1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/IVDescriptors.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ValueHandle.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/KnownBits.h"
36 
37 using namespace llvm;
38 using namespace llvm::PatternMatch;
39 
40 #define DEBUG_TYPE "iv-descriptors"
41 
42 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
43                                         SmallPtrSetImpl<Instruction *> &Set) {
44   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
45     if (!Set.count(dyn_cast<Instruction>(*Use)))
46       return false;
47   return true;
48 }
49 
50 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
51   switch (Kind) {
52   default:
53     break;
54   case RK_IntegerAdd:
55   case RK_IntegerMult:
56   case RK_IntegerOr:
57   case RK_IntegerAnd:
58   case RK_IntegerXor:
59   case RK_IntegerMinMax:
60     return true;
61   }
62   return false;
63 }
64 
65 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
66   return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
67 }
68 
69 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
70   switch (Kind) {
71   default:
72     break;
73   case RK_IntegerAdd:
74   case RK_IntegerMult:
75   case RK_FloatAdd:
76   case RK_FloatMult:
77     return true;
78   }
79   return false;
80 }
81 
82 /// Determines if Phi may have been type-promoted. If Phi has a single user
83 /// that ANDs the Phi with a type mask, return the user. RT is updated to
84 /// account for the narrower bit width represented by the mask, and the AND
85 /// instruction is added to CI.
86 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
87                                    SmallPtrSetImpl<Instruction *> &Visited,
88                                    SmallPtrSetImpl<Instruction *> &CI) {
89   if (!Phi->hasOneUse())
90     return Phi;
91 
92   const APInt *M = nullptr;
93   Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
94 
95   // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
96   // with a new integer type of the corresponding bit width.
97   if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
98     int32_t Bits = (*M + 1).exactLogBase2();
99     if (Bits > 0) {
100       RT = IntegerType::get(Phi->getContext(), Bits);
101       Visited.insert(Phi);
102       CI.insert(J);
103       return J;
104     }
105   }
106   return Phi;
107 }
108 
109 /// Compute the minimal bit width needed to represent a reduction whose exit
110 /// instruction is given by Exit.
111 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
112                                                      DemandedBits *DB,
113                                                      AssumptionCache *AC,
114                                                      DominatorTree *DT) {
115   bool IsSigned = false;
116   const DataLayout &DL = Exit->getModule()->getDataLayout();
117   uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
118 
119   if (DB) {
120     // Use the demanded bits analysis to determine the bits that are live out
121     // of the exit instruction, rounding up to the nearest power of two. If the
122     // use of demanded bits results in a smaller bit width, we know the value
123     // must be positive (i.e., IsSigned = false), because if this were not the
124     // case, the sign bit would have been demanded.
125     auto Mask = DB->getDemandedBits(Exit);
126     MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
127   }
128 
129   if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
130     // If demanded bits wasn't able to limit the bit width, we can try to use
131     // value tracking instead. This can be the case, for example, if the value
132     // may be negative.
133     auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
134     auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
135     MaxBitWidth = NumTypeBits - NumSignBits;
136     KnownBits Bits = computeKnownBits(Exit, DL);
137     if (!Bits.isNonNegative()) {
138       // If the value is not known to be non-negative, we set IsSigned to true,
139       // meaning that we will use sext instructions instead of zext
140       // instructions to restore the original type.
141       IsSigned = true;
142       if (!Bits.isNegative())
143         // If the value is not known to be negative, we don't known what the
144         // upper bit is, and therefore, we don't know what kind of extend we
145         // will need. In this case, just increase the bit width by one bit and
146         // use sext.
147         ++MaxBitWidth;
148     }
149   }
150   if (!isPowerOf2_64(MaxBitWidth))
151     MaxBitWidth = NextPowerOf2(MaxBitWidth);
152 
153   return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
154                         IsSigned);
155 }
156 
157 /// Collect cast instructions that can be ignored in the vectorizer's cost
158 /// model, given a reduction exit value and the minimal type in which the
159 /// reduction can be represented.
160 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
161                                  Type *RecurrenceType,
162                                  SmallPtrSetImpl<Instruction *> &Casts) {
163 
164   SmallVector<Instruction *, 8> Worklist;
165   SmallPtrSet<Instruction *, 8> Visited;
166   Worklist.push_back(Exit);
167 
168   while (!Worklist.empty()) {
169     Instruction *Val = Worklist.pop_back_val();
170     Visited.insert(Val);
171     if (auto *Cast = dyn_cast<CastInst>(Val))
172       if (Cast->getSrcTy() == RecurrenceType) {
173         // If the source type of a cast instruction is equal to the recurrence
174         // type, it will be eliminated, and should be ignored in the vectorizer
175         // cost model.
176         Casts.insert(Cast);
177         continue;
178       }
179 
180     // Add all operands to the work list if they are loop-varying values that
181     // we haven't yet visited.
182     for (Value *O : cast<User>(Val)->operands())
183       if (auto *I = dyn_cast<Instruction>(O))
184         if (TheLoop->contains(I) && !Visited.count(I))
185           Worklist.push_back(I);
186   }
187 }
188 
189 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
190                                            Loop *TheLoop, bool HasFunNoNaNAttr,
191                                            RecurrenceDescriptor &RedDes,
192                                            DemandedBits *DB,
193                                            AssumptionCache *AC,
194                                            DominatorTree *DT) {
195   if (Phi->getNumIncomingValues() != 2)
196     return false;
197 
198   // Reduction variables are only found in the loop header block.
199   if (Phi->getParent() != TheLoop->getHeader())
200     return false;
201 
202   // Obtain the reduction start value from the value that comes from the loop
203   // preheader.
204   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
205 
206   // ExitInstruction is the single value which is used outside the loop.
207   // We only allow for a single reduction value to be used outside the loop.
208   // This includes users of the reduction, variables (which form a cycle
209   // which ends in the phi node).
210   Instruction *ExitInstruction = nullptr;
211   // Indicates that we found a reduction operation in our scan.
212   bool FoundReduxOp = false;
213 
214   // We start with the PHI node and scan for all of the users of this
215   // instruction. All users must be instructions that can be used as reduction
216   // variables (such as ADD). We must have a single out-of-block user. The cycle
217   // must include the original PHI.
218   bool FoundStartPHI = false;
219 
220   // To recognize min/max patterns formed by a icmp select sequence, we store
221   // the number of instruction we saw from the recognized min/max pattern,
222   //  to make sure we only see exactly the two instructions.
223   unsigned NumCmpSelectPatternInst = 0;
224   InstDesc ReduxDesc(false, nullptr);
225 
226   // Data used for determining if the recurrence has been type-promoted.
227   Type *RecurrenceType = Phi->getType();
228   SmallPtrSet<Instruction *, 4> CastInsts;
229   Instruction *Start = Phi;
230   bool IsSigned = false;
231 
232   SmallPtrSet<Instruction *, 8> VisitedInsts;
233   SmallVector<Instruction *, 8> Worklist;
234 
235   // Return early if the recurrence kind does not match the type of Phi. If the
236   // recurrence kind is arithmetic, we attempt to look through AND operations
237   // resulting from the type promotion performed by InstCombine.  Vector
238   // operations are not limited to the legal integer widths, so we may be able
239   // to evaluate the reduction in the narrower width.
240   if (RecurrenceType->isFloatingPointTy()) {
241     if (!isFloatingPointRecurrenceKind(Kind))
242       return false;
243   } else {
244     if (!isIntegerRecurrenceKind(Kind))
245       return false;
246     if (isArithmeticRecurrenceKind(Kind))
247       Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
248   }
249 
250   Worklist.push_back(Start);
251   VisitedInsts.insert(Start);
252 
253   // Start with all flags set because we will intersect this with the reduction
254   // flags from all the reduction operations.
255   FastMathFlags FMF = FastMathFlags::getFast();
256 
257   // A value in the reduction can be used:
258   //  - By the reduction:
259   //      - Reduction operation:
260   //        - One use of reduction value (safe).
261   //        - Multiple use of reduction value (not safe).
262   //      - PHI:
263   //        - All uses of the PHI must be the reduction (safe).
264   //        - Otherwise, not safe.
265   //  - By instructions outside of the loop (safe).
266   //      * One value may have several outside users, but all outside
267   //        uses must be of the same value.
268   //  - By an instruction that is not part of the reduction (not safe).
269   //    This is either:
270   //      * An instruction type other than PHI or the reduction operation.
271   //      * A PHI in the header other than the initial PHI.
272   while (!Worklist.empty()) {
273     Instruction *Cur = Worklist.back();
274     Worklist.pop_back();
275 
276     // No Users.
277     // If the instruction has no users then this is a broken chain and can't be
278     // a reduction variable.
279     if (Cur->use_empty())
280       return false;
281 
282     bool IsAPhi = isa<PHINode>(Cur);
283 
284     // A header PHI use other than the original PHI.
285     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
286       return false;
287 
288     // Reductions of instructions such as Div, and Sub is only possible if the
289     // LHS is the reduction variable.
290     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
291         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
292         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
293       return false;
294 
295     // Any reduction instruction must be of one of the allowed kinds. We ignore
296     // the starting value (the Phi or an AND instruction if the Phi has been
297     // type-promoted).
298     if (Cur != Start) {
299       ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
300       if (!ReduxDesc.isRecurrence())
301         return false;
302       // FIXME: FMF is allowed on phi, but propagation is not handled correctly.
303       if (isa<FPMathOperator>(ReduxDesc.getPatternInst()) && !IsAPhi)
304         FMF &= ReduxDesc.getPatternInst()->getFastMathFlags();
305     }
306 
307     bool IsASelect = isa<SelectInst>(Cur);
308 
309     // A conditional reduction operation must only have 2 or less uses in
310     // VisitedInsts.
311     if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
312         hasMultipleUsesOf(Cur, VisitedInsts, 2))
313       return false;
314 
315     // A reduction operation must only have one use of the reduction value.
316     if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
317         Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
318       return false;
319 
320     // All inputs to a PHI node must be a reduction value.
321     if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
322       return false;
323 
324     if (Kind == RK_IntegerMinMax &&
325         (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
326       ++NumCmpSelectPatternInst;
327     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
328       ++NumCmpSelectPatternInst;
329 
330     // Check  whether we found a reduction operator.
331     FoundReduxOp |= !IsAPhi && Cur != Start;
332 
333     // Process users of current instruction. Push non-PHI nodes after PHI nodes
334     // onto the stack. This way we are going to have seen all inputs to PHI
335     // nodes once we get to them.
336     SmallVector<Instruction *, 8> NonPHIs;
337     SmallVector<Instruction *, 8> PHIs;
338     for (User *U : Cur->users()) {
339       Instruction *UI = cast<Instruction>(U);
340 
341       // Check if we found the exit user.
342       BasicBlock *Parent = UI->getParent();
343       if (!TheLoop->contains(Parent)) {
344         // If we already know this instruction is used externally, move on to
345         // the next user.
346         if (ExitInstruction == Cur)
347           continue;
348 
349         // Exit if you find multiple values used outside or if the header phi
350         // node is being used. In this case the user uses the value of the
351         // previous iteration, in which case we would loose "VF-1" iterations of
352         // the reduction operation if we vectorize.
353         if (ExitInstruction != nullptr || Cur == Phi)
354           return false;
355 
356         // The instruction used by an outside user must be the last instruction
357         // before we feed back to the reduction phi. Otherwise, we loose VF-1
358         // operations on the value.
359         if (!is_contained(Phi->operands(), Cur))
360           return false;
361 
362         ExitInstruction = Cur;
363         continue;
364       }
365 
366       // Process instructions only once (termination). Each reduction cycle
367       // value must only be used once, except by phi nodes and min/max
368       // reductions which are represented as a cmp followed by a select.
369       InstDesc IgnoredVal(false, nullptr);
370       if (VisitedInsts.insert(UI).second) {
371         if (isa<PHINode>(UI))
372           PHIs.push_back(UI);
373         else
374           NonPHIs.push_back(UI);
375       } else if (!isa<PHINode>(UI) &&
376                  ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
377                    !isa<SelectInst>(UI)) ||
378                   (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
379                    !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
380         return false;
381 
382       // Remember that we completed the cycle.
383       if (UI == Phi)
384         FoundStartPHI = true;
385     }
386     Worklist.append(PHIs.begin(), PHIs.end());
387     Worklist.append(NonPHIs.begin(), NonPHIs.end());
388   }
389 
390   // This means we have seen one but not the other instruction of the
391   // pattern or more than just a select and cmp.
392   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
393       NumCmpSelectPatternInst != 2)
394     return false;
395 
396   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
397     return false;
398 
399   if (Start != Phi) {
400     // If the starting value is not the same as the phi node, we speculatively
401     // looked through an 'and' instruction when evaluating a potential
402     // arithmetic reduction to determine if it may have been type-promoted.
403     //
404     // We now compute the minimal bit width that is required to represent the
405     // reduction. If this is the same width that was indicated by the 'and', we
406     // can represent the reduction in the smaller type. The 'and' instruction
407     // will be eliminated since it will essentially be a cast instruction that
408     // can be ignore in the cost model. If we compute a different type than we
409     // did when evaluating the 'and', the 'and' will not be eliminated, and we
410     // will end up with different kinds of operations in the recurrence
411     // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
412     // the case.
413     //
414     // The vectorizer relies on InstCombine to perform the actual
415     // type-shrinking. It does this by inserting instructions to truncate the
416     // exit value of the reduction to the width indicated by RecurrenceType and
417     // then extend this value back to the original width. If IsSigned is false,
418     // a 'zext' instruction will be generated; otherwise, a 'sext' will be
419     // used.
420     //
421     // TODO: We should not rely on InstCombine to rewrite the reduction in the
422     //       smaller type. We should just generate a correctly typed expression
423     //       to begin with.
424     Type *ComputedType;
425     std::tie(ComputedType, IsSigned) =
426         computeRecurrenceType(ExitInstruction, DB, AC, DT);
427     if (ComputedType != RecurrenceType)
428       return false;
429 
430     // The recurrence expression will be represented in a narrower type. If
431     // there are any cast instructions that will be unnecessary, collect them
432     // in CastInsts. Note that the 'and' instruction was already included in
433     // this list.
434     //
435     // TODO: A better way to represent this may be to tag in some way all the
436     //       instructions that are a part of the reduction. The vectorizer cost
437     //       model could then apply the recurrence type to these instructions,
438     //       without needing a white list of instructions to ignore.
439     collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
440   }
441 
442   // We found a reduction var if we have reached the original phi node and we
443   // only have a single instruction with out-of-loop users.
444 
445   // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
446   // is saved as part of the RecurrenceDescriptor.
447 
448   // Save the description of this reduction variable.
449   RecurrenceDescriptor RD(
450       RdxStart, ExitInstruction, Kind, FMF, ReduxDesc.getMinMaxKind(),
451       ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
452   RedDes = RD;
453 
454   return true;
455 }
456 
457 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
458 /// pattern corresponding to a min(X, Y) or max(X, Y).
459 RecurrenceDescriptor::InstDesc
460 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
461 
462   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
463          "Expect a select instruction");
464   Instruction *Cmp = nullptr;
465   SelectInst *Select = nullptr;
466 
467   // We must handle the select(cmp()) as a single instruction. Advance to the
468   // select.
469   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
470     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
471       return InstDesc(false, I);
472     return InstDesc(Select, Prev.getMinMaxKind());
473   }
474 
475   // Only handle single use cases for now.
476   if (!(Select = dyn_cast<SelectInst>(I)))
477     return InstDesc(false, I);
478   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
479       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
480     return InstDesc(false, I);
481   if (!Cmp->hasOneUse())
482     return InstDesc(false, I);
483 
484   Value *CmpLeft;
485   Value *CmpRight;
486 
487   // Look for a min/max pattern.
488   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
489     return InstDesc(Select, MRK_UIntMin);
490   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
491     return InstDesc(Select, MRK_UIntMax);
492   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
493     return InstDesc(Select, MRK_SIntMax);
494   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
495     return InstDesc(Select, MRK_SIntMin);
496   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
497     return InstDesc(Select, MRK_FloatMin);
498   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
499     return InstDesc(Select, MRK_FloatMax);
500   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
501     return InstDesc(Select, MRK_FloatMin);
502   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
503     return InstDesc(Select, MRK_FloatMax);
504 
505   return InstDesc(false, I);
506 }
507 
508 /// Returns true if the select instruction has users in the compare-and-add
509 /// reduction pattern below. The select instruction argument is the last one
510 /// in the sequence.
511 ///
512 /// %sum.1 = phi ...
513 /// ...
514 /// %cmp = fcmp pred %0, %CFP
515 /// %add = fadd %0, %sum.1
516 /// %sum.2 = select %cmp, %add, %sum.1
517 RecurrenceDescriptor::InstDesc
518 RecurrenceDescriptor::isConditionalRdxPattern(
519     RecurrenceKind Kind, Instruction *I) {
520   SelectInst *SI = dyn_cast<SelectInst>(I);
521   if (!SI)
522     return InstDesc(false, I);
523 
524   CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
525   // Only handle single use cases for now.
526   if (!CI || !CI->hasOneUse())
527     return InstDesc(false, I);
528 
529   Value *TrueVal = SI->getTrueValue();
530   Value *FalseVal = SI->getFalseValue();
531   // Handle only when either of operands of select instruction is a PHI
532   // node for now.
533   if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
534       (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
535     return InstDesc(false, I);
536 
537   Instruction *I1 =
538       isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
539                              : dyn_cast<Instruction>(TrueVal);
540   if (!I1 || !I1->isBinaryOp())
541     return InstDesc(false, I);
542 
543   Value *Op1, *Op2;
544   if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1)  ||
545        m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
546       I1->isFast())
547     return InstDesc(Kind == RK_FloatAdd, SI);
548 
549   if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
550     return InstDesc(Kind == RK_FloatMult, SI);
551 
552   return InstDesc(false, I);
553 }
554 
555 RecurrenceDescriptor::InstDesc
556 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
557                                         InstDesc &Prev, bool HasFunNoNaNAttr) {
558   Instruction *UAI = Prev.getUnsafeAlgebraInst();
559   if (!UAI && isa<FPMathOperator>(I) && !I->hasAllowReassoc())
560     UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
561 
562   switch (I->getOpcode()) {
563   default:
564     return InstDesc(false, I);
565   case Instruction::PHI:
566     return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
567   case Instruction::Sub:
568   case Instruction::Add:
569     return InstDesc(Kind == RK_IntegerAdd, I);
570   case Instruction::Mul:
571     return InstDesc(Kind == RK_IntegerMult, I);
572   case Instruction::And:
573     return InstDesc(Kind == RK_IntegerAnd, I);
574   case Instruction::Or:
575     return InstDesc(Kind == RK_IntegerOr, I);
576   case Instruction::Xor:
577     return InstDesc(Kind == RK_IntegerXor, I);
578   case Instruction::FMul:
579     return InstDesc(Kind == RK_FloatMult, I, UAI);
580   case Instruction::FSub:
581   case Instruction::FAdd:
582     return InstDesc(Kind == RK_FloatAdd, I, UAI);
583   case Instruction::Select:
584     if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
585       return isConditionalRdxPattern(Kind, I);
586     LLVM_FALLTHROUGH;
587   case Instruction::FCmp:
588   case Instruction::ICmp:
589     if (Kind != RK_IntegerMinMax &&
590         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
591       return InstDesc(false, I);
592     return isMinMaxSelectCmpPattern(I, Prev);
593   }
594 }
595 
596 bool RecurrenceDescriptor::hasMultipleUsesOf(
597     Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
598     unsigned MaxNumUses) {
599   unsigned NumUses = 0;
600   for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
601        ++Use) {
602     if (Insts.count(dyn_cast<Instruction>(*Use)))
603       ++NumUses;
604     if (NumUses > MaxNumUses)
605       return true;
606   }
607 
608   return false;
609 }
610 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
611                                           RecurrenceDescriptor &RedDes,
612                                           DemandedBits *DB, AssumptionCache *AC,
613                                           DominatorTree *DT) {
614 
615   BasicBlock *Header = TheLoop->getHeader();
616   Function &F = *Header->getParent();
617   bool HasFunNoNaNAttr =
618       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
619 
620   if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
621                       AC, DT)) {
622     LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
623     return true;
624   }
625   if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
626                       AC, DT)) {
627     LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
628     return true;
629   }
630   if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
631                       AC, DT)) {
632     LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
633     return true;
634   }
635   if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
636                       AC, DT)) {
637     LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
638     return true;
639   }
640   if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
641                       AC, DT)) {
642     LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
643     return true;
644   }
645   if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
646                       DB, AC, DT)) {
647     LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
648     return true;
649   }
650   if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
651                       AC, DT)) {
652     LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
653     return true;
654   }
655   if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
656                       AC, DT)) {
657     LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
658     return true;
659   }
660   if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
661                       AC, DT)) {
662     LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
663                       << "\n");
664     return true;
665   }
666   // Not a reduction of known type.
667   return false;
668 }
669 
670 bool RecurrenceDescriptor::isFirstOrderRecurrence(
671     PHINode *Phi, Loop *TheLoop,
672     DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
673 
674   // Ensure the phi node is in the loop header and has two incoming values.
675   if (Phi->getParent() != TheLoop->getHeader() ||
676       Phi->getNumIncomingValues() != 2)
677     return false;
678 
679   // Ensure the loop has a preheader and a single latch block. The loop
680   // vectorizer will need the latch to set up the next iteration of the loop.
681   auto *Preheader = TheLoop->getLoopPreheader();
682   auto *Latch = TheLoop->getLoopLatch();
683   if (!Preheader || !Latch)
684     return false;
685 
686   // Ensure the phi node's incoming blocks are the loop preheader and latch.
687   if (Phi->getBasicBlockIndex(Preheader) < 0 ||
688       Phi->getBasicBlockIndex(Latch) < 0)
689     return false;
690 
691   // Get the previous value. The previous value comes from the latch edge while
692   // the initial value comes form the preheader edge.
693   auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
694   if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
695       SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
696     return false;
697 
698   // Ensure every user of the phi node is dominated by the previous value.
699   // The dominance requirement ensures the loop vectorizer will not need to
700   // vectorize the initial value prior to the first iteration of the loop.
701   // TODO: Consider extending this sinking to handle memory instructions and
702   // phis with multiple users.
703 
704   // Returns true, if all users of I are dominated by DominatedBy.
705   auto allUsesDominatedBy = [DT](Instruction *I, Instruction *DominatedBy) {
706     return all_of(I->uses(), [DT, DominatedBy](Use &U) {
707       return DT->dominates(DominatedBy, U);
708     });
709   };
710 
711   if (Phi->hasOneUse()) {
712     Instruction *I = Phi->user_back();
713 
714     // If the user of the PHI is also the incoming value, we potentially have a
715     // reduction and which cannot be handled by sinking.
716     if (Previous == I)
717       return false;
718 
719     // We cannot sink terminator instructions.
720     if (I->getParent()->getTerminator() == I)
721       return false;
722 
723     // Do not try to sink an instruction multiple times (if multiple operands
724     // are first order recurrences).
725     // TODO: We can support this case, by sinking the instruction after the
726     // 'deepest' previous instruction.
727     if (SinkAfter.find(I) != SinkAfter.end())
728       return false;
729 
730     if (DT->dominates(Previous, I)) // We already are good w/o sinking.
731       return true;
732 
733     // We can sink any instruction without side effects, as long as all users
734     // are dominated by the instruction we are sinking after.
735     if (I->getParent() == Phi->getParent() && !I->mayHaveSideEffects() &&
736         allUsesDominatedBy(I, Previous)) {
737       SinkAfter[I] = Previous;
738       return true;
739     }
740   }
741 
742   return allUsesDominatedBy(Phi, Previous);
743 }
744 
745 /// This function returns the identity element (or neutral element) for
746 /// the operation K.
747 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
748                                                       Type *Tp) {
749   switch (K) {
750   case RK_IntegerXor:
751   case RK_IntegerAdd:
752   case RK_IntegerOr:
753     // Adding, Xoring, Oring zero to a number does not change it.
754     return ConstantInt::get(Tp, 0);
755   case RK_IntegerMult:
756     // Multiplying a number by 1 does not change it.
757     return ConstantInt::get(Tp, 1);
758   case RK_IntegerAnd:
759     // AND-ing a number with an all-1 value does not change it.
760     return ConstantInt::get(Tp, -1, true);
761   case RK_FloatMult:
762     // Multiplying a number by 1 does not change it.
763     return ConstantFP::get(Tp, 1.0L);
764   case RK_FloatAdd:
765     // Adding zero to a number does not change it.
766     return ConstantFP::get(Tp, 0.0L);
767   default:
768     llvm_unreachable("Unknown recurrence kind");
769   }
770 }
771 
772 /// This function translates the recurrence kind to an LLVM binary operator.
773 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
774   switch (Kind) {
775   case RK_IntegerAdd:
776     return Instruction::Add;
777   case RK_IntegerMult:
778     return Instruction::Mul;
779   case RK_IntegerOr:
780     return Instruction::Or;
781   case RK_IntegerAnd:
782     return Instruction::And;
783   case RK_IntegerXor:
784     return Instruction::Xor;
785   case RK_FloatMult:
786     return Instruction::FMul;
787   case RK_FloatAdd:
788     return Instruction::FAdd;
789   case RK_IntegerMinMax:
790     return Instruction::ICmp;
791   case RK_FloatMinMax:
792     return Instruction::FCmp;
793   default:
794     llvm_unreachable("Unknown recurrence operation");
795   }
796 }
797 
798 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
799                                          const SCEV *Step, BinaryOperator *BOp,
800                                          SmallVectorImpl<Instruction *> *Casts)
801     : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
802   assert(IK != IK_NoInduction && "Not an induction");
803 
804   // Start value type should match the induction kind and the value
805   // itself should not be null.
806   assert(StartValue && "StartValue is null");
807   assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
808          "StartValue is not a pointer for pointer induction");
809   assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
810          "StartValue is not an integer for integer induction");
811 
812   // Check the Step Value. It should be non-zero integer value.
813   assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
814          "Step value is zero");
815 
816   assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
817          "Step value should be constant for pointer induction");
818   assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
819          "StepValue is not an integer");
820 
821   assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
822          "StepValue is not FP for FpInduction");
823   assert((IK != IK_FpInduction ||
824           (InductionBinOp &&
825            (InductionBinOp->getOpcode() == Instruction::FAdd ||
826             InductionBinOp->getOpcode() == Instruction::FSub))) &&
827          "Binary opcode should be specified for FP induction");
828 
829   if (Casts) {
830     for (auto &Inst : *Casts) {
831       RedundantCasts.push_back(Inst);
832     }
833   }
834 }
835 
836 int InductionDescriptor::getConsecutiveDirection() const {
837   ConstantInt *ConstStep = getConstIntStepValue();
838   if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
839     return ConstStep->getSExtValue();
840   return 0;
841 }
842 
843 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
844   if (isa<SCEVConstant>(Step))
845     return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
846   return nullptr;
847 }
848 
849 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
850                                            ScalarEvolution *SE,
851                                            InductionDescriptor &D) {
852 
853   // Here we only handle FP induction variables.
854   assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
855 
856   if (TheLoop->getHeader() != Phi->getParent())
857     return false;
858 
859   // The loop may have multiple entrances or multiple exits; we can analyze
860   // this phi if it has a unique entry value and a unique backedge value.
861   if (Phi->getNumIncomingValues() != 2)
862     return false;
863   Value *BEValue = nullptr, *StartValue = nullptr;
864   if (TheLoop->contains(Phi->getIncomingBlock(0))) {
865     BEValue = Phi->getIncomingValue(0);
866     StartValue = Phi->getIncomingValue(1);
867   } else {
868     assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
869            "Unexpected Phi node in the loop");
870     BEValue = Phi->getIncomingValue(1);
871     StartValue = Phi->getIncomingValue(0);
872   }
873 
874   BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
875   if (!BOp)
876     return false;
877 
878   Value *Addend = nullptr;
879   if (BOp->getOpcode() == Instruction::FAdd) {
880     if (BOp->getOperand(0) == Phi)
881       Addend = BOp->getOperand(1);
882     else if (BOp->getOperand(1) == Phi)
883       Addend = BOp->getOperand(0);
884   } else if (BOp->getOpcode() == Instruction::FSub)
885     if (BOp->getOperand(0) == Phi)
886       Addend = BOp->getOperand(1);
887 
888   if (!Addend)
889     return false;
890 
891   // The addend should be loop invariant
892   if (auto *I = dyn_cast<Instruction>(Addend))
893     if (TheLoop->contains(I))
894       return false;
895 
896   // FP Step has unknown SCEV
897   const SCEV *Step = SE->getUnknown(Addend);
898   D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
899   return true;
900 }
901 
902 /// This function is called when we suspect that the update-chain of a phi node
903 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
904 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
905 /// predicate P under which the SCEV expression for the phi can be the
906 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
907 /// cast instructions that are involved in the update-chain of this induction.
908 /// A caller that adds the required runtime predicate can be free to drop these
909 /// cast instructions, and compute the phi using \p AR (instead of some scev
910 /// expression with casts).
911 ///
912 /// For example, without a predicate the scev expression can take the following
913 /// form:
914 ///      (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
915 ///
916 /// It corresponds to the following IR sequence:
917 /// %for.body:
918 ///   %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
919 ///   %casted_phi = "ExtTrunc i64 %x"
920 ///   %add = add i64 %casted_phi, %step
921 ///
922 /// where %x is given in \p PN,
923 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
924 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
925 /// several forms, for example, such as:
926 ///   ExtTrunc1:    %casted_phi = and  %x, 2^n-1
927 /// or:
928 ///   ExtTrunc2:    %t = shl %x, m
929 ///                 %casted_phi = ashr %t, m
930 ///
931 /// If we are able to find such sequence, we return the instructions
932 /// we found, namely %casted_phi and the instructions on its use-def chain up
933 /// to the phi (not including the phi).
934 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
935                                     const SCEVUnknown *PhiScev,
936                                     const SCEVAddRecExpr *AR,
937                                     SmallVectorImpl<Instruction *> &CastInsts) {
938 
939   assert(CastInsts.empty() && "CastInsts is expected to be empty.");
940   auto *PN = cast<PHINode>(PhiScev->getValue());
941   assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
942   const Loop *L = AR->getLoop();
943 
944   // Find any cast instructions that participate in the def-use chain of
945   // PhiScev in the loop.
946   // FORNOW/TODO: We currently expect the def-use chain to include only
947   // two-operand instructions, where one of the operands is an invariant.
948   // createAddRecFromPHIWithCasts() currently does not support anything more
949   // involved than that, so we keep the search simple. This can be
950   // extended/generalized as needed.
951 
952   auto getDef = [&](const Value *Val) -> Value * {
953     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
954     if (!BinOp)
955       return nullptr;
956     Value *Op0 = BinOp->getOperand(0);
957     Value *Op1 = BinOp->getOperand(1);
958     Value *Def = nullptr;
959     if (L->isLoopInvariant(Op0))
960       Def = Op1;
961     else if (L->isLoopInvariant(Op1))
962       Def = Op0;
963     return Def;
964   };
965 
966   // Look for the instruction that defines the induction via the
967   // loop backedge.
968   BasicBlock *Latch = L->getLoopLatch();
969   if (!Latch)
970     return false;
971   Value *Val = PN->getIncomingValueForBlock(Latch);
972   if (!Val)
973     return false;
974 
975   // Follow the def-use chain until the induction phi is reached.
976   // If on the way we encounter a Value that has the same SCEV Expr as the
977   // phi node, we can consider the instructions we visit from that point
978   // as part of the cast-sequence that can be ignored.
979   bool InCastSequence = false;
980   auto *Inst = dyn_cast<Instruction>(Val);
981   while (Val != PN) {
982     // If we encountered a phi node other than PN, or if we left the loop,
983     // we bail out.
984     if (!Inst || !L->contains(Inst)) {
985       return false;
986     }
987     auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
988     if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
989       InCastSequence = true;
990     if (InCastSequence) {
991       // Only the last instruction in the cast sequence is expected to have
992       // uses outside the induction def-use chain.
993       if (!CastInsts.empty())
994         if (!Inst->hasOneUse())
995           return false;
996       CastInsts.push_back(Inst);
997     }
998     Val = getDef(Val);
999     if (!Val)
1000       return false;
1001     Inst = dyn_cast<Instruction>(Val);
1002   }
1003 
1004   return InCastSequence;
1005 }
1006 
1007 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1008                                          PredicatedScalarEvolution &PSE,
1009                                          InductionDescriptor &D, bool Assume) {
1010   Type *PhiTy = Phi->getType();
1011 
1012   // Handle integer and pointer inductions variables.
1013   // Now we handle also FP induction but not trying to make a
1014   // recurrent expression from the PHI node in-place.
1015 
1016   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
1017       !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1018     return false;
1019 
1020   if (PhiTy->isFloatingPointTy())
1021     return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1022 
1023   const SCEV *PhiScev = PSE.getSCEV(Phi);
1024   const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1025 
1026   // We need this expression to be an AddRecExpr.
1027   if (Assume && !AR)
1028     AR = PSE.getAsAddRec(Phi);
1029 
1030   if (!AR) {
1031     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1032     return false;
1033   }
1034 
1035   // Record any Cast instructions that participate in the induction update
1036   const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1037   // If we started from an UnknownSCEV, and managed to build an addRecurrence
1038   // only after enabling Assume with PSCEV, this means we may have encountered
1039   // cast instructions that required adding a runtime check in order to
1040   // guarantee the correctness of the AddRecurrence respresentation of the
1041   // induction.
1042   if (PhiScev != AR && SymbolicPhi) {
1043     SmallVector<Instruction *, 2> Casts;
1044     if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1045       return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1046   }
1047 
1048   return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1049 }
1050 
1051 bool InductionDescriptor::isInductionPHI(
1052     PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1053     InductionDescriptor &D, const SCEV *Expr,
1054     SmallVectorImpl<Instruction *> *CastsToIgnore) {
1055   Type *PhiTy = Phi->getType();
1056   // We only handle integer and pointer inductions variables.
1057   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1058     return false;
1059 
1060   // Check that the PHI is consecutive.
1061   const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1062   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1063 
1064   if (!AR) {
1065     LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1066     return false;
1067   }
1068 
1069   if (AR->getLoop() != TheLoop) {
1070     // FIXME: We should treat this as a uniform. Unfortunately, we
1071     // don't currently know how to handled uniform PHIs.
1072     LLVM_DEBUG(
1073         dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1074     return false;
1075   }
1076 
1077   Value *StartValue =
1078       Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1079 
1080   BasicBlock *Latch = AR->getLoop()->getLoopLatch();
1081   if (!Latch)
1082     return false;
1083   BinaryOperator *BOp =
1084       dyn_cast<BinaryOperator>(Phi->getIncomingValueForBlock(Latch));
1085 
1086   const SCEV *Step = AR->getStepRecurrence(*SE);
1087   // Calculate the pointer stride and check if it is consecutive.
1088   // The stride may be a constant or a loop invariant integer value.
1089   const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1090   if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1091     return false;
1092 
1093   if (PhiTy->isIntegerTy()) {
1094     D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp,
1095                             CastsToIgnore);
1096     return true;
1097   }
1098 
1099   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1100   // Pointer induction should be a constant.
1101   if (!ConstStep)
1102     return false;
1103 
1104   ConstantInt *CV = ConstStep->getValue();
1105   Type *PointerElementType = PhiTy->getPointerElementType();
1106   // The pointer stride cannot be determined if the pointer element type is not
1107   // sized.
1108   if (!PointerElementType->isSized())
1109     return false;
1110 
1111   const DataLayout &DL = Phi->getModule()->getDataLayout();
1112   int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1113   if (!Size)
1114     return false;
1115 
1116   int64_t CVSize = CV->getSExtValue();
1117   if (CVSize % Size)
1118     return false;
1119   auto *StepValue =
1120       SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1121   D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue, BOp);
1122   return true;
1123 }
1124