1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interface for lazy computation of value constraint
10 // information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LazyValueInfo.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/ValueLattice.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/IR/AssemblyAnnotationWriter.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/ValueHandle.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/FormattedStream.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <map>
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 #define DEBUG_TYPE "lazy-value-info"
45 
46 // This is the number of worklist items we will process to try to discover an
47 // answer for a given value.
48 static const unsigned MaxProcessedPerValue = 500;
49 
50 char LazyValueInfoWrapperPass::ID = 0;
51 LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
52   initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
53 }
54 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
55                 "Lazy Value Information Analysis", false, true)
56 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
57 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
58 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
59                 "Lazy Value Information Analysis", false, true)
60 
61 namespace llvm {
62   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
63 }
64 
65 AnalysisKey LazyValueAnalysis::Key;
66 
67 /// Returns true if this lattice value represents at most one possible value.
68 /// This is as precise as any lattice value can get while still representing
69 /// reachable code.
70 static bool hasSingleValue(const ValueLatticeElement &Val) {
71   if (Val.isConstantRange() &&
72       Val.getConstantRange().isSingleElement())
73     // Integer constants are single element ranges
74     return true;
75   if (Val.isConstant())
76     // Non integer constants
77     return true;
78   return false;
79 }
80 
81 /// Combine two sets of facts about the same value into a single set of
82 /// facts.  Note that this method is not suitable for merging facts along
83 /// different paths in a CFG; that's what the mergeIn function is for.  This
84 /// is for merging facts gathered about the same value at the same location
85 /// through two independent means.
86 /// Notes:
87 /// * This method does not promise to return the most precise possible lattice
88 ///   value implied by A and B.  It is allowed to return any lattice element
89 ///   which is at least as strong as *either* A or B (unless our facts
90 ///   conflict, see below).
91 /// * Due to unreachable code, the intersection of two lattice values could be
92 ///   contradictory.  If this happens, we return some valid lattice value so as
93 ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
94 ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
95 static ValueLatticeElement intersect(const ValueLatticeElement &A,
96                                      const ValueLatticeElement &B) {
97   // Undefined is the strongest state.  It means the value is known to be along
98   // an unreachable path.
99   if (A.isUndefined())
100     return A;
101   if (B.isUndefined())
102     return B;
103 
104   // If we gave up for one, but got a useable fact from the other, use it.
105   if (A.isOverdefined())
106     return B;
107   if (B.isOverdefined())
108     return A;
109 
110   // Can't get any more precise than constants.
111   if (hasSingleValue(A))
112     return A;
113   if (hasSingleValue(B))
114     return B;
115 
116   // Could be either constant range or not constant here.
117   if (!A.isConstantRange() || !B.isConstantRange()) {
118     // TODO: Arbitrary choice, could be improved
119     return A;
120   }
121 
122   // Intersect two constant ranges
123   ConstantRange Range =
124     A.getConstantRange().intersectWith(B.getConstantRange());
125   // Note: An empty range is implicitly converted to overdefined internally.
126   // TODO: We could instead use Undefined here since we've proven a conflict
127   // and thus know this path must be unreachable.
128   return ValueLatticeElement::getRange(std::move(Range));
129 }
130 
131 //===----------------------------------------------------------------------===//
132 //                          LazyValueInfoCache Decl
133 //===----------------------------------------------------------------------===//
134 
135 namespace {
136   /// A callback value handle updates the cache when values are erased.
137   class LazyValueInfoCache;
138   struct LVIValueHandle final : public CallbackVH {
139     // Needs to access getValPtr(), which is protected.
140     friend struct DenseMapInfo<LVIValueHandle>;
141 
142     LazyValueInfoCache *Parent;
143 
144     LVIValueHandle(Value *V, LazyValueInfoCache *P)
145       : CallbackVH(V), Parent(P) { }
146 
147     void deleted() override;
148     void allUsesReplacedWith(Value *V) override {
149       deleted();
150     }
151   };
152 } // end anonymous namespace
153 
154 namespace {
155   /// This is the cache kept by LazyValueInfo which
156   /// maintains information about queries across the clients' queries.
157   class LazyValueInfoCache {
158     /// This is all of the cached block information for exactly one Value*.
159     /// The entries are sorted by the BasicBlock* of the
160     /// entries, allowing us to do a lookup with a binary search.
161     /// Over-defined lattice values are recorded in OverDefinedCache to reduce
162     /// memory overhead.
163     struct ValueCacheEntryTy {
164       ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
165       LVIValueHandle Handle;
166       SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
167     };
168 
169     /// This tracks, on a per-block basis, the set of values that are
170     /// over-defined at the end of that block.
171     typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
172         OverDefinedCacheTy;
173     /// Keep track of all blocks that we have ever seen, so we
174     /// don't spend time removing unused blocks from our caches.
175     DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
176 
177     /// This is all of the cached information for all values,
178     /// mapped from Value* to key information.
179     DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
180     OverDefinedCacheTy OverDefinedCache;
181 
182 
183   public:
184     void insertResult(Value *Val, BasicBlock *BB,
185                       const ValueLatticeElement &Result) {
186       SeenBlocks.insert(BB);
187 
188       // Insert over-defined values into their own cache to reduce memory
189       // overhead.
190       if (Result.isOverdefined())
191         OverDefinedCache[BB].insert(Val);
192       else {
193         auto It = ValueCache.find_as(Val);
194         if (It == ValueCache.end()) {
195           ValueCache[Val] = std::make_unique<ValueCacheEntryTy>(Val, this);
196           It = ValueCache.find_as(Val);
197           assert(It != ValueCache.end() && "Val was just added to the map!");
198         }
199         It->second->BlockVals[BB] = Result;
200       }
201     }
202 
203     bool isOverdefined(Value *V, BasicBlock *BB) const {
204       auto ODI = OverDefinedCache.find(BB);
205 
206       if (ODI == OverDefinedCache.end())
207         return false;
208 
209       return ODI->second.count(V);
210     }
211 
212     bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
213       if (isOverdefined(V, BB))
214         return true;
215 
216       auto I = ValueCache.find_as(V);
217       if (I == ValueCache.end())
218         return false;
219 
220       return I->second->BlockVals.count(BB);
221     }
222 
223     ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
224       if (isOverdefined(V, BB))
225         return ValueLatticeElement::getOverdefined();
226 
227       auto I = ValueCache.find_as(V);
228       if (I == ValueCache.end())
229         return ValueLatticeElement();
230       auto BBI = I->second->BlockVals.find(BB);
231       if (BBI == I->second->BlockVals.end())
232         return ValueLatticeElement();
233       return BBI->second;
234     }
235 
236     /// clear - Empty the cache.
237     void clear() {
238       SeenBlocks.clear();
239       ValueCache.clear();
240       OverDefinedCache.clear();
241     }
242 
243     /// Inform the cache that a given value has been deleted.
244     void eraseValue(Value *V);
245 
246     /// This is part of the update interface to inform the cache
247     /// that a block has been deleted.
248     void eraseBlock(BasicBlock *BB);
249 
250     /// Updates the cache to remove any influence an overdefined value in
251     /// OldSucc might have (unless also overdefined in NewSucc).  This just
252     /// flushes elements from the cache and does not add any.
253     void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
254 
255     friend struct LVIValueHandle;
256   };
257 }
258 
259 void LazyValueInfoCache::eraseValue(Value *V) {
260   for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
261     // Copy and increment the iterator immediately so we can erase behind
262     // ourselves.
263     auto Iter = I++;
264     SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
265     ValueSet.erase(V);
266     if (ValueSet.empty())
267       OverDefinedCache.erase(Iter);
268   }
269 
270   ValueCache.erase(V);
271 }
272 
273 void LVIValueHandle::deleted() {
274   // This erasure deallocates *this, so it MUST happen after we're done
275   // using any and all members of *this.
276   Parent->eraseValue(*this);
277 }
278 
279 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
280   // Shortcut if we have never seen this block.
281   DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
282   if (I == SeenBlocks.end())
283     return;
284   SeenBlocks.erase(I);
285 
286   auto ODI = OverDefinedCache.find(BB);
287   if (ODI != OverDefinedCache.end())
288     OverDefinedCache.erase(ODI);
289 
290   for (auto &I : ValueCache)
291     I.second->BlockVals.erase(BB);
292 }
293 
294 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
295                                         BasicBlock *NewSucc) {
296   // When an edge in the graph has been threaded, values that we could not
297   // determine a value for before (i.e. were marked overdefined) may be
298   // possible to solve now. We do NOT try to proactively update these values.
299   // Instead, we clear their entries from the cache, and allow lazy updating to
300   // recompute them when needed.
301 
302   // The updating process is fairly simple: we need to drop cached info
303   // for all values that were marked overdefined in OldSucc, and for those same
304   // values in any successor of OldSucc (except NewSucc) in which they were
305   // also marked overdefined.
306   std::vector<BasicBlock*> worklist;
307   worklist.push_back(OldSucc);
308 
309   auto I = OverDefinedCache.find(OldSucc);
310   if (I == OverDefinedCache.end())
311     return; // Nothing to process here.
312   SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
313 
314   // Use a worklist to perform a depth-first search of OldSucc's successors.
315   // NOTE: We do not need a visited list since any blocks we have already
316   // visited will have had their overdefined markers cleared already, and we
317   // thus won't loop to their successors.
318   while (!worklist.empty()) {
319     BasicBlock *ToUpdate = worklist.back();
320     worklist.pop_back();
321 
322     // Skip blocks only accessible through NewSucc.
323     if (ToUpdate == NewSucc) continue;
324 
325     // If a value was marked overdefined in OldSucc, and is here too...
326     auto OI = OverDefinedCache.find(ToUpdate);
327     if (OI == OverDefinedCache.end())
328       continue;
329     SmallPtrSetImpl<Value *> &ValueSet = OI->second;
330 
331     bool changed = false;
332     for (Value *V : ValsToClear) {
333       if (!ValueSet.erase(V))
334         continue;
335 
336       // If we removed anything, then we potentially need to update
337       // blocks successors too.
338       changed = true;
339 
340       if (ValueSet.empty()) {
341         OverDefinedCache.erase(OI);
342         break;
343       }
344     }
345 
346     if (!changed) continue;
347 
348     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
349   }
350 }
351 
352 
353 namespace {
354 /// An assembly annotator class to print LazyValueCache information in
355 /// comments.
356 class LazyValueInfoImpl;
357 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
358   LazyValueInfoImpl *LVIImpl;
359   // While analyzing which blocks we can solve values for, we need the dominator
360   // information. Since this is an optional parameter in LVI, we require this
361   // DomTreeAnalysis pass in the printer pass, and pass the dominator
362   // tree to the LazyValueInfoAnnotatedWriter.
363   DominatorTree &DT;
364 
365 public:
366   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
367       : LVIImpl(L), DT(DTree) {}
368 
369   virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
370                                         formatted_raw_ostream &OS);
371 
372   virtual void emitInstructionAnnot(const Instruction *I,
373                                     formatted_raw_ostream &OS);
374 };
375 }
376 namespace {
377   // The actual implementation of the lazy analysis and update.  Note that the
378   // inheritance from LazyValueInfoCache is intended to be temporary while
379   // splitting the code and then transitioning to a has-a relationship.
380   class LazyValueInfoImpl {
381 
382     /// Cached results from previous queries
383     LazyValueInfoCache TheCache;
384 
385     /// This stack holds the state of the value solver during a query.
386     /// It basically emulates the callstack of the naive
387     /// recursive value lookup process.
388     SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
389 
390     /// Keeps track of which block-value pairs are in BlockValueStack.
391     DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
392 
393     /// Push BV onto BlockValueStack unless it's already in there.
394     /// Returns true on success.
395     bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
396       if (!BlockValueSet.insert(BV).second)
397         return false;  // It's already in the stack.
398 
399       LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
400                         << BV.first->getName() << "\n");
401       BlockValueStack.push_back(BV);
402       return true;
403     }
404 
405     AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
406     const DataLayout &DL; ///< A mandatory DataLayout
407     DominatorTree *DT;    ///< An optional DT pointer.
408     DominatorTree *DisabledDT; ///< Stores DT if it's disabled.
409 
410   ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
411   bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
412                     ValueLatticeElement &Result, Instruction *CxtI = nullptr);
413   bool hasBlockValue(Value *Val, BasicBlock *BB);
414 
415   // These methods process one work item and may add more. A false value
416   // returned means that the work item was not completely processed and must
417   // be revisited after going through the new items.
418   bool solveBlockValue(Value *Val, BasicBlock *BB);
419   bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
420                            BasicBlock *BB);
421   bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
422                                BasicBlock *BB);
423   bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
424                               BasicBlock *BB);
425   bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
426                              BasicBlock *BB);
427   Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
428                                              BasicBlock *BB);
429   bool solveBlockValueBinaryOpImpl(
430       ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
431       std::function<ConstantRange(const ConstantRange &,
432                                   const ConstantRange &)> OpFn);
433   bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
434                                BasicBlock *BB);
435   bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
436                            BasicBlock *BB);
437   bool solveBlockValueOverflowIntrinsic(
438       ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB);
439   bool solveBlockValueSaturatingIntrinsic(ValueLatticeElement &BBLV,
440                                           SaturatingInst *SI, BasicBlock *BB);
441   bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II,
442                                 BasicBlock *BB);
443   bool solveBlockValueExtractValue(ValueLatticeElement &BBLV,
444                                    ExtractValueInst *EVI, BasicBlock *BB);
445   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
446                                                      ValueLatticeElement &BBLV,
447                                                      Instruction *BBI);
448 
449   void solve();
450 
451   public:
452     /// This is the query interface to determine the lattice
453     /// value for the specified Value* at the end of the specified block.
454     ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
455                                         Instruction *CxtI = nullptr);
456 
457     /// This is the query interface to determine the lattice
458     /// value for the specified Value* at the specified instruction (generally
459     /// from an assume intrinsic).
460     ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
461 
462     /// This is the query interface to determine the lattice
463     /// value for the specified Value* that is true on the specified edge.
464     ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
465                                        BasicBlock *ToBB,
466                                    Instruction *CxtI = nullptr);
467 
468     /// Complete flush all previously computed values
469     void clear() {
470       TheCache.clear();
471     }
472 
473     /// Printing the LazyValueInfo Analysis.
474     void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
475         LazyValueInfoAnnotatedWriter Writer(this, DTree);
476         F.print(OS, &Writer);
477     }
478 
479     /// This is part of the update interface to inform the cache
480     /// that a block has been deleted.
481     void eraseBlock(BasicBlock *BB) {
482       TheCache.eraseBlock(BB);
483     }
484 
485     /// Disables use of the DominatorTree within LVI.
486     void disableDT() {
487       if (DT) {
488         assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!");
489         std::swap(DT, DisabledDT);
490       }
491     }
492 
493     /// Enables use of the DominatorTree within LVI. Does nothing if the class
494     /// instance was initialized without a DT pointer.
495     void enableDT() {
496       if (DisabledDT) {
497         assert(!DT && "Both DT and DisabledDT are not nullptr!");
498         std::swap(DT, DisabledDT);
499       }
500     }
501 
502     /// This is the update interface to inform the cache that an edge from
503     /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
504     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
505 
506     LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
507                        DominatorTree *DT = nullptr)
508         : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {}
509   };
510 } // end anonymous namespace
511 
512 
513 void LazyValueInfoImpl::solve() {
514   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
515       BlockValueStack.begin(), BlockValueStack.end());
516 
517   unsigned processedCount = 0;
518   while (!BlockValueStack.empty()) {
519     processedCount++;
520     // Abort if we have to process too many values to get a result for this one.
521     // Because of the design of the overdefined cache currently being per-block
522     // to avoid naming-related issues (IE it wants to try to give different
523     // results for the same name in different blocks), overdefined results don't
524     // get cached globally, which in turn means we will often try to rediscover
525     // the same overdefined result again and again.  Once something like
526     // PredicateInfo is used in LVI or CVP, we should be able to make the
527     // overdefined cache global, and remove this throttle.
528     if (processedCount > MaxProcessedPerValue) {
529       LLVM_DEBUG(
530           dbgs() << "Giving up on stack because we are getting too deep\n");
531       // Fill in the original values
532       while (!StartingStack.empty()) {
533         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
534         TheCache.insertResult(e.second, e.first,
535                               ValueLatticeElement::getOverdefined());
536         StartingStack.pop_back();
537       }
538       BlockValueSet.clear();
539       BlockValueStack.clear();
540       return;
541     }
542     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
543     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
544 
545     if (solveBlockValue(e.second, e.first)) {
546       // The work item was completely processed.
547       assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
548       assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
549              "Result should be in cache!");
550 
551       LLVM_DEBUG(
552           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
553                  << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
554 
555       BlockValueStack.pop_back();
556       BlockValueSet.erase(e);
557     } else {
558       // More work needs to be done before revisiting.
559       assert(BlockValueStack.back() != e && "Stack should have been pushed!");
560     }
561   }
562 }
563 
564 bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
565   // If already a constant, there is nothing to compute.
566   if (isa<Constant>(Val))
567     return true;
568 
569   return TheCache.hasCachedValueInfo(Val, BB);
570 }
571 
572 ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
573                                                      BasicBlock *BB) {
574   // If already a constant, there is nothing to compute.
575   if (Constant *VC = dyn_cast<Constant>(Val))
576     return ValueLatticeElement::get(VC);
577 
578   return TheCache.getCachedValueInfo(Val, BB);
579 }
580 
581 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
582   switch (BBI->getOpcode()) {
583   default: break;
584   case Instruction::Load:
585   case Instruction::Call:
586   case Instruction::Invoke:
587     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
588       if (isa<IntegerType>(BBI->getType())) {
589         return ValueLatticeElement::getRange(
590             getConstantRangeFromMetadata(*Ranges));
591       }
592     break;
593   };
594   // Nothing known - will be intersected with other facts
595   return ValueLatticeElement::getOverdefined();
596 }
597 
598 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
599   if (isa<Constant>(Val))
600     return true;
601 
602   if (TheCache.hasCachedValueInfo(Val, BB)) {
603     // If we have a cached value, use that.
604     LLVM_DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val="
605                       << TheCache.getCachedValueInfo(Val, BB) << '\n');
606 
607     // Since we're reusing a cached value, we don't need to update the
608     // OverDefinedCache. The cache will have been properly updated whenever the
609     // cached value was inserted.
610     return true;
611   }
612 
613   // Hold off inserting this value into the Cache in case we have to return
614   // false and come back later.
615   ValueLatticeElement Res;
616   if (!solveBlockValueImpl(Res, Val, BB))
617     // Work pushed, will revisit
618     return false;
619 
620   TheCache.insertResult(Val, BB, Res);
621   return true;
622 }
623 
624 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
625                                             Value *Val, BasicBlock *BB) {
626 
627   Instruction *BBI = dyn_cast<Instruction>(Val);
628   if (!BBI || BBI->getParent() != BB)
629     return solveBlockValueNonLocal(Res, Val, BB);
630 
631   if (PHINode *PN = dyn_cast<PHINode>(BBI))
632     return solveBlockValuePHINode(Res, PN, BB);
633 
634   if (auto *SI = dyn_cast<SelectInst>(BBI))
635     return solveBlockValueSelect(Res, SI, BB);
636 
637   // If this value is a nonnull pointer, record it's range and bailout.  Note
638   // that for all other pointer typed values, we terminate the search at the
639   // definition.  We could easily extend this to look through geps, bitcasts,
640   // and the like to prove non-nullness, but it's not clear that's worth it
641   // compile time wise.  The context-insensitive value walk done inside
642   // isKnownNonZero gets most of the profitable cases at much less expense.
643   // This does mean that we have a sensitivity to where the defining
644   // instruction is placed, even if it could legally be hoisted much higher.
645   // That is unfortunate.
646   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
647   if (PT && isKnownNonZero(BBI, DL)) {
648     Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
649     return true;
650   }
651   if (BBI->getType()->isIntegerTy()) {
652     if (auto *CI = dyn_cast<CastInst>(BBI))
653       return solveBlockValueCast(Res, CI, BB);
654 
655     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
656       return solveBlockValueBinaryOp(Res, BO, BB);
657 
658     if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
659       return solveBlockValueExtractValue(Res, EVI, BB);
660 
661     if (auto *II = dyn_cast<IntrinsicInst>(BBI))
662       return solveBlockValueIntrinsic(Res, II, BB);
663   }
664 
665   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
666                     << "' - unknown inst def found.\n");
667   Res = getFromRangeMetadata(BBI);
668   return true;
669 }
670 
671 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
672   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
673     return L->getPointerAddressSpace() == 0 &&
674            GetUnderlyingObject(L->getPointerOperand(),
675                                L->getModule()->getDataLayout()) == Ptr;
676   }
677   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
678     return S->getPointerAddressSpace() == 0 &&
679            GetUnderlyingObject(S->getPointerOperand(),
680                                S->getModule()->getDataLayout()) == Ptr;
681   }
682   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
683     if (MI->isVolatile()) return false;
684 
685     // FIXME: check whether it has a valuerange that excludes zero?
686     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
687     if (!Len || Len->isZero()) return false;
688 
689     if (MI->getDestAddressSpace() == 0)
690       if (GetUnderlyingObject(MI->getRawDest(),
691                               MI->getModule()->getDataLayout()) == Ptr)
692         return true;
693     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
694       if (MTI->getSourceAddressSpace() == 0)
695         if (GetUnderlyingObject(MTI->getRawSource(),
696                                 MTI->getModule()->getDataLayout()) == Ptr)
697           return true;
698   }
699   return false;
700 }
701 
702 /// Return true if the allocation associated with Val is ever dereferenced
703 /// within the given basic block.  This establishes the fact Val is not null,
704 /// but does not imply that the memory at Val is dereferenceable.  (Val may
705 /// point off the end of the dereferenceable part of the object.)
706 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
707   assert(Val->getType()->isPointerTy());
708 
709   const DataLayout &DL = BB->getModule()->getDataLayout();
710   Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
711   // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
712   // inside InstructionDereferencesPointer either.
713   if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
714     for (Instruction &I : *BB)
715       if (InstructionDereferencesPointer(&I, UnderlyingVal))
716         return true;
717   return false;
718 }
719 
720 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
721                                                  Value *Val, BasicBlock *BB) {
722   ValueLatticeElement Result;  // Start Undefined.
723 
724   // If this is the entry block, we must be asking about an argument.  The
725   // value is overdefined.
726   if (BB == &BB->getParent()->getEntryBlock()) {
727     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
728     // Before giving up, see if we can prove the pointer non-null local to
729     // this particular block.
730     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
731     if (PTy &&
732         (isKnownNonZero(Val, DL) ||
733           (isObjectDereferencedInBlock(Val, BB) &&
734            !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) {
735       Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
736     } else {
737       Result = ValueLatticeElement::getOverdefined();
738     }
739     BBLV = Result;
740     return true;
741   }
742 
743   // Loop over all of our predecessors, merging what we know from them into
744   // result.  If we encounter an unexplored predecessor, we eagerly explore it
745   // in a depth first manner.  In practice, this has the effect of discovering
746   // paths we can't analyze eagerly without spending compile times analyzing
747   // other paths.  This heuristic benefits from the fact that predecessors are
748   // frequently arranged such that dominating ones come first and we quickly
749   // find a path to function entry.  TODO: We should consider explicitly
750   // canonicalizing to make this true rather than relying on this happy
751   // accident.
752   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
753     ValueLatticeElement EdgeResult;
754     if (!getEdgeValue(Val, *PI, BB, EdgeResult))
755       // Explore that input, then return here
756       return false;
757 
758     Result.mergeIn(EdgeResult, DL);
759 
760     // If we hit overdefined, exit early.  The BlockVals entry is already set
761     // to overdefined.
762     if (Result.isOverdefined()) {
763       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
764                         << "' - overdefined because of pred (non local).\n");
765       // Before giving up, see if we can prove the pointer non-null local to
766       // this particular block.
767       PointerType *PTy = dyn_cast<PointerType>(Val->getType());
768       if (PTy && isObjectDereferencedInBlock(Val, BB) &&
769           !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
770         Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
771       }
772 
773       BBLV = Result;
774       return true;
775     }
776   }
777 
778   // Return the merged value, which is more precise than 'overdefined'.
779   assert(!Result.isOverdefined());
780   BBLV = Result;
781   return true;
782 }
783 
784 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
785                                                PHINode *PN, BasicBlock *BB) {
786   ValueLatticeElement Result;  // Start Undefined.
787 
788   // Loop over all of our predecessors, merging what we know from them into
789   // result.  See the comment about the chosen traversal order in
790   // solveBlockValueNonLocal; the same reasoning applies here.
791   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
792     BasicBlock *PhiBB = PN->getIncomingBlock(i);
793     Value *PhiVal = PN->getIncomingValue(i);
794     ValueLatticeElement EdgeResult;
795     // Note that we can provide PN as the context value to getEdgeValue, even
796     // though the results will be cached, because PN is the value being used as
797     // the cache key in the caller.
798     if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
799       // Explore that input, then return here
800       return false;
801 
802     Result.mergeIn(EdgeResult, DL);
803 
804     // If we hit overdefined, exit early.  The BlockVals entry is already set
805     // to overdefined.
806     if (Result.isOverdefined()) {
807       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
808                         << "' - overdefined because of pred (local).\n");
809 
810       BBLV = Result;
811       return true;
812     }
813   }
814 
815   // Return the merged value, which is more precise than 'overdefined'.
816   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
817   BBLV = Result;
818   return true;
819 }
820 
821 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
822                                                  bool isTrueDest = true);
823 
824 // If we can determine a constraint on the value given conditions assumed by
825 // the program, intersect those constraints with BBLV
826 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
827         Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
828   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
829   if (!BBI)
830     return;
831 
832   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
833     if (!AssumeVH)
834       continue;
835     auto *I = cast<CallInst>(AssumeVH);
836     if (!isValidAssumeForContext(I, BBI, DT))
837       continue;
838 
839     BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
840   }
841 
842   // If guards are not used in the module, don't spend time looking for them
843   auto *GuardDecl = BBI->getModule()->getFunction(
844           Intrinsic::getName(Intrinsic::experimental_guard));
845   if (!GuardDecl || GuardDecl->use_empty())
846     return;
847 
848   if (BBI->getIterator() == BBI->getParent()->begin())
849     return;
850   for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
851                                    BBI->getParent()->rend())) {
852     Value *Cond = nullptr;
853     if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
854       BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
855   }
856 }
857 
858 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
859                                               SelectInst *SI, BasicBlock *BB) {
860 
861   // Recurse on our inputs if needed
862   if (!hasBlockValue(SI->getTrueValue(), BB)) {
863     if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
864       return false;
865     BBLV = ValueLatticeElement::getOverdefined();
866     return true;
867   }
868   ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
869   // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
870   // extra slots in the table if we can.
871   if (TrueVal.isOverdefined()) {
872     BBLV = ValueLatticeElement::getOverdefined();
873     return true;
874   }
875 
876   if (!hasBlockValue(SI->getFalseValue(), BB)) {
877     if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
878       return false;
879     BBLV = ValueLatticeElement::getOverdefined();
880     return true;
881   }
882   ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
883   // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
884   // extra slots in the table if we can.
885   if (FalseVal.isOverdefined()) {
886     BBLV = ValueLatticeElement::getOverdefined();
887     return true;
888   }
889 
890   if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
891     const ConstantRange &TrueCR = TrueVal.getConstantRange();
892     const ConstantRange &FalseCR = FalseVal.getConstantRange();
893     Value *LHS = nullptr;
894     Value *RHS = nullptr;
895     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
896     // Is this a min specifically of our two inputs?  (Avoid the risk of
897     // ValueTracking getting smarter looking back past our immediate inputs.)
898     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
899         LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
900       ConstantRange ResultCR = [&]() {
901         switch (SPR.Flavor) {
902         default:
903           llvm_unreachable("unexpected minmax type!");
904         case SPF_SMIN:                   /// Signed minimum
905           return TrueCR.smin(FalseCR);
906         case SPF_UMIN:                   /// Unsigned minimum
907           return TrueCR.umin(FalseCR);
908         case SPF_SMAX:                   /// Signed maximum
909           return TrueCR.smax(FalseCR);
910         case SPF_UMAX:                   /// Unsigned maximum
911           return TrueCR.umax(FalseCR);
912         };
913       }();
914       BBLV = ValueLatticeElement::getRange(ResultCR);
915       return true;
916     }
917 
918     if (SPR.Flavor == SPF_ABS) {
919       if (LHS == SI->getTrueValue()) {
920         BBLV = ValueLatticeElement::getRange(TrueCR.abs());
921         return true;
922       }
923       if (LHS == SI->getFalseValue()) {
924         BBLV = ValueLatticeElement::getRange(FalseCR.abs());
925         return true;
926       }
927     }
928 
929     if (SPR.Flavor == SPF_NABS) {
930       ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
931       if (LHS == SI->getTrueValue()) {
932         BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs()));
933         return true;
934       }
935       if (LHS == SI->getFalseValue()) {
936         BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs()));
937         return true;
938       }
939     }
940   }
941 
942   // Can we constrain the facts about the true and false values by using the
943   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
944   // TODO: We could potentially refine an overdefined true value above.
945   Value *Cond = SI->getCondition();
946   TrueVal = intersect(TrueVal,
947                       getValueFromCondition(SI->getTrueValue(), Cond, true));
948   FalseVal = intersect(FalseVal,
949                        getValueFromCondition(SI->getFalseValue(), Cond, false));
950 
951   // Handle clamp idioms such as:
952   //   %24 = constantrange<0, 17>
953   //   %39 = icmp eq i32 %24, 0
954   //   %40 = add i32 %24, -1
955   //   %siv.next = select i1 %39, i32 16, i32 %40
956   //   %siv.next = constantrange<0, 17> not <-1, 17>
957   // In general, this can handle any clamp idiom which tests the edge
958   // condition via an equality or inequality.
959   if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
960     ICmpInst::Predicate Pred = ICI->getPredicate();
961     Value *A = ICI->getOperand(0);
962     if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
963       auto addConstants = [](ConstantInt *A, ConstantInt *B) {
964         assert(A->getType() == B->getType());
965         return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
966       };
967       // See if either input is A + C2, subject to the constraint from the
968       // condition that A != C when that input is used.  We can assume that
969       // that input doesn't include C + C2.
970       ConstantInt *CIAdded;
971       switch (Pred) {
972       default: break;
973       case ICmpInst::ICMP_EQ:
974         if (match(SI->getFalseValue(), m_Add(m_Specific(A),
975                                              m_ConstantInt(CIAdded)))) {
976           auto ResNot = addConstants(CIBase, CIAdded);
977           FalseVal = intersect(FalseVal,
978                                ValueLatticeElement::getNot(ResNot));
979         }
980         break;
981       case ICmpInst::ICMP_NE:
982         if (match(SI->getTrueValue(), m_Add(m_Specific(A),
983                                             m_ConstantInt(CIAdded)))) {
984           auto ResNot = addConstants(CIBase, CIAdded);
985           TrueVal = intersect(TrueVal,
986                               ValueLatticeElement::getNot(ResNot));
987         }
988         break;
989       };
990     }
991   }
992 
993   ValueLatticeElement Result;  // Start Undefined.
994   Result.mergeIn(TrueVal, DL);
995   Result.mergeIn(FalseVal, DL);
996   BBLV = Result;
997   return true;
998 }
999 
1000 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
1001                                                               Instruction *I,
1002                                                               BasicBlock *BB) {
1003   if (!hasBlockValue(I->getOperand(Op), BB))
1004     if (pushBlockValue(std::make_pair(BB, I->getOperand(Op))))
1005       return None;
1006 
1007   const unsigned OperandBitWidth =
1008     DL.getTypeSizeInBits(I->getOperand(Op)->getType());
1009   ConstantRange Range = ConstantRange::getFull(OperandBitWidth);
1010   if (hasBlockValue(I->getOperand(Op), BB)) {
1011     ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB);
1012     intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
1013     if (Val.isConstantRange())
1014       Range = Val.getConstantRange();
1015   }
1016   return Range;
1017 }
1018 
1019 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
1020                                             CastInst *CI,
1021                                             BasicBlock *BB) {
1022   if (!CI->getOperand(0)->getType()->isSized()) {
1023     // Without knowing how wide the input is, we can't analyze it in any useful
1024     // way.
1025     BBLV = ValueLatticeElement::getOverdefined();
1026     return true;
1027   }
1028 
1029   // Filter out casts we don't know how to reason about before attempting to
1030   // recurse on our operand.  This can cut a long search short if we know we're
1031   // not going to be able to get any useful information anways.
1032   switch (CI->getOpcode()) {
1033   case Instruction::Trunc:
1034   case Instruction::SExt:
1035   case Instruction::ZExt:
1036   case Instruction::BitCast:
1037     break;
1038   default:
1039     // Unhandled instructions are overdefined.
1040     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1041                       << "' - overdefined (unknown cast).\n");
1042     BBLV = ValueLatticeElement::getOverdefined();
1043     return true;
1044   }
1045 
1046   // Figure out the range of the LHS.  If that fails, we still apply the
1047   // transfer rule on the full set since we may be able to locally infer
1048   // interesting facts.
1049   Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
1050   if (!LHSRes.hasValue())
1051     // More work to do before applying this transfer rule.
1052     return false;
1053   ConstantRange LHSRange = LHSRes.getValue();
1054 
1055   const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
1056 
1057   // NOTE: We're currently limited by the set of operations that ConstantRange
1058   // can evaluate symbolically.  Enhancing that set will allows us to analyze
1059   // more definitions.
1060   BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
1061                                                        ResultBitWidth));
1062   return true;
1063 }
1064 
1065 bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
1066     ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
1067     std::function<ConstantRange(const ConstantRange &,
1068                                 const ConstantRange &)> OpFn) {
1069   // Figure out the ranges of the operands.  If that fails, use a
1070   // conservative range, but apply the transfer rule anyways.  This
1071   // lets us pick up facts from expressions like "and i32 (call i32
1072   // @foo()), 32"
1073   Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB);
1074   Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB);
1075   if (!LHSRes.hasValue() || !RHSRes.hasValue())
1076     // More work to do before applying this transfer rule.
1077     return false;
1078 
1079   ConstantRange LHSRange = LHSRes.getValue();
1080   ConstantRange RHSRange = RHSRes.getValue();
1081   BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
1082   return true;
1083 }
1084 
1085 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
1086                                                 BinaryOperator *BO,
1087                                                 BasicBlock *BB) {
1088 
1089   assert(BO->getOperand(0)->getType()->isSized() &&
1090          "all operands to binary operators are sized");
1091   if (BO->getOpcode() == Instruction::Xor) {
1092     // Xor is the only operation not supported by ConstantRange::binaryOp().
1093     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1094                       << "' - overdefined (unknown binary operator).\n");
1095     BBLV = ValueLatticeElement::getOverdefined();
1096     return true;
1097   }
1098 
1099   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
1100     unsigned NoWrapKind = 0;
1101     if (OBO->hasNoUnsignedWrap())
1102       NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
1103     if (OBO->hasNoSignedWrap())
1104       NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
1105 
1106     return solveBlockValueBinaryOpImpl(
1107         BBLV, BO, BB,
1108         [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
1109           return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
1110         });
1111   }
1112 
1113   return solveBlockValueBinaryOpImpl(
1114       BBLV, BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
1115         return CR1.binaryOp(BO->getOpcode(), CR2);
1116       });
1117 }
1118 
1119 bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(
1120     ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) {
1121   return solveBlockValueBinaryOpImpl(BBLV, WO, BB,
1122       [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
1123         return CR1.binaryOp(WO->getBinaryOp(), CR2);
1124       });
1125 }
1126 
1127 bool LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic(
1128     ValueLatticeElement &BBLV, SaturatingInst *SI, BasicBlock *BB) {
1129   switch (SI->getIntrinsicID()) {
1130   case Intrinsic::uadd_sat:
1131     return solveBlockValueBinaryOpImpl(
1132         BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1133           return CR1.uadd_sat(CR2);
1134         });
1135   case Intrinsic::usub_sat:
1136     return solveBlockValueBinaryOpImpl(
1137         BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1138           return CR1.usub_sat(CR2);
1139         });
1140   case Intrinsic::sadd_sat:
1141     return solveBlockValueBinaryOpImpl(
1142         BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1143           return CR1.sadd_sat(CR2);
1144         });
1145   case Intrinsic::ssub_sat:
1146     return solveBlockValueBinaryOpImpl(
1147         BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1148           return CR1.ssub_sat(CR2);
1149         });
1150   default:
1151     llvm_unreachable("All llvm.sat intrinsic are handled.");
1152   }
1153 }
1154 
1155 bool LazyValueInfoImpl::solveBlockValueIntrinsic(ValueLatticeElement &BBLV,
1156                                                  IntrinsicInst *II,
1157                                                  BasicBlock *BB) {
1158   if (auto *SI = dyn_cast<SaturatingInst>(II))
1159     return solveBlockValueSaturatingIntrinsic(BBLV, SI, BB);
1160 
1161   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1162                     << "' - overdefined (unknown intrinsic).\n");
1163   BBLV = ValueLatticeElement::getOverdefined();
1164   return true;
1165 }
1166 
1167 bool LazyValueInfoImpl::solveBlockValueExtractValue(
1168     ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB) {
1169   if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1170     if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1171       return solveBlockValueOverflowIntrinsic(BBLV, WO, BB);
1172 
1173   // Handle extractvalue of insertvalue to allow further simplification
1174   // based on replaced with.overflow intrinsics.
1175   if (Value *V = SimplifyExtractValueInst(
1176           EVI->getAggregateOperand(), EVI->getIndices(),
1177           EVI->getModule()->getDataLayout())) {
1178     if (!hasBlockValue(V, BB)) {
1179       if (pushBlockValue({ BB, V }))
1180         return false;
1181       BBLV = ValueLatticeElement::getOverdefined();
1182       return true;
1183     }
1184     BBLV = getBlockValue(V, BB);
1185     return true;
1186   }
1187 
1188   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1189                     << "' - overdefined (unknown extractvalue).\n");
1190   BBLV = ValueLatticeElement::getOverdefined();
1191   return true;
1192 }
1193 
1194 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1195                                                      bool isTrueDest) {
1196   Value *LHS = ICI->getOperand(0);
1197   Value *RHS = ICI->getOperand(1);
1198   CmpInst::Predicate Predicate = ICI->getPredicate();
1199 
1200   if (isa<Constant>(RHS)) {
1201     if (ICI->isEquality() && LHS == Val) {
1202       // We know that V has the RHS constant if this is a true SETEQ or
1203       // false SETNE.
1204       if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
1205         return ValueLatticeElement::get(cast<Constant>(RHS));
1206       else
1207         return ValueLatticeElement::getNot(cast<Constant>(RHS));
1208     }
1209   }
1210 
1211   if (!Val->getType()->isIntegerTy())
1212     return ValueLatticeElement::getOverdefined();
1213 
1214   // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1215   // range of Val guaranteed by the condition. Recognize comparisons in the from
1216   // of:
1217   //  icmp <pred> Val, ...
1218   //  icmp <pred> (add Val, Offset), ...
1219   // The latter is the range checking idiom that InstCombine produces. Subtract
1220   // the offset from the allowed range for RHS in this case.
1221 
1222   // Val or (add Val, Offset) can be on either hand of the comparison
1223   if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
1224     std::swap(LHS, RHS);
1225     Predicate = CmpInst::getSwappedPredicate(Predicate);
1226   }
1227 
1228   ConstantInt *Offset = nullptr;
1229   if (LHS != Val)
1230     match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
1231 
1232   if (LHS == Val || Offset) {
1233     // Calculate the range of values that are allowed by the comparison
1234     ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1235                            /*isFullSet=*/true);
1236     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1237       RHSRange = ConstantRange(CI->getValue());
1238     else if (Instruction *I = dyn_cast<Instruction>(RHS))
1239       if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1240         RHSRange = getConstantRangeFromMetadata(*Ranges);
1241 
1242     // If we're interested in the false dest, invert the condition
1243     CmpInst::Predicate Pred =
1244             isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
1245     ConstantRange TrueValues =
1246             ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1247 
1248     if (Offset) // Apply the offset from above.
1249       TrueValues = TrueValues.subtract(Offset->getValue());
1250 
1251     return ValueLatticeElement::getRange(std::move(TrueValues));
1252   }
1253 
1254   return ValueLatticeElement::getOverdefined();
1255 }
1256 
1257 // Handle conditions of the form
1258 // extractvalue(op.with.overflow(%x, C), 1).
1259 static ValueLatticeElement getValueFromOverflowCondition(
1260     Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1261   // TODO: This only works with a constant RHS for now. We could also compute
1262   // the range of the RHS, but this doesn't fit into the current structure of
1263   // the edge value calculation.
1264   const APInt *C;
1265   if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1266     return ValueLatticeElement::getOverdefined();
1267 
1268   // Calculate the possible values of %x for which no overflow occurs.
1269   ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1270       WO->getBinaryOp(), *C, WO->getNoWrapKind());
1271 
1272   // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1273   // constrained to it's inverse (all values that might cause overflow).
1274   if (IsTrueDest)
1275     NWR = NWR.inverse();
1276   return ValueLatticeElement::getRange(NWR);
1277 }
1278 
1279 static ValueLatticeElement
1280 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1281                       DenseMap<Value*, ValueLatticeElement> &Visited);
1282 
1283 static ValueLatticeElement
1284 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1285                           DenseMap<Value*, ValueLatticeElement> &Visited) {
1286   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1287     return getValueFromICmpCondition(Val, ICI, isTrueDest);
1288 
1289   if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1290     if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1291       if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1292         return getValueFromOverflowCondition(Val, WO, isTrueDest);
1293 
1294   // Handle conditions in the form of (cond1 && cond2), we know that on the
1295   // true dest path both of the conditions hold. Similarly for conditions of
1296   // the form (cond1 || cond2), we know that on the false dest path neither
1297   // condition holds.
1298   BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
1299   if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
1300              (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
1301     return ValueLatticeElement::getOverdefined();
1302 
1303   // Prevent infinite recursion if Cond references itself as in this example:
1304   //  Cond: "%tmp4 = and i1 %tmp4, undef"
1305   //    BL: "%tmp4 = and i1 %tmp4, undef"
1306   //    BR: "i1 undef"
1307   Value *BL = BO->getOperand(0);
1308   Value *BR = BO->getOperand(1);
1309   if (BL == Cond || BR == Cond)
1310     return ValueLatticeElement::getOverdefined();
1311 
1312   return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
1313                    getValueFromCondition(Val, BR, isTrueDest, Visited));
1314 }
1315 
1316 static ValueLatticeElement
1317 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1318                       DenseMap<Value*, ValueLatticeElement> &Visited) {
1319   auto I = Visited.find(Cond);
1320   if (I != Visited.end())
1321     return I->second;
1322 
1323   auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
1324   Visited[Cond] = Result;
1325   return Result;
1326 }
1327 
1328 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1329                                           bool isTrueDest) {
1330   assert(Cond && "precondition");
1331   DenseMap<Value*, ValueLatticeElement> Visited;
1332   return getValueFromCondition(Val, Cond, isTrueDest, Visited);
1333 }
1334 
1335 // Return true if Usr has Op as an operand, otherwise false.
1336 static bool usesOperand(User *Usr, Value *Op) {
1337   return find(Usr->operands(), Op) != Usr->op_end();
1338 }
1339 
1340 // Return true if the instruction type of Val is supported by
1341 // constantFoldUser(). Currently CastInst and BinaryOperator only.  Call this
1342 // before calling constantFoldUser() to find out if it's even worth attempting
1343 // to call it.
1344 static bool isOperationFoldable(User *Usr) {
1345   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
1346 }
1347 
1348 // Check if Usr can be simplified to an integer constant when the value of one
1349 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1350 // lattice value range with a single element or otherwise return an overdefined
1351 // lattice value.
1352 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1353                                             const APInt &OpConstVal,
1354                                             const DataLayout &DL) {
1355   assert(isOperationFoldable(Usr) && "Precondition");
1356   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1357   // Check if Usr can be simplified to a constant.
1358   if (auto *CI = dyn_cast<CastInst>(Usr)) {
1359     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1360     if (auto *C = dyn_cast_or_null<ConstantInt>(
1361             SimplifyCastInst(CI->getOpcode(), OpConst,
1362                              CI->getDestTy(), DL))) {
1363       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1364     }
1365   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1366     bool Op0Match = BO->getOperand(0) == Op;
1367     bool Op1Match = BO->getOperand(1) == Op;
1368     assert((Op0Match || Op1Match) &&
1369            "Operand 0 nor Operand 1 isn't a match");
1370     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1371     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1372     if (auto *C = dyn_cast_or_null<ConstantInt>(
1373             SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1374       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1375     }
1376   }
1377   return ValueLatticeElement::getOverdefined();
1378 }
1379 
1380 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1381 /// Val is not constrained on the edge.  Result is unspecified if return value
1382 /// is false.
1383 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1384                               BasicBlock *BBTo, ValueLatticeElement &Result) {
1385   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1386   // know that v != 0.
1387   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1388     // If this is a conditional branch and only one successor goes to BBTo, then
1389     // we may be able to infer something from the condition.
1390     if (BI->isConditional() &&
1391         BI->getSuccessor(0) != BI->getSuccessor(1)) {
1392       bool isTrueDest = BI->getSuccessor(0) == BBTo;
1393       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1394              "BBTo isn't a successor of BBFrom");
1395       Value *Condition = BI->getCondition();
1396 
1397       // If V is the condition of the branch itself, then we know exactly what
1398       // it is.
1399       if (Condition == Val) {
1400         Result = ValueLatticeElement::get(ConstantInt::get(
1401                               Type::getInt1Ty(Val->getContext()), isTrueDest));
1402         return true;
1403       }
1404 
1405       // If the condition of the branch is an equality comparison, we may be
1406       // able to infer the value.
1407       Result = getValueFromCondition(Val, Condition, isTrueDest);
1408       if (!Result.isOverdefined())
1409         return true;
1410 
1411       if (User *Usr = dyn_cast<User>(Val)) {
1412         assert(Result.isOverdefined() && "Result isn't overdefined");
1413         // Check with isOperationFoldable() first to avoid linearly iterating
1414         // over the operands unnecessarily which can be expensive for
1415         // instructions with many operands.
1416         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1417           const DataLayout &DL = BBTo->getModule()->getDataLayout();
1418           if (usesOperand(Usr, Condition)) {
1419             // If Val has Condition as an operand and Val can be folded into a
1420             // constant with either Condition == true or Condition == false,
1421             // propagate the constant.
1422             // eg.
1423             //   ; %Val is true on the edge to %then.
1424             //   %Val = and i1 %Condition, true.
1425             //   br %Condition, label %then, label %else
1426             APInt ConditionVal(1, isTrueDest ? 1 : 0);
1427             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1428           } else {
1429             // If one of Val's operand has an inferred value, we may be able to
1430             // infer the value of Val.
1431             // eg.
1432             //    ; %Val is 94 on the edge to %then.
1433             //    %Val = add i8 %Op, 1
1434             //    %Condition = icmp eq i8 %Op, 93
1435             //    br i1 %Condition, label %then, label %else
1436             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1437               Value *Op = Usr->getOperand(i);
1438               ValueLatticeElement OpLatticeVal =
1439                   getValueFromCondition(Op, Condition, isTrueDest);
1440               if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1441                 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1442                 break;
1443               }
1444             }
1445           }
1446         }
1447       }
1448       if (!Result.isOverdefined())
1449         return true;
1450     }
1451   }
1452 
1453   // If the edge was formed by a switch on the value, then we may know exactly
1454   // what it is.
1455   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1456     Value *Condition = SI->getCondition();
1457     if (!isa<IntegerType>(Val->getType()))
1458       return false;
1459     bool ValUsesConditionAndMayBeFoldable = false;
1460     if (Condition != Val) {
1461       // Check if Val has Condition as an operand.
1462       if (User *Usr = dyn_cast<User>(Val))
1463         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1464             usesOperand(Usr, Condition);
1465       if (!ValUsesConditionAndMayBeFoldable)
1466         return false;
1467     }
1468     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1469            "Condition != Val nor Val doesn't use Condition");
1470 
1471     bool DefaultCase = SI->getDefaultDest() == BBTo;
1472     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1473     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1474 
1475     for (auto Case : SI->cases()) {
1476       APInt CaseValue = Case.getCaseValue()->getValue();
1477       ConstantRange EdgeVal(CaseValue);
1478       if (ValUsesConditionAndMayBeFoldable) {
1479         User *Usr = cast<User>(Val);
1480         const DataLayout &DL = BBTo->getModule()->getDataLayout();
1481         ValueLatticeElement EdgeLatticeVal =
1482             constantFoldUser(Usr, Condition, CaseValue, DL);
1483         if (EdgeLatticeVal.isOverdefined())
1484           return false;
1485         EdgeVal = EdgeLatticeVal.getConstantRange();
1486       }
1487       if (DefaultCase) {
1488         // It is possible that the default destination is the destination of
1489         // some cases. We cannot perform difference for those cases.
1490         // We know Condition != CaseValue in BBTo.  In some cases we can use
1491         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
1492         // only do this when f is identity (i.e. Val == Condition), but we
1493         // should be able to do this for any injective f.
1494         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1495           EdgesVals = EdgesVals.difference(EdgeVal);
1496       } else if (Case.getCaseSuccessor() == BBTo)
1497         EdgesVals = EdgesVals.unionWith(EdgeVal);
1498     }
1499     Result = ValueLatticeElement::getRange(std::move(EdgesVals));
1500     return true;
1501   }
1502   return false;
1503 }
1504 
1505 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1506 /// the basic block if the edge does not constrain Val.
1507 bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1508                                      BasicBlock *BBTo,
1509                                      ValueLatticeElement &Result,
1510                                      Instruction *CxtI) {
1511   // If already a constant, there is nothing to compute.
1512   if (Constant *VC = dyn_cast<Constant>(Val)) {
1513     Result = ValueLatticeElement::get(VC);
1514     return true;
1515   }
1516 
1517   ValueLatticeElement LocalResult;
1518   if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
1519     // If we couldn't constrain the value on the edge, LocalResult doesn't
1520     // provide any information.
1521     LocalResult = ValueLatticeElement::getOverdefined();
1522 
1523   if (hasSingleValue(LocalResult)) {
1524     // Can't get any more precise here
1525     Result = LocalResult;
1526     return true;
1527   }
1528 
1529   if (!hasBlockValue(Val, BBFrom)) {
1530     if (pushBlockValue(std::make_pair(BBFrom, Val)))
1531       return false;
1532     // No new information.
1533     Result = LocalResult;
1534     return true;
1535   }
1536 
1537   // Try to intersect ranges of the BB and the constraint on the edge.
1538   ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
1539   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1540                                                 BBFrom->getTerminator());
1541   // We can use the context instruction (generically the ultimate instruction
1542   // the calling pass is trying to simplify) here, even though the result of
1543   // this function is generally cached when called from the solve* functions
1544   // (and that cached result might be used with queries using a different
1545   // context instruction), because when this function is called from the solve*
1546   // functions, the context instruction is not provided. When called from
1547   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1548   // but then the result is not cached.
1549   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1550 
1551   Result = intersect(LocalResult, InBlock);
1552   return true;
1553 }
1554 
1555 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1556                                                        Instruction *CxtI) {
1557   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1558                     << BB->getName() << "'\n");
1559 
1560   assert(BlockValueStack.empty() && BlockValueSet.empty());
1561   if (!hasBlockValue(V, BB)) {
1562     pushBlockValue(std::make_pair(BB, V));
1563     solve();
1564   }
1565   ValueLatticeElement Result = getBlockValue(V, BB);
1566   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1567 
1568   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1569   return Result;
1570 }
1571 
1572 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1573   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1574                     << "'\n");
1575 
1576   if (auto *C = dyn_cast<Constant>(V))
1577     return ValueLatticeElement::get(C);
1578 
1579   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1580   if (auto *I = dyn_cast<Instruction>(V))
1581     Result = getFromRangeMetadata(I);
1582   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1583 
1584   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1585   return Result;
1586 }
1587 
1588 ValueLatticeElement LazyValueInfoImpl::
1589 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1590                Instruction *CxtI) {
1591   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1592                     << FromBB->getName() << "' to '" << ToBB->getName()
1593                     << "'\n");
1594 
1595   ValueLatticeElement Result;
1596   if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1597     solve();
1598     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1599     (void)WasFastQuery;
1600     assert(WasFastQuery && "More work to do after problem solved?");
1601   }
1602 
1603   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1604   return Result;
1605 }
1606 
1607 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1608                                    BasicBlock *NewSucc) {
1609   TheCache.threadEdgeImpl(OldSucc, NewSucc);
1610 }
1611 
1612 //===----------------------------------------------------------------------===//
1613 //                            LazyValueInfo Impl
1614 //===----------------------------------------------------------------------===//
1615 
1616 /// This lazily constructs the LazyValueInfoImpl.
1617 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1618                                   const DataLayout *DL,
1619                                   DominatorTree *DT = nullptr) {
1620   if (!PImpl) {
1621     assert(DL && "getCache() called with a null DataLayout");
1622     PImpl = new LazyValueInfoImpl(AC, *DL, DT);
1623   }
1624   return *static_cast<LazyValueInfoImpl*>(PImpl);
1625 }
1626 
1627 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1628   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1629   const DataLayout &DL = F.getParent()->getDataLayout();
1630 
1631   DominatorTreeWrapperPass *DTWP =
1632       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1633   Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
1634   Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1635 
1636   if (Info.PImpl)
1637     getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
1638 
1639   // Fully lazy.
1640   return false;
1641 }
1642 
1643 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1644   AU.setPreservesAll();
1645   AU.addRequired<AssumptionCacheTracker>();
1646   AU.addRequired<TargetLibraryInfoWrapperPass>();
1647 }
1648 
1649 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1650 
1651 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1652 
1653 void LazyValueInfo::releaseMemory() {
1654   // If the cache was allocated, free it.
1655   if (PImpl) {
1656     delete &getImpl(PImpl, AC, nullptr);
1657     PImpl = nullptr;
1658   }
1659 }
1660 
1661 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1662                                FunctionAnalysisManager::Invalidator &Inv) {
1663   // We need to invalidate if we have either failed to preserve this analyses
1664   // result directly or if any of its dependencies have been invalidated.
1665   auto PAC = PA.getChecker<LazyValueAnalysis>();
1666   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
1667       (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
1668     return true;
1669 
1670   return false;
1671 }
1672 
1673 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1674 
1675 LazyValueInfo LazyValueAnalysis::run(Function &F,
1676                                      FunctionAnalysisManager &FAM) {
1677   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1678   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1679   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1680 
1681   return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
1682 }
1683 
1684 /// Returns true if we can statically tell that this value will never be a
1685 /// "useful" constant.  In practice, this means we've got something like an
1686 /// alloca or a malloc call for which a comparison against a constant can
1687 /// only be guarding dead code.  Note that we are potentially giving up some
1688 /// precision in dead code (a constant result) in favour of avoiding a
1689 /// expensive search for a easily answered common query.
1690 static bool isKnownNonConstant(Value *V) {
1691   V = V->stripPointerCasts();
1692   // The return val of alloc cannot be a Constant.
1693   if (isa<AllocaInst>(V))
1694     return true;
1695   return false;
1696 }
1697 
1698 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1699                                      Instruction *CxtI) {
1700   // Bail out early if V is known not to be a Constant.
1701   if (isKnownNonConstant(V))
1702     return nullptr;
1703 
1704   const DataLayout &DL = BB->getModule()->getDataLayout();
1705   ValueLatticeElement Result =
1706       getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1707 
1708   if (Result.isConstant())
1709     return Result.getConstant();
1710   if (Result.isConstantRange()) {
1711     const ConstantRange &CR = Result.getConstantRange();
1712     if (const APInt *SingleVal = CR.getSingleElement())
1713       return ConstantInt::get(V->getContext(), *SingleVal);
1714   }
1715   return nullptr;
1716 }
1717 
1718 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
1719                                               Instruction *CxtI) {
1720   assert(V->getType()->isIntegerTy());
1721   unsigned Width = V->getType()->getIntegerBitWidth();
1722   const DataLayout &DL = BB->getModule()->getDataLayout();
1723   ValueLatticeElement Result =
1724       getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1725   if (Result.isUndefined())
1726     return ConstantRange::getEmpty(Width);
1727   if (Result.isConstantRange())
1728     return Result.getConstantRange();
1729   // We represent ConstantInt constants as constant ranges but other kinds
1730   // of integer constants, i.e. ConstantExpr will be tagged as constants
1731   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1732          "ConstantInt value must be represented as constantrange");
1733   return ConstantRange::getFull(Width);
1734 }
1735 
1736 /// Determine whether the specified value is known to be a
1737 /// constant on the specified edge. Return null if not.
1738 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1739                                            BasicBlock *ToBB,
1740                                            Instruction *CxtI) {
1741   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1742   ValueLatticeElement Result =
1743       getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1744 
1745   if (Result.isConstant())
1746     return Result.getConstant();
1747   if (Result.isConstantRange()) {
1748     const ConstantRange &CR = Result.getConstantRange();
1749     if (const APInt *SingleVal = CR.getSingleElement())
1750       return ConstantInt::get(V->getContext(), *SingleVal);
1751   }
1752   return nullptr;
1753 }
1754 
1755 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1756                                                     BasicBlock *FromBB,
1757                                                     BasicBlock *ToBB,
1758                                                     Instruction *CxtI) {
1759   unsigned Width = V->getType()->getIntegerBitWidth();
1760   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1761   ValueLatticeElement Result =
1762       getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1763 
1764   if (Result.isUndefined())
1765     return ConstantRange::getEmpty(Width);
1766   if (Result.isConstantRange())
1767     return Result.getConstantRange();
1768   // We represent ConstantInt constants as constant ranges but other kinds
1769   // of integer constants, i.e. ConstantExpr will be tagged as constants
1770   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1771          "ConstantInt value must be represented as constantrange");
1772   return ConstantRange::getFull(Width);
1773 }
1774 
1775 static LazyValueInfo::Tristate
1776 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1777                    const DataLayout &DL, TargetLibraryInfo *TLI) {
1778   // If we know the value is a constant, evaluate the conditional.
1779   Constant *Res = nullptr;
1780   if (Val.isConstant()) {
1781     Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1782     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1783       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1784     return LazyValueInfo::Unknown;
1785   }
1786 
1787   if (Val.isConstantRange()) {
1788     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1789     if (!CI) return LazyValueInfo::Unknown;
1790 
1791     const ConstantRange &CR = Val.getConstantRange();
1792     if (Pred == ICmpInst::ICMP_EQ) {
1793       if (!CR.contains(CI->getValue()))
1794         return LazyValueInfo::False;
1795 
1796       if (CR.isSingleElement())
1797         return LazyValueInfo::True;
1798     } else if (Pred == ICmpInst::ICMP_NE) {
1799       if (!CR.contains(CI->getValue()))
1800         return LazyValueInfo::True;
1801 
1802       if (CR.isSingleElement())
1803         return LazyValueInfo::False;
1804     } else {
1805       // Handle more complex predicates.
1806       ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1807           (ICmpInst::Predicate)Pred, CI->getValue());
1808       if (TrueValues.contains(CR))
1809         return LazyValueInfo::True;
1810       if (TrueValues.inverse().contains(CR))
1811         return LazyValueInfo::False;
1812     }
1813     return LazyValueInfo::Unknown;
1814   }
1815 
1816   if (Val.isNotConstant()) {
1817     // If this is an equality comparison, we can try to fold it knowing that
1818     // "V != C1".
1819     if (Pred == ICmpInst::ICMP_EQ) {
1820       // !C1 == C -> false iff C1 == C.
1821       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1822                                             Val.getNotConstant(), C, DL,
1823                                             TLI);
1824       if (Res->isNullValue())
1825         return LazyValueInfo::False;
1826     } else if (Pred == ICmpInst::ICMP_NE) {
1827       // !C1 != C -> true iff C1 == C.
1828       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1829                                             Val.getNotConstant(), C, DL,
1830                                             TLI);
1831       if (Res->isNullValue())
1832         return LazyValueInfo::True;
1833     }
1834     return LazyValueInfo::Unknown;
1835   }
1836 
1837   return LazyValueInfo::Unknown;
1838 }
1839 
1840 /// Determine whether the specified value comparison with a constant is known to
1841 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1842 LazyValueInfo::Tristate
1843 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1844                                   BasicBlock *FromBB, BasicBlock *ToBB,
1845                                   Instruction *CxtI) {
1846   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1847   ValueLatticeElement Result =
1848       getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1849 
1850   return getPredicateResult(Pred, C, Result, DL, TLI);
1851 }
1852 
1853 LazyValueInfo::Tristate
1854 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1855                               Instruction *CxtI) {
1856   // Is or is not NonNull are common predicates being queried. If
1857   // isKnownNonZero can tell us the result of the predicate, we can
1858   // return it quickly. But this is only a fastpath, and falling
1859   // through would still be correct.
1860   const DataLayout &DL = CxtI->getModule()->getDataLayout();
1861   if (V->getType()->isPointerTy() && C->isNullValue() &&
1862       isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1863     if (Pred == ICmpInst::ICMP_EQ)
1864       return LazyValueInfo::False;
1865     else if (Pred == ICmpInst::ICMP_NE)
1866       return LazyValueInfo::True;
1867   }
1868   ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1869   Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1870   if (Ret != Unknown)
1871     return Ret;
1872 
1873   // Note: The following bit of code is somewhat distinct from the rest of LVI;
1874   // LVI as a whole tries to compute a lattice value which is conservatively
1875   // correct at a given location.  In this case, we have a predicate which we
1876   // weren't able to prove about the merged result, and we're pushing that
1877   // predicate back along each incoming edge to see if we can prove it
1878   // separately for each input.  As a motivating example, consider:
1879   // bb1:
1880   //   %v1 = ... ; constantrange<1, 5>
1881   //   br label %merge
1882   // bb2:
1883   //   %v2 = ... ; constantrange<10, 20>
1884   //   br label %merge
1885   // merge:
1886   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
1887   //   %pred = icmp eq i32 %phi, 8
1888   // We can't tell from the lattice value for '%phi' that '%pred' is false
1889   // along each path, but by checking the predicate over each input separately,
1890   // we can.
1891   // We limit the search to one step backwards from the current BB and value.
1892   // We could consider extending this to search further backwards through the
1893   // CFG and/or value graph, but there are non-obvious compile time vs quality
1894   // tradeoffs.
1895   if (CxtI) {
1896     BasicBlock *BB = CxtI->getParent();
1897 
1898     // Function entry or an unreachable block.  Bail to avoid confusing
1899     // analysis below.
1900     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1901     if (PI == PE)
1902       return Unknown;
1903 
1904     // If V is a PHI node in the same block as the context, we need to ask
1905     // questions about the predicate as applied to the incoming value along
1906     // each edge. This is useful for eliminating cases where the predicate is
1907     // known along all incoming edges.
1908     if (auto *PHI = dyn_cast<PHINode>(V))
1909       if (PHI->getParent() == BB) {
1910         Tristate Baseline = Unknown;
1911         for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1912           Value *Incoming = PHI->getIncomingValue(i);
1913           BasicBlock *PredBB = PHI->getIncomingBlock(i);
1914           // Note that PredBB may be BB itself.
1915           Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1916                                                CxtI);
1917 
1918           // Keep going as long as we've seen a consistent known result for
1919           // all inputs.
1920           Baseline = (i == 0) ? Result /* First iteration */
1921             : (Baseline == Result ? Baseline : Unknown); /* All others */
1922           if (Baseline == Unknown)
1923             break;
1924         }
1925         if (Baseline != Unknown)
1926           return Baseline;
1927       }
1928 
1929     // For a comparison where the V is outside this block, it's possible
1930     // that we've branched on it before. Look to see if the value is known
1931     // on all incoming edges.
1932     if (!isa<Instruction>(V) ||
1933         cast<Instruction>(V)->getParent() != BB) {
1934       // For predecessor edge, determine if the comparison is true or false
1935       // on that edge. If they're all true or all false, we can conclude
1936       // the value of the comparison in this block.
1937       Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1938       if (Baseline != Unknown) {
1939         // Check that all remaining incoming values match the first one.
1940         while (++PI != PE) {
1941           Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1942           if (Ret != Baseline) break;
1943         }
1944         // If we terminated early, then one of the values didn't match.
1945         if (PI == PE) {
1946           return Baseline;
1947         }
1948       }
1949     }
1950   }
1951   return Unknown;
1952 }
1953 
1954 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1955                                BasicBlock *NewSucc) {
1956   if (PImpl) {
1957     const DataLayout &DL = PredBB->getModule()->getDataLayout();
1958     getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1959   }
1960 }
1961 
1962 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1963   if (PImpl) {
1964     const DataLayout &DL = BB->getModule()->getDataLayout();
1965     getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
1966   }
1967 }
1968 
1969 
1970 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1971   if (PImpl) {
1972     getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
1973   }
1974 }
1975 
1976 void LazyValueInfo::disableDT() {
1977   if (PImpl)
1978     getImpl(PImpl, AC, DL, DT).disableDT();
1979 }
1980 
1981 void LazyValueInfo::enableDT() {
1982   if (PImpl)
1983     getImpl(PImpl, AC, DL, DT).enableDT();
1984 }
1985 
1986 // Print the LVI for the function arguments at the start of each basic block.
1987 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1988     const BasicBlock *BB, formatted_raw_ostream &OS) {
1989   // Find if there are latticevalues defined for arguments of the function.
1990   auto *F = BB->getParent();
1991   for (auto &Arg : F->args()) {
1992     ValueLatticeElement Result = LVIImpl->getValueInBlock(
1993         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1994     if (Result.isUndefined())
1995       continue;
1996     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1997   }
1998 }
1999 
2000 // This function prints the LVI analysis for the instruction I at the beginning
2001 // of various basic blocks. It relies on calculated values that are stored in
2002 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
2003 // LazyValueInfo for `I`, and print that info.
2004 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
2005     const Instruction *I, formatted_raw_ostream &OS) {
2006 
2007   auto *ParentBB = I->getParent();
2008   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2009   // We can generate (solve) LVI values only for blocks that are dominated by
2010   // the I's parent. However, to avoid generating LVI for all dominating blocks,
2011   // that contain redundant/uninteresting information, we print LVI for
2012   // blocks that may use this LVI information (such as immediate successor
2013   // blocks, and blocks that contain uses of `I`).
2014   auto printResult = [&](const BasicBlock *BB) {
2015     if (!BlocksContainingLVI.insert(BB).second)
2016       return;
2017     ValueLatticeElement Result = LVIImpl->getValueInBlock(
2018         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
2019       OS << "; LatticeVal for: '" << *I << "' in BB: '";
2020       BB->printAsOperand(OS, false);
2021       OS << "' is: " << Result << "\n";
2022   };
2023 
2024   printResult(ParentBB);
2025   // Print the LVI analysis results for the immediate successor blocks, that
2026   // are dominated by `ParentBB`.
2027   for (auto *BBSucc : successors(ParentBB))
2028     if (DT.dominates(ParentBB, BBSucc))
2029       printResult(BBSucc);
2030 
2031   // Print LVI in blocks where `I` is used.
2032   for (auto *U : I->users())
2033     if (auto *UseI = dyn_cast<Instruction>(U))
2034       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2035         printResult(UseI->getParent());
2036 
2037 }
2038 
2039 namespace {
2040 // Printer class for LazyValueInfo results.
2041 class LazyValueInfoPrinter : public FunctionPass {
2042 public:
2043   static char ID; // Pass identification, replacement for typeid
2044   LazyValueInfoPrinter() : FunctionPass(ID) {
2045     initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
2046   }
2047 
2048   void getAnalysisUsage(AnalysisUsage &AU) const override {
2049     AU.setPreservesAll();
2050     AU.addRequired<LazyValueInfoWrapperPass>();
2051     AU.addRequired<DominatorTreeWrapperPass>();
2052   }
2053 
2054   // Get the mandatory dominator tree analysis and pass this in to the
2055   // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
2056   bool runOnFunction(Function &F) override {
2057     dbgs() << "LVI for function '" << F.getName() << "':\n";
2058     auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
2059     auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2060     LVI.printLVI(F, DTree, dbgs());
2061     return false;
2062   }
2063 };
2064 }
2065 
2066 char LazyValueInfoPrinter::ID = 0;
2067 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
2068                 "Lazy Value Info Printer Pass", false, false)
2069 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
2070 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
2071                 "Lazy Value Info Printer Pass", false, false)
2072