up.
185     return ConstantExpr::getBitCast(C, DestTy);
186   }
187 
188   // Okay, we know the destination is integer, if the input is FP, convert
189   // it to integer first.
190   if (SrcEltTy->isFloatingPointTy()) {
191     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192     auto *SrcIVTy = FixedVectorType::get(
193         IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194     // Ask IR to do the conversion now that #elts line up.
195     C = ConstantExpr::getBitCast(C, SrcIVTy);
196     // If IR wasn't able to fold it, bail out.
197     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
198         !isa<ConstantDataVector>(C))
199       return C;
200   }
201 
202   // Now we know that the input and output vectors are both integer vectors
203   // of the same size, and that their #elements is not the same.  Do the
204   // conversion here, which depends on whether the input or output has
205   // more elements.
206   bool isLittleEndian = DL.isLittleEndian();
207 
208   SmallVector<Constant*, 32> Result;
209   if (NumDstElt < NumSrcElt) {
210     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211     Constant *Zero = Constant::getNullValue(DstEltTy);
212     unsigned Ratio = NumSrcElt/NumDstElt;
213     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214     unsigned SrcElt = 0;
215     for (unsigned i = 0; i != NumDstElt; ++i) {
216       // Build each element of the result.
217       Constant *Elt = Zero;
218       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219       for (unsigned j = 0; j != Ratio; ++j) {
220         Constant *Src = C->getAggregateElement(SrcElt++);
221         if (Src && isa<UndefValue>(Src))
222           Src = Constant::getNullValue(
223               cast<VectorType>(C->getType())->getElementType());
224         else
225           Src = dyn_cast_or_null<ConstantInt>(Src);
226         if (!Src)  // Reject constantexpr elements.
227           return ConstantExpr::getBitCast(C, DestTy);
228 
229         // Zero extend the element to the right size.
230         Src = ConstantExpr::getZExt(Src, Elt->getType());
231 
232         // Shift it to the right place, depending on endianness.
233         Src = ConstantExpr::getShl(Src,
234                                    ConstantInt::get(Src->getType(), ShiftAmt));
235         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
236 
237         // Mix it in.
238         Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
239         assert(Elt && "Constant folding cannot fail on plain integers");
240       }
241       Result.push_back(Elt);
242     }
243     return ConstantVector::get(Result);
244   }
245 
246   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
247   unsigned Ratio = NumDstElt/NumSrcElt;
248   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
249 
250   // Loop over each source value, expanding into multiple results.
251   for (unsigned i = 0; i != NumSrcElt; ++i) {
252     auto *Element = C->getAggregateElement(i);
253 
254     if (!Element) // Reject constantexpr elements.
255       return ConstantExpr::getBitCast(C, DestTy);
256 
257     if (isa<UndefValue>(Element)) {
258       // Correctly Propagate undef values.
259       Result.append(Ratio, UndefValue::get(DstEltTy));
260       continue;
261     }
262 
263     auto *Src = dyn_cast<ConstantInt>(Element);
264     if (!Src)
265       return ConstantExpr::getBitCast(C, DestTy);
266 
267     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
268     for (unsigned j = 0; j != Ratio; ++j) {
269       // Shift the piece of the value into the right place, depending on
270       // endianness.
271       Constant *Elt = ConstantExpr::getLShr(Src,
272                                   ConstantInt::get(Src->getType(), ShiftAmt));
273       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
274 
275       // Truncate the element to an integer with the same pointer size and
276       // convert the element back to a pointer using a inttoptr.
277       if (DstEltTy->isPointerTy()) {
278         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
279         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
280         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
281         continue;
282       }
283 
284       // Truncate and remember this piece.
285       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
286     }
287   }
288 
289   return ConstantVector::get(Result);
290 }
291 
292 } // end anonymous namespace
293 
294 /// If this constant is a constant offset from a global, return the global and
295 /// the constant. Because of constantexprs, this function is recursive.
296 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
297                                       APInt &Offset, const DataLayout &DL,
298                                       DSOLocalEquivalent **DSOEquiv) {
299   if (DSOEquiv)
300     *DSOEquiv = nullptr;
301 
302   // Trivial case, constant is the global.
303   if ((GV = dyn_cast<GlobalValue>(C))) {
304     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
305     Offset = APInt(BitWidth, 0);
306     return true;
307   }
308 
309   if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
310     if (DSOEquiv)
311       *DSOEquiv = FoundDSOEquiv;
312     GV = FoundDSOEquiv->getGlobalValue();
313     unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
314     Offset = APInt(BitWidth, 0);
315     return true;
316   }
317 
318   // Otherwise, if this isn't a constant expr, bail out.
319   auto *CE = dyn_cast<ConstantExpr>(C);
320   if (!CE) return false;
321 
322   // Look through ptr->int and ptr->ptr casts.
323   if (CE->getOpcode() == Instruction::PtrToInt ||
324       CE->getOpcode() == Instruction::BitCast)
325     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
326                                       DSOEquiv);
327 
328   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
329   auto *GEP = dyn_cast<GEPOperator>(CE);
330   if (!GEP)
331     return false;
332 
333   unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
334   APInt TmpOffset(BitWidth, 0);
335 
336   // If the base isn't a global+constant, we aren't either.
337   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
338                                   DSOEquiv))
339     return false;
340 
341   // Otherwise, add any offset that our operands provide.
342   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
343     return false;
344 
345   Offset = TmpOffset;
346   return true;
347 }
348 
349 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
350                                          const DataLayout &DL) {
351   do {
352     Type *SrcTy = C->getType();
353     if (SrcTy == DestTy)
354       return C;
355 
356     TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
357     TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
358     if (!TypeSize::isKnownGE(SrcSize, DestSize))
359       return nullptr;
360 
361     // Catch the obvious splat cases (since all-zeros can coerce non-integral
362     // pointers legally).
363     if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
364       return Res;
365 
366     // If the type sizes are the same and a cast is legal, just directly
367     // cast the constant.
368     // But be careful not to coerce non-integral pointers illegally.
369     if (SrcSize == DestSize &&
370         DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
371             DL.isNonIntegralPointerType(DestTy->getScalarType())) {
372       Instruction::CastOps Cast = Instruction::BitCast;
373       // If we are going from a pointer to int or vice versa, we spell the cast
374       // differently.
375       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
376         Cast = Instruction::IntToPtr;
377       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
378         Cast = Instruction::PtrToInt;
379 
380       if (CastInst::castIsValid(Cast, C, DestTy))
381         return ConstantExpr::getCast(Cast, C, DestTy);
382     }
383 
384     // If this isn't an aggregate type, there is nothing we can do to drill down
385     // and find a bitcastable constant.
386     if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
387       return nullptr;
388 
389     // We're simulating a load through a pointer that was bitcast to point to
390     // a different type, so we can try to walk down through the initial
391     // elements of an aggregate to see if some part of the aggregate is
392     // castable to implement the "load" semantic model.
393     if (SrcTy->isStructTy()) {
394       // Struct types might have leading zero-length elements like [0 x i32],
395       // which are certainly not what we are looking for, so skip them.
396       unsigned Elem = 0;
397       Constant *ElemC;
398       do {
399         ElemC = C->getAggregateElement(Elem++);
400       } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
401       C = ElemC;
402     } else {
403       // For non-byte-sized vector elements, the first element is not
404       // necessarily located at the vector base address.
405       if (auto *VT = dyn_cast<VectorType>(SrcTy))
406         if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
407           return nullptr;
408 
409       C = C->getAggregateElement(0u);
410     }
411   } while (C);
412 
413   return nullptr;
414 }
415 
416 namespace {
417 
418 /// Recursive helper to read bits out of global. C is the constant being copied
419 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
420 /// results into and BytesLeft is the number of bytes left in
421 /// the CurPtr buffer. DL is the DataLayout.
422 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
423                         unsigned BytesLeft, const DataLayout &DL) {
424   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
425          "Out of range access");
426 
427   // If this element is zero or undefined, we can just return since *CurPtr is
428   // zero initialized.
429   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
430     return true;
431 
432   if (auto *CI = dyn_cast<ConstantInt>(C)) {
433     if ((CI->getBitWidth() & 7) != 0)
434       return false;
435     const APInt &Val = CI->getValue();
436     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
437 
438     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
439       unsigned n = ByteOffset;
440       if (!DL.isLittleEndian())
441         n = IntBytes - n - 1;
442       CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
443       ++ByteOffset;
444     }
445     return true;
446   }
447 
448   if (auto *CFP = dyn_cast<ConstantFP>(C)) {
449     if (CFP->getType()->isDoubleTy()) {
450       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
451       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
452     }
453     if (CFP->getType()->isFloatTy()){
454       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
455       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
456     }
457     if (CFP->getType()->isHalfTy()){
458       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
459       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
460     }
461     return false;
462   }
463 
464   if (auto *CS = dyn_cast<ConstantStruct>(C)) {
465     const StructLayout *SL = DL.getStructLayout(CS->getType());
466     unsigned Index = SL->getElementContainingOffset(ByteOffset);
467     uint64_t CurEltOffset = SL->getElementOffset(Index);
468     ByteOffset -= CurEltOffset;
469 
470     while (true) {
471       // If the element access is to the element itself and not to tail padding,
472       // read the bytes from the element.
473       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
474 
475       if (ByteOffset < EltSize &&
476           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
477                               BytesLeft, DL))
478         return false;
479 
480       ++Index;
481 
482       // Check to see if we read from the last struct element, if so we're done.
483       if (Index == CS->getType()->getNumElements())
484         return true;
485 
486       // If we read all of the bytes we needed from this element we're done.
487       uint64_t NextEltOffset = SL->getElementOffset(Index);
488 
489       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
490         return true;
491 
492       // Move to the next element of the struct.
493       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
494       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
495       ByteOffset = 0;
496       CurEltOffset = NextEltOffset;
497     }
498     // not reached.
499   }
500 
501   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
502       isa<ConstantDataSequential>(C)) {
503     uint64_t NumElts, EltSize;
504     Type *EltTy;
505     if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
506       NumElts = AT->getNumElements();
507       EltTy = AT->getElementType();
508       EltSize = DL.getTypeAllocSize(EltTy);
509     } else {
510       NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
511       EltTy = cast<FixedVectorType>(C->getType())->getElementType();
512       // TODO: For non-byte-sized vectors, current implementation assumes there is
513       // padding to the next byte boundary between elements.
514       if (!DL.typeSizeEqualsStoreSize(EltTy))
515         return false;
516 
517       EltSize = DL.getTypeStoreSize(EltTy);
518     }
519     uint64_t Index = ByteOffset / EltSize;
520     uint64_t Offset = ByteOffset - Index * EltSize;
521 
522     for (; Index != NumElts; ++Index) {
523       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
524                               BytesLeft, DL))
525         return false;
526 
527       uint64_t BytesWritten = EltSize - Offset;
528       assert(BytesWritten <= EltSize && "Not indexing into this element?");
529       if (BytesWritten >= BytesLeft)
530         return true;
531 
532       Offset = 0;
533       BytesLeft -= BytesWritten;
534       CurPtr += BytesWritten;
535     }
536     return true;
537   }
538 
539   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
540     if (CE->getOpcode() == Instruction::IntToPtr &&
541         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
542       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
543                                 BytesLeft, DL);
544     }
545   }
546 
547   // Otherwise, unknown initializer type.
548   return false;
549 }
550 
551 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
552                                        int64_t Offset, const DataLayout &DL) {
553   // Bail out early. Not expect to load from scalable global variable.
554   if (isa<ScalableVectorType>(LoadTy))
555     return nullptr;
556 
557   auto *IntType = dyn_cast<IntegerType>(LoadTy);
558 
559   // If this isn't an integer load we can't fold it directly.
560   if (!IntType) {
561     // If this is a non-integer load, we can try folding it as an int load and
562     // then bitcast the result.  This can be useful for union cases.  Note
563     // that address spaces don't matter here since we're not going to result in
564     // an actual new load.
565     if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
566         !LoadTy->isVectorTy())
567       return nullptr;
568 
569     Type *MapTy = Type::getIntNTy(C->getContext(),
570                                   DL.getTypeSizeInBits(LoadTy).getFixedValue());
571     if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
572       if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
573           !LoadTy->isX86_AMXTy())
574         // Materializing a zero can be done trivially without a bitcast
575         return Constant::getNullValue(LoadTy);
576       Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
577       Res = FoldBitCast(Res, CastTy, DL);
578       if (LoadTy->isPtrOrPtrVectorTy()) {
579         // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
580         if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
581             !LoadTy->isX86_AMXTy())
582           return Constant::getNullValue(LoadTy);
583         if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
584           // Be careful not to replace a load of an addrspace value with an inttoptr here
585           return nullptr;
586         Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
587       }
588       return Res;
589     }
590     return nullptr;
591   }
592 
593   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
594   if (BytesLoaded > 32 || BytesLoaded == 0)
595     return nullptr;
596 
597   // If we're not accessing anything in this constant, the result is undefined.
598   if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
599     return PoisonValue::get(IntType);
600 
601   // TODO: We should be able to support scalable types.
602   TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
603   if (InitializerSize.isScalable())
604     return nullptr;
605 
606   // If we're not accessing anything in this constant, the result is undefined.
607   if (Offset >= (int64_t)InitializerSize.getFixedValue())
608     return PoisonValue::get(IntType);
609 
610   unsigned char RawBytes[32] = {0};
611   unsigned char *CurPtr = RawBytes;
612   unsigned BytesLeft = BytesLoaded;
613 
614   // If we're loading off the beginning of the global, some bytes may be valid.
615   if (Offset < 0) {
616     CurPtr += -Offset;
617     BytesLeft += Offset;
618     Offset = 0;
619   }
620 
621   if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
622     return nullptr;
623 
624   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
625   if (DL.isLittleEndian()) {
626     ResultVal = RawBytes[BytesLoaded - 1];
627     for (unsigned i = 1; i != BytesLoaded; ++i) {
628       ResultVal <<= 8;
629       ResultVal |= RawBytes[BytesLoaded - 1 - i];
630     }
631   } else {
632     ResultVal = RawBytes[0];
633     for (unsigned i = 1; i != BytesLoaded; ++i) {
634       ResultVal <<= 8;
635       ResultVal |= RawBytes[i];
636     }
637   }
638 
639   return ConstantInt::get(IntType->getContext(), ResultVal);
640 }
641 
642 } // anonymous namespace
643 
644 // If GV is a constant with an initializer read its representation starting
645 // at Offset and return it as a constant array of unsigned char.  Otherwise
646 // return null.
647 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
648                                         uint64_t Offset) {
649   if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
650     return nullptr;
651 
652   const DataLayout &DL = GV->getParent()->getDataLayout();
653   Constant *Init = const_cast<Constant *>(GV->getInitializer());
654   TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
655   if (InitSize < Offset)
656     return nullptr;
657 
658   uint64_t NBytes = InitSize - Offset;
659   if (NBytes > UINT16_MAX)
660     // Bail for large initializers in excess of 64K to avoid allocating
661     // too much memory.
662     // Offset is assumed to be less than or equal than InitSize (this
663     // is enforced in ReadDataFromGlobal).
664     return nullptr;
665 
666   SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
667   unsigned char *CurPtr = RawBytes.data();
668 
669   if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
670     return nullptr;
671 
672   return ConstantDataArray::get(GV->getContext(), RawBytes);
673 }
674 
675 /// If this Offset points exactly to the start of an aggregate element, return
676 /// that element, otherwise return nullptr.
677 Constant *getConstantAtOffset(Constant *Base, APInt Offset,
678                               const DataLayout &DL) {
679   if (Offset.isZero())
680     return Base;
681 
682   if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
683     return nullptr;
684 
685   Type *ElemTy = Base->getType();
686   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
687   if (!Offset.isZero() || !Indices[0].isZero())
688     return nullptr;
689 
690   Constant *C = Base;
691   for (const APInt &Index : drop_begin(Indices)) {
692     if (Index.isNegative() || Index.getActiveBits() >= 32)
693       return nullptr;
694 
695     C = C->getAggregateElement(Index.getZExtValue());
696     if (!C)
697       return nullptr;
698   }
699 
700   return C;
701 }
702 
703 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
704                                           const APInt &Offset,
705                                           const DataLayout &DL) {
706   if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
707     if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
708       return Result;
709 
710   // Explicitly check for out-of-bounds access, so we return poison even if the
711   // constant is a uniform value.
712   TypeSize Size = DL.getTypeAllocSize(C->getType());
713   if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
714     return PoisonValue::get(Ty);
715 
716   // Try an offset-independent fold of a uniform value.
717   if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
718     return Result;
719 
720   // Try hard to fold loads from bitcasted strange and non-type-safe things.
721   if (Offset.getSignificantBits() <= 64)
722     if (Constant *Result =
723             FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
724       return Result;
725 
726   return nullptr;
727 }
728 
729 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
730                                           const DataLayout &DL) {
731   return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
732 }
733 
734 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
735                                              APInt Offset,
736                                              const DataLayout &DL) {
737   // We can only fold loads from constant globals with a definitive initializer.
738   // Check this upfront, to skip expensive offset calculations.
739   auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
740   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
741     return nullptr;
742 
743   C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
744           DL, Offset, /* AllowNonInbounds */ true));
745 
746   if (C == GV)
747     if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
748                                                      Offset, DL))
749       return Result;
750 
751   // If this load comes from anywhere in a uniform constant global, the value
752   // is always the same, regardless of the loaded offset.
753   return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty);
754 }
755 
756 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
757                                              const DataLayout &DL) {
758   APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
759   return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
760 }
761 
762 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
763   if (isa<PoisonValue>(C))
764     return PoisonValue::get(Ty);
765   if (isa<UndefValue>(C))
766     return UndefValue::get(Ty);
767   if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
768     return Constant::getNullValue(Ty);
769   if (C->isAllOnesValue() &&
770       (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
771     return Constant::getAllOnesValue(Ty);
772   return nullptr;
773 }
774 
775 namespace {
776 
777 /// One of Op0/Op1 is a constant expression.
778 /// Attempt to symbolically evaluate the result of a binary operator merging
779 /// these together.  If target data info is available, it is provided as DL,
780 /// otherwise DL is null.
781 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
782                                     const DataLayout &DL) {
783   // SROA
784 
785   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
786   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
787   // bits.
788 
789   if (Opc == Instruction::And) {
790     KnownBits Known0 = computeKnownBits(Op0, DL);
791     KnownBits Known1 = computeKnownBits(Op1, DL);
792     if ((Known1.One | Known0.Zero).isAllOnes()) {
793       // All the bits of Op0 that the 'and' could be masking are already zero.
794       return Op0;
795     }
796     if ((Known0.One | Known1.Zero).isAllOnes()) {
797       // All the bits of Op1 that the 'and' could be masking are already zero.
798       return Op1;
799     }
800 
801     Known0 &= Known1;
802     if (Known0.isConstant())
803       return ConstantInt::get(Op0->getType(), Known0.getConstant());
804   }
805 
806   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
807   // constant.  This happens frequently when iterating over a global array.
808   if (Opc == Instruction::Sub) {
809     GlobalValue *GV1, *GV2;
810     APInt Offs1, Offs2;
811 
812     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
813       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
814         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
815 
816         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
817         // PtrToInt may change the bitwidth so we have convert to the right size
818         // first.
819         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
820                                                 Offs2.zextOrTrunc(OpSize));
821       }
822   }
823 
824   return nullptr;
825 }
826 
827 /// If array indices are not pointer-sized integers, explicitly cast them so
828 /// that they aren't implicitly casted by the getelementptr.
829 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
830                          Type *ResultTy, bool InBounds,
831                          std::optional<unsigned> InRangeIndex,
832                          const DataLayout &DL, const TargetLibraryInfo *TLI) {
833   Type *IntIdxTy = DL.getIndexType(ResultTy);
834   Type *IntIdxScalarTy = IntIdxTy->getScalarType();
835 
836   bool Any = false;
837   SmallVector<Constant*, 32> NewIdxs;
838   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
839     if ((i == 1 ||
840          !isa<StructType>(GetElementPtrInst::getIndexedType(
841              SrcElemTy, Ops.slice(1, i - 1)))) &&
842         Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
843       Any = true;
844       Type *NewType = Ops[i]->getType()->isVectorTy()
845                           ? IntIdxTy
846                           : IntIdxScalarTy;
847       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
848                                                                       true,
849                                                                       NewType,
850                                                                       true),
851                                               Ops[i], NewType));
852     } else
853       NewIdxs.push_back(Ops[i]);
854   }
855 
856   if (!Any)
857     return nullptr;
858 
859   Constant *C = ConstantExpr::getGetElementPtr(
860       SrcElemTy, Ops[0], NewIdxs, InBounds, InRangeIndex);
861   return ConstantFoldConstant(C, DL, TLI);
862 }
863 
864 /// Strip the pointer casts, but preserve the address space information.
865 // TODO: This probably doesn't make sense with opaque pointers.
866 static Constant *StripPtrCastKeepAS(Constant *Ptr) {
867   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
868   auto *OldPtrTy = cast<PointerType>(Ptr->getType());
869   Ptr = cast<Constant>(Ptr->stripPointerCasts());
870   auto *NewPtrTy = cast<PointerType>(Ptr->getType());
871 
872   // Preserve the address space number of the pointer.
873   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace())
874     Ptr = ConstantExpr::getPointerCast(Ptr, OldPtrTy);
875   return Ptr;
876 }
877 
878 /// If we can symbolically evaluate the GEP constant expression, do so.
879 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
880                                   ArrayRef<Constant *> Ops,
881                                   const DataLayout &DL,
882                                   const TargetLibraryInfo *TLI) {
883   const GEPOperator *InnermostGEP = GEP;
884   bool InBounds = GEP->isInBounds();
885 
886   Type *SrcElemTy = GEP->getSourceElementType();
887   Type *ResElemTy = GEP->getResultElementType();
888   Type *ResTy = GEP->getType();
889   if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
890     return nullptr;
891 
892   if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
893                                    GEP->isInBounds(), GEP->getInRangeIndex(),
894                                    DL, TLI))
895     return C;
896 
897   Constant *Ptr = Ops[0];
898   if (!Ptr->getType()->isPointerTy())
899     return nullptr;
900 
901   Type *IntIdxTy = DL.getIndexType(Ptr->getType());
902 
903   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
904     if (!isa<ConstantInt>(Ops[i]))
905       return nullptr;
906 
907   unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
908   APInt Offset = APInt(
909       BitWidth,
910       DL.getIndexedOffsetInType(
911           SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
912   Ptr = StripPtrCastKeepAS(Ptr);
913 
914   // If this is a GEP of a GEP, fold it all into a single GEP.
915   while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
916     InnermostGEP = GEP;
917     InBounds &= GEP->isInBounds();
918 
919     SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
920 
921     // Do not try the incorporate the sub-GEP if some index is not a number.
922     bool AllConstantInt = true;
923     for (Value *NestedOp : NestedOps)
924       if (!isa<ConstantInt>(NestedOp)) {
925         AllConstantInt = false;
926         break;
927       }
928     if (!AllConstantInt)
929       break;
930 
931     Ptr = cast<Constant>(GEP->getOperand(0));
932     SrcElemTy = GEP->getSourceElementType();
933     Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
934     Ptr = StripPtrCastKeepAS(Ptr);
935   }
936 
937   // If the base value for this address is a literal integer value, fold the
938   // getelementptr to the resulting integer value casted to the pointer type.
939   APInt BasePtr(BitWidth, 0);
940   if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
941     if (CE->getOpcode() == Instruction::IntToPtr) {
942       if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
943         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
944     }
945   }
946 
947   auto *PTy = cast<PointerType>(Ptr->getType());
948   if ((Ptr->isNullValue() || BasePtr != 0) &&
949       !DL.isNonIntegralPointerType(PTy)) {
950     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
951     return ConstantExpr::getIntToPtr(C, ResTy);
952   }
953 
954   // Otherwise form a regular getelementptr. Recompute the indices so that
955   // we eliminate over-indexing of the notional static type array bounds.
956   // This makes it easy to determine if the getelementptr is "inbounds".
957 
958   // For GEPs of GlobalValues, use the value type, otherwise use an i8 GEP.
959   if (auto *GV = dyn_cast<GlobalValue>(Ptr))
960     SrcElemTy = GV->getValueType();
961   else
962     SrcElemTy = Type::getInt8Ty(Ptr->getContext());
963 
964   if (!SrcElemTy->isSized())
965     return nullptr;
966 
967   Type *ElemTy = SrcElemTy;
968   SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
969   if (Offset != 0)
970     return nullptr;
971 
972   // Try to add additional zero indices to reach the desired result element
973   // type.
974   // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
975   // we'll have to insert a bitcast anyway?
976   while (ElemTy != ResElemTy) {
977     Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
978     if (!NextTy)
979       break;
980 
981     Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
982     ElemTy = NextTy;
983   }
984 
985   SmallVector<Constant *, 32> NewIdxs;
986   for (const APInt &Index : Indices)
987     NewIdxs.push_back(ConstantInt::get(
988         Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
989 
990   // Preserve the inrange index from the innermost GEP if possible. We must
991   // have calculated the same indices up to and including the inrange index.
992   std::optional<unsigned> InRangeIndex;
993   if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
994     if (SrcElemTy == InnermostGEP->getSourceElementType() &&
995         NewIdxs.size() > *LastIRIndex) {
996       InRangeIndex = LastIRIndex;
997       for (unsigned I = 0; I <= *LastIRIndex; ++I)
998         if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
999           return nullptr;
1000     }
1001 
1002   // Create a GEP.
1003   return ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, InBounds,
1004                                         InRangeIndex);
1005 }
1006 
1007 /// Attempt to constant fold an instruction with the
1008 /// specified opcode and operands.  If successful, the constant result is
1009 /// returned, if not, null is returned.  Note that this function can fail when
1010 /// attempting to fold instructions like loads and stores, which have no
1011 /// constant expression form.
1012 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
1013                                        ArrayRef<Constant *> Ops,
1014                                        const DataLayout &DL,
1015                                        const TargetLibraryInfo *TLI) {
1016   Type *DestTy = InstOrCE->getType();
1017 
1018   if (Instruction::isUnaryOp(Opcode))
1019     return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
1020 
1021   if (Instruction::isBinaryOp(Opcode)) {
1022     switch (Opcode) {
1023     default:
1024       break;
1025     case Instruction::FAdd:
1026     case Instruction::FSub:
1027     case Instruction::FMul:
1028     case Instruction::FDiv:
1029     case Instruction::FRem:
1030       // Handle floating point instructions separately to account for denormals
1031       // TODO: If a constant expression is being folded rather than an
1032       // instruction, denormals will not be flushed/treated as zero
1033       if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
1034         return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I);
1035       }
1036     }
1037     return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1038   }
1039 
1040   if (Instruction::isCast(Opcode))
1041     return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1042 
1043   if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1044     Type *SrcElemTy = GEP->getSourceElementType();
1045     if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
1046       return nullptr;
1047 
1048     if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1049       return C;
1050 
1051     return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1052                                           GEP->isInBounds(),
1053                                           GEP->getInRangeIndex());
1054   }
1055 
1056   if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) {
1057     if (CE->isCompare())
1058       return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
1059                                              DL, TLI);
1060     return CE->getWithOperands(Ops);
1061   }
1062 
1063   switch (Opcode) {
1064   default: return nullptr;
1065   case Instruction::ICmp:
1066   case Instruction::FCmp: {
1067     auto *C = cast<CmpInst>(InstOrCE);
1068     return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1069                                            DL, TLI, C);
1070   }
1071   case Instruction::Freeze:
1072     return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1073   case Instruction::Call:
1074     if (auto *F = dyn_cast<Function>(Ops.back())) {
1075       const auto *Call = cast<CallBase>(InstOrCE);
1076       if (canConstantFoldCallTo(Call, F))
1077         return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
1078     }
1079     return nullptr;
1080   case Instruction::Select:
1081     return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1082   case Instruction::ExtractElement:
1083     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1084   case Instruction::ExtractValue:
1085     return ConstantFoldExtractValueInstruction(
1086         Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1087   case Instruction::InsertElement:
1088     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1089   case Instruction::InsertValue:
1090     return ConstantFoldInsertValueInstruction(
1091         Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1092   case Instruction::ShuffleVector:
1093     return ConstantExpr::getShuffleVector(
1094         Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1095   case Instruction::Load: {
1096     const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1097     if (LI->isVolatile())
1098       return nullptr;
1099     return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1100   }
1101   }
1102 }
1103 
1104 } // end anonymous namespace
1105 
1106 //===----------------------------------------------------------------------===//
1107 // Constant Folding public APIs
1108 //===----------------------------------------------------------------------===//
1109 
1110 namespace {
1111 
1112 Constant *
1113 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1114                          const TargetLibraryInfo *TLI,
1115                          SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1116   if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1117     return const_cast<Constant *>(C);
1118 
1119   SmallVector<Constant *, 8> Ops;
1120   for (const Use &OldU : C->operands()) {
1121     Constant *OldC = cast<Constant>(&OldU);
1122     Constant *NewC = OldC;
1123     // Recursively fold the ConstantExpr's operands. If we have already folded
1124     // a ConstantExpr, we don't have to process it again.
1125     if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1126       auto It = FoldedOps.find(OldC);
1127       if (It == FoldedOps.end()) {
1128         NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1129         FoldedOps.insert({OldC, NewC});
1130       } else {
1131         NewC = It->second;
1132       }
1133     }
1134     Ops.push_back(NewC);
1135   }
1136 
1137   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1138     if (Constant *Res =
1139             ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI))
1140       return Res;
1141     return const_cast<Constant *>(C);
1142   }
1143 
1144   assert(isa<ConstantVector>(C));
1145   return ConstantVector::get(Ops);
1146 }
1147 
1148 } // end anonymous namespace
1149 
1150 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1151                                         const TargetLibraryInfo *TLI) {
1152   // Handle PHI nodes quickly here...
1153   if (auto *PN = dyn_cast<PHINode>(I)) {
1154     Constant *CommonValue = nullptr;
1155 
1156     SmallDenseMap<Constant *, Constant *> FoldedOps;
1157     for (Value *Incoming : PN->incoming_values()) {
1158       // If the incoming value is undef then skip it.  Note that while we could
1159       // skip the value if it is equal to the phi node itself we choose not to
1160       // because that would break the rule that constant folding only applies if
1161       // all operands are constants.
1162       if (isa<UndefValue>(Incoming))
1163         continue;
1164       // If the incoming value is not a constant, then give up.
1165       auto *C = dyn_cast<Constant>(Incoming);
1166       if (!C)
1167         return nullptr;
1168       // Fold the PHI's operands.
1169       C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1170       // If the incoming value is a different constant to
1171       // the one we saw previously, then give up.
1172       if (CommonValue && C != CommonValue)
1173         return nullptr;
1174       CommonValue = C;
1175     }
1176 
1177     // If we reach here, all incoming values are the same constant or undef.
1178     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1179   }
1180 
1181   // Scan the operand list, checking to see if they are all constants, if so,
1182   // hand off to ConstantFoldInstOperandsImpl.
1183   if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1184     return nullptr;
1185 
1186   SmallDenseMap<Constant *, Constant *> FoldedOps;
1187   SmallVector<Constant *, 8> Ops;
1188   for (const Use &OpU : I->operands()) {
1189     auto *Op = cast<Constant>(&OpU);
1190     // Fold the Instruction's operands.
1191     Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1192     Ops.push_back(Op);
1193   }
1194 
1195   return ConstantFoldInstOperands(I, Ops, DL, TLI);
1196 }
1197 
1198 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1199                                      const TargetLibraryInfo *TLI) {
1200   SmallDenseMap<Constant *, Constant *> FoldedOps;
1201   return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1202 }
1203 
1204 Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1205                                          ArrayRef<Constant *> Ops,
1206                                          const DataLayout &DL,
1207                                          const TargetLibraryInfo *TLI) {
1208   return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
1209 }
1210 
1211 Constant *llvm::ConstantFoldCompareInstOperands(
1212     unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1213     const TargetLibraryInfo *TLI, const Instruction *I) {
1214   CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1215   // fold: icmp (inttoptr x), null         -> icmp x, 0
1216   // fold: icmp null, (inttoptr x)         -> icmp 0, x
1217   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1218   // fold: icmp 0, (ptrtoint x)            -> icmp null, x
1219   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1220   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1221   //
1222   // FIXME: The following comment is out of data and the DataLayout is here now.
1223   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1224   // around to know if bit truncation is happening.
1225   if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1226     if (Ops1->isNullValue()) {
1227       if (CE0->getOpcode() == Instruction::IntToPtr) {
1228         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1229         // Convert the integer value to the right size to ensure we get the
1230         // proper extension or truncation.
1231         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1232                                                    IntPtrTy, false);
1233         Constant *Null = Constant::getNullValue(C->getType());
1234         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1235       }
1236 
1237       // Only do this transformation if the int is intptrty in size, otherwise
1238       // there is a truncation or extension that we aren't modeling.
1239       if (CE0->getOpcode() == Instruction::PtrToInt) {
1240         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1241         if (CE0->getType() == IntPtrTy) {
1242           Constant *C = CE0->getOperand(0);
1243           Constant *Null = Constant::getNullValue(C->getType());
1244           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1245         }
1246       }
1247     }
1248 
1249     if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1250       if (CE0->getOpcode() == CE1->getOpcode()) {
1251         if (CE0->getOpcode() == Instruction::IntToPtr) {
1252           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1253 
1254           // Convert the integer value to the right size to ensure we get the
1255           // proper extension or truncation.
1256           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1257                                                       IntPtrTy, false);
1258           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1259                                                       IntPtrTy, false);
1260           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1261         }
1262 
1263         // Only do this transformation if the int is intptrty in size, otherwise
1264         // there is a truncation or extension that we aren't modeling.
1265         if (CE0->getOpcode() == Instruction::PtrToInt) {
1266           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1267           if (CE0->getType() == IntPtrTy &&
1268               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1269             return ConstantFoldCompareInstOperands(
1270                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1271           }
1272         }
1273       }
1274     }
1275 
1276     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1277     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1278     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1279         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1280       Constant *LHS = ConstantFoldCompareInstOperands(
1281           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1282       Constant *RHS = ConstantFoldCompareInstOperands(
1283           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1284       unsigned OpC =
1285         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1286       return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
1287     }
1288 
1289     // Convert pointer comparison (base+offset1) pred (base+offset2) into
1290     // offset1 pred offset2, for the case where the offset is inbounds. This
1291     // only works for equality and unsigned comparison, as inbounds permits
1292     // crossing the sign boundary. However, the offset comparison itself is
1293     // signed.
1294     if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1295       unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1296       APInt Offset0(IndexWidth, 0);
1297       Value *Stripped0 =
1298           Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1299       APInt Offset1(IndexWidth, 0);
1300       Value *Stripped1 =
1301           Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1302       if (Stripped0 == Stripped1)
1303         return ConstantExpr::getCompare(
1304             ICmpInst::getSignedPredicate(Predicate),
1305             ConstantInt::get(CE0->getContext(), Offset0),
1306             ConstantInt::get(CE0->getContext(), Offset1));
1307     }
1308   } else if (isa<ConstantExpr>(Ops1)) {
1309     // If RHS is a constant expression, but the left side isn't, swap the
1310     // operands and try again.
1311     Predicate = ICmpInst::getSwappedPredicate(Predicate);
1312     return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1313   }
1314 
1315   // Flush any denormal constant float input according to denormal handling
1316   // mode.
1317   Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1318   if (!Ops0)
1319     return nullptr;
1320   Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1321   if (!Ops1)
1322     return nullptr;
1323 
1324   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1325 }
1326 
1327 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1328                                            const DataLayout &DL) {
1329   assert(Instruction::isUnaryOp(Opcode));
1330 
1331   return ConstantFoldUnaryInstruction(Opcode, Op);
1332 }
1333 
1334 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1335                                              Constant *RHS,
1336                                              const DataLayout &DL) {
1337   assert(Instruction::isBinaryOp(Opcode));
1338   if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1339     if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1340       return C;
1341 
1342   if (ConstantExpr::isDesirableBinOp(Opcode))
1343     return ConstantExpr::get(Opcode, LHS, RHS);
1344   return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1345 }
1346 
1347 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1348                                 bool IsOutput) {
1349   if (!I || !I->getParent() || !I->getFunction())
1350     return Operand;
1351 
1352   ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1353   if (!CFP)
1354     return Operand;
1355 
1356   const APFloat &APF = CFP->getValueAPF();
1357   // TODO: Should this canonicalize nans?
1358   if (!APF.isDenormal())
1359     return Operand;
1360 
1361   Type *Ty = CFP->getType();
1362   DenormalMode DenormMode =
1363       I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1364   DenormalMode::DenormalModeKind Mode =
1365       IsOutput ? DenormMode.Output : DenormMode.Input;
1366   switch (Mode) {
1367   default:
1368     llvm_unreachable("unknown denormal mode");
1369   case DenormalMode::Dynamic:
1370     return nullptr;
1371   case DenormalMode::IEEE:
1372     return Operand;
1373   case DenormalMode::PreserveSign:
1374     if (APF.isDenormal()) {
1375       return ConstantFP::get(
1376           Ty->getContext(),
1377           APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1378     }
1379     return Operand;
1380   case DenormalMode::PositiveZero:
1381     if (APF.isDenormal()) {
1382       return ConstantFP::get(Ty->getContext(),
1383                              APFloat::getZero(Ty->getFltSemantics(), false));
1384     }
1385     return Operand;
1386   }
1387   return Operand;
1388 }
1389 
1390 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1391                                            Constant *RHS, const DataLayout &DL,
1392                                            const Instruction *I) {
1393   if (Instruction::isBinaryOp(Opcode)) {
1394     // Flush denormal inputs if needed.
1395     Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1396     if (!Op0)
1397       return nullptr;
1398     Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1399     if (!Op1)
1400       return nullptr;
1401 
1402     // Calculate constant result.
1403     Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1404     if (!C)
1405       return nullptr;
1406 
1407     // Flush denormal output if needed.
1408     return FlushFPConstant(C, I, /* IsOutput */ true);
1409   }
1410   // If instruction lacks a parent/function and the denormal mode cannot be
1411   // determined, use the default (IEEE).
1412   return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1413 }
1414 
1415 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1416                                         Type *DestTy, const DataLayout &DL) {
1417   assert(Instruction::isCast(Opcode));
1418   switch (Opcode) {
1419   default:
1420     llvm_unreachable("Missing case");
1421   case Instruction::PtrToInt:
1422     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1423       Constant *FoldedValue = nullptr;
1424       // If the input is a inttoptr, eliminate the pair.  This requires knowing
1425       // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1426       if (CE->getOpcode() == Instruction::IntToPtr) {
1427         // zext/trunc the inttoptr to pointer size.
1428         FoldedValue = ConstantExpr::getIntegerCast(
1429             CE->getOperand(0), DL.getIntPtrType(CE->getType()),
1430             /*IsSigned=*/false);
1431       } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1432         // If we have GEP, we can perform the following folds:
1433         // (ptrtoint (gep null, x)) -> x
1434         // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1435         unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1436         APInt BaseOffset(BitWidth, 0);
1437         auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1438             DL, BaseOffset, /*AllowNonInbounds=*/true));
1439         if (Base->isNullValue()) {
1440           FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1441         } else {
1442           // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1443           if (GEP->getNumIndices() == 1 &&
1444               GEP->getSourceElementType()->isIntegerTy(8)) {
1445             auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1446             auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1447             Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1448             if (Sub && Sub->getType() == IntIdxTy &&
1449                 Sub->getOpcode() == Instruction::Sub &&
1450                 Sub->getOperand(0)->isNullValue())
1451               FoldedValue = ConstantExpr::getSub(
1452                   ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1453           }
1454         }
1455       }
1456       if (FoldedValue) {
1457         // Do a zext or trunc to get to the ptrtoint dest size.
1458         return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
1459                                             /*IsSigned=*/false);
1460       }
1461     }
1462     return ConstantExpr::getCast(Opcode, C, DestTy);
1463   case Instruction::IntToPtr:
1464     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1465     // the int size is >= the ptr size and the address spaces are the same.
1466     // This requires knowing the width of a pointer, so it can't be done in
1467     // ConstantExpr::getCast.
1468     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1469       if (CE->getOpcode() == Instruction::PtrToInt) {
1470         Constant *SrcPtr = CE->getOperand(0);
1471         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1472         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1473 
1474         if (MidIntSize >= SrcPtrSize) {
1475           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1476           if (SrcAS == DestTy->getPointerAddressSpace())
1477             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1478         }
1479       }
1480     }
1481 
1482     return ConstantExpr::getCast(Opcode, C, DestTy);
1483   case Instruction::Trunc:
1484   case Instruction::ZExt:
1485   case Instruction::SExt:
1486   case Instruction::FPTrunc:
1487   case Instruction::FPExt:
1488   case Instruction::UIToFP:
1489   case Instruction::SIToFP:
1490   case Instruction::FPToUI:
1491   case Instruction::FPToSI:
1492   case Instruction::AddrSpaceCast:
1493       return ConstantExpr::getCast(Opcode, C, DestTy);
1494   case Instruction::BitCast:
1495     return FoldBitCast(C, DestTy, DL);
1496   }
1497 }
1498 
1499 //===----------------------------------------------------------------------===//
1500 //  Constant Folding for Calls
1501 //
1502 
1503 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1504   if (Call->isNoBuiltin())
1505     return false;
1506   if (Call->getFunctionType() != F->getFunctionType())
1507     return false;
1508   switch (F->getIntrinsicID()) {
1509   // Operations that do not operate floating-point numbers and do not depend on
1510   // FP environment can be folded even in strictfp functions.
1511   case Intrinsic::bswap:
1512   case Intrinsic::ctpop:
1513   case Intrinsic::ctlz:
1514   case Intrinsic::cttz:
1515   case Intrinsic::fshl:
1516   case Intrinsic::fshr:
1517   case Intrinsic::launder_invariant_group:
1518   case Intrinsic::strip_invariant_group:
1519   case Intrinsic::masked_load:
1520   case Intrinsic::get_active_lane_mask:
1521   case Intrinsic::abs:
1522   case Intrinsic::smax:
1523   case Intrinsic::smin:
1524   case Intrinsic::umax:
1525   case Intrinsic::umin:
1526   case Intrinsic::sadd_with_overflow:
1527   case Intrinsic::uadd_with_overflow:
1528   case Intrinsic::ssub_with_overflow:
1529   case Intrinsic::usub_with_overflow:
1530   case Intrinsic::smul_with_overflow:
1531   case Intrinsic::umul_with_overflow:
1532   case Intrinsic::sadd_sat:
1533   case Intrinsic::uadd_sat:
1534   case Intrinsic::ssub_sat:
1535   case Intrinsic::usub_sat:
1536   case Intrinsic::smul_fix:
1537   case Intrinsic::smul_fix_sat:
1538   case Intrinsic::bitreverse:
1539   case Intrinsic::is_constant:
1540   case Intrinsic::vector_reduce_add:
1541   case Intrinsic::vector_reduce_mul:
1542   case Intrinsic::vector_reduce_and:
1543   case Intrinsic::vector_reduce_or:
1544   case Intrinsic::vector_reduce_xor:
1545   case Intrinsic::vector_reduce_smin:
1546   case Intrinsic::vector_reduce_smax:
1547   case Intrinsic::vector_reduce_umin:
1548   case Intrinsic::vector_reduce_umax:
1549   // Target intrinsics
1550   case Intrinsic::amdgcn_perm:
1551   case Intrinsic::arm_mve_vctp8:
1552   case Intrinsic::arm_mve_vctp16:
1553   case Intrinsic::arm_mve_vctp32:
1554   case Intrinsic::arm_mve_vctp64:
1555   case Intrinsic::aarch64_sve_convert_from_svbool:
1556   // WebAssembly float semantics are always known
1557   case Intrinsic::wasm_trunc_signed:
1558   case Intrinsic::wasm_trunc_unsigned:
1559     return true;
1560 
1561   // Floating point operations cannot be folded in strictfp functions in
1562   // general case. They can be folded if FP environment is known to compiler.
1563   case Intrinsic::minnum:
1564   case Intrinsic::maxnum:
1565   case Intrinsic::minimum:
1566   case Intrinsic::maximum:
1567   case Intrinsic::log:
1568   case Intrinsic::log2:
1569   case Intrinsic::log10:
1570   case Intrinsic::exp:
1571   case Intrinsic::exp2:
1572   case Intrinsic::sqrt:
1573   case Intrinsic::sin:
1574   case Intrinsic::cos:
1575   case Intrinsic::pow:
1576   case Intrinsic::powi:
1577   case Intrinsic::fma:
1578   case Intrinsic::fmuladd:
1579   case Intrinsic::frexp:
1580   case Intrinsic::fptoui_sat:
1581   case Intrinsic::fptosi_sat:
1582   case Intrinsic::convert_from_fp16:
1583   case Intrinsic::convert_to_fp16:
1584   case Intrinsic::amdgcn_cos:
1585   case Intrinsic::amdgcn_cubeid:
1586   case Intrinsic::amdgcn_cubema:
1587   case Intrinsic::amdgcn_cubesc:
1588   case Intrinsic::amdgcn_cubetc:
1589   case Intrinsic::amdgcn_fmul_legacy:
1590   case Intrinsic::amdgcn_fma_legacy:
1591   case Intrinsic::amdgcn_fract:
1592   case Intrinsic::amdgcn_ldexp:
1593   case Intrinsic::amdgcn_sin:
1594   // The intrinsics below depend on rounding mode in MXCSR.
1595   case Intrinsic::x86_sse_cvtss2si:
1596   case Intrinsic::x86_sse_cvtss2si64:
1597   case Intrinsic::x86_sse_cvttss2si:
1598   case Intrinsic::x86_sse_cvttss2si64:
1599   case Intrinsic::x86_sse2_cvtsd2si:
1600   case Intrinsic::x86_sse2_cvtsd2si64:
1601   case Intrinsic::x86_sse2_cvttsd2si:
1602   case Intrinsic::x86_sse2_cvttsd2si64:
1603   case Intrinsic::x86_avx512_vcvtss2si32:
1604   case Intrinsic::x86_avx512_vcvtss2si64:
1605   case Intrinsic::x86_avx512_cvttss2si:
1606   case Intrinsic::x86_avx512_cvttss2si64:
1607   case Intrinsic::x86_avx512_vcvtsd2si32:
1608   case Intrinsic::x86_avx512_vcvtsd2si64:
1609   case Intrinsic::x86_avx512_cvttsd2si:
1610   case Intrinsic::x86_avx512_cvttsd2si64:
1611   case Intrinsic::x86_avx512_vcvtss2usi32:
1612   case Intrinsic::x86_avx512_vcvtss2usi64:
1613   case Intrinsic::x86_avx512_cvttss2usi:
1614   case Intrinsic::x86_avx512_cvttss2usi64:
1615   case Intrinsic::x86_avx512_vcvtsd2usi32:
1616   case Intrinsic::x86_avx512_vcvtsd2usi64:
1617   case Intrinsic::x86_avx512_cvttsd2usi:
1618   case Intrinsic::x86_avx512_cvttsd2usi64:
1619     return !Call->isStrictFP();
1620 
1621   // Sign operations are actually bitwise operations, they do not raise
1622   // exceptions even for SNANs.
1623   case Intrinsic::fabs:
1624   case Intrinsic::copysign:
1625   case Intrinsic::is_fpclass:
1626   // Non-constrained variants of rounding operations means default FP
1627   // environment, they can be folded in any case.
1628   case Intrinsic::ceil:
1629   case Intrinsic::floor:
1630   case Intrinsic::round:
1631   case Intrinsic::roundeven:
1632   case Intrinsic::trunc:
1633   case Intrinsic::nearbyint:
1634   case Intrinsic::rint:
1635   case Intrinsic::canonicalize:
1636   // Constrained intrinsics can be folded if FP environment is known
1637   // to compiler.
1638   case Intrinsic::experimental_constrained_fma:
1639   case Intrinsic::experimental_constrained_fmuladd:
1640   case Intrinsic::experimental_constrained_fadd:
1641   case Intrinsic::experimental_constrained_fsub:
1642   case Intrinsic::experimental_constrained_fmul:
1643   case Intrinsic::experimental_constrained_fdiv:
1644   case Intrinsic::experimental_constrained_frem:
1645   case Intrinsic::experimental_constrained_ceil:
1646   case Intrinsic::experimental_constrained_floor:
1647   case Intrinsic::experimental_constrained_round:
1648   case Intrinsic::experimental_constrained_roundeven:
1649   case Intrinsic::experimental_constrained_trunc:
1650   case Intrinsic::experimental_constrained_nearbyint:
1651   case Intrinsic::experimental_constrained_rint:
1652   case Intrinsic::experimental_constrained_fcmp:
1653   case Intrinsic::experimental_constrained_fcmps:
1654     return true;
1655   default:
1656     return false;
1657   case Intrinsic::not_intrinsic: break;
1658   }
1659 
1660   if (!F->hasName() || Call->isStrictFP())
1661     return false;
1662 
1663   // In these cases, the check of the length is required.  We don't want to
1664   // return true for a name like "cos\0blah" which strcmp would return equal to
1665   // "cos", but has length 8.
1666   StringRef Name = F->getName();
1667   switch (Name[0]) {
1668   default:
1669     return false;
1670   case 'a':
1671     return Name == "acos" || Name == "acosf" ||
1672            Name == "asin" || Name == "asinf" ||
1673            Name == "atan" || Name == "atanf" ||
1674            Name == "atan2" || Name == "atan2f";
1675   case 'c':
1676     return Name == "ceil" || Name == "ceilf" ||
1677            Name == "cos" || Name == "cosf" ||
1678            Name == "cosh" || Name == "coshf";
1679   case 'e':
1680     return Name == "exp" || Name == "expf" ||
1681            Name == "exp2" || Name == "exp2f";
1682   case 'f':
1683     return Name == "fabs" || Name == "fabsf" ||
1684            Name == "floor" || Name == "floorf" ||
1685            Name == "fmod" || Name == "fmodf";
1686   case 'l':
1687     return Name == "log" || Name == "logf" ||
1688            Name == "log2" || Name == "log2f" ||
1689            Name == "log10" || Name == "log10f";
1690   case 'n':
1691     return Name == "nearbyint" || Name == "nearbyintf";
1692   case 'p':
1693     return Name == "pow" || Name == "powf";
1694   case 'r':
1695     return Name == "remainder" || Name == "remainderf" ||
1696            Name == "rint" || Name == "rintf" ||
1697            Name == "round" || Name == "roundf";
1698   case 's':
1699     return Name == "sin" || Name == "sinf" ||
1700            Name == "sinh" || Name == "sinhf" ||
1701            Name == "sqrt" || Name == "sqrtf";
1702   case 't':
1703     return Name == "tan" || Name == "tanf" ||
1704            Name == "tanh" || Name == "tanhf" ||
1705            Name == "trunc" || Name == "truncf";
1706   case '_':
1707     // Check for various function names that get used for the math functions
1708     // when the header files are preprocessed with the macro
1709     // __FINITE_MATH_ONLY__ enabled.
1710     // The '12' here is the length of the shortest name that can match.
1711     // We need to check the size before looking at Name[1] and Name[2]
1712     // so we may as well check a limit that will eliminate mismatches.
1713     if (Name.size() < 12 || Name[1] != '_')
1714       return false;
1715     switch (Name[2]) {
1716     default:
1717       return false;
1718     case 'a':
1719       return Name == "__acos_finite" || Name == "__acosf_finite" ||
1720              Name == "__asin_finite" || Name == "__asinf_finite" ||
1721              Name == "__atan2_finite" || Name == "__atan2f_finite";
1722     case 'c':
1723       return Name == "__cosh_finite" || Name == "__coshf_finite";
1724     case 'e':
1725       return Name == "__exp_finite" || Name == "__expf_finite" ||
1726              Name == "__exp2_finite" || Name == "__exp2f_finite";
1727     case 'l':
1728       return Name == "__log_finite" || Name == "__logf_finite" ||
1729              Name == "__log10_finite" || Name == "__log10f_finite";
1730     case 'p':
1731       return Name == "__pow_finite" || Name == "__powf_finite";
1732     case 's':
1733       return Name == "__sinh_finite" || Name == "__sinhf_finite";
1734     }
1735   }
1736 }
1737 
1738 namespace {
1739 
1740 Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1741   if (Ty->isHalfTy() || Ty->isFloatTy()) {
1742     APFloat APF(V);
1743     bool unused;
1744     APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1745     return ConstantFP::get(Ty->getContext(), APF);
1746   }
1747   if (Ty->isDoubleTy())
1748     return ConstantFP::get(Ty->getContext(), APFloat(V));
1749   llvm_unreachable("Can only constant fold half/float/double");
1750 }
1751 
1752 /// Clear the floating-point exception state.
1753 inline void llvm_fenv_clearexcept() {
1754 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1755   feclearexcept(FE_ALL_EXCEPT);
1756 #endif
1757   errno = 0;
1758 }
1759 
1760 /// Test if a floating-point exception was raised.
1761 inline bool llvm_fenv_testexcept() {
1762   int errno_val = errno;
1763   if (errno_val == ERANGE || errno_val == EDOM)
1764     return true;
1765 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1766   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1767     return true;
1768 #endif
1769   return false;
1770 }
1771 
1772 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1773                          Type *Ty) {
1774   llvm_fenv_clearexcept();
1775   double Result = NativeFP(V.convertToDouble());
1776   if (llvm_fenv_testexcept()) {
1777     llvm_fenv_clearexcept();
1778     return nullptr;
1779   }
1780 
1781   return GetConstantFoldFPValue(Result, Ty);
1782 }
1783 
1784 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1785                                const APFloat &V, const APFloat &W, Type *Ty) {
1786   llvm_fenv_clearexcept();
1787   double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1788   if (llvm_fenv_testexcept()) {
1789     llvm_fenv_clearexcept();
1790     return nullptr;
1791   }
1792 
1793   return GetConstantFoldFPValue(Result, Ty);
1794 }
1795 
1796 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1797   FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1798   if (!VT)
1799     return nullptr;
1800 
1801   // This isn't strictly necessary, but handle the special/common case of zero:
1802   // all integer reductions of a zero input produce zero.
1803   if (isa<ConstantAggregateZero>(Op))
1804     return ConstantInt::get(VT->getElementType(), 0);
1805 
1806   // This is the same as the underlying binops - poison propagates.
1807   if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1808     return PoisonValue::get(VT->getElementType());
1809 
1810   // TODO: Handle undef.
1811   if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1812     return nullptr;
1813 
1814   auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1815   if (!EltC)
1816     return nullptr;
1817 
1818   APInt Acc = EltC->getValue();
1819   for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1820     if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1821       return nullptr;
1822     const APInt &X = EltC->getValue();
1823     switch (IID) {
1824     case Intrinsic::vector_reduce_add:
1825       Acc = Acc + X;
1826       break;
1827     case Intrinsic::vector_reduce_mul:
1828       Acc = Acc * X;
1829       break;
1830     case Intrinsic::vector_reduce_and:
1831       Acc = Acc & X;
1832       break;
1833     case Intrinsic::vector_reduce_or:
1834       Acc = Acc | X;
1835       break;
1836     case Intrinsic::vector_reduce_xor:
1837       Acc = Acc ^ X;
1838       break;
1839     case Intrinsic::vector_reduce_smin:
1840       Acc = APIntOps::smin(Acc, X);
1841       break;
1842     case Intrinsic::vector_reduce_smax:
1843       Acc = APIntOps::smax(Acc, X);
1844       break;
1845     case Intrinsic::vector_reduce_umin:
1846       Acc = APIntOps::umin(Acc, X);
1847       break;
1848     case Intrinsic::vector_reduce_umax:
1849       Acc = APIntOps::umax(Acc, X);
1850       break;
1851     }
1852   }
1853 
1854   return ConstantInt::get(Op->getContext(), Acc);
1855 }
1856 
1857 /// Attempt to fold an SSE floating point to integer conversion of a constant
1858 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1859 /// used (toward nearest, ties to even). This matches the behavior of the
1860 /// non-truncating SSE instructions in the default rounding mode. The desired
1861 /// integer type Ty is used to select how many bits are available for the
1862 /// result. Returns null if the conversion cannot be performed, otherwise
1863 /// returns the Constant value resulting from the conversion.
1864 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1865                                       Type *Ty, bool IsSigned) {
1866   // All of these conversion intrinsics form an integer of at most 64bits.
1867   unsigned ResultWidth = Ty->getIntegerBitWidth();
1868   assert(ResultWidth <= 64 &&
1869          "Can only constant fold conversions to 64 and 32 bit ints");
1870 
1871   uint64_t UIntVal;
1872   bool isExact = false;
1873   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1874                                               : APFloat::rmNearestTiesToEven;
1875   APFloat::opStatus status =
1876       Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1877                            IsSigned, mode, &isExact);
1878   if (status != APFloat::opOK &&
1879       (!roundTowardZero || status != APFloat::opInexact))
1880     return nullptr;
1881   return ConstantInt::get(Ty, UIntVal, IsSigned);
1882 }
1883 
1884 double getValueAsDouble(ConstantFP *Op) {
1885   Type *Ty = Op->getType();
1886 
1887   if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1888     return Op->getValueAPF().convertToDouble();
1889 
1890   bool unused;
1891   APFloat APF = Op->getValueAPF();
1892   APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1893   return APF.convertToDouble();
1894 }
1895 
1896 static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1897   if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1898     C = &CI->getValue();
1899     return true;
1900   }
1901   if (isa<UndefValue>(Op)) {
1902     C = nullptr;
1903     return true;
1904   }
1905   return false;
1906 }
1907 
1908 /// Checks if the given intrinsic call, which evaluates to constant, is allowed
1909 /// to be folded.
1910 ///
1911 /// \param CI Constrained intrinsic call.
1912 /// \param St Exception flags raised during constant evaluation.
1913 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1914                                APFloat::opStatus St) {
1915   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1916   std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1917 
1918   // If the operation does not change exception status flags, it is safe
1919   // to fold.
1920   if (St == APFloat::opStatus::opOK)
1921     return true;
1922 
1923   // If evaluation raised FP exception, the result can depend on rounding
1924   // mode. If the latter is unknown, folding is not possible.
1925   if (ORM && *ORM == RoundingMode::Dynamic)
1926     return false;
1927 
1928   // If FP exceptions are ignored, fold the call, even if such exception is
1929   // raised.
1930   if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1931     return true;
1932 
1933   // Leave the calculation for runtime so that exception flags be correctly set
1934   // in hardware.
1935   return false;
1936 }
1937 
1938 /// Returns the rounding mode that should be used for constant evaluation.
1939 static RoundingMode
1940 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1941   std::optional<RoundingMode> ORM = CI->getRoundingMode();
1942   if (!ORM || *ORM == RoundingMode::Dynamic)
1943     // Even if the rounding mode is unknown, try evaluating the operation.
1944     // If it does not raise inexact exception, rounding was not applied,
1945     // so the result is exact and does not depend on rounding mode. Whether
1946     // other FP exceptions are raised, it does not depend on rounding mode.
1947     return RoundingMode::NearestTiesToEven;
1948   return *ORM;
1949 }
1950 
1951 /// Try to constant fold llvm.canonicalize for the given caller and value.
1952 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1953                                           const APFloat &Src) {
1954   // Zero, positive and negative, is always OK to fold.
1955   if (Src.isZero()) {
1956     // Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1957     return ConstantFP::get(
1958         CI->getContext(),
1959         APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1960   }
1961 
1962   if (!Ty->isIEEELikeFPTy())
1963     return nullptr;
1964 
1965   // Zero is always canonical and the sign must be preserved.
1966   //
1967   // Denorms and nans may have special encodings, but it should be OK to fold a
1968   // totally average number.
1969   if (Src.isNormal() || Src.isInfinity())
1970     return ConstantFP::get(CI->getContext(), Src);
1971 
1972   if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1973     DenormalMode DenormMode =
1974         CI->getFunction()->getDenormalMode(Src.getSemantics());
1975 
1976     if (DenormMode == DenormalMode::getIEEE())
1977       return ConstantFP::get(CI->getContext(), Src);
1978 
1979     if (DenormMode.Input == DenormalMode::Dynamic)
1980       return nullptr;
1981 
1982     // If we know if either input or output is flushed, we can fold.
1983     if ((DenormMode.Input == DenormalMode::Dynamic &&
1984          DenormMode.Output == DenormalMode::IEEE) ||
1985         (DenormMode.Input == DenormalMode::IEEE &&
1986          DenormMode.Output == DenormalMode::Dynamic))
1987       return nullptr;
1988 
1989     bool IsPositive =
1990         (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
1991          (DenormMode.Output == DenormalMode::PositiveZero &&
1992           DenormMode.Input == DenormalMode::IEEE));
1993 
1994     return ConstantFP::get(CI->getContext(),
1995                            APFloat::getZero(Src.getSemantics(), !IsPositive));
1996   }
1997 
1998   return nullptr;
1999 }
2000 
2001 static Constant *ConstantFoldScalarCall1(StringRef Name,
2002                                          Intrinsic::ID IntrinsicID,
2003                                          Type *Ty,
2004                                          ArrayRef<Constant *> Operands,
2005                                          const TargetLibraryInfo *TLI,
2006                                          const CallBase *Call) {
2007   assert(Operands.size() == 1 && "Wrong number of operands.");
2008 
2009   if (IntrinsicID == Intrinsic::is_constant) {
2010     // We know we have a "Constant" argument. But we want to only
2011     // return true for manifest constants, not those that depend on
2012     // constants with unknowable values, e.g. GlobalValue or BlockAddress.
2013     if (Operands[0]->isManifestConstant())
2014       return ConstantInt::getTrue(Ty->getContext());
2015     return nullptr;
2016   }
2017 
2018   if (isa<PoisonValue>(Operands[0])) {
2019     // TODO: All of these operations should probably propagate poison.
2020     if (IntrinsicID == Intrinsic::canonicalize)
2021       return PoisonValue::get(Ty);
2022   }
2023 
2024   if (isa<UndefValue>(Operands[0])) {
2025     // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2026     // ctpop() is between 0 and bitwidth, pick 0 for undef.
2027     // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2028     if (IntrinsicID == Intrinsic::cos ||
2029         IntrinsicID == Intrinsic::ctpop ||
2030         IntrinsicID == Intrinsic::fptoui_sat ||
2031         IntrinsicID == Intrinsic::fptosi_sat ||
2032         IntrinsicID == Intrinsic::canonicalize)
2033       return Constant::getNullValue(Ty);
2034     if (IntrinsicID == Intrinsic::bswap ||
2035         IntrinsicID == Intrinsic::bitreverse ||
2036         IntrinsicID == Intrinsic::launder_invariant_group ||
2037         IntrinsicID == Intrinsic::strip_invariant_group)
2038       return Operands[0];
2039   }
2040 
2041   if (isa<ConstantPointerNull>(Operands[0])) {
2042     // launder(null) == null == strip(null) iff in addrspace 0
2043     if (IntrinsicID == Intrinsic::launder_invariant_group ||
2044         IntrinsicID == Intrinsic::strip_invariant_group) {
2045       // If instruction is not yet put in a basic block (e.g. when cloning
2046       // a function during inlining), Call's caller may not be available.
2047       // So check Call's BB first before querying Call->getCaller.
2048       const Function *Caller =
2049           Call->getParent() ? Call->getCaller() : nullptr;
2050       if (Caller &&
2051           !NullPointerIsDefined(
2052               Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2053         return Operands[0];
2054       }
2055       return nullptr;
2056     }
2057   }
2058 
2059   if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2060     if (IntrinsicID == Intrinsic::convert_to_fp16) {
2061       APFloat Val(Op->getValueAPF());
2062 
2063       bool lost = false;
2064       Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2065 
2066       return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2067     }
2068 
2069     APFloat U = Op->getValueAPF();
2070 
2071     if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2072         IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2073       bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2074 
2075       if (U.isNaN())
2076         return nullptr;
2077 
2078       unsigned Width = Ty->getIntegerBitWidth();
2079       APSInt Int(Width, !Signed);
2080       bool IsExact = false;
2081       APFloat::opStatus Status =
2082           U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2083 
2084       if (Status == APFloat::opOK || Status == APFloat::opInexact)
2085         return ConstantInt::get(Ty, Int);
2086 
2087       return nullptr;
2088     }
2089 
2090     if (IntrinsicID == Intrinsic::fptoui_sat ||
2091         IntrinsicID == Intrinsic::fptosi_sat) {
2092       // convertToInteger() already has the desired saturation semantics.
2093       APSInt Int(Ty->getIntegerBitWidth(),
2094                  IntrinsicID == Intrinsic::fptoui_sat);
2095       bool IsExact;
2096       U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2097       return ConstantInt::get(Ty, Int);
2098     }
2099 
2100     if (IntrinsicID == Intrinsic::canonicalize)
2101       return constantFoldCanonicalize(Ty, Call, U);
2102 
2103     if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2104       return nullptr;
2105 
2106     // Use internal versions of these intrinsics.
2107 
2108     if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2109       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2110       return ConstantFP::get(Ty->getContext(), U);
2111     }
2112 
2113     if (IntrinsicID == Intrinsic::round) {
2114       U.roundToIntegral(APFloat::rmNearestTiesToAway);
2115       return ConstantFP::get(Ty->getContext(), U);
2116     }
2117 
2118     if (IntrinsicID == Intrinsic::roundeven) {
2119       U.roundToIntegral(APFloat::rmNearestTiesToEven);
2120       return ConstantFP::get(Ty->getContext(), U);
2121     }
2122 
2123     if (IntrinsicID == Intrinsic::ceil) {
2124       U.roundToIntegral(APFloat::rmTowardPositive);
2125       return ConstantFP::get(Ty->getContext(), U);
2126     }
2127 
2128     if (IntrinsicID == Intrinsic::floor) {
2129       U.roundToIntegral(APFloat::rmTowardNegative);
2130       return ConstantFP::get(Ty->getContext(), U);
2131     }
2132 
2133     if (IntrinsicID == Intrinsic::trunc) {
2134       U.roundToIntegral(APFloat::rmTowardZero);
2135       return ConstantFP::get(Ty->getContext(), U);
2136     }
2137 
2138     if (IntrinsicID == Intrinsic::fabs) {
2139       U.clearSign();
2140       return ConstantFP::get(Ty->getContext(), U);
2141     }
2142 
2143     if (IntrinsicID == Intrinsic::amdgcn_fract) {
2144       // The v_fract instruction behaves like the OpenCL spec, which defines
2145       // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2146       //   there to prevent fract(-small) from returning 1.0. It returns the
2147       //   largest positive floating-point number less than 1.0."
2148       APFloat FloorU(U);
2149       FloorU.roundToIntegral(APFloat::rmTowardNegative);
2150       APFloat FractU(U - FloorU);
2151       APFloat AlmostOne(U.getSemantics(), 1);
2152       AlmostOne.next(/*nextDown*/ true);
2153       return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2154     }
2155 
2156     // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2157     // raise FP exceptions, unless the argument is signaling NaN.
2158 
2159     std::optional<APFloat::roundingMode> RM;
2160     switch (IntrinsicID) {
2161     default:
2162       break;
2163     case Intrinsic::experimental_constrained_nearbyint:
2164     case Intrinsic::experimental_constrained_rint: {
2165       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2166       RM = CI->getRoundingMode();
2167       if (!RM || *RM == RoundingMode::Dynamic)
2168         return nullptr;
2169       break;
2170     }
2171     case Intrinsic::experimental_constrained_round:
2172       RM = APFloat::rmNearestTiesToAway;
2173       break;
2174     case Intrinsic::experimental_constrained_ceil:
2175       RM = APFloat::rmTowardPositive;
2176       break;
2177     case Intrinsic::experimental_constrained_floor:
2178       RM = APFloat::rmTowardNegative;
2179       break;
2180     case Intrinsic::experimental_constrained_trunc:
2181       RM = APFloat::rmTowardZero;
2182       break;
2183     }
2184     if (RM) {
2185       auto CI = cast<ConstrainedFPIntrinsic>(Call);
2186       if (U.isFinite()) {
2187         APFloat::opStatus St = U.roundToIntegral(*RM);
2188         if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2189             St == APFloat::opInexact) {
2190           std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2191           if (EB && *EB == fp::ebStrict)
2192             return nullptr;
2193         }
2194       } else if (U.isSignaling()) {
2195         std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2196         if (EB && *EB != fp::ebIgnore)
2197           return nullptr;
2198         U = APFloat::getQNaN(U.getSemantics());
2199       }
2200       return ConstantFP::get(Ty->getContext(), U);
2201     }
2202 
2203     /// We only fold functions with finite arguments. Folding NaN and inf is
2204     /// likely to be aborted with an exception anyway, and some host libms
2205     /// have known errors raising exceptions.
2206     if (!U.isFinite())
2207       return nullptr;
2208 
2209     /// Currently APFloat versions of these functions do not exist, so we use
2210     /// the host native double versions.  Float versions are not called
2211     /// directly but for all these it is true (float)(f((double)arg)) ==
2212     /// f(arg).  Long double not supported yet.
2213     const APFloat &APF = Op->getValueAPF();
2214 
2215     switch (IntrinsicID) {
2216       default: break;
2217       case Intrinsic::log:
2218         return ConstantFoldFP(log, APF, Ty);
2219       case Intrinsic::log2:
2220         // TODO: What about hosts that lack a C99 library?
2221         return ConstantFoldFP(log2, APF, Ty);
2222       case Intrinsic::log10:
2223         // TODO: What about hosts that lack a C99 library?
2224         return ConstantFoldFP(log10, APF, Ty);
2225       case Intrinsic::exp:
2226         return ConstantFoldFP(exp, APF, Ty);
2227       case Intrinsic::exp2:
2228         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2229         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2230       case Intrinsic::sin:
2231         return ConstantFoldFP(sin, APF, Ty);
2232       case Intrinsic::cos:
2233         return ConstantFoldFP(cos, APF, Ty);
2234       case Intrinsic::sqrt:
2235         return ConstantFoldFP(sqrt, APF, Ty);
2236       case Intrinsic::amdgcn_cos:
2237       case Intrinsic::amdgcn_sin: {
2238         double V = getValueAsDouble(Op);
2239         if (V < -256.0 || V > 256.0)
2240           // The gfx8 and gfx9 architectures handle arguments outside the range
2241           // [-256, 256] differently. This should be a rare case so bail out
2242           // rather than trying to handle the difference.
2243           return nullptr;
2244         bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2245         double V4 = V * 4.0;
2246         if (V4 == floor(V4)) {
2247           // Force exact results for quarter-integer inputs.
2248           const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2249           V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2250         } else {
2251           if (IsCos)
2252             V = cos(V * 2.0 * numbers::pi);
2253           else
2254             V = sin(V * 2.0 * numbers::pi);
2255         }
2256         return GetConstantFoldFPValue(V, Ty);
2257       }
2258     }
2259 
2260     if (!TLI)
2261       return nullptr;
2262 
2263     LibFunc Func = NotLibFunc;
2264     if (!TLI->getLibFunc(Name, Func))
2265       return nullptr;
2266 
2267     switch (Func) {
2268     default:
2269       break;
2270     case LibFunc_acos:
2271     case LibFunc_acosf:
2272     case LibFunc_acos_finite:
2273     case LibFunc_acosf_finite:
2274       if (TLI->has(Func))
2275         return ConstantFoldFP(acos, APF, Ty);
2276       break;
2277     case LibFunc_asin:
2278     case LibFunc_asinf:
2279     case LibFunc_asin_finite:
2280     case LibFunc_asinf_finite:
2281       if (TLI->has(Func))
2282         return ConstantFoldFP(asin, APF, Ty);
2283       break;
2284     case LibFunc_atan:
2285     case LibFunc_atanf:
2286       if (TLI->has(Func))
2287         return ConstantFoldFP(atan, APF, Ty);
2288       break;
2289     case LibFunc_ceil:
2290     case LibFunc_ceilf:
2291       if (TLI->has(Func)) {
2292         U.roundToIntegral(APFloat::rmTowardPositive);
2293         return ConstantFP::get(Ty->getContext(), U);
2294       }
2295       break;
2296     case LibFunc_cos:
2297     case LibFunc_cosf:
2298       if (TLI->has(Func))
2299         return ConstantFoldFP(cos, APF, Ty);
2300       break;
2301     case LibFunc_cosh:
2302     case LibFunc_coshf:
2303     case LibFunc_cosh_finite:
2304     case LibFunc_coshf_finite:
2305       if (TLI->has(Func))
2306         return ConstantFoldFP(cosh, APF, Ty);
2307       break;
2308     case LibFunc_exp:
2309     case LibFunc_expf:
2310     case LibFunc_exp_finite:
2311     case LibFunc_expf_finite:
2312       if (TLI->has(Func))
2313         return ConstantFoldFP(exp, APF, Ty);
2314       break;
2315     case LibFunc_exp2:
2316     case LibFunc_exp2f:
2317     case LibFunc_exp2_finite:
2318     case LibFunc_exp2f_finite:
2319       if (TLI->has(Func))
2320         // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2321         return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2322       break;
2323     case LibFunc_fabs:
2324     case LibFunc_fabsf:
2325       if (TLI->has(Func)) {
2326         U.clearSign();
2327         return ConstantFP::get(Ty->getContext(), U);
2328       }
2329       break;
2330     case LibFunc_floor:
2331     case LibFunc_floorf:
2332       if (TLI->has(Func)) {
2333         U.roundToIntegral(APFloat::rmTowardNegative);
2334         return ConstantFP::get(Ty->getContext(), U);
2335       }
2336       break;
2337     case LibFunc_log:
2338     case LibFunc_logf:
2339     case LibFunc_log_finite:
2340     case LibFunc_logf_finite:
2341       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2342         return ConstantFoldFP(log, APF, Ty);
2343       break;
2344     case LibFunc_log2:
2345     case LibFunc_log2f:
2346     case LibFunc_log2_finite:
2347     case LibFunc_log2f_finite:
2348       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2349         // TODO: What about hosts that lack a C99 library?
2350         return ConstantFoldFP(log2, APF, Ty);
2351       break;
2352     case LibFunc_log10:
2353     case LibFunc_log10f:
2354     case LibFunc_log10_finite:
2355     case LibFunc_log10f_finite:
2356       if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2357         // TODO: What about hosts that lack a C99 library?
2358         return ConstantFoldFP(log10, APF, Ty);
2359       break;
2360     case LibFunc_nearbyint:
2361     case LibFunc_nearbyintf:
2362     case LibFunc_rint:
2363     case LibFunc_rintf:
2364       if (TLI->has(Func)) {
2365         U.roundToIntegral(APFloat::rmNearestTiesToEven);
2366         return ConstantFP::get(Ty->getContext(), U);
2367       }
2368       break;
2369     case LibFunc_round:
2370     case LibFunc_roundf:
2371       if (TLI->has(Func)) {
2372         U.roundToIntegral(APFloat::rmNearestTiesToAway);
2373         return ConstantFP::get(Ty->getContext(), U);
2374       }
2375       break;
2376     case LibFunc_sin:
2377     case LibFunc_sinf:
2378       if (TLI->has(Func))
2379         return ConstantFoldFP(sin, APF, Ty);
2380       break;
2381     case LibFunc_sinh:
2382     case LibFunc_sinhf:
2383     case LibFunc_sinh_finite:
2384     case LibFunc_sinhf_finite:
2385       if (TLI->has(Func))
2386         return ConstantFoldFP(sinh, APF, Ty);
2387       break;
2388     case LibFunc_sqrt:
2389     case LibFunc_sqrtf:
2390       if (!APF.isNegative() && TLI->has(Func))
2391         return ConstantFoldFP(sqrt, APF, Ty);
2392       break;
2393     case LibFunc_tan:
2394     case LibFunc_tanf:
2395       if (TLI->has(Func))
2396         return ConstantFoldFP(tan, APF, Ty);
2397       break;
2398     case LibFunc_tanh:
2399     case LibFunc_tanhf:
2400       if (TLI->has(Func))
2401         return ConstantFoldFP(tanh, APF, Ty);
2402       break;
2403     case LibFunc_trunc:
2404     case LibFunc_truncf:
2405       if (TLI->has(Func)) {
2406         U.roundToIntegral(APFloat::rmTowardZero);
2407         return ConstantFP::get(Ty->getContext(), U);
2408       }
2409       break;
2410     }
2411     return nullptr;
2412   }
2413 
2414   if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2415     switch (IntrinsicID) {
2416     case Intrinsic::bswap:
2417       return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2418     case Intrinsic::ctpop:
2419       return ConstantInt::get(Ty, Op->getValue().popcount());
2420     case Intrinsic::bitreverse:
2421       return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2422     case Intrinsic::convert_from_fp16: {
2423       APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2424 
2425       bool lost = false;
2426       APFloat::opStatus status = Val.convert(
2427           Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2428 
2429       // Conversion is always precise.
2430       (void)status;
2431       assert(status != APFloat::opInexact && !lost &&
2432              "Precision lost during fp16 constfolding");
2433 
2434       return ConstantFP::get(Ty->getContext(), Val);
2435     }
2436     default:
2437       return nullptr;
2438     }
2439   }
2440 
2441   switch (IntrinsicID) {
2442   default: break;
2443   case Intrinsic::vector_reduce_add:
2444   case Intrinsic::vector_reduce_mul:
2445   case Intrinsic::vector_reduce_and:
2446   case Intrinsic::vector_reduce_or:
2447   case Intrinsic::vector_reduce_xor:
2448   case Intrinsic::vector_reduce_smin:
2449   case Intrinsic::vector_reduce_smax:
2450   case Intrinsic::vector_reduce_umin:
2451   case Intrinsic::vector_reduce_umax:
2452     if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2453       return C;
2454     break;
2455   }
2456 
2457   // Support ConstantVector in case we have an Undef in the top.
2458   if (isa<ConstantVector>(Operands[0]) ||
2459       isa<ConstantDataVector>(Operands[0])) {
2460     auto *Op = cast<Constant>(Operands[0]);
2461     switch (IntrinsicID) {
2462     default: break;
2463     case Intrinsic::x86_sse_cvtss2si:
2464     case Intrinsic::x86_sse_cvtss2si64:
2465     case Intrinsic::x86_sse2_cvtsd2si:
2466     case Intrinsic::x86_sse2_cvtsd2si64:
2467       if (ConstantFP *FPOp =
2468               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2469         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2470                                            /*roundTowardZero=*/false, Ty,
2471                                            /*IsSigned*/true);
2472       break;
2473     case Intrinsic::x86_sse_cvttss2si:
2474     case Intrinsic::x86_sse_cvttss2si64:
2475     case Intrinsic::x86_sse2_cvttsd2si:
2476     case Intrinsic::x86_sse2_cvttsd2si64:
2477       if (ConstantFP *FPOp =
2478               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2479         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2480                                            /*roundTowardZero=*/true, Ty,
2481                                            /*IsSigned*/true);
2482       break;
2483     }
2484   }
2485 
2486   return nullptr;
2487 }
2488 
2489 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2490                                  const ConstrainedFPIntrinsic *Call) {
2491   APFloat::opStatus St = APFloat::opOK;
2492   auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2493   FCmpInst::Predicate Cond = FCmp->getPredicate();
2494   if (FCmp->isSignaling()) {
2495     if (Op1.isNaN() || Op2.isNaN())
2496       St = APFloat::opInvalidOp;
2497   } else {
2498     if (Op1.isSignaling() || Op2.isSignaling())
2499       St = APFloat::opInvalidOp;
2500   }
2501   bool Result = FCmpInst::compare(Op1, Op2, Cond);
2502   if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2503     return ConstantInt::get(Call->getType()->getScalarType(), Result);
2504   return nullptr;
2505 }
2506 
2507 static Constant *ConstantFoldScalarCall2(StringRef Name,
2508                                          Intrinsic::ID IntrinsicID,
2509                                          Type *Ty,
2510                                          ArrayRef<Constant *> Operands,
2511                                          const TargetLibraryInfo *TLI,
2512                                          const CallBase *Call) {
2513   assert(Operands.size() == 2 && "Wrong number of operands.");
2514 
2515   if (Ty->isFloatingPointTy()) {
2516     // TODO: We should have undef handling for all of the FP intrinsics that
2517     //       are attempted to be folded in this function.
2518     bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2519     bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2520     switch (IntrinsicID) {
2521     case Intrinsic::maxnum:
2522     case Intrinsic::minnum:
2523     case Intrinsic::maximum:
2524     case Intrinsic::minimum:
2525       // If one argument is undef, return the other argument.
2526       if (IsOp0Undef)
2527         return Operands[1];
2528       if (IsOp1Undef)
2529         return Operands[0];
2530       break;
2531     }
2532   }
2533 
2534   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2535     const APFloat &Op1V = Op1->getValueAPF();
2536 
2537     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2538       if (Op2->getType() != Op1->getType())
2539         return nullptr;
2540       const APFloat &Op2V = Op2->getValueAPF();
2541 
2542       if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
2543         RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2544         APFloat Res = Op1V;
2545         APFloat::opStatus St;
2546         switch (IntrinsicID) {
2547         default:
2548           return nullptr;
2549         case Intrinsic::experimental_constrained_fadd:
2550           St = Res.add(Op2V, RM);
2551           break;
2552         case Intrinsic::experimental_constrained_fsub:
2553           St = Res.subtract(Op2V, RM);
2554           break;
2555         case Intrinsic::experimental_constrained_fmul:
2556           St = Res.multiply(Op2V, RM);
2557           break;
2558         case Intrinsic::experimental_constrained_fdiv:
2559           St = Res.divide(Op2V, RM);
2560           break;
2561         case Intrinsic::experimental_constrained_frem:
2562           St = Res.mod(Op2V);
2563           break;
2564         case Intrinsic::experimental_constrained_fcmp:
2565         case Intrinsic::experimental_constrained_fcmps:
2566           return evaluateCompare(Op1V, Op2V, ConstrIntr);
2567         }
2568         if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2569                                St))
2570           return ConstantFP::get(Ty->getContext(), Res);
2571         return nullptr;
2572       }
2573 
2574       switch (IntrinsicID) {
2575       default:
2576         break;
2577       case Intrinsic::copysign:
2578         return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2579       case Intrinsic::minnum:
2580         return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2581       case Intrinsic::maxnum:
2582         return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2583       case Intrinsic::minimum:
2584         return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2585       case Intrinsic::maximum:
2586         return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2587       }
2588 
2589       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2590         return nullptr;
2591 
2592       switch (IntrinsicID) {
2593       default:
2594         break;
2595       case Intrinsic::pow:
2596         return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2597       case Intrinsic::amdgcn_fmul_legacy:
2598         // The legacy behaviour is that multiplying +/- 0.0 by anything, even
2599         // NaN or infinity, gives +0.0.
2600         if (Op1V.isZero() || Op2V.isZero())
2601           return ConstantFP::getZero(Ty);
2602         return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2603       }
2604 
2605       if (!TLI)
2606         return nullptr;
2607 
2608       LibFunc Func = NotLibFunc;
2609       if (!TLI->getLibFunc(Name, Func))
2610         return nullptr;
2611 
2612       switch (Func) {
2613       default:
2614         break;
2615       case LibFunc_pow:
2616       case LibFunc_powf:
2617       case LibFunc_pow_finite:
2618       case LibFunc_powf_finite:
2619         if (TLI->has(Func))
2620           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2621         break;
2622       case LibFunc_fmod:
2623       case LibFunc_fmodf:
2624         if (TLI->has(Func)) {
2625           APFloat V = Op1->getValueAPF();
2626           if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2627             return ConstantFP::get(Ty->getContext(), V);
2628         }
2629         break;
2630       case LibFunc_remainder:
2631       case LibFunc_remainderf:
2632         if (TLI->has(Func)) {
2633           APFloat V = Op1->getValueAPF();
2634           if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2635             return ConstantFP::get(Ty->getContext(), V);
2636         }
2637         break;
2638       case LibFunc_atan2:
2639       case LibFunc_atan2f:
2640         // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2641         // (Solaris), so we do not assume a known result for that.
2642         if (Op1V.isZero() && Op2V.isZero())
2643           return nullptr;
2644         [[fallthrough]];
2645       case LibFunc_atan2_finite:
2646       case LibFunc_atan2f_finite:
2647         if (TLI->has(Func))
2648           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2649         break;
2650       }
2651     } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2652       switch (IntrinsicID) {
2653       case Intrinsic::is_fpclass: {
2654         FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
2655         bool Result =
2656           ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2657           ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2658           ((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
2659           ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2660           ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2661           ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2662           ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2663           ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2664           ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2665           ((Mask & fcPosInf) && Op1V.isPosInfinity());
2666         return ConstantInt::get(Ty, Result);
2667       }
2668       default:
2669         break;
2670       }
2671 
2672       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2673         return nullptr;
2674       if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
2675         return ConstantFP::get(
2676             Ty->getContext(),
2677             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2678                                     (int)Op2C->getZExtValue())));
2679       if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
2680         return ConstantFP::get(
2681             Ty->getContext(),
2682             APFloat((float)std::pow((float)Op1V.convertToDouble(),
2683                                     (int)Op2C->getZExtValue())));
2684       if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
2685         return ConstantFP::get(
2686             Ty->getContext(),
2687             APFloat((double)std::pow(Op1V.convertToDouble(),
2688                                      (int)Op2C->getZExtValue())));
2689 
2690       if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
2691         // FIXME: Should flush denorms depending on FP mode, but that's ignored
2692         // everywhere else.
2693 
2694         // scalbn is equivalent to ldexp with float radix 2
2695         APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
2696                                 APFloat::rmNearestTiesToEven);
2697         return ConstantFP::get(Ty->getContext(), Result);
2698       }
2699     }
2700     return nullptr;
2701   }
2702 
2703   if (Operands[0]->getType()->isIntegerTy() &&
2704       Operands[1]->getType()->isIntegerTy()) {
2705     const APInt *C0, *C1;
2706     if (!getConstIntOrUndef(Operands[0], C0) ||
2707         !getConstIntOrUndef(Operands[1], C1))
2708       return nullptr;
2709 
2710     switch (IntrinsicID) {
2711     default: break;
2712     case Intrinsic::smax:
2713     case Intrinsic::smin:
2714     case Intrinsic::umax:
2715     case Intrinsic::umin:
2716       // This is the same as for binary ops - poison propagates.
2717       // TODO: Poison handling should be consolidated.
2718       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2719         return PoisonValue::get(Ty);
2720 
2721       if (!C0 && !C1)
2722         return UndefValue::get(Ty);
2723       if (!C0 || !C1)
2724         return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2725       return ConstantInt::get(
2726           Ty, ICmpInst::compare(*C0, *C1,
2727                                 MinMaxIntrinsic::getPredicate(IntrinsicID))
2728                   ? *C0
2729                   : *C1);
2730 
2731     case Intrinsic::usub_with_overflow:
2732     case Intrinsic::ssub_with_overflow:
2733       // X - undef -> { 0, false }
2734       // undef - X -> { 0, false }
2735       if (!C0 || !C1)
2736         return Constant::getNullValue(Ty);
2737       [[fallthrough]];
2738     case Intrinsic::uadd_with_overflow:
2739     case Intrinsic::sadd_with_overflow:
2740       // X + undef -> { -1, false }
2741       // undef + x -> { -1, false }
2742       if (!C0 || !C1) {
2743         return ConstantStruct::get(
2744             cast<StructType>(Ty),
2745             {Constant::getAllOnesValue(Ty->getStructElementType(0)),
2746              Constant::getNullValue(Ty->getStructElementType(1))});
2747       }
2748       [[fallthrough]];
2749     case Intrinsic::smul_with_overflow:
2750     case Intrinsic::umul_with_overflow: {
2751       // undef * X -> { 0, false }
2752       // X * undef -> { 0, false }
2753       if (!C0 || !C1)
2754         return Constant::getNullValue(Ty);
2755 
2756       APInt Res;
2757       bool Overflow;
2758       switch (IntrinsicID) {
2759       default: llvm_unreachable("Invalid case");
2760       case Intrinsic::sadd_with_overflow:
2761         Res = C0->sadd_ov(*C1, Overflow);
2762         break;
2763       case Intrinsic::uadd_with_overflow:
2764         Res = C0->uadd_ov(*C1, Overflow);
2765         break;
2766       case Intrinsic::ssub_with_overflow:
2767         Res = C0->ssub_ov(*C1, Overflow);
2768         break;
2769       case Intrinsic::usub_with_overflow:
2770         Res = C0->usub_ov(*C1, Overflow);
2771         break;
2772       case Intrinsic::smul_with_overflow:
2773         Res = C0->smul_ov(*C1, Overflow);
2774         break;
2775       case Intrinsic::umul_with_overflow:
2776         Res = C0->umul_ov(*C1, Overflow);
2777         break;
2778       }
2779       Constant *Ops[] = {
2780         ConstantInt::get(Ty->getContext(), Res),
2781         ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2782       };
2783       return ConstantStruct::get(cast<StructType>(Ty), Ops);
2784     }
2785     case Intrinsic::uadd_sat:
2786     case Intrinsic::sadd_sat:
2787       // This is the same as for binary ops - poison propagates.
2788       // TODO: Poison handling should be consolidated.
2789       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2790         return PoisonValue::get(Ty);
2791 
2792       if (!C0 && !C1)
2793         return UndefValue::get(Ty);
2794       if (!C0 || !C1)
2795         return Constant::getAllOnesValue(Ty);
2796       if (IntrinsicID == Intrinsic::uadd_sat)
2797         return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2798       else
2799         return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2800     case Intrinsic::usub_sat:
2801     case Intrinsic::ssub_sat:
2802       // This is the same as for binary ops - poison propagates.
2803       // TODO: Poison handling should be consolidated.
2804       if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2805         return PoisonValue::get(Ty);
2806 
2807       if (!C0 && !C1)
2808         return UndefValue::get(Ty);
2809       if (!C0 || !C1)
2810         return Constant::getNullValue(Ty);
2811       if (IntrinsicID == Intrinsic::usub_sat)
2812         return ConstantInt::get(Ty, C0->usub_sat(*C1));
2813       else
2814         return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2815     case Intrinsic::cttz:
2816     case Intrinsic::ctlz:
2817       assert(C1 && "Must be constant int");
2818 
2819       // cttz(0, 1) and ctlz(0, 1) are poison.
2820       if (C1->isOne() && (!C0 || C0->isZero()))
2821         return PoisonValue::get(Ty);
2822       if (!C0)
2823         return Constant::getNullValue(Ty);
2824       if (IntrinsicID == Intrinsic::cttz)
2825         return ConstantInt::get(Ty, C0->countr_zero());
2826       else
2827         return ConstantInt::get(Ty, C0->countl_zero());
2828 
2829     case Intrinsic::abs:
2830       assert(C1 && "Must be constant int");
2831       assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2832 
2833       // Undef or minimum val operand with poison min --> undef
2834       if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2835         return UndefValue::get(Ty);
2836 
2837       // Undef operand with no poison min --> 0 (sign bit must be clear)
2838       if (!C0)
2839         return Constant::getNullValue(Ty);
2840 
2841       return ConstantInt::get(Ty, C0->abs());
2842     }
2843 
2844     return nullptr;
2845   }
2846 
2847   // Support ConstantVector in case we have an Undef in the top.
2848   if ((isa<ConstantVector>(Operands[0]) ||
2849        isa<ConstantDataVector>(Operands[0])) &&
2850       // Check for default rounding mode.
2851       // FIXME: Support other rounding modes?
2852       isa<ConstantInt>(Operands[1]) &&
2853       cast<ConstantInt>(Operands[1])->getValue() == 4) {
2854     auto *Op = cast<Constant>(Operands[0]);
2855     switch (IntrinsicID) {
2856     default: break;
2857     case Intrinsic::x86_avx512_vcvtss2si32:
2858     case Intrinsic::x86_avx512_vcvtss2si64:
2859     case Intrinsic::x86_avx512_vcvtsd2si32:
2860     case Intrinsic::x86_avx512_vcvtsd2si64:
2861       if (ConstantFP *FPOp =
2862               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2863         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2864                                            /*roundTowardZero=*/false, Ty,
2865                                            /*IsSigned*/true);
2866       break;
2867     case Intrinsic::x86_avx512_vcvtss2usi32:
2868     case Intrinsic::x86_avx512_vcvtss2usi64:
2869     case Intrinsic::x86_avx512_vcvtsd2usi32:
2870     case Intrinsic::x86_avx512_vcvtsd2usi64:
2871       if (ConstantFP *FPOp =
2872               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2873         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2874                                            /*roundTowardZero=*/false, Ty,
2875                                            /*IsSigned*/false);
2876       break;
2877     case Intrinsic::x86_avx512_cvttss2si:
2878     case Intrinsic::x86_avx512_cvttss2si64:
2879     case Intrinsic::x86_avx512_cvttsd2si:
2880     case Intrinsic::x86_avx512_cvttsd2si64:
2881       if (ConstantFP *FPOp =
2882               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2883         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2884                                            /*roundTowardZero=*/true, Ty,
2885                                            /*IsSigned*/true);
2886       break;
2887     case Intrinsic::x86_avx512_cvttss2usi:
2888     case Intrinsic::x86_avx512_cvttss2usi64:
2889     case Intrinsic::x86_avx512_cvttsd2usi:
2890     case Intrinsic::x86_avx512_cvttsd2usi64:
2891       if (ConstantFP *FPOp =
2892               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2893         return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2894                                            /*roundTowardZero=*/true, Ty,
2895                                            /*IsSigned*/false);
2896       break;
2897     }
2898   }
2899   return nullptr;
2900 }
2901 
2902 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
2903                                                const APFloat &S0,
2904                                                const APFloat &S1,
2905                                                const APFloat &S2) {
2906   unsigned ID;
2907   const fltSemantics &Sem = S0.getSemantics();
2908   APFloat MA(Sem), SC(Sem), TC(Sem);
2909   if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
2910     if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
2911       // S2 < 0
2912       ID = 5;
2913       SC = -S0;
2914     } else {
2915       ID = 4;
2916       SC = S0;
2917     }
2918     MA = S2;
2919     TC = -S1;
2920   } else if (abs(S1) >= abs(S0)) {
2921     if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
2922       // S1 < 0
2923       ID = 3;
2924       TC = -S2;
2925     } else {
2926       ID = 2;
2927       TC = S2;
2928     }
2929     MA = S1;
2930     SC = S0;
2931   } else {
2932     if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
2933       // S0 < 0
2934       ID = 1;
2935       SC = S2;
2936     } else {
2937       ID = 0;
2938       SC = -S2;
2939     }
2940     MA = S0;
2941     TC = -S1;
2942   }
2943   switch (IntrinsicID) {
2944   default:
2945     llvm_unreachable("unhandled amdgcn cube intrinsic");
2946   case Intrinsic::amdgcn_cubeid:
2947     return APFloat(Sem, ID);
2948   case Intrinsic::amdgcn_cubema:
2949     return MA + MA;
2950   case Intrinsic::amdgcn_cubesc:
2951     return SC;
2952   case Intrinsic::amdgcn_cubetc:
2953     return TC;
2954   }
2955 }
2956 
2957 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
2958                                                  Type *Ty) {
2959   const APInt *C0, *C1, *C2;
2960   if (!getConstIntOrUndef(Operands[0], C0) ||
2961       !getConstIntOrUndef(Operands[1], C1) ||
2962       !getConstIntOrUndef(Operands[2], C2))
2963     return nullptr;
2964 
2965   if (!C2)
2966     return UndefValue::get(Ty);
2967 
2968   APInt Val(32, 0);
2969   unsigned NumUndefBytes = 0;
2970   for (unsigned I = 0; I < 32; I += 8) {
2971     unsigned Sel = C2->extractBitsAsZExtValue(8, I);
2972     unsigned B = 0;
2973 
2974     if (Sel >= 13)
2975       B = 0xff;
2976     else if (Sel == 12)
2977       B = 0x00;
2978     else {
2979       const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
2980       if (!Src)
2981         ++NumUndefBytes;
2982       else if (Sel < 8)
2983         B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
2984       else
2985         B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
2986     }
2987 
2988     Val.insertBits(B, I, 8);
2989   }
2990 
2991   if (NumUndefBytes == 4)
2992     return UndefValue::get(Ty);
2993 
2994   return ConstantInt::get(Ty, Val);
2995 }
2996 
2997 static Constant *ConstantFoldScalarCall3(StringRef Name,
2998                                          Intrinsic::ID IntrinsicID,
2999                                          Type *Ty,
3000                                          ArrayRef<Constant *> Operands,
3001                                          const TargetLibraryInfo *TLI,
3002                                          const CallBase *Call) {
3003   assert(Operands.size() == 3 && "Wrong number of operands.");
3004 
3005   if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3006     if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3007       if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3008         const APFloat &C1 = Op1->getValueAPF();
3009         const APFloat &C2 = Op2->getValueAPF();
3010         const APFloat &C3 = Op3->getValueAPF();
3011 
3012         if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3013           RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3014           APFloat Res = C1;
3015           APFloat::opStatus St;
3016           switch (IntrinsicID) {
3017           default:
3018             return nullptr;
3019           case Intrinsic::experimental_constrained_fma:
3020           case Intrinsic::experimental_constrained_fmuladd:
3021             St = Res.fusedMultiplyAdd(C2, C3, RM);
3022             break;
3023           }
3024           if (mayFoldConstrained(
3025                   const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3026             return ConstantFP::get(Ty->getContext(), Res);
3027           return nullptr;
3028         }
3029 
3030         switch (IntrinsicID) {
3031         default: break;
3032         case Intrinsic::amdgcn_fma_legacy: {
3033           // The legacy behaviour is that multiplying +/- 0.0 by anything, even
3034           // NaN or infinity, gives +0.0.
3035           if (C1.isZero() || C2.isZero()) {
3036             // It's tempting to just return C3 here, but that would give the
3037             // wrong result if C3 was -0.0.
3038             return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3039           }
3040           [[fallthrough]];
3041         }
3042         case Intrinsic::fma:
3043         case Intrinsic::fmuladd: {
3044           APFloat V = C1;
3045           V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3046           return ConstantFP::get(Ty->getContext(), V);
3047         }
3048         case Intrinsic::amdgcn_cubeid:
3049         case Intrinsic::amdgcn_cubema:
3050         case Intrinsic::amdgcn_cubesc:
3051         case Intrinsic::amdgcn_cubetc: {
3052           APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3053           return ConstantFP::get(Ty->getContext(), V);
3054         }
3055         }
3056       }
3057     }
3058   }
3059 
3060   if (IntrinsicID == Intrinsic::smul_fix ||
3061       IntrinsicID == Intrinsic::smul_fix_sat) {
3062     // poison * C -> poison
3063     // C * poison -> poison
3064     if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3065       return PoisonValue::get(Ty);
3066 
3067     const APInt *C0, *C1;
3068     if (!getConstIntOrUndef(Operands[0], C0) ||
3069         !getConstIntOrUndef(Operands[1], C1))
3070       return nullptr;
3071 
3072     // undef * C -> 0
3073     // C * undef -> 0
3074     if (!C0 || !C1)
3075       return Constant::getNullValue(Ty);
3076 
3077     // This code performs rounding towards negative infinity in case the result
3078     // cannot be represented exactly for the given scale. Targets that do care
3079     // about rounding should use a target hook for specifying how rounding
3080     // should be done, and provide their own folding to be consistent with
3081     // rounding. This is the same approach as used by
3082     // DAGTypeLegalizer::ExpandIntRes_MULFIX.
3083     unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3084     unsigned Width = C0->getBitWidth();
3085     assert(Scale < Width && "Illegal scale.");
3086     unsigned ExtendedWidth = Width * 2;
3087     APInt Product =
3088         (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3089     if (IntrinsicID == Intrinsic::smul_fix_sat) {
3090       APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3091       APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3092       Product = APIntOps::smin(Product, Max);
3093       Product = APIntOps::smax(Product, Min);
3094     }
3095     return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3096   }
3097 
3098   if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3099     const APInt *C0, *C1, *C2;
3100     if (!getConstIntOrUndef(Operands[0], C0) ||
3101         !getConstIntOrUndef(Operands[1], C1) ||
3102         !getConstIntOrUndef(Operands[2], C2))
3103       return nullptr;
3104 
3105     bool IsRight = IntrinsicID == Intrinsic::fshr;
3106     if (!C2)
3107       return Operands[IsRight ? 1 : 0];
3108     if (!C0 && !C1)
3109       return UndefValue::get(Ty);
3110 
3111     // The shift amount is interpreted as modulo the bitwidth. If the shift
3112     // amount is effectively 0, avoid UB due to oversized inverse shift below.
3113     unsigned BitWidth = C2->getBitWidth();
3114     unsigned ShAmt = C2->urem(BitWidth);
3115     if (!ShAmt)
3116       return Operands[IsRight ? 1 : 0];
3117 
3118     // (C0 << ShlAmt) | (C1 >> LshrAmt)
3119     unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3120     unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3121     if (!C0)
3122       return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3123     if (!C1)
3124       return ConstantInt::get(Ty, C0->shl(ShlAmt));
3125     return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3126   }
3127 
3128   if (IntrinsicID == Intrinsic::amdgcn_perm)
3129     return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3130 
3131   return nullptr;
3132 }
3133 
3134 static Constant *ConstantFoldScalarCall(StringRef Name,
3135                                         Intrinsic::ID IntrinsicID,
3136                                         Type *Ty,
3137                                         ArrayRef<Constant *> Operands,
3138                                         const TargetLibraryInfo *TLI,
3139                                         const CallBase *Call) {
3140   if (Operands.size() == 1)
3141     return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3142 
3143   if (Operands.size() == 2)
3144     return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
3145 
3146   if (Operands.size() == 3)
3147     return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3148 
3149   return nullptr;
3150 }
3151 
3152 static Constant *ConstantFoldFixedVectorCall(
3153     StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3154     ArrayRef<Constant *> Operands, const DataLayout &DL,
3155     const TargetLibraryInfo *TLI, const CallBase *Call) {
3156   SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3157   SmallVector<Constant *, 4> Lane(Operands.size());
3158   Type *Ty = FVTy->getElementType();
3159 
3160   switch (IntrinsicID) {
3161   case Intrinsic::masked_load: {
3162     auto *SrcPtr = Operands[0];
3163     auto *Mask = Operands[2];
3164     auto *Passthru = Operands[3];
3165 
3166     Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3167 
3168     SmallVector<Constant *, 32> NewElements;
3169     for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3170       auto *MaskElt = Mask->getAggregateElement(I);
3171       if (!MaskElt)
3172         break;
3173       auto *PassthruElt = Passthru->getAggregateElement(I);
3174       auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3175       if (isa<UndefValue>(MaskElt)) {
3176         if (PassthruElt)
3177           NewElements.push_back(PassthruElt);
3178         else if (VecElt)
3179           NewElements.push_back(VecElt);
3180         else
3181           return nullptr;
3182       }
3183       if (MaskElt->isNullValue()) {
3184         if (!PassthruElt)
3185           return nullptr;
3186         NewElements.push_back(PassthruElt);
3187       } else if (MaskElt->isOneValue()) {
3188         if (!VecElt)
3189           return nullptr;
3190         NewElements.push_back(VecElt);
3191       } else {
3192         return nullptr;
3193       }
3194     }
3195     if (NewElements.size() != FVTy->getNumElements())
3196       return nullptr;
3197     return ConstantVector::get(NewElements);
3198   }
3199   case Intrinsic::arm_mve_vctp8:
3200   case Intrinsic::arm_mve_vctp16:
3201   case Intrinsic::arm_mve_vctp32:
3202   case Intrinsic::arm_mve_vctp64: {
3203     if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3204       unsigned Lanes = FVTy->getNumElements();
3205       uint64_t Limit = Op->getZExtValue();
3206 
3207       SmallVector<Constant *, 16> NCs;
3208       for (unsigned i = 0; i < Lanes; i++) {
3209         if (i < Limit)
3210           NCs.push_back(ConstantInt::getTrue(Ty));
3211         else
3212           NCs.push_back(ConstantInt::getFalse(Ty));
3213       }
3214       return ConstantVector::get(NCs);
3215     }
3216     return nullptr;
3217   }
3218   case Intrinsic::get_active_lane_mask: {
3219     auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3220     auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3221     if (Op0 && Op1) {
3222       unsigned Lanes = FVTy->getNumElements();
3223       uint64_t Base = Op0->getZExtValue();
3224       uint64_t Limit = Op1->getZExtValue();
3225 
3226       SmallVector<Constant *, 16> NCs;
3227       for (unsigned i = 0; i < Lanes; i++) {
3228         if (Base + i < Limit)
3229           NCs.push_back(ConstantInt::getTrue(Ty));
3230         else
3231           NCs.push_back(ConstantInt::getFalse(Ty));
3232       }
3233       return ConstantVector::get(NCs);
3234     }
3235     return nullptr;
3236   }
3237   default:
3238     break;
3239   }
3240 
3241   for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3242     // Gather a column of constants.
3243     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3244       // Some intrinsics use a scalar type for certain arguments.
3245       if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3246         Lane[J] = Operands[J];
3247         continue;
3248       }
3249 
3250       Constant *Agg = Operands[J]->getAggregateElement(I);
3251       if (!Agg)
3252         return nullptr;
3253 
3254       Lane[J] = Agg;
3255     }
3256 
3257     // Use the regular scalar folding to simplify this column.
3258     Constant *Folded =
3259         ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3260     if (!Folded)
3261       return nullptr;
3262     Result[I] = Folded;
3263   }
3264 
3265   return ConstantVector::get(Result);
3266 }
3267 
3268 static Constant *ConstantFoldScalableVectorCall(
3269     StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3270     ArrayRef<Constant *> Operands, const DataLayout &DL,
3271     const TargetLibraryInfo *TLI, const CallBase *Call) {
3272   switch (IntrinsicID) {
3273   case Intrinsic::aarch64_sve_convert_from_svbool: {
3274     auto *Src = dyn_cast<Constant>(Operands[0]);
3275     if (!Src || !Src->isNullValue())
3276       break;
3277 
3278     return ConstantInt::getFalse(SVTy);
3279   }
3280   default:
3281     break;
3282   }
3283   return nullptr;
3284 }
3285 
3286 static std::pair<Constant *, Constant *>
3287 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
3288   if (isa<PoisonValue>(Op))
3289     return {Op, PoisonValue::get(IntTy)};
3290 
3291   auto *ConstFP = dyn_cast<ConstantFP>(Op);
3292   if (!ConstFP)
3293     return {};
3294 
3295   const APFloat &U = ConstFP->getValueAPF();
3296   int FrexpExp;
3297   APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
3298   Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
3299 
3300   // The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3301   // using undef.
3302   Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp)
3303                                            : ConstantInt::getNullValue(IntTy);
3304   return {Result0, Result1};
3305 }
3306 
3307 /// Handle intrinsics that return tuples, which may be tuples of vectors.
3308 static Constant *
3309 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
3310                        StructType *StTy, ArrayRef<Constant *> Operands,
3311                        const DataLayout &DL, const TargetLibraryInfo *TLI,
3312                        const CallBase *Call) {
3313 
3314   switch (IntrinsicID) {
3315   case Intrinsic::frexp: {
3316     Type *Ty0 = StTy->getContainedType(0);
3317     Type *Ty1 = StTy->getContainedType(1)->getScalarType();
3318 
3319     if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
3320       SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
3321       SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
3322 
3323       for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
3324         Constant *Lane = Operands[0]->getAggregateElement(I);
3325         std::tie(Results0[I], Results1[I]) =
3326             ConstantFoldScalarFrexpCall(Lane, Ty1);
3327         if (!Results0[I])
3328           return nullptr;
3329       }
3330 
3331       return ConstantStruct::get(StTy, ConstantVector::get(Results0),
3332                                  ConstantVector::get(Results1));
3333     }
3334 
3335     auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
3336     if (!Result0)
3337       return nullptr;
3338     return ConstantStruct::get(StTy, Result0, Result1);
3339   }
3340   default:
3341     // TODO: Constant folding of vector intrinsics that fall through here does
3342     // not work (e.g. overflow intrinsics)
3343     return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
3344   }
3345 
3346   return nullptr;
3347 }
3348 
3349 } // end anonymous namespace
3350 
3351 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3352                                  ArrayRef<Constant *> Operands,
3353                                  const TargetLibraryInfo *TLI) {
3354   if (Call->isNoBuiltin())
3355     return nullptr;
3356   if (!F->hasName())
3357     return nullptr;
3358 
3359   // If this is not an intrinsic and not recognized as a library call, bail out.
3360   Intrinsic::ID IID = F->getIntrinsicID();
3361   if (IID == Intrinsic::not_intrinsic) {
3362     if (!TLI)
3363       return nullptr;
3364     LibFunc LibF;
3365     if (!TLI->getLibFunc(*F, LibF))
3366       return nullptr;
3367   }
3368 
3369   StringRef Name = F->getName();
3370   Type *Ty = F->getReturnType();
3371   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3372     return ConstantFoldFixedVectorCall(
3373         Name, IID, FVTy, Operands, F->getParent()->getDataLayout(), TLI, Call);
3374 
3375   if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3376     return ConstantFoldScalableVectorCall(
3377         Name, IID, SVTy, Operands, F->getParent()->getDataLayout(), TLI, Call);
3378 
3379   if (auto *StTy = dyn_cast<StructType>(Ty))
3380     return ConstantFoldStructCall(Name, IID, StTy, Operands,
3381                                   F->getParent()->getDataLayout(), TLI, Call);
3382 
3383   // TODO: If this is a library function, we already discovered that above,
3384   //       so we should pass the LibFunc, not the name (and it might be better
3385   //       still to separate intrinsic handling from libcalls).
3386   return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
3387 }
3388 
3389 bool llvm::isMathLibCallNoop(const CallBase *Call,
3390                              const TargetLibraryInfo *TLI) {
3391   // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3392   // (and to some extent ConstantFoldScalarCall).
3393   if (Call->isNoBuiltin() || Call->isStrictFP())
3394     return false;
3395   Function *F = Call->getCalledFunction();
3396   if (!F)
3397     return false;
3398 
3399   LibFunc Func;
3400   if (!TLI || !TLI->getLibFunc(*F, Func))
3401     return false;
3402 
3403   if (Call->arg_size() == 1) {
3404     if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3405       const APFloat &Op = OpC->getValueAPF();
3406       switch (Func) {
3407       case LibFunc_logl:
3408       case LibFunc_log:
3409       case LibFunc_logf:
3410       case LibFunc_log2l:
3411       case LibFunc_log2:
3412       case LibFunc_log2f:
3413       case LibFunc_log10l:
3414       case LibFunc_log10:
3415       case LibFunc_log10f:
3416         return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3417 
3418       case LibFunc_expl:
3419       case LibFunc_exp:
3420       case LibFunc_expf:
3421         // FIXME: These boundaries are slightly conservative.
3422         if (OpC->getType()->isDoubleTy())
3423           return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3424         if (OpC->getType()->isFloatTy())
3425           return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3426         break;
3427 
3428       case LibFunc_exp2l:
3429       case LibFunc_exp2:
3430       case LibFunc_exp2f:
3431         // FIXME: These boundaries are slightly conservative.
3432         if (OpC->getType()->isDoubleTy())
3433           return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3434         if (OpC->getType()->isFloatTy())
3435           return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3436         break;
3437 
3438       case LibFunc_sinl:
3439       case LibFunc_sin:
3440       case LibFunc_sinf:
3441       case LibFunc_cosl:
3442       case LibFunc_cos:
3443       case LibFunc_cosf:
3444         return !Op.isInfinity();
3445 
3446       case LibFunc_tanl:
3447       case LibFunc_tan:
3448       case LibFunc_tanf: {
3449         // FIXME: Stop using the host math library.
3450         // FIXME: The computation isn't done in the right precision.
3451         Type *Ty = OpC->getType();
3452         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3453           return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3454         break;
3455       }
3456 
3457       case LibFunc_atan:
3458       case LibFunc_atanf:
3459       case LibFunc_atanl:
3460         // Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3461         return true;
3462 
3463 
3464       case LibFunc_asinl:
3465       case LibFunc_asin:
3466       case LibFunc_asinf:
3467       case LibFunc_acosl:
3468       case LibFunc_acos:
3469       case LibFunc_acosf:
3470         return !(Op < APFloat(Op.getSemantics(), "-1") ||
3471                  Op > APFloat(Op.getSemantics(), "1"));
3472 
3473       case LibFunc_sinh:
3474       case LibFunc_cosh:
3475       case LibFunc_sinhf:
3476       case LibFunc_coshf:
3477       case LibFunc_sinhl:
3478       case LibFunc_coshl:
3479         // FIXME: These boundaries are slightly conservative.
3480         if (OpC->getType()->isDoubleTy())
3481           return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3482         if (OpC->getType()->isFloatTy())
3483           return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3484         break;
3485 
3486       case LibFunc_sqrtl:
3487       case LibFunc_sqrt:
3488       case LibFunc_sqrtf:
3489         return Op.isNaN() || Op.isZero() || !Op.isNegative();
3490 
3491       // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3492       // maybe others?
3493       default:
3494         break;
3495       }
3496     }
3497   }
3498 
3499   if (Call->arg_size() == 2) {
3500     ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3501     ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3502     if (Op0C && Op1C) {
3503       const APFloat &Op0 = Op0C->getValueAPF();
3504       const APFloat &Op1 = Op1C->getValueAPF();
3505 
3506       switch (Func) {
3507       case LibFunc_powl:
3508       case LibFunc_pow:
3509       case LibFunc_powf: {
3510         // FIXME: Stop using the host math library.
3511         // FIXME: The computation isn't done in the right precision.
3512         Type *Ty = Op0C->getType();
3513         if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3514           if (Ty == Op1C->getType())
3515             return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3516         }
3517         break;
3518       }
3519 
3520       case LibFunc_fmodl:
3521       case LibFunc_fmod:
3522       case LibFunc_fmodf:
3523       case LibFunc_remainderl:
3524       case LibFunc_remainder:
3525       case LibFunc_remainderf:
3526         return Op0.isNaN() || Op1.isNaN() ||
3527                (!Op0.isInfinity() && !Op1.isZero());
3528 
3529       case LibFunc_atan2:
3530       case LibFunc_atan2f:
3531       case LibFunc_atan2l:
3532         // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3533         // GLIBC and MSVC do not appear to raise an error on those, we
3534         // cannot rely on that behavior. POSIX and C11 say that a domain error
3535         // may occur, so allow for that possibility.
3536         return !Op0.isZero() || !Op1.isZero();
3537 
3538       default:
3539         break;
3540       }
3541     }
3542   }
3543 
3544   return false;
3545 }
3546 
3547 void TargetFolder::anchor() {}
3548