1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
12 //
13 //            Practical Dependence Testing
14 //            Goff, Kennedy, Tseng
15 //            PLDI 1991
16 //
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
20 //
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
25 //
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
30 //
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
34 //
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
38 //
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
42 //
43 // Please note that this is work in progress and the interface is subject to
44 // change.
45 //
46 //===----------------------------------------------------------------------===//
47 //                                                                            //
48 //                   In memory of Ken Kennedy, 1945 - 2007                    //
49 //                                                                            //
50 //===----------------------------------------------------------------------===//
51 
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "da"
73 
74 //===----------------------------------------------------------------------===//
75 // statistics
76 
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 
110 static cl::opt<bool>
111     Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
112                 cl::desc("Try to delinearize array references."));
113 static cl::opt<bool> DisableDelinearizationChecks(
114     "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
115     cl::ZeroOrMore,
116     cl::desc(
117         "Disable checks that try to statically verify validity of "
118         "delinearized subscripts. Enabling this option may result in incorrect "
119         "dependence vectors for languages that allow the subscript of one "
120         "dimension to underflow or overflow into another dimension."));
121 
122 //===----------------------------------------------------------------------===//
123 // basics
124 
125 DependenceAnalysis::Result
126 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
127   auto &AA = FAM.getResult<AAManager>(F);
128   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
129   auto &LI = FAM.getResult<LoopAnalysis>(F);
130   return DependenceInfo(&F, &AA, &SE, &LI);
131 }
132 
133 AnalysisKey DependenceAnalysis::Key;
134 
135 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
136                       "Dependence Analysis", true, true)
137 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
141                     true, true)
142 
143 char DependenceAnalysisWrapperPass::ID = 0;
144 
145 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
146     : FunctionPass(ID) {
147   initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
148 }
149 
150 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
151   return new DependenceAnalysisWrapperPass();
152 }
153 
154 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
155   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
156   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
157   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
158   info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
159   return false;
160 }
161 
162 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
163 
164 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
165 
166 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
167   AU.setPreservesAll();
168   AU.addRequiredTransitive<AAResultsWrapperPass>();
169   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
170   AU.addRequiredTransitive<LoopInfoWrapperPass>();
171 }
172 
173 // Used to test the dependence analyzer.
174 // Looks through the function, noting instructions that may access memory.
175 // Calls depends() on every possible pair and prints out the result.
176 // Ignores all other instructions.
177 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
178   auto *F = DA->getFunction();
179   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
180        ++SrcI) {
181     if (SrcI->mayReadOrWriteMemory()) {
182       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
183            DstI != DstE; ++DstI) {
184         if (DstI->mayReadOrWriteMemory()) {
185           OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
186           OS << "  da analyze - ";
187           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
188             D->dump(OS);
189             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
190               if (D->isSplitable(Level)) {
191                 OS << "  da analyze - split level = " << Level;
192                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
193                 OS << "!\n";
194               }
195             }
196           }
197           else
198             OS << "none!\n";
199         }
200       }
201     }
202   }
203 }
204 
205 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
206                                           const Module *) const {
207   dumpExampleDependence(OS, info.get());
208 }
209 
210 PreservedAnalyses
211 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
212   OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
213   dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
214   return PreservedAnalyses::all();
215 }
216 
217 //===----------------------------------------------------------------------===//
218 // Dependence methods
219 
220 // Returns true if this is an input dependence.
221 bool Dependence::isInput() const {
222   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
223 }
224 
225 
226 // Returns true if this is an output dependence.
227 bool Dependence::isOutput() const {
228   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
229 }
230 
231 
232 // Returns true if this is an flow (aka true)  dependence.
233 bool Dependence::isFlow() const {
234   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
235 }
236 
237 
238 // Returns true if this is an anti dependence.
239 bool Dependence::isAnti() const {
240   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
241 }
242 
243 
244 // Returns true if a particular level is scalar; that is,
245 // if no subscript in the source or destination mention the induction
246 // variable associated with the loop at this level.
247 // Leave this out of line, so it will serve as a virtual method anchor
248 bool Dependence::isScalar(unsigned level) const {
249   return false;
250 }
251 
252 
253 //===----------------------------------------------------------------------===//
254 // FullDependence methods
255 
256 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
257                                bool PossiblyLoopIndependent,
258                                unsigned CommonLevels)
259     : Dependence(Source, Destination), Levels(CommonLevels),
260       LoopIndependent(PossiblyLoopIndependent) {
261   Consistent = true;
262   if (CommonLevels)
263     DV = std::make_unique<DVEntry[]>(CommonLevels);
264 }
265 
266 // The rest are simple getters that hide the implementation.
267 
268 // getDirection - Returns the direction associated with a particular level.
269 unsigned FullDependence::getDirection(unsigned Level) const {
270   assert(0 < Level && Level <= Levels && "Level out of range");
271   return DV[Level - 1].Direction;
272 }
273 
274 
275 // Returns the distance (or NULL) associated with a particular level.
276 const SCEV *FullDependence::getDistance(unsigned Level) const {
277   assert(0 < Level && Level <= Levels && "Level out of range");
278   return DV[Level - 1].Distance;
279 }
280 
281 
282 // Returns true if a particular level is scalar; that is,
283 // if no subscript in the source or destination mention the induction
284 // variable associated with the loop at this level.
285 bool FullDependence::isScalar(unsigned Level) const {
286   assert(0 < Level && Level <= Levels && "Level out of range");
287   return DV[Level - 1].Scalar;
288 }
289 
290 
291 // Returns true if peeling the first iteration from this loop
292 // will break this dependence.
293 bool FullDependence::isPeelFirst(unsigned Level) const {
294   assert(0 < Level && Level <= Levels && "Level out of range");
295   return DV[Level - 1].PeelFirst;
296 }
297 
298 
299 // Returns true if peeling the last iteration from this loop
300 // will break this dependence.
301 bool FullDependence::isPeelLast(unsigned Level) const {
302   assert(0 < Level && Level <= Levels && "Level out of range");
303   return DV[Level - 1].PeelLast;
304 }
305 
306 
307 // Returns true if splitting this loop will break the dependence.
308 bool FullDependence::isSplitable(unsigned Level) const {
309   assert(0 < Level && Level <= Levels && "Level out of range");
310   return DV[Level - 1].Splitable;
311 }
312 
313 
314 //===----------------------------------------------------------------------===//
315 // DependenceInfo::Constraint methods
316 
317 // If constraint is a point <X, Y>, returns X.
318 // Otherwise assert.
319 const SCEV *DependenceInfo::Constraint::getX() const {
320   assert(Kind == Point && "Kind should be Point");
321   return A;
322 }
323 
324 
325 // If constraint is a point <X, Y>, returns Y.
326 // Otherwise assert.
327 const SCEV *DependenceInfo::Constraint::getY() const {
328   assert(Kind == Point && "Kind should be Point");
329   return B;
330 }
331 
332 
333 // If constraint is a line AX + BY = C, returns A.
334 // Otherwise assert.
335 const SCEV *DependenceInfo::Constraint::getA() const {
336   assert((Kind == Line || Kind == Distance) &&
337          "Kind should be Line (or Distance)");
338   return A;
339 }
340 
341 
342 // If constraint is a line AX + BY = C, returns B.
343 // Otherwise assert.
344 const SCEV *DependenceInfo::Constraint::getB() const {
345   assert((Kind == Line || Kind == Distance) &&
346          "Kind should be Line (or Distance)");
347   return B;
348 }
349 
350 
351 // If constraint is a line AX + BY = C, returns C.
352 // Otherwise assert.
353 const SCEV *DependenceInfo::Constraint::getC() const {
354   assert((Kind == Line || Kind == Distance) &&
355          "Kind should be Line (or Distance)");
356   return C;
357 }
358 
359 
360 // If constraint is a distance, returns D.
361 // Otherwise assert.
362 const SCEV *DependenceInfo::Constraint::getD() const {
363   assert(Kind == Distance && "Kind should be Distance");
364   return SE->getNegativeSCEV(C);
365 }
366 
367 
368 // Returns the loop associated with this constraint.
369 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
370   assert((Kind == Distance || Kind == Line || Kind == Point) &&
371          "Kind should be Distance, Line, or Point");
372   return AssociatedLoop;
373 }
374 
375 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
376                                           const Loop *CurLoop) {
377   Kind = Point;
378   A = X;
379   B = Y;
380   AssociatedLoop = CurLoop;
381 }
382 
383 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
384                                          const SCEV *CC, const Loop *CurLoop) {
385   Kind = Line;
386   A = AA;
387   B = BB;
388   C = CC;
389   AssociatedLoop = CurLoop;
390 }
391 
392 void DependenceInfo::Constraint::setDistance(const SCEV *D,
393                                              const Loop *CurLoop) {
394   Kind = Distance;
395   A = SE->getOne(D->getType());
396   B = SE->getNegativeSCEV(A);
397   C = SE->getNegativeSCEV(D);
398   AssociatedLoop = CurLoop;
399 }
400 
401 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
402 
403 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
404   SE = NewSE;
405   Kind = Any;
406 }
407 
408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
409 // For debugging purposes. Dumps the constraint out to OS.
410 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
411   if (isEmpty())
412     OS << " Empty\n";
413   else if (isAny())
414     OS << " Any\n";
415   else if (isPoint())
416     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
417   else if (isDistance())
418     OS << " Distance is " << *getD() <<
419       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
420   else if (isLine())
421     OS << " Line is " << *getA() << "*X + " <<
422       *getB() << "*Y = " << *getC() << "\n";
423   else
424     llvm_unreachable("unknown constraint type in Constraint::dump");
425 }
426 #endif
427 
428 
429 // Updates X with the intersection
430 // of the Constraints X and Y. Returns true if X has changed.
431 // Corresponds to Figure 4 from the paper
432 //
433 //            Practical Dependence Testing
434 //            Goff, Kennedy, Tseng
435 //            PLDI 1991
436 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
437   ++DeltaApplications;
438   LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
439   LLVM_DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
440   LLVM_DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
441   assert(!Y->isPoint() && "Y must not be a Point");
442   if (X->isAny()) {
443     if (Y->isAny())
444       return false;
445     *X = *Y;
446     return true;
447   }
448   if (X->isEmpty())
449     return false;
450   if (Y->isEmpty()) {
451     X->setEmpty();
452     return true;
453   }
454 
455   if (X->isDistance() && Y->isDistance()) {
456     LLVM_DEBUG(dbgs() << "\t    intersect 2 distances\n");
457     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
458       return false;
459     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
460       X->setEmpty();
461       ++DeltaSuccesses;
462       return true;
463     }
464     // Hmmm, interesting situation.
465     // I guess if either is constant, keep it and ignore the other.
466     if (isa<SCEVConstant>(Y->getD())) {
467       *X = *Y;
468       return true;
469     }
470     return false;
471   }
472 
473   // At this point, the pseudo-code in Figure 4 of the paper
474   // checks if (X->isPoint() && Y->isPoint()).
475   // This case can't occur in our implementation,
476   // since a Point can only arise as the result of intersecting
477   // two Line constraints, and the right-hand value, Y, is never
478   // the result of an intersection.
479   assert(!(X->isPoint() && Y->isPoint()) &&
480          "We shouldn't ever see X->isPoint() && Y->isPoint()");
481 
482   if (X->isLine() && Y->isLine()) {
483     LLVM_DEBUG(dbgs() << "\t    intersect 2 lines\n");
484     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
485     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
486     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
487       // slopes are equal, so lines are parallel
488       LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
489       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
490       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
491       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
492         return false;
493       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
494         X->setEmpty();
495         ++DeltaSuccesses;
496         return true;
497       }
498       return false;
499     }
500     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
501       // slopes differ, so lines intersect
502       LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
503       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
504       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
505       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
506       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
507       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
508       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
509       const SCEVConstant *C1A2_C2A1 =
510         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
511       const SCEVConstant *C1B2_C2B1 =
512         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
513       const SCEVConstant *A1B2_A2B1 =
514         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
515       const SCEVConstant *A2B1_A1B2 =
516         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
517       if (!C1B2_C2B1 || !C1A2_C2A1 ||
518           !A1B2_A2B1 || !A2B1_A1B2)
519         return false;
520       APInt Xtop = C1B2_C2B1->getAPInt();
521       APInt Xbot = A1B2_A2B1->getAPInt();
522       APInt Ytop = C1A2_C2A1->getAPInt();
523       APInt Ybot = A2B1_A1B2->getAPInt();
524       LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
525       LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
526       LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
527       LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
528       APInt Xq = Xtop; // these need to be initialized, even
529       APInt Xr = Xtop; // though they're just going to be overwritten
530       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
531       APInt Yq = Ytop;
532       APInt Yr = Ytop;
533       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
534       if (Xr != 0 || Yr != 0) {
535         X->setEmpty();
536         ++DeltaSuccesses;
537         return true;
538       }
539       LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
540       if (Xq.slt(0) || Yq.slt(0)) {
541         X->setEmpty();
542         ++DeltaSuccesses;
543         return true;
544       }
545       if (const SCEVConstant *CUB =
546           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
547         const APInt &UpperBound = CUB->getAPInt();
548         LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
549         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
550           X->setEmpty();
551           ++DeltaSuccesses;
552           return true;
553         }
554       }
555       X->setPoint(SE->getConstant(Xq),
556                   SE->getConstant(Yq),
557                   X->getAssociatedLoop());
558       ++DeltaSuccesses;
559       return true;
560     }
561     return false;
562   }
563 
564   // if (X->isLine() && Y->isPoint()) This case can't occur.
565   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
566 
567   if (X->isPoint() && Y->isLine()) {
568     LLVM_DEBUG(dbgs() << "\t    intersect Point and Line\n");
569     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
570     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
571     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
572     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
573       return false;
574     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
575       X->setEmpty();
576       ++DeltaSuccesses;
577       return true;
578     }
579     return false;
580   }
581 
582   llvm_unreachable("shouldn't reach the end of Constraint intersection");
583   return false;
584 }
585 
586 
587 //===----------------------------------------------------------------------===//
588 // DependenceInfo methods
589 
590 // For debugging purposes. Dumps a dependence to OS.
591 void Dependence::dump(raw_ostream &OS) const {
592   bool Splitable = false;
593   if (isConfused())
594     OS << "confused";
595   else {
596     if (isConsistent())
597       OS << "consistent ";
598     if (isFlow())
599       OS << "flow";
600     else if (isOutput())
601       OS << "output";
602     else if (isAnti())
603       OS << "anti";
604     else if (isInput())
605       OS << "input";
606     unsigned Levels = getLevels();
607     OS << " [";
608     for (unsigned II = 1; II <= Levels; ++II) {
609       if (isSplitable(II))
610         Splitable = true;
611       if (isPeelFirst(II))
612         OS << 'p';
613       const SCEV *Distance = getDistance(II);
614       if (Distance)
615         OS << *Distance;
616       else if (isScalar(II))
617         OS << "S";
618       else {
619         unsigned Direction = getDirection(II);
620         if (Direction == DVEntry::ALL)
621           OS << "*";
622         else {
623           if (Direction & DVEntry::LT)
624             OS << "<";
625           if (Direction & DVEntry::EQ)
626             OS << "=";
627           if (Direction & DVEntry::GT)
628             OS << ">";
629         }
630       }
631       if (isPeelLast(II))
632         OS << 'p';
633       if (II < Levels)
634         OS << " ";
635     }
636     if (isLoopIndependent())
637       OS << "|<";
638     OS << "]";
639     if (Splitable)
640       OS << " splitable";
641   }
642   OS << "!\n";
643 }
644 
645 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
646 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
647 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
648 // Otherwise the underlying objects are checked to see if they point to
649 // different identifiable objects.
650 static AliasResult underlyingObjectsAlias(AAResults *AA,
651                                           const DataLayout &DL,
652                                           const MemoryLocation &LocA,
653                                           const MemoryLocation &LocB) {
654   // Check the original locations (minus size) for noalias, which can happen for
655   // tbaa, incompatible underlying object locations, etc.
656   MemoryLocation LocAS =
657       MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
658   MemoryLocation LocBS =
659       MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
660   if (AA->isNoAlias(LocAS, LocBS))
661     return AliasResult::NoAlias;
662 
663   // Check the underlying objects are the same
664   const Value *AObj = getUnderlyingObject(LocA.Ptr);
665   const Value *BObj = getUnderlyingObject(LocB.Ptr);
666 
667   // If the underlying objects are the same, they must alias
668   if (AObj == BObj)
669     return AliasResult::MustAlias;
670 
671   // We may have hit the recursion limit for underlying objects, or have
672   // underlying objects where we don't know they will alias.
673   if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
674     return AliasResult::MayAlias;
675 
676   // Otherwise we know the objects are different and both identified objects so
677   // must not alias.
678   return AliasResult::NoAlias;
679 }
680 
681 
682 // Returns true if the load or store can be analyzed. Atomic and volatile
683 // operations have properties which this analysis does not understand.
684 static
685 bool isLoadOrStore(const Instruction *I) {
686   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
687     return LI->isUnordered();
688   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
689     return SI->isUnordered();
690   return false;
691 }
692 
693 
694 // Examines the loop nesting of the Src and Dst
695 // instructions and establishes their shared loops. Sets the variables
696 // CommonLevels, SrcLevels, and MaxLevels.
697 // The source and destination instructions needn't be contained in the same
698 // loop. The routine establishNestingLevels finds the level of most deeply
699 // nested loop that contains them both, CommonLevels. An instruction that's
700 // not contained in a loop is at level = 0. MaxLevels is equal to the level
701 // of the source plus the level of the destination, minus CommonLevels.
702 // This lets us allocate vectors MaxLevels in length, with room for every
703 // distinct loop referenced in both the source and destination subscripts.
704 // The variable SrcLevels is the nesting depth of the source instruction.
705 // It's used to help calculate distinct loops referenced by the destination.
706 // Here's the map from loops to levels:
707 //            0 - unused
708 //            1 - outermost common loop
709 //          ... - other common loops
710 // CommonLevels - innermost common loop
711 //          ... - loops containing Src but not Dst
712 //    SrcLevels - innermost loop containing Src but not Dst
713 //          ... - loops containing Dst but not Src
714 //    MaxLevels - innermost loops containing Dst but not Src
715 // Consider the follow code fragment:
716 //   for (a = ...) {
717 //     for (b = ...) {
718 //       for (c = ...) {
719 //         for (d = ...) {
720 //           A[] = ...;
721 //         }
722 //       }
723 //       for (e = ...) {
724 //         for (f = ...) {
725 //           for (g = ...) {
726 //             ... = A[];
727 //           }
728 //         }
729 //       }
730 //     }
731 //   }
732 // If we're looking at the possibility of a dependence between the store
733 // to A (the Src) and the load from A (the Dst), we'll note that they
734 // have 2 loops in common, so CommonLevels will equal 2 and the direction
735 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
736 // A map from loop names to loop numbers would look like
737 //     a - 1
738 //     b - 2 = CommonLevels
739 //     c - 3
740 //     d - 4 = SrcLevels
741 //     e - 5
742 //     f - 6
743 //     g - 7 = MaxLevels
744 void DependenceInfo::establishNestingLevels(const Instruction *Src,
745                                             const Instruction *Dst) {
746   const BasicBlock *SrcBlock = Src->getParent();
747   const BasicBlock *DstBlock = Dst->getParent();
748   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
749   unsigned DstLevel = LI->getLoopDepth(DstBlock);
750   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
751   const Loop *DstLoop = LI->getLoopFor(DstBlock);
752   SrcLevels = SrcLevel;
753   MaxLevels = SrcLevel + DstLevel;
754   while (SrcLevel > DstLevel) {
755     SrcLoop = SrcLoop->getParentLoop();
756     SrcLevel--;
757   }
758   while (DstLevel > SrcLevel) {
759     DstLoop = DstLoop->getParentLoop();
760     DstLevel--;
761   }
762   while (SrcLoop != DstLoop) {
763     SrcLoop = SrcLoop->getParentLoop();
764     DstLoop = DstLoop->getParentLoop();
765     SrcLevel--;
766   }
767   CommonLevels = SrcLevel;
768   MaxLevels -= CommonLevels;
769 }
770 
771 
772 // Given one of the loops containing the source, return
773 // its level index in our numbering scheme.
774 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
775   return SrcLoop->getLoopDepth();
776 }
777 
778 
779 // Given one of the loops containing the destination,
780 // return its level index in our numbering scheme.
781 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
782   unsigned D = DstLoop->getLoopDepth();
783   if (D > CommonLevels)
784     return D - CommonLevels + SrcLevels;
785   else
786     return D;
787 }
788 
789 
790 // Returns true if Expression is loop invariant in LoopNest.
791 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
792                                      const Loop *LoopNest) const {
793   if (!LoopNest)
794     return true;
795   return SE->isLoopInvariant(Expression, LoopNest) &&
796     isLoopInvariant(Expression, LoopNest->getParentLoop());
797 }
798 
799 
800 
801 // Finds the set of loops from the LoopNest that
802 // have a level <= CommonLevels and are referred to by the SCEV Expression.
803 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
804                                         const Loop *LoopNest,
805                                         SmallBitVector &Loops) const {
806   while (LoopNest) {
807     unsigned Level = LoopNest->getLoopDepth();
808     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
809       Loops.set(Level);
810     LoopNest = LoopNest->getParentLoop();
811   }
812 }
813 
814 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
815 
816   unsigned widestWidthSeen = 0;
817   Type *widestType;
818 
819   // Go through each pair and find the widest bit to which we need
820   // to extend all of them.
821   for (Subscript *Pair : Pairs) {
822     const SCEV *Src = Pair->Src;
823     const SCEV *Dst = Pair->Dst;
824     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
825     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
826     if (SrcTy == nullptr || DstTy == nullptr) {
827       assert(SrcTy == DstTy && "This function only unify integer types and "
828              "expect Src and Dst share the same type "
829              "otherwise.");
830       continue;
831     }
832     if (SrcTy->getBitWidth() > widestWidthSeen) {
833       widestWidthSeen = SrcTy->getBitWidth();
834       widestType = SrcTy;
835     }
836     if (DstTy->getBitWidth() > widestWidthSeen) {
837       widestWidthSeen = DstTy->getBitWidth();
838       widestType = DstTy;
839     }
840   }
841 
842 
843   assert(widestWidthSeen > 0);
844 
845   // Now extend each pair to the widest seen.
846   for (Subscript *Pair : Pairs) {
847     const SCEV *Src = Pair->Src;
848     const SCEV *Dst = Pair->Dst;
849     IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
850     IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
851     if (SrcTy == nullptr || DstTy == nullptr) {
852       assert(SrcTy == DstTy && "This function only unify integer types and "
853              "expect Src and Dst share the same type "
854              "otherwise.");
855       continue;
856     }
857     if (SrcTy->getBitWidth() < widestWidthSeen)
858       // Sign-extend Src to widestType
859       Pair->Src = SE->getSignExtendExpr(Src, widestType);
860     if (DstTy->getBitWidth() < widestWidthSeen) {
861       // Sign-extend Dst to widestType
862       Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
863     }
864   }
865 }
866 
867 // removeMatchingExtensions - Examines a subscript pair.
868 // If the source and destination are identically sign (or zero)
869 // extended, it strips off the extension in an effect to simplify
870 // the actual analysis.
871 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
872   const SCEV *Src = Pair->Src;
873   const SCEV *Dst = Pair->Dst;
874   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
875       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
876     const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
877     const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
878     const SCEV *SrcCastOp = SrcCast->getOperand();
879     const SCEV *DstCastOp = DstCast->getOperand();
880     if (SrcCastOp->getType() == DstCastOp->getType()) {
881       Pair->Src = SrcCastOp;
882       Pair->Dst = DstCastOp;
883     }
884   }
885 }
886 
887 // Examine the scev and return true iff it's linear.
888 // Collect any loops mentioned in the set of "Loops".
889 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
890                                     SmallBitVector &Loops, bool IsSrc) {
891   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
892   if (!AddRec)
893     return isLoopInvariant(Expr, LoopNest);
894   const SCEV *Start = AddRec->getStart();
895   const SCEV *Step = AddRec->getStepRecurrence(*SE);
896   const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
897   if (!isa<SCEVCouldNotCompute>(UB)) {
898     if (SE->getTypeSizeInBits(Start->getType()) <
899         SE->getTypeSizeInBits(UB->getType())) {
900       if (!AddRec->getNoWrapFlags())
901         return false;
902     }
903   }
904   if (!isLoopInvariant(Step, LoopNest))
905     return false;
906   if (IsSrc)
907     Loops.set(mapSrcLoop(AddRec->getLoop()));
908   else
909     Loops.set(mapDstLoop(AddRec->getLoop()));
910   return checkSubscript(Start, LoopNest, Loops, IsSrc);
911 }
912 
913 // Examine the scev and return true iff it's linear.
914 // Collect any loops mentioned in the set of "Loops".
915 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
916                                        SmallBitVector &Loops) {
917   return checkSubscript(Src, LoopNest, Loops, true);
918 }
919 
920 // Examine the scev and return true iff it's linear.
921 // Collect any loops mentioned in the set of "Loops".
922 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
923                                        SmallBitVector &Loops) {
924   return checkSubscript(Dst, LoopNest, Loops, false);
925 }
926 
927 
928 // Examines the subscript pair (the Src and Dst SCEVs)
929 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
930 // Collects the associated loops in a set.
931 DependenceInfo::Subscript::ClassificationKind
932 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
933                              const SCEV *Dst, const Loop *DstLoopNest,
934                              SmallBitVector &Loops) {
935   SmallBitVector SrcLoops(MaxLevels + 1);
936   SmallBitVector DstLoops(MaxLevels + 1);
937   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
938     return Subscript::NonLinear;
939   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
940     return Subscript::NonLinear;
941   Loops = SrcLoops;
942   Loops |= DstLoops;
943   unsigned N = Loops.count();
944   if (N == 0)
945     return Subscript::ZIV;
946   if (N == 1)
947     return Subscript::SIV;
948   if (N == 2 && (SrcLoops.count() == 0 ||
949                  DstLoops.count() == 0 ||
950                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
951     return Subscript::RDIV;
952   return Subscript::MIV;
953 }
954 
955 
956 // A wrapper around SCEV::isKnownPredicate.
957 // Looks for cases where we're interested in comparing for equality.
958 // If both X and Y have been identically sign or zero extended,
959 // it strips off the (confusing) extensions before invoking
960 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
961 // will be similarly updated.
962 //
963 // If SCEV::isKnownPredicate can't prove the predicate,
964 // we try simple subtraction, which seems to help in some cases
965 // involving symbolics.
966 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
967                                       const SCEV *Y) const {
968   if (Pred == CmpInst::ICMP_EQ ||
969       Pred == CmpInst::ICMP_NE) {
970     if ((isa<SCEVSignExtendExpr>(X) &&
971          isa<SCEVSignExtendExpr>(Y)) ||
972         (isa<SCEVZeroExtendExpr>(X) &&
973          isa<SCEVZeroExtendExpr>(Y))) {
974       const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
975       const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
976       const SCEV *Xop = CX->getOperand();
977       const SCEV *Yop = CY->getOperand();
978       if (Xop->getType() == Yop->getType()) {
979         X = Xop;
980         Y = Yop;
981       }
982     }
983   }
984   if (SE->isKnownPredicate(Pred, X, Y))
985     return true;
986   // If SE->isKnownPredicate can't prove the condition,
987   // we try the brute-force approach of subtracting
988   // and testing the difference.
989   // By testing with SE->isKnownPredicate first, we avoid
990   // the possibility of overflow when the arguments are constants.
991   const SCEV *Delta = SE->getMinusSCEV(X, Y);
992   switch (Pred) {
993   case CmpInst::ICMP_EQ:
994     return Delta->isZero();
995   case CmpInst::ICMP_NE:
996     return SE->isKnownNonZero(Delta);
997   case CmpInst::ICMP_SGE:
998     return SE->isKnownNonNegative(Delta);
999   case CmpInst::ICMP_SLE:
1000     return SE->isKnownNonPositive(Delta);
1001   case CmpInst::ICMP_SGT:
1002     return SE->isKnownPositive(Delta);
1003   case CmpInst::ICMP_SLT:
1004     return SE->isKnownNegative(Delta);
1005   default:
1006     llvm_unreachable("unexpected predicate in isKnownPredicate");
1007   }
1008 }
1009 
1010 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1011 /// with some extra checking if S is an AddRec and we can prove less-than using
1012 /// the loop bounds.
1013 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1014   // First unify to the same type
1015   auto *SType = dyn_cast<IntegerType>(S->getType());
1016   auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1017   if (!SType || !SizeType)
1018     return false;
1019   Type *MaxType =
1020       (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1021   S = SE->getTruncateOrZeroExtend(S, MaxType);
1022   Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1023 
1024   // Special check for addrecs using BE taken count
1025   const SCEV *Bound = SE->getMinusSCEV(S, Size);
1026   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1027     if (AddRec->isAffine()) {
1028       const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1029       if (!isa<SCEVCouldNotCompute>(BECount)) {
1030         const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1031         if (SE->isKnownNegative(Limit))
1032           return true;
1033       }
1034     }
1035   }
1036 
1037   // Check using normal isKnownNegative
1038   const SCEV *LimitedBound =
1039       SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1040   return SE->isKnownNegative(LimitedBound);
1041 }
1042 
1043 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1044   bool Inbounds = false;
1045   if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1046     Inbounds = SrcGEP->isInBounds();
1047   if (Inbounds) {
1048     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1049       if (AddRec->isAffine()) {
1050         // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1051         // If both parts are NonNegative, the end result will be NonNegative
1052         if (SE->isKnownNonNegative(AddRec->getStart()) &&
1053             SE->isKnownNonNegative(AddRec->getOperand(1)))
1054           return true;
1055       }
1056     }
1057   }
1058 
1059   return SE->isKnownNonNegative(S);
1060 }
1061 
1062 // All subscripts are all the same type.
1063 // Loop bound may be smaller (e.g., a char).
1064 // Should zero extend loop bound, since it's always >= 0.
1065 // This routine collects upper bound and extends or truncates if needed.
1066 // Truncating is safe when subscripts are known not to wrap. Cases without
1067 // nowrap flags should have been rejected earlier.
1068 // Return null if no bound available.
1069 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1070   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1071     const SCEV *UB = SE->getBackedgeTakenCount(L);
1072     return SE->getTruncateOrZeroExtend(UB, T);
1073   }
1074   return nullptr;
1075 }
1076 
1077 
1078 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1079 // If the cast fails, returns NULL.
1080 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1081                                                               Type *T) const {
1082   if (const SCEV *UB = collectUpperBound(L, T))
1083     return dyn_cast<SCEVConstant>(UB);
1084   return nullptr;
1085 }
1086 
1087 
1088 // testZIV -
1089 // When we have a pair of subscripts of the form [c1] and [c2],
1090 // where c1 and c2 are both loop invariant, we attack it using
1091 // the ZIV test. Basically, we test by comparing the two values,
1092 // but there are actually three possible results:
1093 // 1) the values are equal, so there's a dependence
1094 // 2) the values are different, so there's no dependence
1095 // 3) the values might be equal, so we have to assume a dependence.
1096 //
1097 // Return true if dependence disproved.
1098 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1099                              FullDependence &Result) const {
1100   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
1101   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
1102   ++ZIVapplications;
1103   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1104     LLVM_DEBUG(dbgs() << "    provably dependent\n");
1105     return false; // provably dependent
1106   }
1107   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1108     LLVM_DEBUG(dbgs() << "    provably independent\n");
1109     ++ZIVindependence;
1110     return true; // provably independent
1111   }
1112   LLVM_DEBUG(dbgs() << "    possibly dependent\n");
1113   Result.Consistent = false;
1114   return false; // possibly dependent
1115 }
1116 
1117 
1118 // strongSIVtest -
1119 // From the paper, Practical Dependence Testing, Section 4.2.1
1120 //
1121 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1122 // where i is an induction variable, c1 and c2 are loop invariant,
1123 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1124 //
1125 // Can prove independence. Failing that, can compute distance (and direction).
1126 // In the presence of symbolic terms, we can sometimes make progress.
1127 //
1128 // If there's a dependence,
1129 //
1130 //    c1 + a*i = c2 + a*i'
1131 //
1132 // The dependence distance is
1133 //
1134 //    d = i' - i = (c1 - c2)/a
1135 //
1136 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1137 // loop's upper bound. If a dependence exists, the dependence direction is
1138 // defined as
1139 //
1140 //                { < if d > 0
1141 //    direction = { = if d = 0
1142 //                { > if d < 0
1143 //
1144 // Return true if dependence disproved.
1145 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1146                                    const SCEV *DstConst, const Loop *CurLoop,
1147                                    unsigned Level, FullDependence &Result,
1148                                    Constraint &NewConstraint) const {
1149   LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1150   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1151   LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1152   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1153   LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1154   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1155   LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1156   ++StrongSIVapplications;
1157   assert(0 < Level && Level <= CommonLevels && "level out of range");
1158   Level--;
1159 
1160   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1161   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta);
1162   LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1163 
1164   // check that |Delta| < iteration count
1165   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1166     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1167     LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1168     const SCEV *AbsDelta =
1169       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1170     const SCEV *AbsCoeff =
1171       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1172     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1173     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1174       // Distance greater than trip count - no dependence
1175       ++StrongSIVindependence;
1176       ++StrongSIVsuccesses;
1177       return true;
1178     }
1179   }
1180 
1181   // Can we compute distance?
1182   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1183     APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1184     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1185     APInt Distance  = ConstDelta; // these need to be initialized
1186     APInt Remainder = ConstDelta;
1187     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1188     LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1189     LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1190     // Make sure Coeff divides Delta exactly
1191     if (Remainder != 0) {
1192       // Coeff doesn't divide Distance, no dependence
1193       ++StrongSIVindependence;
1194       ++StrongSIVsuccesses;
1195       return true;
1196     }
1197     Result.DV[Level].Distance = SE->getConstant(Distance);
1198     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1199     if (Distance.sgt(0))
1200       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1201     else if (Distance.slt(0))
1202       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1203     else
1204       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1205     ++StrongSIVsuccesses;
1206   }
1207   else if (Delta->isZero()) {
1208     // since 0/X == 0
1209     Result.DV[Level].Distance = Delta;
1210     NewConstraint.setDistance(Delta, CurLoop);
1211     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1212     ++StrongSIVsuccesses;
1213   }
1214   else {
1215     if (Coeff->isOne()) {
1216       LLVM_DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1217       Result.DV[Level].Distance = Delta; // since X/1 == X
1218       NewConstraint.setDistance(Delta, CurLoop);
1219     }
1220     else {
1221       Result.Consistent = false;
1222       NewConstraint.setLine(Coeff,
1223                             SE->getNegativeSCEV(Coeff),
1224                             SE->getNegativeSCEV(Delta), CurLoop);
1225     }
1226 
1227     // maybe we can get a useful direction
1228     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1229     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1230     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1231     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1232     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1233     // The double negatives above are confusing.
1234     // It helps to read !SE->isKnownNonZero(Delta)
1235     // as "Delta might be Zero"
1236     unsigned NewDirection = Dependence::DVEntry::NONE;
1237     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1238         (DeltaMaybeNegative && CoeffMaybeNegative))
1239       NewDirection = Dependence::DVEntry::LT;
1240     if (DeltaMaybeZero)
1241       NewDirection |= Dependence::DVEntry::EQ;
1242     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1243         (DeltaMaybePositive && CoeffMaybeNegative))
1244       NewDirection |= Dependence::DVEntry::GT;
1245     if (NewDirection < Result.DV[Level].Direction)
1246       ++StrongSIVsuccesses;
1247     Result.DV[Level].Direction &= NewDirection;
1248   }
1249   return false;
1250 }
1251 
1252 
1253 // weakCrossingSIVtest -
1254 // From the paper, Practical Dependence Testing, Section 4.2.2
1255 //
1256 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1257 // where i is an induction variable, c1 and c2 are loop invariant,
1258 // and a is a constant, we can solve it exactly using the
1259 // Weak-Crossing SIV test.
1260 //
1261 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1262 // the two lines, where i = i', yielding
1263 //
1264 //    c1 + a*i = c2 - a*i
1265 //    2a*i = c2 - c1
1266 //    i = (c2 - c1)/2a
1267 //
1268 // If i < 0, there is no dependence.
1269 // If i > upperbound, there is no dependence.
1270 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1271 // If i = upperbound, there's a dependence with distance = 0.
1272 // If i is integral, there's a dependence (all directions).
1273 // If the non-integer part = 1/2, there's a dependence (<> directions).
1274 // Otherwise, there's no dependence.
1275 //
1276 // Can prove independence. Failing that,
1277 // can sometimes refine the directions.
1278 // Can determine iteration for splitting.
1279 //
1280 // Return true if dependence disproved.
1281 bool DependenceInfo::weakCrossingSIVtest(
1282     const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1283     const Loop *CurLoop, unsigned Level, FullDependence &Result,
1284     Constraint &NewConstraint, const SCEV *&SplitIter) const {
1285   LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1286   LLVM_DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1287   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1288   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1289   ++WeakCrossingSIVapplications;
1290   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1291   Level--;
1292   Result.Consistent = false;
1293   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1294   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1295   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1296   if (Delta->isZero()) {
1297     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1298     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1299     ++WeakCrossingSIVsuccesses;
1300     if (!Result.DV[Level].Direction) {
1301       ++WeakCrossingSIVindependence;
1302       return true;
1303     }
1304     Result.DV[Level].Distance = Delta; // = 0
1305     return false;
1306   }
1307   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1308   if (!ConstCoeff)
1309     return false;
1310 
1311   Result.DV[Level].Splitable = true;
1312   if (SE->isKnownNegative(ConstCoeff)) {
1313     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1314     assert(ConstCoeff &&
1315            "dynamic cast of negative of ConstCoeff should yield constant");
1316     Delta = SE->getNegativeSCEV(Delta);
1317   }
1318   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1319 
1320   // compute SplitIter for use by DependenceInfo::getSplitIteration()
1321   SplitIter = SE->getUDivExpr(
1322       SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1323       SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1324   LLVM_DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1325 
1326   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1327   if (!ConstDelta)
1328     return false;
1329 
1330   // We're certain that ConstCoeff > 0; therefore,
1331   // if Delta < 0, then no dependence.
1332   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1333   LLVM_DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1334   if (SE->isKnownNegative(Delta)) {
1335     // No dependence, Delta < 0
1336     ++WeakCrossingSIVindependence;
1337     ++WeakCrossingSIVsuccesses;
1338     return true;
1339   }
1340 
1341   // We're certain that Delta > 0 and ConstCoeff > 0.
1342   // Check Delta/(2*ConstCoeff) against upper loop bound
1343   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1344     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1345     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1346     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1347                                     ConstantTwo);
1348     LLVM_DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1349     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1350       // Delta too big, no dependence
1351       ++WeakCrossingSIVindependence;
1352       ++WeakCrossingSIVsuccesses;
1353       return true;
1354     }
1355     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1356       // i = i' = UB
1357       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1358       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1359       ++WeakCrossingSIVsuccesses;
1360       if (!Result.DV[Level].Direction) {
1361         ++WeakCrossingSIVindependence;
1362         return true;
1363       }
1364       Result.DV[Level].Splitable = false;
1365       Result.DV[Level].Distance = SE->getZero(Delta->getType());
1366       return false;
1367     }
1368   }
1369 
1370   // check that Coeff divides Delta
1371   APInt APDelta = ConstDelta->getAPInt();
1372   APInt APCoeff = ConstCoeff->getAPInt();
1373   APInt Distance = APDelta; // these need to be initialzed
1374   APInt Remainder = APDelta;
1375   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1376   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1377   if (Remainder != 0) {
1378     // Coeff doesn't divide Delta, no dependence
1379     ++WeakCrossingSIVindependence;
1380     ++WeakCrossingSIVsuccesses;
1381     return true;
1382   }
1383   LLVM_DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1384 
1385   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1386   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1387   Remainder = Distance.srem(Two);
1388   LLVM_DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1389   if (Remainder != 0) {
1390     // Equal direction isn't possible
1391     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1392     ++WeakCrossingSIVsuccesses;
1393   }
1394   return false;
1395 }
1396 
1397 
1398 // Kirch's algorithm, from
1399 //
1400 //        Optimizing Supercompilers for Supercomputers
1401 //        Michael Wolfe
1402 //        MIT Press, 1989
1403 //
1404 // Program 2.1, page 29.
1405 // Computes the GCD of AM and BM.
1406 // Also finds a solution to the equation ax - by = gcd(a, b).
1407 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1408 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1409                     const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1410   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1411   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1412   APInt G0 = AM.abs();
1413   APInt G1 = BM.abs();
1414   APInt Q = G0; // these need to be initialized
1415   APInt R = G0;
1416   APInt::sdivrem(G0, G1, Q, R);
1417   while (R != 0) {
1418     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1419     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1420     G0 = G1; G1 = R;
1421     APInt::sdivrem(G0, G1, Q, R);
1422   }
1423   G = G1;
1424   LLVM_DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1425   X = AM.slt(0) ? -A1 : A1;
1426   Y = BM.slt(0) ? B1 : -B1;
1427 
1428   // make sure gcd divides Delta
1429   R = Delta.srem(G);
1430   if (R != 0)
1431     return true; // gcd doesn't divide Delta, no dependence
1432   Q = Delta.sdiv(G);
1433   return false;
1434 }
1435 
1436 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1437   APInt Q = A; // these need to be initialized
1438   APInt R = A;
1439   APInt::sdivrem(A, B, Q, R);
1440   if (R == 0)
1441     return Q;
1442   if ((A.sgt(0) && B.sgt(0)) ||
1443       (A.slt(0) && B.slt(0)))
1444     return Q;
1445   else
1446     return Q - 1;
1447 }
1448 
1449 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1450   APInt Q = A; // these need to be initialized
1451   APInt R = A;
1452   APInt::sdivrem(A, B, Q, R);
1453   if (R == 0)
1454     return Q;
1455   if ((A.sgt(0) && B.sgt(0)) ||
1456       (A.slt(0) && B.slt(0)))
1457     return Q + 1;
1458   else
1459     return Q;
1460 }
1461 
1462 // exactSIVtest -
1463 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1464 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1465 // and a2 are constant, we can solve it exactly using an algorithm developed
1466 // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
1467 //
1468 //        Dependence Analysis for Supercomputing
1469 //        Utpal Banerjee
1470 //        Kluwer Academic Publishers, 1988
1471 //
1472 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1473 // so use them if possible. They're also a bit better with symbolics and,
1474 // in the case of the strong SIV test, can compute Distances.
1475 //
1476 // Return true if dependence disproved.
1477 //
1478 // This is a modified version of the original Banerjee algorithm. The original
1479 // only tested whether Dst depends on Src. This algorithm extends that and
1480 // returns all the dependencies that exist between Dst and Src.
1481 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1482                                   const SCEV *SrcConst, const SCEV *DstConst,
1483                                   const Loop *CurLoop, unsigned Level,
1484                                   FullDependence &Result,
1485                                   Constraint &NewConstraint) const {
1486   LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1487   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1488   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1489   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1490   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1491   ++ExactSIVapplications;
1492   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1493   Level--;
1494   Result.Consistent = false;
1495   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1496   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1497   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
1498                         CurLoop);
1499   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1500   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1501   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1502   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1503     return false;
1504 
1505   // find gcd
1506   APInt G, X, Y;
1507   APInt AM = ConstSrcCoeff->getAPInt();
1508   APInt BM = ConstDstCoeff->getAPInt();
1509   APInt CM = ConstDelta->getAPInt();
1510   unsigned Bits = AM.getBitWidth();
1511   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1512     // gcd doesn't divide Delta, no dependence
1513     ++ExactSIVindependence;
1514     ++ExactSIVsuccesses;
1515     return true;
1516   }
1517 
1518   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1519 
1520   // since SCEV construction normalizes, LM = 0
1521   APInt UM(Bits, 1, true);
1522   bool UMValid = false;
1523   // UM is perhaps unavailable, let's check
1524   if (const SCEVConstant *CUB =
1525           collectConstantUpperBound(CurLoop, Delta->getType())) {
1526     UM = CUB->getAPInt();
1527     LLVM_DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1528     UMValid = true;
1529   }
1530 
1531   APInt TU(APInt::getSignedMaxValue(Bits));
1532   APInt TL(APInt::getSignedMinValue(Bits));
1533   APInt TC = CM.sdiv(G);
1534   APInt TX = X * TC;
1535   APInt TY = Y * TC;
1536   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
1537   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
1538   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
1539 
1540   SmallVector<APInt, 2> TLVec, TUVec;
1541   APInt TB = BM.sdiv(G);
1542   if (TB.sgt(0)) {
1543     TLVec.push_back(ceilingOfQuotient(-TX, TB));
1544     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1545     // New bound check - modification to Banerjee's e3 check
1546     if (UMValid) {
1547       TUVec.push_back(floorOfQuotient(UM - TX, TB));
1548       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1549     }
1550   } else {
1551     TUVec.push_back(floorOfQuotient(-TX, TB));
1552     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1553     // New bound check - modification to Banerjee's e3 check
1554     if (UMValid) {
1555       TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
1556       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1557     }
1558   }
1559 
1560   APInt TA = AM.sdiv(G);
1561   if (TA.sgt(0)) {
1562     if (UMValid) {
1563       TUVec.push_back(floorOfQuotient(UM - TY, TA));
1564       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1565     }
1566     // New bound check - modification to Banerjee's e3 check
1567     TLVec.push_back(ceilingOfQuotient(-TY, TA));
1568     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1569   } else {
1570     if (UMValid) {
1571       TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
1572       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1573     }
1574     // New bound check - modification to Banerjee's e3 check
1575     TUVec.push_back(floorOfQuotient(-TY, TA));
1576     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1577   }
1578 
1579   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
1580   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
1581 
1582   if (TLVec.empty() || TUVec.empty())
1583     return false;
1584   TL = APIntOps::smax(TLVec.front(), TLVec.back());
1585   TU = APIntOps::smin(TUVec.front(), TUVec.back());
1586   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1587   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1588 
1589   if (TL.sgt(TU)) {
1590     ++ExactSIVindependence;
1591     ++ExactSIVsuccesses;
1592     return true;
1593   }
1594 
1595   // explore directions
1596   unsigned NewDirection = Dependence::DVEntry::NONE;
1597   APInt LowerDistance, UpperDistance;
1598   if (TA.sgt(TB)) {
1599     LowerDistance = (TY - TX) + (TA - TB) * TL;
1600     UpperDistance = (TY - TX) + (TA - TB) * TU;
1601   } else {
1602     LowerDistance = (TY - TX) + (TA - TB) * TU;
1603     UpperDistance = (TY - TX) + (TA - TB) * TL;
1604   }
1605 
1606   LLVM_DEBUG(dbgs() << "\t    LowerDistance = " << LowerDistance << "\n");
1607   LLVM_DEBUG(dbgs() << "\t    UpperDistance = " << UpperDistance << "\n");
1608 
1609   APInt Zero(Bits, 0, true);
1610   if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
1611     NewDirection |= Dependence::DVEntry::EQ;
1612     ++ExactSIVsuccesses;
1613   }
1614   if (LowerDistance.slt(0)) {
1615     NewDirection |= Dependence::DVEntry::GT;
1616     ++ExactSIVsuccesses;
1617   }
1618   if (UpperDistance.sgt(0)) {
1619     NewDirection |= Dependence::DVEntry::LT;
1620     ++ExactSIVsuccesses;
1621   }
1622 
1623   // finished
1624   Result.DV[Level].Direction &= NewDirection;
1625   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1626     ++ExactSIVindependence;
1627   LLVM_DEBUG(dbgs() << "\t    Result = ");
1628   LLVM_DEBUG(Result.dump(dbgs()));
1629   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1630 }
1631 
1632 
1633 // Return true if the divisor evenly divides the dividend.
1634 static
1635 bool isRemainderZero(const SCEVConstant *Dividend,
1636                      const SCEVConstant *Divisor) {
1637   const APInt &ConstDividend = Dividend->getAPInt();
1638   const APInt &ConstDivisor = Divisor->getAPInt();
1639   return ConstDividend.srem(ConstDivisor) == 0;
1640 }
1641 
1642 
1643 // weakZeroSrcSIVtest -
1644 // From the paper, Practical Dependence Testing, Section 4.2.2
1645 //
1646 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1647 // where i is an induction variable, c1 and c2 are loop invariant,
1648 // and a is a constant, we can solve it exactly using the
1649 // Weak-Zero SIV test.
1650 //
1651 // Given
1652 //
1653 //    c1 = c2 + a*i
1654 //
1655 // we get
1656 //
1657 //    (c1 - c2)/a = i
1658 //
1659 // If i is not an integer, there's no dependence.
1660 // If i < 0 or > UB, there's no dependence.
1661 // If i = 0, the direction is >= and peeling the
1662 // 1st iteration will break the dependence.
1663 // If i = UB, the direction is <= and peeling the
1664 // last iteration will break the dependence.
1665 // Otherwise, the direction is *.
1666 //
1667 // Can prove independence. Failing that, we can sometimes refine
1668 // the directions. Can sometimes show that first or last
1669 // iteration carries all the dependences (so worth peeling).
1670 //
1671 // (see also weakZeroDstSIVtest)
1672 //
1673 // Return true if dependence disproved.
1674 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1675                                         const SCEV *SrcConst,
1676                                         const SCEV *DstConst,
1677                                         const Loop *CurLoop, unsigned Level,
1678                                         FullDependence &Result,
1679                                         Constraint &NewConstraint) const {
1680   // For the WeakSIV test, it's possible the loop isn't common to
1681   // the Src and Dst loops. If it isn't, then there's no need to
1682   // record a direction.
1683   LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1684   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1685   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1686   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1687   ++WeakZeroSIVapplications;
1688   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1689   Level--;
1690   Result.Consistent = false;
1691   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1692   NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1693                         CurLoop);
1694   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1695   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1696     if (Level < CommonLevels) {
1697       Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1698       Result.DV[Level].PeelFirst = true;
1699       ++WeakZeroSIVsuccesses;
1700     }
1701     return false; // dependences caused by first iteration
1702   }
1703   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1704   if (!ConstCoeff)
1705     return false;
1706   const SCEV *AbsCoeff =
1707     SE->isKnownNegative(ConstCoeff) ?
1708     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1709   const SCEV *NewDelta =
1710     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1711 
1712   // check that Delta/SrcCoeff < iteration count
1713   // really check NewDelta < count*AbsCoeff
1714   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1715     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1716     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1717     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1718       ++WeakZeroSIVindependence;
1719       ++WeakZeroSIVsuccesses;
1720       return true;
1721     }
1722     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1723       // dependences caused by last iteration
1724       if (Level < CommonLevels) {
1725         Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1726         Result.DV[Level].PeelLast = true;
1727         ++WeakZeroSIVsuccesses;
1728       }
1729       return false;
1730     }
1731   }
1732 
1733   // check that Delta/SrcCoeff >= 0
1734   // really check that NewDelta >= 0
1735   if (SE->isKnownNegative(NewDelta)) {
1736     // No dependence, newDelta < 0
1737     ++WeakZeroSIVindependence;
1738     ++WeakZeroSIVsuccesses;
1739     return true;
1740   }
1741 
1742   // if SrcCoeff doesn't divide Delta, then no dependence
1743   if (isa<SCEVConstant>(Delta) &&
1744       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1745     ++WeakZeroSIVindependence;
1746     ++WeakZeroSIVsuccesses;
1747     return true;
1748   }
1749   return false;
1750 }
1751 
1752 
1753 // weakZeroDstSIVtest -
1754 // From the paper, Practical Dependence Testing, Section 4.2.2
1755 //
1756 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1757 // where i is an induction variable, c1 and c2 are loop invariant,
1758 // and a is a constant, we can solve it exactly using the
1759 // Weak-Zero SIV test.
1760 //
1761 // Given
1762 //
1763 //    c1 + a*i = c2
1764 //
1765 // we get
1766 //
1767 //    i = (c2 - c1)/a
1768 //
1769 // If i is not an integer, there's no dependence.
1770 // If i < 0 or > UB, there's no dependence.
1771 // If i = 0, the direction is <= and peeling the
1772 // 1st iteration will break the dependence.
1773 // If i = UB, the direction is >= and peeling the
1774 // last iteration will break the dependence.
1775 // Otherwise, the direction is *.
1776 //
1777 // Can prove independence. Failing that, we can sometimes refine
1778 // the directions. Can sometimes show that first or last
1779 // iteration carries all the dependences (so worth peeling).
1780 //
1781 // (see also weakZeroSrcSIVtest)
1782 //
1783 // Return true if dependence disproved.
1784 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1785                                         const SCEV *SrcConst,
1786                                         const SCEV *DstConst,
1787                                         const Loop *CurLoop, unsigned Level,
1788                                         FullDependence &Result,
1789                                         Constraint &NewConstraint) const {
1790   // For the WeakSIV test, it's possible the loop isn't common to the
1791   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1792   LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1793   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1794   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1795   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1796   ++WeakZeroSIVapplications;
1797   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1798   Level--;
1799   Result.Consistent = false;
1800   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1801   NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1802                         CurLoop);
1803   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1804   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1805     if (Level < CommonLevels) {
1806       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1807       Result.DV[Level].PeelFirst = true;
1808       ++WeakZeroSIVsuccesses;
1809     }
1810     return false; // dependences caused by first iteration
1811   }
1812   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1813   if (!ConstCoeff)
1814     return false;
1815   const SCEV *AbsCoeff =
1816     SE->isKnownNegative(ConstCoeff) ?
1817     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1818   const SCEV *NewDelta =
1819     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1820 
1821   // check that Delta/SrcCoeff < iteration count
1822   // really check NewDelta < count*AbsCoeff
1823   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1824     LLVM_DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1825     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1826     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1827       ++WeakZeroSIVindependence;
1828       ++WeakZeroSIVsuccesses;
1829       return true;
1830     }
1831     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1832       // dependences caused by last iteration
1833       if (Level < CommonLevels) {
1834         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1835         Result.DV[Level].PeelLast = true;
1836         ++WeakZeroSIVsuccesses;
1837       }
1838       return false;
1839     }
1840   }
1841 
1842   // check that Delta/SrcCoeff >= 0
1843   // really check that NewDelta >= 0
1844   if (SE->isKnownNegative(NewDelta)) {
1845     // No dependence, newDelta < 0
1846     ++WeakZeroSIVindependence;
1847     ++WeakZeroSIVsuccesses;
1848     return true;
1849   }
1850 
1851   // if SrcCoeff doesn't divide Delta, then no dependence
1852   if (isa<SCEVConstant>(Delta) &&
1853       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1854     ++WeakZeroSIVindependence;
1855     ++WeakZeroSIVsuccesses;
1856     return true;
1857   }
1858   return false;
1859 }
1860 
1861 
1862 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1863 // Things of the form [c1 + a*i] and [c2 + b*j],
1864 // where i and j are induction variable, c1 and c2 are loop invariant,
1865 // and a and b are constants.
1866 // Returns true if any possible dependence is disproved.
1867 // Marks the result as inconsistent.
1868 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1869 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1870                                    const SCEV *SrcConst, const SCEV *DstConst,
1871                                    const Loop *SrcLoop, const Loop *DstLoop,
1872                                    FullDependence &Result) const {
1873   LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1874   LLVM_DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1875   LLVM_DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1876   LLVM_DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1877   LLVM_DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1878   ++ExactRDIVapplications;
1879   Result.Consistent = false;
1880   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1881   LLVM_DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1882   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1883   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1884   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1885   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1886     return false;
1887 
1888   // find gcd
1889   APInt G, X, Y;
1890   APInt AM = ConstSrcCoeff->getAPInt();
1891   APInt BM = ConstDstCoeff->getAPInt();
1892   APInt CM = ConstDelta->getAPInt();
1893   unsigned Bits = AM.getBitWidth();
1894   if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1895     // gcd doesn't divide Delta, no dependence
1896     ++ExactRDIVindependence;
1897     return true;
1898   }
1899 
1900   LLVM_DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1901 
1902   // since SCEV construction seems to normalize, LM = 0
1903   APInt SrcUM(Bits, 1, true);
1904   bool SrcUMvalid = false;
1905   // SrcUM is perhaps unavailable, let's check
1906   if (const SCEVConstant *UpperBound =
1907           collectConstantUpperBound(SrcLoop, Delta->getType())) {
1908     SrcUM = UpperBound->getAPInt();
1909     LLVM_DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1910     SrcUMvalid = true;
1911   }
1912 
1913   APInt DstUM(Bits, 1, true);
1914   bool DstUMvalid = false;
1915   // UM is perhaps unavailable, let's check
1916   if (const SCEVConstant *UpperBound =
1917           collectConstantUpperBound(DstLoop, Delta->getType())) {
1918     DstUM = UpperBound->getAPInt();
1919     LLVM_DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1920     DstUMvalid = true;
1921   }
1922 
1923   APInt TU(APInt::getSignedMaxValue(Bits));
1924   APInt TL(APInt::getSignedMinValue(Bits));
1925   APInt TC = CM.sdiv(G);
1926   APInt TX = X * TC;
1927   APInt TY = Y * TC;
1928   LLVM_DEBUG(dbgs() << "\t    TC = " << TC << "\n");
1929   LLVM_DEBUG(dbgs() << "\t    TX = " << TX << "\n");
1930   LLVM_DEBUG(dbgs() << "\t    TY = " << TY << "\n");
1931 
1932   SmallVector<APInt, 2> TLVec, TUVec;
1933   APInt TB = BM.sdiv(G);
1934   if (TB.sgt(0)) {
1935     TLVec.push_back(ceilingOfQuotient(-TX, TB));
1936     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1937     if (SrcUMvalid) {
1938       TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
1939       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1940     }
1941   } else {
1942     TUVec.push_back(floorOfQuotient(-TX, TB));
1943     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1944     if (SrcUMvalid) {
1945       TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
1946       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1947     }
1948   }
1949 
1950   APInt TA = AM.sdiv(G);
1951   if (TA.sgt(0)) {
1952     TLVec.push_back(ceilingOfQuotient(-TY, TA));
1953     LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1954     if (DstUMvalid) {
1955       TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
1956       LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1957     }
1958   } else {
1959     TUVec.push_back(floorOfQuotient(-TY, TA));
1960     LLVM_DEBUG(dbgs() << "\t    Possible TU = " << TUVec.back() << "\n");
1961     if (DstUMvalid) {
1962       TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
1963       LLVM_DEBUG(dbgs() << "\t    Possible TL = " << TLVec.back() << "\n");
1964     }
1965   }
1966 
1967   if (TLVec.empty() || TUVec.empty())
1968     return false;
1969 
1970   LLVM_DEBUG(dbgs() << "\t    TA = " << TA << "\n");
1971   LLVM_DEBUG(dbgs() << "\t    TB = " << TB << "\n");
1972 
1973   TL = APIntOps::smax(TLVec.front(), TLVec.back());
1974   TU = APIntOps::smin(TUVec.front(), TUVec.back());
1975   LLVM_DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1976   LLVM_DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1977 
1978   if (TL.sgt(TU))
1979     ++ExactRDIVindependence;
1980   return TL.sgt(TU);
1981 }
1982 
1983 
1984 // symbolicRDIVtest -
1985 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1986 // introduce a special case of Banerjee's Inequalities (also called the
1987 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1988 // particularly cases with symbolics. Since it's only able to disprove
1989 // dependence (not compute distances or directions), we'll use it as a
1990 // fall back for the other tests.
1991 //
1992 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1993 // where i and j are induction variables and c1 and c2 are loop invariants,
1994 // we can use the symbolic tests to disprove some dependences, serving as a
1995 // backup for the RDIV test. Note that i and j can be the same variable,
1996 // letting this test serve as a backup for the various SIV tests.
1997 //
1998 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1999 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2000 // loop bounds for the i and j loops, respectively. So, ...
2001 //
2002 // c1 + a1*i = c2 + a2*j
2003 // a1*i - a2*j = c2 - c1
2004 //
2005 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2006 // range of the maximum and minimum possible values of a1*i - a2*j.
2007 // Considering the signs of a1 and a2, we have 4 possible cases:
2008 //
2009 // 1) If a1 >= 0 and a2 >= 0, then
2010 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2011 //              -a2*N2 <= c2 - c1 <= a1*N1
2012 //
2013 // 2) If a1 >= 0 and a2 <= 0, then
2014 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2015 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
2016 //
2017 // 3) If a1 <= 0 and a2 >= 0, then
2018 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2019 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
2020 //
2021 // 4) If a1 <= 0 and a2 <= 0, then
2022 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
2023 //        a1*N1         <= c2 - c1 <=       -a2*N2
2024 //
2025 // return true if dependence disproved
2026 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2027                                       const SCEV *C1, const SCEV *C2,
2028                                       const Loop *Loop1,
2029                                       const Loop *Loop2) const {
2030   ++SymbolicRDIVapplications;
2031   LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2032   LLVM_DEBUG(dbgs() << "\t    A1 = " << *A1);
2033   LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2034   LLVM_DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
2035   LLVM_DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
2036   LLVM_DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
2037   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2038   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2039   LLVM_DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
2040   LLVM_DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
2041   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2042   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2043   LLVM_DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
2044   LLVM_DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
2045   if (SE->isKnownNonNegative(A1)) {
2046     if (SE->isKnownNonNegative(A2)) {
2047       // A1 >= 0 && A2 >= 0
2048       if (N1) {
2049         // make sure that c2 - c1 <= a1*N1
2050         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2051         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2052         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2053           ++SymbolicRDIVindependence;
2054           return true;
2055         }
2056       }
2057       if (N2) {
2058         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2059         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2060         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2061         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2062           ++SymbolicRDIVindependence;
2063           return true;
2064         }
2065       }
2066     }
2067     else if (SE->isKnownNonPositive(A2)) {
2068       // a1 >= 0 && a2 <= 0
2069       if (N1 && N2) {
2070         // make sure that c2 - c1 <= a1*N1 - a2*N2
2071         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2072         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2073         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2074         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2075         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2076           ++SymbolicRDIVindependence;
2077           return true;
2078         }
2079       }
2080       // make sure that 0 <= c2 - c1
2081       if (SE->isKnownNegative(C2_C1)) {
2082         ++SymbolicRDIVindependence;
2083         return true;
2084       }
2085     }
2086   }
2087   else if (SE->isKnownNonPositive(A1)) {
2088     if (SE->isKnownNonNegative(A2)) {
2089       // a1 <= 0 && a2 >= 0
2090       if (N1 && N2) {
2091         // make sure that a1*N1 - a2*N2 <= c2 - c1
2092         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2093         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2094         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2095         LLVM_DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2096         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2097           ++SymbolicRDIVindependence;
2098           return true;
2099         }
2100       }
2101       // make sure that c2 - c1 <= 0
2102       if (SE->isKnownPositive(C2_C1)) {
2103         ++SymbolicRDIVindependence;
2104         return true;
2105       }
2106     }
2107     else if (SE->isKnownNonPositive(A2)) {
2108       // a1 <= 0 && a2 <= 0
2109       if (N1) {
2110         // make sure that a1*N1 <= c2 - c1
2111         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2112         LLVM_DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2113         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2114           ++SymbolicRDIVindependence;
2115           return true;
2116         }
2117       }
2118       if (N2) {
2119         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2120         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2121         LLVM_DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2122         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2123           ++SymbolicRDIVindependence;
2124           return true;
2125         }
2126       }
2127     }
2128   }
2129   return false;
2130 }
2131 
2132 
2133 // testSIV -
2134 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2135 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2136 // a2 are constant, we attack it with an SIV test. While they can all be
2137 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2138 // they apply; they're cheaper and sometimes more precise.
2139 //
2140 // Return true if dependence disproved.
2141 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2142                              FullDependence &Result, Constraint &NewConstraint,
2143                              const SCEV *&SplitIter) const {
2144   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2145   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2146   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2147   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2148   if (SrcAddRec && DstAddRec) {
2149     const SCEV *SrcConst = SrcAddRec->getStart();
2150     const SCEV *DstConst = DstAddRec->getStart();
2151     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2152     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2153     const Loop *CurLoop = SrcAddRec->getLoop();
2154     assert(CurLoop == DstAddRec->getLoop() &&
2155            "both loops in SIV should be same");
2156     Level = mapSrcLoop(CurLoop);
2157     bool disproven;
2158     if (SrcCoeff == DstCoeff)
2159       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2160                                 Level, Result, NewConstraint);
2161     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2162       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2163                                       Level, Result, NewConstraint, SplitIter);
2164     else
2165       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2166                                Level, Result, NewConstraint);
2167     return disproven ||
2168       gcdMIVtest(Src, Dst, Result) ||
2169       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2170   }
2171   if (SrcAddRec) {
2172     const SCEV *SrcConst = SrcAddRec->getStart();
2173     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2174     const SCEV *DstConst = Dst;
2175     const Loop *CurLoop = SrcAddRec->getLoop();
2176     Level = mapSrcLoop(CurLoop);
2177     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2178                               Level, Result, NewConstraint) ||
2179       gcdMIVtest(Src, Dst, Result);
2180   }
2181   if (DstAddRec) {
2182     const SCEV *DstConst = DstAddRec->getStart();
2183     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2184     const SCEV *SrcConst = Src;
2185     const Loop *CurLoop = DstAddRec->getLoop();
2186     Level = mapDstLoop(CurLoop);
2187     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2188                               CurLoop, Level, Result, NewConstraint) ||
2189       gcdMIVtest(Src, Dst, Result);
2190   }
2191   llvm_unreachable("SIV test expected at least one AddRec");
2192   return false;
2193 }
2194 
2195 
2196 // testRDIV -
2197 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2198 // where i and j are induction variables, c1 and c2 are loop invariant,
2199 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2200 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2201 // It doesn't make sense to talk about distance or direction in this case,
2202 // so there's no point in making special versions of the Strong SIV test or
2203 // the Weak-crossing SIV test.
2204 //
2205 // With minor algebra, this test can also be used for things like
2206 // [c1 + a1*i + a2*j][c2].
2207 //
2208 // Return true if dependence disproved.
2209 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2210                               FullDependence &Result) const {
2211   // we have 3 possible situations here:
2212   //   1) [a*i + b] and [c*j + d]
2213   //   2) [a*i + c*j + b] and [d]
2214   //   3) [b] and [a*i + c*j + d]
2215   // We need to find what we've got and get organized
2216 
2217   const SCEV *SrcConst, *DstConst;
2218   const SCEV *SrcCoeff, *DstCoeff;
2219   const Loop *SrcLoop, *DstLoop;
2220 
2221   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2222   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2223   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2224   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2225   if (SrcAddRec && DstAddRec) {
2226     SrcConst = SrcAddRec->getStart();
2227     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2228     SrcLoop = SrcAddRec->getLoop();
2229     DstConst = DstAddRec->getStart();
2230     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2231     DstLoop = DstAddRec->getLoop();
2232   }
2233   else if (SrcAddRec) {
2234     if (const SCEVAddRecExpr *tmpAddRec =
2235         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2236       SrcConst = tmpAddRec->getStart();
2237       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2238       SrcLoop = tmpAddRec->getLoop();
2239       DstConst = Dst;
2240       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2241       DstLoop = SrcAddRec->getLoop();
2242     }
2243     else
2244       llvm_unreachable("RDIV reached by surprising SCEVs");
2245   }
2246   else if (DstAddRec) {
2247     if (const SCEVAddRecExpr *tmpAddRec =
2248         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2249       DstConst = tmpAddRec->getStart();
2250       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2251       DstLoop = tmpAddRec->getLoop();
2252       SrcConst = Src;
2253       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2254       SrcLoop = DstAddRec->getLoop();
2255     }
2256     else
2257       llvm_unreachable("RDIV reached by surprising SCEVs");
2258   }
2259   else
2260     llvm_unreachable("RDIV expected at least one AddRec");
2261   return exactRDIVtest(SrcCoeff, DstCoeff,
2262                        SrcConst, DstConst,
2263                        SrcLoop, DstLoop,
2264                        Result) ||
2265     gcdMIVtest(Src, Dst, Result) ||
2266     symbolicRDIVtest(SrcCoeff, DstCoeff,
2267                      SrcConst, DstConst,
2268                      SrcLoop, DstLoop);
2269 }
2270 
2271 
2272 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2273 // Return true if dependence disproved.
2274 // Can sometimes refine direction vectors.
2275 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2276                              const SmallBitVector &Loops,
2277                              FullDependence &Result) const {
2278   LLVM_DEBUG(dbgs() << "    src = " << *Src << "\n");
2279   LLVM_DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2280   Result.Consistent = false;
2281   return gcdMIVtest(Src, Dst, Result) ||
2282     banerjeeMIVtest(Src, Dst, Loops, Result);
2283 }
2284 
2285 
2286 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2287 // in this case 10. If there is no constant part, returns NULL.
2288 static
2289 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2290   if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2291     return Constant;
2292   else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2293     if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2294       return Constant;
2295   return nullptr;
2296 }
2297 
2298 
2299 //===----------------------------------------------------------------------===//
2300 // gcdMIVtest -
2301 // Tests an MIV subscript pair for dependence.
2302 // Returns true if any possible dependence is disproved.
2303 // Marks the result as inconsistent.
2304 // Can sometimes disprove the equal direction for 1 or more loops,
2305 // as discussed in Michael Wolfe's book,
2306 // High Performance Compilers for Parallel Computing, page 235.
2307 //
2308 // We spend some effort (code!) to handle cases like
2309 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2310 // but M and N are just loop-invariant variables.
2311 // This should help us handle linearized subscripts;
2312 // also makes this test a useful backup to the various SIV tests.
2313 //
2314 // It occurs to me that the presence of loop-invariant variables
2315 // changes the nature of the test from "greatest common divisor"
2316 // to "a common divisor".
2317 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2318                                 FullDependence &Result) const {
2319   LLVM_DEBUG(dbgs() << "starting gcd\n");
2320   ++GCDapplications;
2321   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2322   APInt RunningGCD = APInt::getNullValue(BitWidth);
2323 
2324   // Examine Src coefficients.
2325   // Compute running GCD and record source constant.
2326   // Because we're looking for the constant at the end of the chain,
2327   // we can't quit the loop just because the GCD == 1.
2328   const SCEV *Coefficients = Src;
2329   while (const SCEVAddRecExpr *AddRec =
2330          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2331     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2332     // If the coefficient is the product of a constant and other stuff,
2333     // we can use the constant in the GCD computation.
2334     const auto *Constant = getConstantPart(Coeff);
2335     if (!Constant)
2336       return false;
2337     APInt ConstCoeff = Constant->getAPInt();
2338     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2339     Coefficients = AddRec->getStart();
2340   }
2341   const SCEV *SrcConst = Coefficients;
2342 
2343   // Examine Dst coefficients.
2344   // Compute running GCD and record destination constant.
2345   // Because we're looking for the constant at the end of the chain,
2346   // we can't quit the loop just because the GCD == 1.
2347   Coefficients = Dst;
2348   while (const SCEVAddRecExpr *AddRec =
2349          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2350     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2351     // If the coefficient is the product of a constant and other stuff,
2352     // we can use the constant in the GCD computation.
2353     const auto *Constant = getConstantPart(Coeff);
2354     if (!Constant)
2355       return false;
2356     APInt ConstCoeff = Constant->getAPInt();
2357     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2358     Coefficients = AddRec->getStart();
2359   }
2360   const SCEV *DstConst = Coefficients;
2361 
2362   APInt ExtraGCD = APInt::getNullValue(BitWidth);
2363   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2364   LLVM_DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2365   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2366   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2367     // If Delta is a sum of products, we may be able to make further progress.
2368     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2369       const SCEV *Operand = Sum->getOperand(Op);
2370       if (isa<SCEVConstant>(Operand)) {
2371         assert(!Constant && "Surprised to find multiple constants");
2372         Constant = cast<SCEVConstant>(Operand);
2373       }
2374       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2375         // Search for constant operand to participate in GCD;
2376         // If none found; return false.
2377         const SCEVConstant *ConstOp = getConstantPart(Product);
2378         if (!ConstOp)
2379           return false;
2380         APInt ConstOpValue = ConstOp->getAPInt();
2381         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2382                                                    ConstOpValue.abs());
2383       }
2384       else
2385         return false;
2386     }
2387   }
2388   if (!Constant)
2389     return false;
2390   APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2391   LLVM_DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2392   if (ConstDelta == 0)
2393     return false;
2394   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2395   LLVM_DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2396   APInt Remainder = ConstDelta.srem(RunningGCD);
2397   if (Remainder != 0) {
2398     ++GCDindependence;
2399     return true;
2400   }
2401 
2402   // Try to disprove equal directions.
2403   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2404   // the code above can't disprove the dependence because the GCD = 1.
2405   // So we consider what happen if i = i' and what happens if j = j'.
2406   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2407   // which is infeasible, so we can disallow the = direction for the i level.
2408   // Setting j = j' doesn't help matters, so we end up with a direction vector
2409   // of [<>, *]
2410   //
2411   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2412   // we need to remember that the constant part is 5 and the RunningGCD should
2413   // be initialized to ExtraGCD = 30.
2414   LLVM_DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2415 
2416   bool Improved = false;
2417   Coefficients = Src;
2418   while (const SCEVAddRecExpr *AddRec =
2419          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2420     Coefficients = AddRec->getStart();
2421     const Loop *CurLoop = AddRec->getLoop();
2422     RunningGCD = ExtraGCD;
2423     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2424     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2425     const SCEV *Inner = Src;
2426     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2427       AddRec = cast<SCEVAddRecExpr>(Inner);
2428       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2429       if (CurLoop == AddRec->getLoop())
2430         ; // SrcCoeff == Coeff
2431       else {
2432         // If the coefficient is the product of a constant and other stuff,
2433         // we can use the constant in the GCD computation.
2434         Constant = getConstantPart(Coeff);
2435         if (!Constant)
2436           return false;
2437         APInt ConstCoeff = Constant->getAPInt();
2438         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2439       }
2440       Inner = AddRec->getStart();
2441     }
2442     Inner = Dst;
2443     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2444       AddRec = cast<SCEVAddRecExpr>(Inner);
2445       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2446       if (CurLoop == AddRec->getLoop())
2447         DstCoeff = Coeff;
2448       else {
2449         // If the coefficient is the product of a constant and other stuff,
2450         // we can use the constant in the GCD computation.
2451         Constant = getConstantPart(Coeff);
2452         if (!Constant)
2453           return false;
2454         APInt ConstCoeff = Constant->getAPInt();
2455         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2456       }
2457       Inner = AddRec->getStart();
2458     }
2459     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2460     // If the coefficient is the product of a constant and other stuff,
2461     // we can use the constant in the GCD computation.
2462     Constant = getConstantPart(Delta);
2463     if (!Constant)
2464       // The difference of the two coefficients might not be a product
2465       // or constant, in which case we give up on this direction.
2466       continue;
2467     APInt ConstCoeff = Constant->getAPInt();
2468     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2469     LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2470     if (RunningGCD != 0) {
2471       Remainder = ConstDelta.srem(RunningGCD);
2472       LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2473       if (Remainder != 0) {
2474         unsigned Level = mapSrcLoop(CurLoop);
2475         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2476         Improved = true;
2477       }
2478     }
2479   }
2480   if (Improved)
2481     ++GCDsuccesses;
2482   LLVM_DEBUG(dbgs() << "all done\n");
2483   return false;
2484 }
2485 
2486 
2487 //===----------------------------------------------------------------------===//
2488 // banerjeeMIVtest -
2489 // Use Banerjee's Inequalities to test an MIV subscript pair.
2490 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2491 // Generally follows the discussion in Section 2.5.2 of
2492 //
2493 //    Optimizing Supercompilers for Supercomputers
2494 //    Michael Wolfe
2495 //
2496 // The inequalities given on page 25 are simplified in that loops are
2497 // normalized so that the lower bound is always 0 and the stride is always 1.
2498 // For example, Wolfe gives
2499 //
2500 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2501 //
2502 // where A_k is the coefficient of the kth index in the source subscript,
2503 // B_k is the coefficient of the kth index in the destination subscript,
2504 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2505 // index, and N_k is the stride of the kth index. Since all loops are normalized
2506 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2507 // equation to
2508 //
2509 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2510 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2511 //
2512 // Similar simplifications are possible for the other equations.
2513 //
2514 // When we can't determine the number of iterations for a loop,
2515 // we use NULL as an indicator for the worst case, infinity.
2516 // When computing the upper bound, NULL denotes +inf;
2517 // for the lower bound, NULL denotes -inf.
2518 //
2519 // Return true if dependence disproved.
2520 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2521                                      const SmallBitVector &Loops,
2522                                      FullDependence &Result) const {
2523   LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2524   ++BanerjeeApplications;
2525   LLVM_DEBUG(dbgs() << "    Src = " << *Src << '\n');
2526   const SCEV *A0;
2527   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2528   LLVM_DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2529   const SCEV *B0;
2530   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2531   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2532   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2533   LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2534 
2535   // Compute bounds for all the * directions.
2536   LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2537   for (unsigned K = 1; K <= MaxLevels; ++K) {
2538     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2539     Bound[K].Direction = Dependence::DVEntry::ALL;
2540     Bound[K].DirSet = Dependence::DVEntry::NONE;
2541     findBoundsALL(A, B, Bound, K);
2542 #ifndef NDEBUG
2543     LLVM_DEBUG(dbgs() << "\t    " << K << '\t');
2544     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2545       LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2546     else
2547       LLVM_DEBUG(dbgs() << "-inf\t");
2548     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2549       LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2550     else
2551       LLVM_DEBUG(dbgs() << "+inf\n");
2552 #endif
2553   }
2554 
2555   // Test the *, *, *, ... case.
2556   bool Disproved = false;
2557   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2558     // Explore the direction vector hierarchy.
2559     unsigned DepthExpanded = 0;
2560     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2561                                          Loops, DepthExpanded, Delta);
2562     if (NewDeps > 0) {
2563       bool Improved = false;
2564       for (unsigned K = 1; K <= CommonLevels; ++K) {
2565         if (Loops[K]) {
2566           unsigned Old = Result.DV[K - 1].Direction;
2567           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2568           Improved |= Old != Result.DV[K - 1].Direction;
2569           if (!Result.DV[K - 1].Direction) {
2570             Improved = false;
2571             Disproved = true;
2572             break;
2573           }
2574         }
2575       }
2576       if (Improved)
2577         ++BanerjeeSuccesses;
2578     }
2579     else {
2580       ++BanerjeeIndependence;
2581       Disproved = true;
2582     }
2583   }
2584   else {
2585     ++BanerjeeIndependence;
2586     Disproved = true;
2587   }
2588   delete [] Bound;
2589   delete [] A;
2590   delete [] B;
2591   return Disproved;
2592 }
2593 
2594 
2595 // Hierarchically expands the direction vector
2596 // search space, combining the directions of discovered dependences
2597 // in the DirSet field of Bound. Returns the number of distinct
2598 // dependences discovered. If the dependence is disproved,
2599 // it will return 0.
2600 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2601                                            CoefficientInfo *B, BoundInfo *Bound,
2602                                            const SmallBitVector &Loops,
2603                                            unsigned &DepthExpanded,
2604                                            const SCEV *Delta) const {
2605   if (Level > CommonLevels) {
2606     // record result
2607     LLVM_DEBUG(dbgs() << "\t[");
2608     for (unsigned K = 1; K <= CommonLevels; ++K) {
2609       if (Loops[K]) {
2610         Bound[K].DirSet |= Bound[K].Direction;
2611 #ifndef NDEBUG
2612         switch (Bound[K].Direction) {
2613         case Dependence::DVEntry::LT:
2614           LLVM_DEBUG(dbgs() << " <");
2615           break;
2616         case Dependence::DVEntry::EQ:
2617           LLVM_DEBUG(dbgs() << " =");
2618           break;
2619         case Dependence::DVEntry::GT:
2620           LLVM_DEBUG(dbgs() << " >");
2621           break;
2622         case Dependence::DVEntry::ALL:
2623           LLVM_DEBUG(dbgs() << " *");
2624           break;
2625         default:
2626           llvm_unreachable("unexpected Bound[K].Direction");
2627         }
2628 #endif
2629       }
2630     }
2631     LLVM_DEBUG(dbgs() << " ]\n");
2632     return 1;
2633   }
2634   if (Loops[Level]) {
2635     if (Level > DepthExpanded) {
2636       DepthExpanded = Level;
2637       // compute bounds for <, =, > at current level
2638       findBoundsLT(A, B, Bound, Level);
2639       findBoundsGT(A, B, Bound, Level);
2640       findBoundsEQ(A, B, Bound, Level);
2641 #ifndef NDEBUG
2642       LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2643       LLVM_DEBUG(dbgs() << "\t    <\t");
2644       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2645         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2646                           << '\t');
2647       else
2648         LLVM_DEBUG(dbgs() << "-inf\t");
2649       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2650         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2651                           << '\n');
2652       else
2653         LLVM_DEBUG(dbgs() << "+inf\n");
2654       LLVM_DEBUG(dbgs() << "\t    =\t");
2655       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2656         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2657                           << '\t');
2658       else
2659         LLVM_DEBUG(dbgs() << "-inf\t");
2660       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2661         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2662                           << '\n');
2663       else
2664         LLVM_DEBUG(dbgs() << "+inf\n");
2665       LLVM_DEBUG(dbgs() << "\t    >\t");
2666       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2667         LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2668                           << '\t');
2669       else
2670         LLVM_DEBUG(dbgs() << "-inf\t");
2671       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2672         LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2673                           << '\n');
2674       else
2675         LLVM_DEBUG(dbgs() << "+inf\n");
2676 #endif
2677     }
2678 
2679     unsigned NewDeps = 0;
2680 
2681     // test bounds for <, *, *, ...
2682     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2683       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2684                                    Loops, DepthExpanded, Delta);
2685 
2686     // Test bounds for =, *, *, ...
2687     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2688       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2689                                    Loops, DepthExpanded, Delta);
2690 
2691     // test bounds for >, *, *, ...
2692     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2693       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2694                                    Loops, DepthExpanded, Delta);
2695 
2696     Bound[Level].Direction = Dependence::DVEntry::ALL;
2697     return NewDeps;
2698   }
2699   else
2700     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2701 }
2702 
2703 
2704 // Returns true iff the current bounds are plausible.
2705 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2706                                 BoundInfo *Bound, const SCEV *Delta) const {
2707   Bound[Level].Direction = DirKind;
2708   if (const SCEV *LowerBound = getLowerBound(Bound))
2709     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2710       return false;
2711   if (const SCEV *UpperBound = getUpperBound(Bound))
2712     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2713       return false;
2714   return true;
2715 }
2716 
2717 
2718 // Computes the upper and lower bounds for level K
2719 // using the * direction. Records them in Bound.
2720 // Wolfe gives the equations
2721 //
2722 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2723 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2724 //
2725 // Since we normalize loops, we can simplify these equations to
2726 //
2727 //    LB^*_k = (A^-_k - B^+_k)U_k
2728 //    UB^*_k = (A^+_k - B^-_k)U_k
2729 //
2730 // We must be careful to handle the case where the upper bound is unknown.
2731 // Note that the lower bound is always <= 0
2732 // and the upper bound is always >= 0.
2733 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2734                                    BoundInfo *Bound, unsigned K) const {
2735   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2736   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2737   if (Bound[K].Iterations) {
2738     Bound[K].Lower[Dependence::DVEntry::ALL] =
2739       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2740                      Bound[K].Iterations);
2741     Bound[K].Upper[Dependence::DVEntry::ALL] =
2742       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2743                      Bound[K].Iterations);
2744   }
2745   else {
2746     // If the difference is 0, we won't need to know the number of iterations.
2747     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2748       Bound[K].Lower[Dependence::DVEntry::ALL] =
2749           SE->getZero(A[K].Coeff->getType());
2750     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2751       Bound[K].Upper[Dependence::DVEntry::ALL] =
2752           SE->getZero(A[K].Coeff->getType());
2753   }
2754 }
2755 
2756 
2757 // Computes the upper and lower bounds for level K
2758 // using the = direction. Records them in Bound.
2759 // Wolfe gives the equations
2760 //
2761 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2762 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2763 //
2764 // Since we normalize loops, we can simplify these equations to
2765 //
2766 //    LB^=_k = (A_k - B_k)^- U_k
2767 //    UB^=_k = (A_k - B_k)^+ U_k
2768 //
2769 // We must be careful to handle the case where the upper bound is unknown.
2770 // Note that the lower bound is always <= 0
2771 // and the upper bound is always >= 0.
2772 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2773                                   BoundInfo *Bound, unsigned K) const {
2774   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2775   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2776   if (Bound[K].Iterations) {
2777     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2778     const SCEV *NegativePart = getNegativePart(Delta);
2779     Bound[K].Lower[Dependence::DVEntry::EQ] =
2780       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2781     const SCEV *PositivePart = getPositivePart(Delta);
2782     Bound[K].Upper[Dependence::DVEntry::EQ] =
2783       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2784   }
2785   else {
2786     // If the positive/negative part of the difference is 0,
2787     // we won't need to know the number of iterations.
2788     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2789     const SCEV *NegativePart = getNegativePart(Delta);
2790     if (NegativePart->isZero())
2791       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2792     const SCEV *PositivePart = getPositivePart(Delta);
2793     if (PositivePart->isZero())
2794       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2795   }
2796 }
2797 
2798 
2799 // Computes the upper and lower bounds for level K
2800 // using the < direction. Records them in Bound.
2801 // Wolfe gives the equations
2802 //
2803 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2804 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2805 //
2806 // Since we normalize loops, we can simplify these equations to
2807 //
2808 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2809 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2810 //
2811 // We must be careful to handle the case where the upper bound is unknown.
2812 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2813                                   BoundInfo *Bound, unsigned K) const {
2814   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2815   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2816   if (Bound[K].Iterations) {
2817     const SCEV *Iter_1 = SE->getMinusSCEV(
2818         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2819     const SCEV *NegPart =
2820       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2821     Bound[K].Lower[Dependence::DVEntry::LT] =
2822       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2823     const SCEV *PosPart =
2824       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2825     Bound[K].Upper[Dependence::DVEntry::LT] =
2826       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2827   }
2828   else {
2829     // If the positive/negative part of the difference is 0,
2830     // we won't need to know the number of iterations.
2831     const SCEV *NegPart =
2832       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2833     if (NegPart->isZero())
2834       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2835     const SCEV *PosPart =
2836       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2837     if (PosPart->isZero())
2838       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2839   }
2840 }
2841 
2842 
2843 // Computes the upper and lower bounds for level K
2844 // using the > direction. Records them in Bound.
2845 // Wolfe gives the equations
2846 //
2847 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2848 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2849 //
2850 // Since we normalize loops, we can simplify these equations to
2851 //
2852 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2853 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2854 //
2855 // We must be careful to handle the case where the upper bound is unknown.
2856 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2857                                   BoundInfo *Bound, unsigned K) const {
2858   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2859   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2860   if (Bound[K].Iterations) {
2861     const SCEV *Iter_1 = SE->getMinusSCEV(
2862         Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2863     const SCEV *NegPart =
2864       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2865     Bound[K].Lower[Dependence::DVEntry::GT] =
2866       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2867     const SCEV *PosPart =
2868       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2869     Bound[K].Upper[Dependence::DVEntry::GT] =
2870       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2871   }
2872   else {
2873     // If the positive/negative part of the difference is 0,
2874     // we won't need to know the number of iterations.
2875     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2876     if (NegPart->isZero())
2877       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2878     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2879     if (PosPart->isZero())
2880       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2881   }
2882 }
2883 
2884 
2885 // X^+ = max(X, 0)
2886 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2887   return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2888 }
2889 
2890 
2891 // X^- = min(X, 0)
2892 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2893   return SE->getSMinExpr(X, SE->getZero(X->getType()));
2894 }
2895 
2896 
2897 // Walks through the subscript,
2898 // collecting each coefficient, the associated loop bounds,
2899 // and recording its positive and negative parts for later use.
2900 DependenceInfo::CoefficientInfo *
2901 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2902                                  const SCEV *&Constant) const {
2903   const SCEV *Zero = SE->getZero(Subscript->getType());
2904   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2905   for (unsigned K = 1; K <= MaxLevels; ++K) {
2906     CI[K].Coeff = Zero;
2907     CI[K].PosPart = Zero;
2908     CI[K].NegPart = Zero;
2909     CI[K].Iterations = nullptr;
2910   }
2911   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2912     const Loop *L = AddRec->getLoop();
2913     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2914     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2915     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2916     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2917     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2918     Subscript = AddRec->getStart();
2919   }
2920   Constant = Subscript;
2921 #ifndef NDEBUG
2922   LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2923   for (unsigned K = 1; K <= MaxLevels; ++K) {
2924     LLVM_DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2925     LLVM_DEBUG(dbgs() << "\tPos Part = ");
2926     LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2927     LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2928     LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2929     LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2930     if (CI[K].Iterations)
2931       LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2932     else
2933       LLVM_DEBUG(dbgs() << "+inf");
2934     LLVM_DEBUG(dbgs() << '\n');
2935   }
2936   LLVM_DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2937 #endif
2938   return CI;
2939 }
2940 
2941 
2942 // Looks through all the bounds info and
2943 // computes the lower bound given the current direction settings
2944 // at each level. If the lower bound for any level is -inf,
2945 // the result is -inf.
2946 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2947   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2948   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2949     if (Bound[K].Lower[Bound[K].Direction])
2950       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2951     else
2952       Sum = nullptr;
2953   }
2954   return Sum;
2955 }
2956 
2957 
2958 // Looks through all the bounds info and
2959 // computes the upper bound given the current direction settings
2960 // at each level. If the upper bound at any level is +inf,
2961 // the result is +inf.
2962 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2963   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2964   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2965     if (Bound[K].Upper[Bound[K].Direction])
2966       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2967     else
2968       Sum = nullptr;
2969   }
2970   return Sum;
2971 }
2972 
2973 
2974 //===----------------------------------------------------------------------===//
2975 // Constraint manipulation for Delta test.
2976 
2977 // Given a linear SCEV,
2978 // return the coefficient (the step)
2979 // corresponding to the specified loop.
2980 // If there isn't one, return 0.
2981 // For example, given a*i + b*j + c*k, finding the coefficient
2982 // corresponding to the j loop would yield b.
2983 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2984                                             const Loop *TargetLoop) const {
2985   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2986   if (!AddRec)
2987     return SE->getZero(Expr->getType());
2988   if (AddRec->getLoop() == TargetLoop)
2989     return AddRec->getStepRecurrence(*SE);
2990   return findCoefficient(AddRec->getStart(), TargetLoop);
2991 }
2992 
2993 
2994 // Given a linear SCEV,
2995 // return the SCEV given by zeroing out the coefficient
2996 // corresponding to the specified loop.
2997 // For example, given a*i + b*j + c*k, zeroing the coefficient
2998 // corresponding to the j loop would yield a*i + c*k.
2999 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3000                                             const Loop *TargetLoop) const {
3001   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3002   if (!AddRec)
3003     return Expr; // ignore
3004   if (AddRec->getLoop() == TargetLoop)
3005     return AddRec->getStart();
3006   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3007                            AddRec->getStepRecurrence(*SE),
3008                            AddRec->getLoop(),
3009                            AddRec->getNoWrapFlags());
3010 }
3011 
3012 
3013 // Given a linear SCEV Expr,
3014 // return the SCEV given by adding some Value to the
3015 // coefficient corresponding to the specified TargetLoop.
3016 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3017 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3018 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3019                                              const Loop *TargetLoop,
3020                                              const SCEV *Value) const {
3021   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3022   if (!AddRec) // create a new addRec
3023     return SE->getAddRecExpr(Expr,
3024                              Value,
3025                              TargetLoop,
3026                              SCEV::FlagAnyWrap); // Worst case, with no info.
3027   if (AddRec->getLoop() == TargetLoop) {
3028     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3029     if (Sum->isZero())
3030       return AddRec->getStart();
3031     return SE->getAddRecExpr(AddRec->getStart(),
3032                              Sum,
3033                              AddRec->getLoop(),
3034                              AddRec->getNoWrapFlags());
3035   }
3036   if (SE->isLoopInvariant(AddRec, TargetLoop))
3037     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3038   return SE->getAddRecExpr(
3039       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3040       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3041       AddRec->getNoWrapFlags());
3042 }
3043 
3044 
3045 // Review the constraints, looking for opportunities
3046 // to simplify a subscript pair (Src and Dst).
3047 // Return true if some simplification occurs.
3048 // If the simplification isn't exact (that is, if it is conservative
3049 // in terms of dependence), set consistent to false.
3050 // Corresponds to Figure 5 from the paper
3051 //
3052 //            Practical Dependence Testing
3053 //            Goff, Kennedy, Tseng
3054 //            PLDI 1991
3055 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3056                                SmallBitVector &Loops,
3057                                SmallVectorImpl<Constraint> &Constraints,
3058                                bool &Consistent) {
3059   bool Result = false;
3060   for (unsigned LI : Loops.set_bits()) {
3061     LLVM_DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3062     LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3063     if (Constraints[LI].isDistance())
3064       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3065     else if (Constraints[LI].isLine())
3066       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3067     else if (Constraints[LI].isPoint())
3068       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3069   }
3070   return Result;
3071 }
3072 
3073 
3074 // Attempt to propagate a distance
3075 // constraint into a subscript pair (Src and Dst).
3076 // Return true if some simplification occurs.
3077 // If the simplification isn't exact (that is, if it is conservative
3078 // in terms of dependence), set consistent to false.
3079 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3080                                        Constraint &CurConstraint,
3081                                        bool &Consistent) {
3082   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3083   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3084   const SCEV *A_K = findCoefficient(Src, CurLoop);
3085   if (A_K->isZero())
3086     return false;
3087   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3088   Src = SE->getMinusSCEV(Src, DA_K);
3089   Src = zeroCoefficient(Src, CurLoop);
3090   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3091   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3092   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3093   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3094   if (!findCoefficient(Dst, CurLoop)->isZero())
3095     Consistent = false;
3096   return true;
3097 }
3098 
3099 
3100 // Attempt to propagate a line
3101 // constraint into a subscript pair (Src and Dst).
3102 // Return true if some simplification occurs.
3103 // If the simplification isn't exact (that is, if it is conservative
3104 // in terms of dependence), set consistent to false.
3105 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3106                                    Constraint &CurConstraint,
3107                                    bool &Consistent) {
3108   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3109   const SCEV *A = CurConstraint.getA();
3110   const SCEV *B = CurConstraint.getB();
3111   const SCEV *C = CurConstraint.getC();
3112   LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3113                     << "\n");
3114   LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3115   LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3116   if (A->isZero()) {
3117     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3118     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3119     if (!Bconst || !Cconst) return false;
3120     APInt Beta = Bconst->getAPInt();
3121     APInt Charlie = Cconst->getAPInt();
3122     APInt CdivB = Charlie.sdiv(Beta);
3123     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3124     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3125     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3126     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3127     Dst = zeroCoefficient(Dst, CurLoop);
3128     if (!findCoefficient(Src, CurLoop)->isZero())
3129       Consistent = false;
3130   }
3131   else if (B->isZero()) {
3132     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3133     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3134     if (!Aconst || !Cconst) return false;
3135     APInt Alpha = Aconst->getAPInt();
3136     APInt Charlie = Cconst->getAPInt();
3137     APInt CdivA = Charlie.sdiv(Alpha);
3138     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3139     const SCEV *A_K = findCoefficient(Src, CurLoop);
3140     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3141     Src = zeroCoefficient(Src, CurLoop);
3142     if (!findCoefficient(Dst, CurLoop)->isZero())
3143       Consistent = false;
3144   }
3145   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3146     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3147     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3148     if (!Aconst || !Cconst) return false;
3149     APInt Alpha = Aconst->getAPInt();
3150     APInt Charlie = Cconst->getAPInt();
3151     APInt CdivA = Charlie.sdiv(Alpha);
3152     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3153     const SCEV *A_K = findCoefficient(Src, CurLoop);
3154     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3155     Src = zeroCoefficient(Src, CurLoop);
3156     Dst = addToCoefficient(Dst, CurLoop, A_K);
3157     if (!findCoefficient(Dst, CurLoop)->isZero())
3158       Consistent = false;
3159   }
3160   else {
3161     // paper is incorrect here, or perhaps just misleading
3162     const SCEV *A_K = findCoefficient(Src, CurLoop);
3163     Src = SE->getMulExpr(Src, A);
3164     Dst = SE->getMulExpr(Dst, A);
3165     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3166     Src = zeroCoefficient(Src, CurLoop);
3167     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3168     if (!findCoefficient(Dst, CurLoop)->isZero())
3169       Consistent = false;
3170   }
3171   LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3172   LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3173   return true;
3174 }
3175 
3176 
3177 // Attempt to propagate a point
3178 // constraint into a subscript pair (Src and Dst).
3179 // Return true if some simplification occurs.
3180 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3181                                     Constraint &CurConstraint) {
3182   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3183   const SCEV *A_K = findCoefficient(Src, CurLoop);
3184   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3185   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3186   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3187   LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3188   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3189   Src = zeroCoefficient(Src, CurLoop);
3190   LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3191   LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3192   Dst = zeroCoefficient(Dst, CurLoop);
3193   LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3194   return true;
3195 }
3196 
3197 
3198 // Update direction vector entry based on the current constraint.
3199 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3200                                      const Constraint &CurConstraint) const {
3201   LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3202   LLVM_DEBUG(CurConstraint.dump(dbgs()));
3203   if (CurConstraint.isAny())
3204     ; // use defaults
3205   else if (CurConstraint.isDistance()) {
3206     // this one is consistent, the others aren't
3207     Level.Scalar = false;
3208     Level.Distance = CurConstraint.getD();
3209     unsigned NewDirection = Dependence::DVEntry::NONE;
3210     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3211       NewDirection = Dependence::DVEntry::EQ;
3212     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3213       NewDirection |= Dependence::DVEntry::LT;
3214     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3215       NewDirection |= Dependence::DVEntry::GT;
3216     Level.Direction &= NewDirection;
3217   }
3218   else if (CurConstraint.isLine()) {
3219     Level.Scalar = false;
3220     Level.Distance = nullptr;
3221     // direction should be accurate
3222   }
3223   else if (CurConstraint.isPoint()) {
3224     Level.Scalar = false;
3225     Level.Distance = nullptr;
3226     unsigned NewDirection = Dependence::DVEntry::NONE;
3227     if (!isKnownPredicate(CmpInst::ICMP_NE,
3228                           CurConstraint.getY(),
3229                           CurConstraint.getX()))
3230       // if X may be = Y
3231       NewDirection |= Dependence::DVEntry::EQ;
3232     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3233                           CurConstraint.getY(),
3234                           CurConstraint.getX()))
3235       // if Y may be > X
3236       NewDirection |= Dependence::DVEntry::LT;
3237     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3238                           CurConstraint.getY(),
3239                           CurConstraint.getX()))
3240       // if Y may be < X
3241       NewDirection |= Dependence::DVEntry::GT;
3242     Level.Direction &= NewDirection;
3243   }
3244   else
3245     llvm_unreachable("constraint has unexpected kind");
3246 }
3247 
3248 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3249 /// source and destination array references are recurrences on a nested loop,
3250 /// this function flattens the nested recurrences into separate recurrences
3251 /// for each loop level.
3252 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3253                                     SmallVectorImpl<Subscript> &Pair) {
3254   assert(isLoadOrStore(Src) && "instruction is not load or store");
3255   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3256   Value *SrcPtr = getLoadStorePointerOperand(Src);
3257   Value *DstPtr = getLoadStorePointerOperand(Dst);
3258   Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3259   Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3260   const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3261   const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3262   const SCEVUnknown *SrcBase =
3263       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3264   const SCEVUnknown *DstBase =
3265       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3266 
3267   if (!SrcBase || !DstBase || SrcBase != DstBase)
3268     return false;
3269 
3270   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3271 
3272   if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3273                                SrcSubscripts, DstSubscripts) &&
3274       !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3275                                     SrcSubscripts, DstSubscripts))
3276     return false;
3277 
3278   int Size = SrcSubscripts.size();
3279   LLVM_DEBUG({
3280     dbgs() << "\nSrcSubscripts: ";
3281     for (int I = 0; I < Size; I++)
3282       dbgs() << *SrcSubscripts[I];
3283     dbgs() << "\nDstSubscripts: ";
3284     for (int I = 0; I < Size; I++)
3285       dbgs() << *DstSubscripts[I];
3286   });
3287 
3288   // The delinearization transforms a single-subscript MIV dependence test into
3289   // a multi-subscript SIV dependence test that is easier to compute. So we
3290   // resize Pair to contain as many pairs of subscripts as the delinearization
3291   // has found, and then initialize the pairs following the delinearization.
3292   Pair.resize(Size);
3293   for (int I = 0; I < Size; ++I) {
3294     Pair[I].Src = SrcSubscripts[I];
3295     Pair[I].Dst = DstSubscripts[I];
3296     unifySubscriptType(&Pair[I]);
3297   }
3298 
3299   return true;
3300 }
3301 
3302 bool DependenceInfo::tryDelinearizeFixedSize(
3303     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3304     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3305     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3306 
3307   Value *SrcPtr = getLoadStorePointerOperand(Src);
3308   Value *DstPtr = getLoadStorePointerOperand(Dst);
3309   const SCEVUnknown *SrcBase =
3310       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3311   const SCEVUnknown *DstBase =
3312       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3313   assert(SrcBase && DstBase && SrcBase == DstBase &&
3314          "expected src and dst scev unknowns to be equal");
3315 
3316   // Check the simple case where the array dimensions are fixed size.
3317   auto *SrcGEP = dyn_cast<GetElementPtrInst>(SrcPtr);
3318   auto *DstGEP = dyn_cast<GetElementPtrInst>(DstPtr);
3319   if (!SrcGEP || !DstGEP)
3320     return false;
3321 
3322   SmallVector<int, 4> SrcSizes, DstSizes;
3323   SE->getIndexExpressionsFromGEP(SrcGEP, SrcSubscripts, SrcSizes);
3324   SE->getIndexExpressionsFromGEP(DstGEP, DstSubscripts, DstSizes);
3325 
3326   // Check that the two size arrays are non-empty and equal in length and
3327   // value.
3328   if (SrcSizes.empty() || SrcSubscripts.size() <= 1 ||
3329       SrcSizes.size() != DstSizes.size() ||
3330       !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3331     SrcSubscripts.clear();
3332     DstSubscripts.clear();
3333     return false;
3334   }
3335 
3336   Value *SrcBasePtr = SrcGEP->getOperand(0);
3337   Value *DstBasePtr = DstGEP->getOperand(0);
3338   while (auto *PCast = dyn_cast<BitCastInst>(SrcBasePtr))
3339     SrcBasePtr = PCast->getOperand(0);
3340   while (auto *PCast = dyn_cast<BitCastInst>(DstBasePtr))
3341     DstBasePtr = PCast->getOperand(0);
3342 
3343   // Check that for identical base pointers we do not miss index offsets
3344   // that have been added before this GEP is applied.
3345   if (SrcBasePtr != SrcBase->getValue() || DstBasePtr != DstBase->getValue()) {
3346     SrcSubscripts.clear();
3347     DstSubscripts.clear();
3348     return false;
3349   }
3350 
3351   assert(SrcSubscripts.size() == DstSubscripts.size() &&
3352          SrcSubscripts.size() == SrcSizes.size() + 1 &&
3353          "Expected equal number of entries in the list of sizes and "
3354          "subscripts.");
3355 
3356   // In general we cannot safely assume that the subscripts recovered from GEPs
3357   // are in the range of values defined for their corresponding array
3358   // dimensions. For example some C language usage/interpretation make it
3359   // impossible to verify this at compile-time. As such we can only delinearize
3360   // iff the subscripts are positive and are less than the range of the
3361   // dimension.
3362   if (!DisableDelinearizationChecks) {
3363     auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
3364                                   SmallVectorImpl<const SCEV *> &Subscripts,
3365                                   Value *Ptr) {
3366       size_t SSize = Subscripts.size();
3367       for (size_t I = 1; I < SSize; ++I) {
3368         const SCEV *S = Subscripts[I];
3369         if (!isKnownNonNegative(S, Ptr))
3370           return false;
3371         if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
3372           const SCEV *Range = SE->getConstant(
3373               ConstantInt::get(SType, DimensionSizes[I - 1], false));
3374           if (!isKnownLessThan(S, Range))
3375             return false;
3376         }
3377       }
3378       return true;
3379     };
3380 
3381     if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
3382         !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
3383       SrcSubscripts.clear();
3384       DstSubscripts.clear();
3385       return false;
3386     }
3387   }
3388   LLVM_DEBUG({
3389     dbgs() << "Delinearized subscripts of fixed-size array\n"
3390            << "SrcGEP:" << *SrcGEP << "\n"
3391            << "DstGEP:" << *DstGEP << "\n";
3392   });
3393   return true;
3394 }
3395 
3396 bool DependenceInfo::tryDelinearizeParametricSize(
3397     Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3398     const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3399     SmallVectorImpl<const SCEV *> &DstSubscripts) {
3400 
3401   Value *SrcPtr = getLoadStorePointerOperand(Src);
3402   Value *DstPtr = getLoadStorePointerOperand(Dst);
3403   const SCEVUnknown *SrcBase =
3404       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3405   const SCEVUnknown *DstBase =
3406       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3407   assert(SrcBase && DstBase && SrcBase == DstBase &&
3408          "expected src and dst scev unknowns to be equal");
3409 
3410   const SCEV *ElementSize = SE->getElementSize(Src);
3411   if (ElementSize != SE->getElementSize(Dst))
3412     return false;
3413 
3414   const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3415   const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3416 
3417   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3418   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3419   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3420     return false;
3421 
3422   // First step: collect parametric terms in both array references.
3423   SmallVector<const SCEV *, 4> Terms;
3424   SE->collectParametricTerms(SrcAR, Terms);
3425   SE->collectParametricTerms(DstAR, Terms);
3426 
3427   // Second step: find subscript sizes.
3428   SmallVector<const SCEV *, 4> Sizes;
3429   SE->findArrayDimensions(Terms, Sizes, ElementSize);
3430 
3431   // Third step: compute the access functions for each subscript.
3432   SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3433   SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3434 
3435   // Fail when there is only a subscript: that's a linearized access function.
3436   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3437       SrcSubscripts.size() != DstSubscripts.size())
3438     return false;
3439 
3440   size_t Size = SrcSubscripts.size();
3441 
3442   // Statically check that the array bounds are in-range. The first subscript we
3443   // don't have a size for and it cannot overflow into another subscript, so is
3444   // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3445   // and dst.
3446   // FIXME: It may be better to record these sizes and add them as constraints
3447   // to the dependency checks.
3448   if (!DisableDelinearizationChecks)
3449     for (size_t I = 1; I < Size; ++I) {
3450       if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3451         return false;
3452 
3453       if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3454         return false;
3455 
3456       if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3457         return false;
3458 
3459       if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3460         return false;
3461     }
3462 
3463   return true;
3464 }
3465 
3466 //===----------------------------------------------------------------------===//
3467 
3468 #ifndef NDEBUG
3469 // For debugging purposes, dump a small bit vector to dbgs().
3470 static void dumpSmallBitVector(SmallBitVector &BV) {
3471   dbgs() << "{";
3472   for (unsigned VI : BV.set_bits()) {
3473     dbgs() << VI;
3474     if (BV.find_next(VI) >= 0)
3475       dbgs() << ' ';
3476   }
3477   dbgs() << "}\n";
3478 }
3479 #endif
3480 
3481 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3482                                 FunctionAnalysisManager::Invalidator &Inv) {
3483   // Check if the analysis itself has been invalidated.
3484   auto PAC = PA.getChecker<DependenceAnalysis>();
3485   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3486     return true;
3487 
3488   // Check transitive dependencies.
3489   return Inv.invalidate<AAManager>(F, PA) ||
3490          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3491          Inv.invalidate<LoopAnalysis>(F, PA);
3492 }
3493 
3494 // depends -
3495 // Returns NULL if there is no dependence.
3496 // Otherwise, return a Dependence with as many details as possible.
3497 // Corresponds to Section 3.1 in the paper
3498 //
3499 //            Practical Dependence Testing
3500 //            Goff, Kennedy, Tseng
3501 //            PLDI 1991
3502 //
3503 // Care is required to keep the routine below, getSplitIteration(),
3504 // up to date with respect to this routine.
3505 std::unique_ptr<Dependence>
3506 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3507                         bool PossiblyLoopIndependent) {
3508   if (Src == Dst)
3509     PossiblyLoopIndependent = false;
3510 
3511   if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3512     // if both instructions don't reference memory, there's no dependence
3513     return nullptr;
3514 
3515   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3516     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3517     LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3518     return std::make_unique<Dependence>(Src, Dst);
3519   }
3520 
3521   assert(isLoadOrStore(Src) && "instruction is not load or store");
3522   assert(isLoadOrStore(Dst) && "instruction is not load or store");
3523   Value *SrcPtr = getLoadStorePointerOperand(Src);
3524   Value *DstPtr = getLoadStorePointerOperand(Dst);
3525 
3526   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3527                                  MemoryLocation::get(Dst),
3528                                  MemoryLocation::get(Src))) {
3529   case AliasResult::MayAlias:
3530   case AliasResult::PartialAlias:
3531     // cannot analyse objects if we don't understand their aliasing.
3532     LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3533     return std::make_unique<Dependence>(Src, Dst);
3534   case AliasResult::NoAlias:
3535     // If the objects noalias, they are distinct, accesses are independent.
3536     LLVM_DEBUG(dbgs() << "no alias\n");
3537     return nullptr;
3538   case AliasResult::MustAlias:
3539     break; // The underlying objects alias; test accesses for dependence.
3540   }
3541 
3542   // establish loop nesting levels
3543   establishNestingLevels(Src, Dst);
3544   LLVM_DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3545   LLVM_DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3546 
3547   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3548   ++TotalArrayPairs;
3549 
3550   unsigned Pairs = 1;
3551   SmallVector<Subscript, 2> Pair(Pairs);
3552   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3553   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3554   LLVM_DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3555   LLVM_DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3556   if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
3557     // If two pointers have different bases, trying to analyze indexes won't
3558     // work; we can't compare them to each other. This can happen, for example,
3559     // if one is produced by an LCSSA PHI node.
3560     //
3561     // We check this upfront so we don't crash in cases where getMinusSCEV()
3562     // returns a SCEVCouldNotCompute.
3563     LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
3564     return std::make_unique<Dependence>(Src, Dst);
3565   }
3566   Pair[0].Src = SrcSCEV;
3567   Pair[0].Dst = DstSCEV;
3568 
3569   if (Delinearize) {
3570     if (tryDelinearize(Src, Dst, Pair)) {
3571       LLVM_DEBUG(dbgs() << "    delinearized\n");
3572       Pairs = Pair.size();
3573     }
3574   }
3575 
3576   for (unsigned P = 0; P < Pairs; ++P) {
3577     Pair[P].Loops.resize(MaxLevels + 1);
3578     Pair[P].GroupLoops.resize(MaxLevels + 1);
3579     Pair[P].Group.resize(Pairs);
3580     removeMatchingExtensions(&Pair[P]);
3581     Pair[P].Classification =
3582       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3583                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3584                    Pair[P].Loops);
3585     Pair[P].GroupLoops = Pair[P].Loops;
3586     Pair[P].Group.set(P);
3587     LLVM_DEBUG(dbgs() << "    subscript " << P << "\n");
3588     LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3589     LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3590     LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3591     LLVM_DEBUG(dbgs() << "\tloops = ");
3592     LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3593   }
3594 
3595   SmallBitVector Separable(Pairs);
3596   SmallBitVector Coupled(Pairs);
3597 
3598   // Partition subscripts into separable and minimally-coupled groups
3599   // Algorithm in paper is algorithmically better;
3600   // this may be faster in practice. Check someday.
3601   //
3602   // Here's an example of how it works. Consider this code:
3603   //
3604   //   for (i = ...) {
3605   //     for (j = ...) {
3606   //       for (k = ...) {
3607   //         for (l = ...) {
3608   //           for (m = ...) {
3609   //             A[i][j][k][m] = ...;
3610   //             ... = A[0][j][l][i + j];
3611   //           }
3612   //         }
3613   //       }
3614   //     }
3615   //   }
3616   //
3617   // There are 4 subscripts here:
3618   //    0 [i] and [0]
3619   //    1 [j] and [j]
3620   //    2 [k] and [l]
3621   //    3 [m] and [i + j]
3622   //
3623   // We've already classified each subscript pair as ZIV, SIV, etc.,
3624   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3625   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3626   // and set Pair[P].Group = {P}.
3627   //
3628   //      Src Dst    Classification Loops  GroupLoops Group
3629   //    0 [i] [0]         SIV       {1}      {1}        {0}
3630   //    1 [j] [j]         SIV       {2}      {2}        {1}
3631   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3632   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3633   //
3634   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3635   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3636   //
3637   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3638   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3639   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3640   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3641   // to either Separable or Coupled).
3642   //
3643   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3644   // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3645   // so Pair[3].Group = {0, 1, 3} and Done = false.
3646   //
3647   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3648   // Since Done remains true, we add 2 to the set of Separable pairs.
3649   //
3650   // Finally, we consider 3. There's nothing to compare it with,
3651   // so Done remains true and we add it to the Coupled set.
3652   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3653   //
3654   // In the end, we've got 1 separable subscript and 1 coupled group.
3655   for (unsigned SI = 0; SI < Pairs; ++SI) {
3656     if (Pair[SI].Classification == Subscript::NonLinear) {
3657       // ignore these, but collect loops for later
3658       ++NonlinearSubscriptPairs;
3659       collectCommonLoops(Pair[SI].Src,
3660                          LI->getLoopFor(Src->getParent()),
3661                          Pair[SI].Loops);
3662       collectCommonLoops(Pair[SI].Dst,
3663                          LI->getLoopFor(Dst->getParent()),
3664                          Pair[SI].Loops);
3665       Result.Consistent = false;
3666     } else if (Pair[SI].Classification == Subscript::ZIV) {
3667       // always separable
3668       Separable.set(SI);
3669     }
3670     else {
3671       // SIV, RDIV, or MIV, so check for coupled group
3672       bool Done = true;
3673       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3674         SmallBitVector Intersection = Pair[SI].GroupLoops;
3675         Intersection &= Pair[SJ].GroupLoops;
3676         if (Intersection.any()) {
3677           // accumulate set of all the loops in group
3678           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3679           // accumulate set of all subscripts in group
3680           Pair[SJ].Group |= Pair[SI].Group;
3681           Done = false;
3682         }
3683       }
3684       if (Done) {
3685         if (Pair[SI].Group.count() == 1) {
3686           Separable.set(SI);
3687           ++SeparableSubscriptPairs;
3688         }
3689         else {
3690           Coupled.set(SI);
3691           ++CoupledSubscriptPairs;
3692         }
3693       }
3694     }
3695   }
3696 
3697   LLVM_DEBUG(dbgs() << "    Separable = ");
3698   LLVM_DEBUG(dumpSmallBitVector(Separable));
3699   LLVM_DEBUG(dbgs() << "    Coupled = ");
3700   LLVM_DEBUG(dumpSmallBitVector(Coupled));
3701 
3702   Constraint NewConstraint;
3703   NewConstraint.setAny(SE);
3704 
3705   // test separable subscripts
3706   for (unsigned SI : Separable.set_bits()) {
3707     LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3708     switch (Pair[SI].Classification) {
3709     case Subscript::ZIV:
3710       LLVM_DEBUG(dbgs() << ", ZIV\n");
3711       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3712         return nullptr;
3713       break;
3714     case Subscript::SIV: {
3715       LLVM_DEBUG(dbgs() << ", SIV\n");
3716       unsigned Level;
3717       const SCEV *SplitIter = nullptr;
3718       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3719                   SplitIter))
3720         return nullptr;
3721       break;
3722     }
3723     case Subscript::RDIV:
3724       LLVM_DEBUG(dbgs() << ", RDIV\n");
3725       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3726         return nullptr;
3727       break;
3728     case Subscript::MIV:
3729       LLVM_DEBUG(dbgs() << ", MIV\n");
3730       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3731         return nullptr;
3732       break;
3733     default:
3734       llvm_unreachable("subscript has unexpected classification");
3735     }
3736   }
3737 
3738   if (Coupled.count()) {
3739     // test coupled subscript groups
3740     LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3741     LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3742     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3743     for (unsigned II = 0; II <= MaxLevels; ++II)
3744       Constraints[II].setAny(SE);
3745     for (unsigned SI : Coupled.set_bits()) {
3746       LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3747       SmallBitVector Group(Pair[SI].Group);
3748       SmallBitVector Sivs(Pairs);
3749       SmallBitVector Mivs(Pairs);
3750       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3751       SmallVector<Subscript *, 4> PairsInGroup;
3752       for (unsigned SJ : Group.set_bits()) {
3753         LLVM_DEBUG(dbgs() << SJ << " ");
3754         if (Pair[SJ].Classification == Subscript::SIV)
3755           Sivs.set(SJ);
3756         else
3757           Mivs.set(SJ);
3758         PairsInGroup.push_back(&Pair[SJ]);
3759       }
3760       unifySubscriptType(PairsInGroup);
3761       LLVM_DEBUG(dbgs() << "}\n");
3762       while (Sivs.any()) {
3763         bool Changed = false;
3764         for (unsigned SJ : Sivs.set_bits()) {
3765           LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3766           // SJ is an SIV subscript that's part of the current coupled group
3767           unsigned Level;
3768           const SCEV *SplitIter = nullptr;
3769           LLVM_DEBUG(dbgs() << "SIV\n");
3770           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3771                       SplitIter))
3772             return nullptr;
3773           ConstrainedLevels.set(Level);
3774           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3775             if (Constraints[Level].isEmpty()) {
3776               ++DeltaIndependence;
3777               return nullptr;
3778             }
3779             Changed = true;
3780           }
3781           Sivs.reset(SJ);
3782         }
3783         if (Changed) {
3784           // propagate, possibly creating new SIVs and ZIVs
3785           LLVM_DEBUG(dbgs() << "    propagating\n");
3786           LLVM_DEBUG(dbgs() << "\tMivs = ");
3787           LLVM_DEBUG(dumpSmallBitVector(Mivs));
3788           for (unsigned SJ : Mivs.set_bits()) {
3789             // SJ is an MIV subscript that's part of the current coupled group
3790             LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3791             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3792                           Constraints, Result.Consistent)) {
3793               LLVM_DEBUG(dbgs() << "\t    Changed\n");
3794               ++DeltaPropagations;
3795               Pair[SJ].Classification =
3796                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3797                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3798                              Pair[SJ].Loops);
3799               switch (Pair[SJ].Classification) {
3800               case Subscript::ZIV:
3801                 LLVM_DEBUG(dbgs() << "ZIV\n");
3802                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3803                   return nullptr;
3804                 Mivs.reset(SJ);
3805                 break;
3806               case Subscript::SIV:
3807                 Sivs.set(SJ);
3808                 Mivs.reset(SJ);
3809                 break;
3810               case Subscript::RDIV:
3811               case Subscript::MIV:
3812                 break;
3813               default:
3814                 llvm_unreachable("bad subscript classification");
3815               }
3816             }
3817           }
3818         }
3819       }
3820 
3821       // test & propagate remaining RDIVs
3822       for (unsigned SJ : Mivs.set_bits()) {
3823         if (Pair[SJ].Classification == Subscript::RDIV) {
3824           LLVM_DEBUG(dbgs() << "RDIV test\n");
3825           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3826             return nullptr;
3827           // I don't yet understand how to propagate RDIV results
3828           Mivs.reset(SJ);
3829         }
3830       }
3831 
3832       // test remaining MIVs
3833       // This code is temporary.
3834       // Better to somehow test all remaining subscripts simultaneously.
3835       for (unsigned SJ : Mivs.set_bits()) {
3836         if (Pair[SJ].Classification == Subscript::MIV) {
3837           LLVM_DEBUG(dbgs() << "MIV test\n");
3838           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3839             return nullptr;
3840         }
3841         else
3842           llvm_unreachable("expected only MIV subscripts at this point");
3843       }
3844 
3845       // update Result.DV from constraint vector
3846       LLVM_DEBUG(dbgs() << "    updating\n");
3847       for (unsigned SJ : ConstrainedLevels.set_bits()) {
3848         if (SJ > CommonLevels)
3849           break;
3850         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3851         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3852           return nullptr;
3853       }
3854     }
3855   }
3856 
3857   // Make sure the Scalar flags are set correctly.
3858   SmallBitVector CompleteLoops(MaxLevels + 1);
3859   for (unsigned SI = 0; SI < Pairs; ++SI)
3860     CompleteLoops |= Pair[SI].Loops;
3861   for (unsigned II = 1; II <= CommonLevels; ++II)
3862     if (CompleteLoops[II])
3863       Result.DV[II - 1].Scalar = false;
3864 
3865   if (PossiblyLoopIndependent) {
3866     // Make sure the LoopIndependent flag is set correctly.
3867     // All directions must include equal, otherwise no
3868     // loop-independent dependence is possible.
3869     for (unsigned II = 1; II <= CommonLevels; ++II) {
3870       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3871         Result.LoopIndependent = false;
3872         break;
3873       }
3874     }
3875   }
3876   else {
3877     // On the other hand, if all directions are equal and there's no
3878     // loop-independent dependence possible, then no dependence exists.
3879     bool AllEqual = true;
3880     for (unsigned II = 1; II <= CommonLevels; ++II) {
3881       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3882         AllEqual = false;
3883         break;
3884       }
3885     }
3886     if (AllEqual)
3887       return nullptr;
3888   }
3889 
3890   return std::make_unique<FullDependence>(std::move(Result));
3891 }
3892 
3893 //===----------------------------------------------------------------------===//
3894 // getSplitIteration -
3895 // Rather than spend rarely-used space recording the splitting iteration
3896 // during the Weak-Crossing SIV test, we re-compute it on demand.
3897 // The re-computation is basically a repeat of the entire dependence test,
3898 // though simplified since we know that the dependence exists.
3899 // It's tedious, since we must go through all propagations, etc.
3900 //
3901 // Care is required to keep this code up to date with respect to the routine
3902 // above, depends().
3903 //
3904 // Generally, the dependence analyzer will be used to build
3905 // a dependence graph for a function (basically a map from instructions
3906 // to dependences). Looking for cycles in the graph shows us loops
3907 // that cannot be trivially vectorized/parallelized.
3908 //
3909 // We can try to improve the situation by examining all the dependences
3910 // that make up the cycle, looking for ones we can break.
3911 // Sometimes, peeling the first or last iteration of a loop will break
3912 // dependences, and we've got flags for those possibilities.
3913 // Sometimes, splitting a loop at some other iteration will do the trick,
3914 // and we've got a flag for that case. Rather than waste the space to
3915 // record the exact iteration (since we rarely know), we provide
3916 // a method that calculates the iteration. It's a drag that it must work
3917 // from scratch, but wonderful in that it's possible.
3918 //
3919 // Here's an example:
3920 //
3921 //    for (i = 0; i < 10; i++)
3922 //        A[i] = ...
3923 //        ... = A[11 - i]
3924 //
3925 // There's a loop-carried flow dependence from the store to the load,
3926 // found by the weak-crossing SIV test. The dependence will have a flag,
3927 // indicating that the dependence can be broken by splitting the loop.
3928 // Calling getSplitIteration will return 5.
3929 // Splitting the loop breaks the dependence, like so:
3930 //
3931 //    for (i = 0; i <= 5; i++)
3932 //        A[i] = ...
3933 //        ... = A[11 - i]
3934 //    for (i = 6; i < 10; i++)
3935 //        A[i] = ...
3936 //        ... = A[11 - i]
3937 //
3938 // breaks the dependence and allows us to vectorize/parallelize
3939 // both loops.
3940 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3941                                               unsigned SplitLevel) {
3942   assert(Dep.isSplitable(SplitLevel) &&
3943          "Dep should be splitable at SplitLevel");
3944   Instruction *Src = Dep.getSrc();
3945   Instruction *Dst = Dep.getDst();
3946   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3947   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3948   assert(isLoadOrStore(Src));
3949   assert(isLoadOrStore(Dst));
3950   Value *SrcPtr = getLoadStorePointerOperand(Src);
3951   Value *DstPtr = getLoadStorePointerOperand(Dst);
3952   assert(underlyingObjectsAlias(
3953              AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
3954              MemoryLocation::get(Src)) == AliasResult::MustAlias);
3955 
3956   // establish loop nesting levels
3957   establishNestingLevels(Src, Dst);
3958 
3959   FullDependence Result(Src, Dst, false, CommonLevels);
3960 
3961   unsigned Pairs = 1;
3962   SmallVector<Subscript, 2> Pair(Pairs);
3963   const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3964   const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3965   Pair[0].Src = SrcSCEV;
3966   Pair[0].Dst = DstSCEV;
3967 
3968   if (Delinearize) {
3969     if (tryDelinearize(Src, Dst, Pair)) {
3970       LLVM_DEBUG(dbgs() << "    delinearized\n");
3971       Pairs = Pair.size();
3972     }
3973   }
3974 
3975   for (unsigned P = 0; P < Pairs; ++P) {
3976     Pair[P].Loops.resize(MaxLevels + 1);
3977     Pair[P].GroupLoops.resize(MaxLevels + 1);
3978     Pair[P].Group.resize(Pairs);
3979     removeMatchingExtensions(&Pair[P]);
3980     Pair[P].Classification =
3981       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3982                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3983                    Pair[P].Loops);
3984     Pair[P].GroupLoops = Pair[P].Loops;
3985     Pair[P].Group.set(P);
3986   }
3987 
3988   SmallBitVector Separable(Pairs);
3989   SmallBitVector Coupled(Pairs);
3990 
3991   // partition subscripts into separable and minimally-coupled groups
3992   for (unsigned SI = 0; SI < Pairs; ++SI) {
3993     if (Pair[SI].Classification == Subscript::NonLinear) {
3994       // ignore these, but collect loops for later
3995       collectCommonLoops(Pair[SI].Src,
3996                          LI->getLoopFor(Src->getParent()),
3997                          Pair[SI].Loops);
3998       collectCommonLoops(Pair[SI].Dst,
3999                          LI->getLoopFor(Dst->getParent()),
4000                          Pair[SI].Loops);
4001       Result.Consistent = false;
4002     }
4003     else if (Pair[SI].Classification == Subscript::ZIV)
4004       Separable.set(SI);
4005     else {
4006       // SIV, RDIV, or MIV, so check for coupled group
4007       bool Done = true;
4008       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
4009         SmallBitVector Intersection = Pair[SI].GroupLoops;
4010         Intersection &= Pair[SJ].GroupLoops;
4011         if (Intersection.any()) {
4012           // accumulate set of all the loops in group
4013           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
4014           // accumulate set of all subscripts in group
4015           Pair[SJ].Group |= Pair[SI].Group;
4016           Done = false;
4017         }
4018       }
4019       if (Done) {
4020         if (Pair[SI].Group.count() == 1)
4021           Separable.set(SI);
4022         else
4023           Coupled.set(SI);
4024       }
4025     }
4026   }
4027 
4028   Constraint NewConstraint;
4029   NewConstraint.setAny(SE);
4030 
4031   // test separable subscripts
4032   for (unsigned SI : Separable.set_bits()) {
4033     switch (Pair[SI].Classification) {
4034     case Subscript::SIV: {
4035       unsigned Level;
4036       const SCEV *SplitIter = nullptr;
4037       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4038                      Result, NewConstraint, SplitIter);
4039       if (Level == SplitLevel) {
4040         assert(SplitIter != nullptr);
4041         return SplitIter;
4042       }
4043       break;
4044     }
4045     case Subscript::ZIV:
4046     case Subscript::RDIV:
4047     case Subscript::MIV:
4048       break;
4049     default:
4050       llvm_unreachable("subscript has unexpected classification");
4051     }
4052   }
4053 
4054   if (Coupled.count()) {
4055     // test coupled subscript groups
4056     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4057     for (unsigned II = 0; II <= MaxLevels; ++II)
4058       Constraints[II].setAny(SE);
4059     for (unsigned SI : Coupled.set_bits()) {
4060       SmallBitVector Group(Pair[SI].Group);
4061       SmallBitVector Sivs(Pairs);
4062       SmallBitVector Mivs(Pairs);
4063       SmallBitVector ConstrainedLevels(MaxLevels + 1);
4064       for (unsigned SJ : Group.set_bits()) {
4065         if (Pair[SJ].Classification == Subscript::SIV)
4066           Sivs.set(SJ);
4067         else
4068           Mivs.set(SJ);
4069       }
4070       while (Sivs.any()) {
4071         bool Changed = false;
4072         for (unsigned SJ : Sivs.set_bits()) {
4073           // SJ is an SIV subscript that's part of the current coupled group
4074           unsigned Level;
4075           const SCEV *SplitIter = nullptr;
4076           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4077                          Result, NewConstraint, SplitIter);
4078           if (Level == SplitLevel && SplitIter)
4079             return SplitIter;
4080           ConstrainedLevels.set(Level);
4081           if (intersectConstraints(&Constraints[Level], &NewConstraint))
4082             Changed = true;
4083           Sivs.reset(SJ);
4084         }
4085         if (Changed) {
4086           // propagate, possibly creating new SIVs and ZIVs
4087           for (unsigned SJ : Mivs.set_bits()) {
4088             // SJ is an MIV subscript that's part of the current coupled group
4089             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4090                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
4091               Pair[SJ].Classification =
4092                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4093                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4094                              Pair[SJ].Loops);
4095               switch (Pair[SJ].Classification) {
4096               case Subscript::ZIV:
4097                 Mivs.reset(SJ);
4098                 break;
4099               case Subscript::SIV:
4100                 Sivs.set(SJ);
4101                 Mivs.reset(SJ);
4102                 break;
4103               case Subscript::RDIV:
4104               case Subscript::MIV:
4105                 break;
4106               default:
4107                 llvm_unreachable("bad subscript classification");
4108               }
4109             }
4110           }
4111         }
4112       }
4113     }
4114   }
4115   llvm_unreachable("somehow reached end of routine");
4116   return nullptr;
4117 }
4118