1 //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements bookkeeping for "interesting" users of expressions
10 // computed from induction variables.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/IVUsers.h"
15 #include "llvm/Analysis/AssumptionCache.h"
16 #include "llvm/Analysis/CodeMetrics.h"
17 #include "llvm/Analysis/LoopAnalysisManager.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/LoopPass.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "iv-users"
33 
34 AnalysisKey IVUsersAnalysis::Key;
35 
36 IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
37                              LoopStandardAnalysisResults &AR) {
38   return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
39 }
40 
41 char IVUsersWrapperPass::ID = 0;
42 INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
43                       "Induction Variable Users", false, true)
44 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
45 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
46 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
47 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
48 INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
49                     false, true)
50 
51 Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
52 
53 /// isInteresting - Test whether the given expression is "interesting" when
54 /// used by the given expression, within the context of analyzing the
55 /// given loop.
56 static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
57                           ScalarEvolution *SE, LoopInfo *LI) {
58   // An addrec is interesting if it's affine or if it has an interesting start.
59   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
60     // Keep things simple. Don't touch loop-variant strides unless they're
61     // only used outside the loop and we can simplify them.
62     if (AR->getLoop() == L)
63       return AR->isAffine() ||
64              (!L->contains(I) &&
65               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
66     // Otherwise recurse to see if the start value is interesting, and that
67     // the step value is not interesting, since we don't yet know how to
68     // do effective SCEV expansions for addrecs with interesting steps.
69     return isInteresting(AR->getStart(), I, L, SE, LI) &&
70           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
71   }
72 
73   // An add is interesting if exactly one of its operands is interesting.
74   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
75     bool AnyInterestingYet = false;
76     for (const auto *Op : Add->operands())
77       if (isInteresting(Op, I, L, SE, LI)) {
78         if (AnyInterestingYet)
79           return false;
80         AnyInterestingYet = true;
81       }
82     return AnyInterestingYet;
83   }
84 
85   // Nothing else is interesting here.
86   return false;
87 }
88 
89 /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
90 /// and now we need to decide whether the user should use the preinc or post-inc
91 /// value.  If this user should use the post-inc version of the IV, return true.
92 ///
93 /// Choosing wrong here can break dominance properties (if we choose to use the
94 /// post-inc value when we cannot) or it can end up adding extra live-ranges to
95 /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
96 /// should use the post-inc value).
97 static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
98                                        const Loop *L, DominatorTree *DT) {
99   // If the user is in the loop, use the preinc value.
100   if (L->contains(User))
101     return false;
102 
103   BasicBlock *LatchBlock = L->getLoopLatch();
104   if (!LatchBlock)
105     return false;
106 
107   // Ok, the user is outside of the loop.  If it is dominated by the latch
108   // block, use the post-inc value.
109   if (DT->dominates(LatchBlock, User->getParent()))
110     return true;
111 
112   // There is one case we have to be careful of: PHI nodes.  These little guys
113   // can live in blocks that are not dominated by the latch block, but (since
114   // their uses occur in the predecessor block, not the block the PHI lives in)
115   // should still use the post-inc value.  Check for this case now.
116   PHINode *PN = dyn_cast<PHINode>(User);
117   if (!PN || !Operand)
118     return false; // not a phi, not dominated by latch block.
119 
120   // Look at all of the uses of Operand by the PHI node.  If any use corresponds
121   // to a block that is not dominated by the latch block, give up and use the
122   // preincremented value.
123   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
124     if (PN->getIncomingValue(i) == Operand &&
125         !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
126       return false;
127 
128   // Okay, all uses of Operand by PN are in predecessor blocks that really are
129   // dominated by the latch block.  Use the post-incremented value.
130   return true;
131 }
132 
133 /// Inspect the specified instruction.  If it is a reducible SCEV, recursively
134 /// add its users to the IVUsesByStride set and return true.  Otherwise, return
135 /// false.
136 bool IVUsers::AddUsersIfInteresting(Instruction *I) {
137   const DataLayout &DL = I->getModule()->getDataLayout();
138 
139   // Add this IV user to the Processed set before returning false to ensure that
140   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
141   if (!Processed.insert(I).second)
142     return true;    // Instruction already handled.
143 
144   if (!SE->isSCEVable(I->getType()))
145     return false;   // Void and FP expressions cannot be reduced.
146 
147   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
148   // pass to SCEVExpander. Expressions are not safe to expand if they represent
149   // operations that are not safe to speculate, namely integer division.
150   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
151     return false;
152 
153   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
154   // Also avoid creating IVs of non-native types. For example, we don't want a
155   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
156   uint64_t Width = SE->getTypeSizeInBits(I->getType());
157   if (Width > 64 || !DL.isLegalInteger(Width))
158     return false;
159 
160   // Don't attempt to promote ephemeral values to indvars. They will be removed
161   // later anyway.
162   if (EphValues.count(I))
163     return false;
164 
165   // Get the symbolic expression for this instruction.
166   const SCEV *ISE = SE->getSCEV(I);
167 
168   // If we've come to an uninteresting expression, stop the traversal and
169   // call this a user.
170   if (!isInteresting(ISE, I, L, SE, LI))
171     return false;
172 
173   SmallPtrSet<Instruction *, 4> UniqueUsers;
174   for (Use &U : I->uses()) {
175     Instruction *User = cast<Instruction>(U.getUser());
176     if (!UniqueUsers.insert(User).second)
177       continue;
178 
179     // Do not infinitely recurse on PHI nodes.
180     if (isa<PHINode>(User) && Processed.count(User))
181       continue;
182 
183     // Descend recursively, but not into PHI nodes outside the current loop.
184     // It's important to see the entire expression outside the loop to get
185     // choices that depend on addressing mode use right, although we won't
186     // consider references outside the loop in all cases.
187     // If User is already in Processed, we don't want to recurse into it again,
188     // but do want to record a second reference in the same instruction.
189     bool AddUserToIVUsers = false;
190     if (LI->getLoopFor(User->getParent()) != L) {
191       if (isa<PHINode>(User) || Processed.count(User) ||
192           !AddUsersIfInteresting(User)) {
193         LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
194                           << "   OF SCEV: " << *ISE << '\n');
195         AddUserToIVUsers = true;
196       }
197     } else if (Processed.count(User) || !AddUsersIfInteresting(User)) {
198       LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
199                         << "   OF SCEV: " << *ISE << '\n');
200       AddUserToIVUsers = true;
201     }
202 
203     if (AddUserToIVUsers) {
204       // Okay, we found a user that we cannot reduce.
205       IVStrideUse &NewUse = AddUser(User, I);
206       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
207       // The regular return value here is discarded; instead of recording
208       // it, we just recompute it when we need it.
209       const SCEV *OriginalISE = ISE;
210 
211       auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
212         auto *L = AR->getLoop();
213         bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
214         if (Result)
215           NewUse.PostIncLoops.insert(L);
216         return Result;
217       };
218 
219       ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
220 
221       // PostIncNormalization effectively simplifies the expression under
222       // pre-increment assumptions. Those assumptions (no wrapping) might not
223       // hold for the post-inc value. Catch such cases by making sure the
224       // transformation is invertible.
225       if (OriginalISE != ISE) {
226         const SCEV *DenormalizedISE =
227             denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
228 
229         // If we normalized the expression, but denormalization doesn't give the
230         // original one, discard this user.
231         if (OriginalISE != DenormalizedISE) {
232           LLVM_DEBUG(dbgs()
233                      << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
234                      << *ISE << '\n');
235           IVUses.pop_back();
236           return false;
237         }
238       }
239       LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs()
240                  << "   NORMALIZED TO: " << *ISE << '\n');
241     }
242   }
243   return true;
244 }
245 
246 IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
247   IVUses.push_back(new IVStrideUse(this, User, Operand));
248   return IVUses.back();
249 }
250 
251 IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
252                  ScalarEvolution *SE)
253     : L(L), AC(AC), LI(LI), DT(DT), SE(SE) {
254   // Collect ephemeral values so that AddUsersIfInteresting skips them.
255   EphValues.clear();
256   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
257 
258   // Find all uses of induction variables in this loop, and categorize
259   // them by stride.  Start by finding all of the PHI nodes in the header for
260   // this loop.  If they are induction variables, inspect their uses.
261   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
262     (void)AddUsersIfInteresting(&*I);
263 }
264 
265 void IVUsers::print(raw_ostream &OS, const Module *M) const {
266   OS << "IV Users for loop ";
267   L->getHeader()->printAsOperand(OS, false);
268   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
269     OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
270   }
271   OS << ":\n";
272 
273   for (const IVStrideUse &IVUse : IVUses) {
274     OS << "  ";
275     IVUse.getOperandValToReplace()->printAsOperand(OS, false);
276     OS << " = " << *getReplacementExpr(IVUse);
277     for (auto PostIncLoop : IVUse.PostIncLoops) {
278       OS << " (post-inc with loop ";
279       PostIncLoop->getHeader()->printAsOperand(OS, false);
280       OS << ")";
281     }
282     OS << " in  ";
283     if (IVUse.getUser())
284       IVUse.getUser()->print(OS);
285     else
286       OS << "Printing <null> User";
287     OS << '\n';
288   }
289 }
290 
291 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
292 LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
293 #endif
294 
295 void IVUsers::releaseMemory() {
296   Processed.clear();
297   IVUses.clear();
298 }
299 
300 IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
301   initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
302 }
303 
304 void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
305   AU.addRequired<AssumptionCacheTracker>();
306   AU.addRequired<LoopInfoWrapperPass>();
307   AU.addRequired<DominatorTreeWrapperPass>();
308   AU.addRequired<ScalarEvolutionWrapperPass>();
309   AU.setPreservesAll();
310 }
311 
312 bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
313   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
314       *L->getHeader()->getParent());
315   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
316   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
317   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
318 
319   IU.reset(new IVUsers(L, AC, LI, DT, SE));
320   return false;
321 }
322 
323 void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
324   IU->print(OS, M);
325 }
326 
327 void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
328 
329 /// getReplacementExpr - Return a SCEV expression which computes the
330 /// value of the OperandValToReplace.
331 const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
332   return SE->getSCEV(IU.getOperandValToReplace());
333 }
334 
335 /// getExpr - Return the expression for the use.
336 const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
337   return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
338                                 *SE);
339 }
340 
341 static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
342   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
343     if (AR->getLoop() == L)
344       return AR;
345     return findAddRecForLoop(AR->getStart(), L);
346   }
347 
348   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
349     for (const auto *Op : Add->operands())
350       if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
351         return AR;
352     return nullptr;
353   }
354 
355   return nullptr;
356 }
357 
358 const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
359   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
360     return AR->getStepRecurrence(*SE);
361   return nullptr;
362 }
363 
364 void IVStrideUse::transformToPostInc(const Loop *L) {
365   PostIncLoops.insert(L);
366 }
367 
368 void IVStrideUse::deleted() {
369   // Remove this user from the list.
370   Parent->Processed.erase(this->getUser());
371   Parent->IVUses.erase(this);
372   // this now dangles!
373 }
374