1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GetElementPtrTypeIterator.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/ValueHandle.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
64 #include <variant>
65 #include <vector>
66 
67 using namespace llvm;
68 using namespace llvm::PatternMatch;
69 
70 #define DEBUG_TYPE "loop-accesses"
71 
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74                     cl::desc("Sets the SIMD width. Zero is autoselect."),
75                     cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
77 
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80                         cl::desc("Sets the vectorization interleave count. "
81                                  "Zero is autoselect."),
82                         cl::location(
83                             VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
85 
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87     "runtime-memory-check-threshold", cl::Hidden,
88     cl::desc("When performing memory disambiguation checks at runtime do not "
89              "generate more than this number of comparisons (default = 8)."),
90     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
92 
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95     "memory-check-merge-threshold", cl::Hidden,
96     cl::desc("Maximum number of comparisons done when trying to merge "
97              "runtime memory checks. (default = 100)"),
98     cl::init(100));
99 
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
102 
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105     MaxDependences("max-dependences", cl::Hidden,
106                    cl::desc("Maximum number of dependences collected by "
107                             "loop-access analysis (default = 100)"),
108                    cl::init(100));
109 
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 ///   for (i = 0; i < N; ++i)
113 ///     A[i * Stride1] += B[i * Stride2] ...
114 ///
115 /// Will be roughly translated to
116 ///    if (Stride1 == 1 && Stride2 == 1) {
117 ///      for (i = 0; i < N; i+=4)
118 ///       A[i:i+3] += ...
119 ///    } else
120 ///      ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123     cl::desc("Enable symbolic stride memory access versioning"));
124 
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128     "store-to-load-forwarding-conflict-detection", cl::Hidden,
129     cl::desc("Enable conflict detection in loop-access analysis"),
130     cl::init(true));
131 
132 static cl::opt<unsigned> MaxForkedSCEVDepth(
133     "max-forked-scev-depth", cl::Hidden,
134     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
135     cl::init(5));
136 
137 static cl::opt<bool> SpeculateUnitStride(
138     "laa-speculate-unit-stride", cl::Hidden,
139     cl::desc("Speculate that non-constant strides are unit in LAA"),
140     cl::init(true));
141 
142 static cl::opt<bool, true> HoistRuntimeChecks(
143     "hoist-runtime-checks", cl::Hidden,
144     cl::desc(
145         "Hoist inner loop runtime memory checks to outer loop if possible"),
146     cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(false));
147 bool VectorizerParams::HoistRuntimeChecks;
148 
149 bool VectorizerParams::isInterleaveForced() {
150   return ::VectorizationInterleave.getNumOccurrences() > 0;
151 }
152 
153 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
154                                             const DenseMap<Value *, const SCEV *> &PtrToStride,
155                                             Value *Ptr) {
156   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
157 
158   // If there is an entry in the map return the SCEV of the pointer with the
159   // symbolic stride replaced by one.
160   DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
161   if (SI == PtrToStride.end())
162     // For a non-symbolic stride, just return the original expression.
163     return OrigSCEV;
164 
165   const SCEV *StrideSCEV = SI->second;
166   // Note: This assert is both overly strong and overly weak.  The actual
167   // invariant here is that StrideSCEV should be loop invariant.  The only
168   // such invariant strides we happen to speculate right now are unknowns
169   // and thus this is a reasonable proxy of the actual invariant.
170   assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
171 
172   ScalarEvolution *SE = PSE.getSE();
173   const auto *CT = SE->getOne(StrideSCEV->getType());
174   PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
175   auto *Expr = PSE.getSCEV(Ptr);
176 
177   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
178 	     << " by: " << *Expr << "\n");
179   return Expr;
180 }
181 
182 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
183     unsigned Index, RuntimePointerChecking &RtCheck)
184     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
185       AddressSpace(RtCheck.Pointers[Index]
186                        .PointerValue->getType()
187                        ->getPointerAddressSpace()),
188       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
189   Members.push_back(Index);
190 }
191 
192 /// Calculate Start and End points of memory access.
193 /// Let's assume A is the first access and B is a memory access on N-th loop
194 /// iteration. Then B is calculated as:
195 ///   B = A + Step*N .
196 /// Step value may be positive or negative.
197 /// N is a calculated back-edge taken count:
198 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
199 /// Start and End points are calculated in the following way:
200 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
201 /// where SizeOfElt is the size of single memory access in bytes.
202 ///
203 /// There is no conflict when the intervals are disjoint:
204 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
205 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
206                                     Type *AccessTy, bool WritePtr,
207                                     unsigned DepSetId, unsigned ASId,
208                                     PredicatedScalarEvolution &PSE,
209                                     bool NeedsFreeze) {
210   ScalarEvolution *SE = PSE.getSE();
211 
212   const SCEV *ScStart;
213   const SCEV *ScEnd;
214 
215   if (SE->isLoopInvariant(PtrExpr, Lp)) {
216     ScStart = ScEnd = PtrExpr;
217   } else {
218     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
219     assert(AR && "Invalid addrec expression");
220     const SCEV *Ex = PSE.getBackedgeTakenCount();
221 
222     ScStart = AR->getStart();
223     ScEnd = AR->evaluateAtIteration(Ex, *SE);
224     const SCEV *Step = AR->getStepRecurrence(*SE);
225 
226     // For expressions with negative step, the upper bound is ScStart and the
227     // lower bound is ScEnd.
228     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
229       if (CStep->getValue()->isNegative())
230         std::swap(ScStart, ScEnd);
231     } else {
232       // Fallback case: the step is not constant, but we can still
233       // get the upper and lower bounds of the interval by using min/max
234       // expressions.
235       ScStart = SE->getUMinExpr(ScStart, ScEnd);
236       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
237     }
238   }
239   assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
240   assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
241 
242   // Add the size of the pointed element to ScEnd.
243   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
244   Type *IdxTy = DL.getIndexType(Ptr->getType());
245   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
246   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
247 
248   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
249                         NeedsFreeze);
250 }
251 
252 void RuntimePointerChecking::tryToCreateDiffCheck(
253     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
254   if (!CanUseDiffCheck)
255     return;
256 
257   // If either group contains multiple different pointers, bail out.
258   // TODO: Support multiple pointers by using the minimum or maximum pointer,
259   // depending on src & sink.
260   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
261     CanUseDiffCheck = false;
262     return;
263   }
264 
265   PointerInfo *Src = &Pointers[CGI.Members[0]];
266   PointerInfo *Sink = &Pointers[CGJ.Members[0]];
267 
268   // If either pointer is read and written, multiple checks may be needed. Bail
269   // out.
270   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
271       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
272     CanUseDiffCheck = false;
273     return;
274   }
275 
276   ArrayRef<unsigned> AccSrc =
277       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
278   ArrayRef<unsigned> AccSink =
279       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
280   // If either pointer is accessed multiple times, there may not be a clear
281   // src/sink relation. Bail out for now.
282   if (AccSrc.size() != 1 || AccSink.size() != 1) {
283     CanUseDiffCheck = false;
284     return;
285   }
286   // If the sink is accessed before src, swap src/sink.
287   if (AccSink[0] < AccSrc[0])
288     std::swap(Src, Sink);
289 
290   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
291   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
292   if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
293       SinkAR->getLoop() != DC.getInnermostLoop()) {
294     CanUseDiffCheck = false;
295     return;
296   }
297 
298   SmallVector<Instruction *, 4> SrcInsts =
299       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
300   SmallVector<Instruction *, 4> SinkInsts =
301       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
302   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
303   Type *DstTy = getLoadStoreType(SinkInsts[0]);
304   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) {
305     CanUseDiffCheck = false;
306     return;
307   }
308   const DataLayout &DL =
309       SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
310   unsigned AllocSize =
311       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
312 
313   // Only matching constant steps matching the AllocSize are supported at the
314   // moment. This simplifies the difference computation. Can be extended in the
315   // future.
316   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
317   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
318       Step->getAPInt().abs() != AllocSize) {
319     CanUseDiffCheck = false;
320     return;
321   }
322 
323   IntegerType *IntTy =
324       IntegerType::get(Src->PointerValue->getContext(),
325                        DL.getPointerSizeInBits(CGI.AddressSpace));
326 
327   // When counting down, the dependence distance needs to be swapped.
328   if (Step->getValue()->isNegative())
329     std::swap(SinkAR, SrcAR);
330 
331   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
332   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
333   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
334       isa<SCEVCouldNotCompute>(SrcStartInt)) {
335     CanUseDiffCheck = false;
336     return;
337   }
338 
339   const Loop *InnerLoop = SrcAR->getLoop();
340   // If the start values for both Src and Sink also vary according to an outer
341   // loop, then it's probably better to avoid creating diff checks because
342   // they may not be hoisted. We should instead let llvm::addRuntimeChecks
343   // do the expanded full range overlap checks, which can be hoisted.
344   if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
345       isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
346     auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
347     auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
348     const Loop *StartARLoop = SrcStartAR->getLoop();
349     if (StartARLoop == SinkStartAR->getLoop() &&
350         StartARLoop == InnerLoop->getParentLoop() &&
351         // If the diff check would already be loop invariant (due to the
352         // recurrences being the same), then we prefer to keep the diff checks
353         // because they are cheaper.
354         SrcStartAR->getStepRecurrence(*SE) !=
355             SinkStartAR->getStepRecurrence(*SE)) {
356       LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
357                            "cannot be hoisted out of the outer loop\n");
358       CanUseDiffCheck = false;
359       return;
360     }
361   }
362 
363   LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
364                     << "SrcStart: " << *SrcStartInt << '\n'
365                     << "SinkStartInt: " << *SinkStartInt << '\n');
366   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
367                           Src->NeedsFreeze || Sink->NeedsFreeze);
368 }
369 
370 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
371   SmallVector<RuntimePointerCheck, 4> Checks;
372 
373   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
374     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
375       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
376       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
377 
378       if (needsChecking(CGI, CGJ)) {
379         tryToCreateDiffCheck(CGI, CGJ);
380         Checks.push_back(std::make_pair(&CGI, &CGJ));
381       }
382     }
383   }
384   return Checks;
385 }
386 
387 void RuntimePointerChecking::generateChecks(
388     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
389   assert(Checks.empty() && "Checks is not empty");
390   groupChecks(DepCands, UseDependencies);
391   Checks = generateChecks();
392 }
393 
394 bool RuntimePointerChecking::needsChecking(
395     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
396   for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
397     for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
398       if (needsChecking(M.Members[I], N.Members[J]))
399         return true;
400   return false;
401 }
402 
403 /// Compare \p I and \p J and return the minimum.
404 /// Return nullptr in case we couldn't find an answer.
405 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
406                                    ScalarEvolution *SE) {
407   const SCEV *Diff = SE->getMinusSCEV(J, I);
408   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
409 
410   if (!C)
411     return nullptr;
412   if (C->getValue()->isNegative())
413     return J;
414   return I;
415 }
416 
417 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
418                                          RuntimePointerChecking &RtCheck) {
419   return addPointer(
420       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
421       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
422       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
423 }
424 
425 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
426                                          const SCEV *End, unsigned AS,
427                                          bool NeedsFreeze,
428                                          ScalarEvolution &SE) {
429   assert(AddressSpace == AS &&
430          "all pointers in a checking group must be in the same address space");
431 
432   // Compare the starts and ends with the known minimum and maximum
433   // of this set. We need to know how we compare against the min/max
434   // of the set in order to be able to emit memchecks.
435   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
436   if (!Min0)
437     return false;
438 
439   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
440   if (!Min1)
441     return false;
442 
443   // Update the low bound  expression if we've found a new min value.
444   if (Min0 == Start)
445     Low = Start;
446 
447   // Update the high bound expression if we've found a new max value.
448   if (Min1 != End)
449     High = End;
450 
451   Members.push_back(Index);
452   this->NeedsFreeze |= NeedsFreeze;
453   return true;
454 }
455 
456 void RuntimePointerChecking::groupChecks(
457     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
458   // We build the groups from dependency candidates equivalence classes
459   // because:
460   //    - We know that pointers in the same equivalence class share
461   //      the same underlying object and therefore there is a chance
462   //      that we can compare pointers
463   //    - We wouldn't be able to merge two pointers for which we need
464   //      to emit a memcheck. The classes in DepCands are already
465   //      conveniently built such that no two pointers in the same
466   //      class need checking against each other.
467 
468   // We use the following (greedy) algorithm to construct the groups
469   // For every pointer in the equivalence class:
470   //   For each existing group:
471   //   - if the difference between this pointer and the min/max bounds
472   //     of the group is a constant, then make the pointer part of the
473   //     group and update the min/max bounds of that group as required.
474 
475   CheckingGroups.clear();
476 
477   // If we need to check two pointers to the same underlying object
478   // with a non-constant difference, we shouldn't perform any pointer
479   // grouping with those pointers. This is because we can easily get
480   // into cases where the resulting check would return false, even when
481   // the accesses are safe.
482   //
483   // The following example shows this:
484   // for (i = 0; i < 1000; ++i)
485   //   a[5000 + i * m] = a[i] + a[i + 9000]
486   //
487   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
488   // (0, 10000) which is always false. However, if m is 1, there is no
489   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
490   // us to perform an accurate check in this case.
491   //
492   // The above case requires that we have an UnknownDependence between
493   // accesses to the same underlying object. This cannot happen unless
494   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
495   // is also false. In this case we will use the fallback path and create
496   // separate checking groups for all pointers.
497 
498   // If we don't have the dependency partitions, construct a new
499   // checking pointer group for each pointer. This is also required
500   // for correctness, because in this case we can have checking between
501   // pointers to the same underlying object.
502   if (!UseDependencies) {
503     for (unsigned I = 0; I < Pointers.size(); ++I)
504       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
505     return;
506   }
507 
508   unsigned TotalComparisons = 0;
509 
510   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
511   for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
512     auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
513     Iter.first->second.push_back(Index);
514   }
515 
516   // We need to keep track of what pointers we've already seen so we
517   // don't process them twice.
518   SmallSet<unsigned, 2> Seen;
519 
520   // Go through all equivalence classes, get the "pointer check groups"
521   // and add them to the overall solution. We use the order in which accesses
522   // appear in 'Pointers' to enforce determinism.
523   for (unsigned I = 0; I < Pointers.size(); ++I) {
524     // We've seen this pointer before, and therefore already processed
525     // its equivalence class.
526     if (Seen.count(I))
527       continue;
528 
529     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
530                                            Pointers[I].IsWritePtr);
531 
532     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
533     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
534 
535     // Because DepCands is constructed by visiting accesses in the order in
536     // which they appear in alias sets (which is deterministic) and the
537     // iteration order within an equivalence class member is only dependent on
538     // the order in which unions and insertions are performed on the
539     // equivalence class, the iteration order is deterministic.
540     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
541          MI != ME; ++MI) {
542       auto PointerI = PositionMap.find(MI->getPointer());
543       assert(PointerI != PositionMap.end() &&
544              "pointer in equivalence class not found in PositionMap");
545       for (unsigned Pointer : PointerI->second) {
546         bool Merged = false;
547         // Mark this pointer as seen.
548         Seen.insert(Pointer);
549 
550         // Go through all the existing sets and see if we can find one
551         // which can include this pointer.
552         for (RuntimeCheckingPtrGroup &Group : Groups) {
553           // Don't perform more than a certain amount of comparisons.
554           // This should limit the cost of grouping the pointers to something
555           // reasonable.  If we do end up hitting this threshold, the algorithm
556           // will create separate groups for all remaining pointers.
557           if (TotalComparisons > MemoryCheckMergeThreshold)
558             break;
559 
560           TotalComparisons++;
561 
562           if (Group.addPointer(Pointer, *this)) {
563             Merged = true;
564             break;
565           }
566         }
567 
568         if (!Merged)
569           // We couldn't add this pointer to any existing set or the threshold
570           // for the number of comparisons has been reached. Create a new group
571           // to hold the current pointer.
572           Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
573       }
574     }
575 
576     // We've computed the grouped checks for this partition.
577     // Save the results and continue with the next one.
578     llvm::copy(Groups, std::back_inserter(CheckingGroups));
579   }
580 }
581 
582 bool RuntimePointerChecking::arePointersInSamePartition(
583     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
584     unsigned PtrIdx2) {
585   return (PtrToPartition[PtrIdx1] != -1 &&
586           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
587 }
588 
589 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
590   const PointerInfo &PointerI = Pointers[I];
591   const PointerInfo &PointerJ = Pointers[J];
592 
593   // No need to check if two readonly pointers intersect.
594   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
595     return false;
596 
597   // Only need to check pointers between two different dependency sets.
598   if (PointerI.DependencySetId == PointerJ.DependencySetId)
599     return false;
600 
601   // Only need to check pointers in the same alias set.
602   if (PointerI.AliasSetId != PointerJ.AliasSetId)
603     return false;
604 
605   return true;
606 }
607 
608 void RuntimePointerChecking::printChecks(
609     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
610     unsigned Depth) const {
611   unsigned N = 0;
612   for (const auto &Check : Checks) {
613     const auto &First = Check.first->Members, &Second = Check.second->Members;
614 
615     OS.indent(Depth) << "Check " << N++ << ":\n";
616 
617     OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
618     for (unsigned K = 0; K < First.size(); ++K)
619       OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
620 
621     OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
622     for (unsigned K = 0; K < Second.size(); ++K)
623       OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
624   }
625 }
626 
627 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
628 
629   OS.indent(Depth) << "Run-time memory checks:\n";
630   printChecks(OS, Checks, Depth);
631 
632   OS.indent(Depth) << "Grouped accesses:\n";
633   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
634     const auto &CG = CheckingGroups[I];
635 
636     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
637     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
638                          << ")\n";
639     for (unsigned J = 0; J < CG.Members.size(); ++J) {
640       OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
641                            << "\n";
642     }
643   }
644 }
645 
646 namespace {
647 
648 /// Analyses memory accesses in a loop.
649 ///
650 /// Checks whether run time pointer checks are needed and builds sets for data
651 /// dependence checking.
652 class AccessAnalysis {
653 public:
654   /// Read or write access location.
655   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
656   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
657 
658   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
659                  MemoryDepChecker::DepCandidates &DA,
660                  PredicatedScalarEvolution &PSE)
661       : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE) {
662     // We're analyzing dependences across loop iterations.
663     BAA.enableCrossIterationMode();
664   }
665 
666   /// Register a load  and whether it is only read from.
667   void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
668     Value *Ptr = const_cast<Value*>(Loc.Ptr);
669     AST.add(Loc.getWithNewSize(LocationSize::beforeOrAfterPointer()));
670     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
671     if (IsReadOnly)
672       ReadOnlyPtr.insert(Ptr);
673   }
674 
675   /// Register a store.
676   void addStore(MemoryLocation &Loc, Type *AccessTy) {
677     Value *Ptr = const_cast<Value*>(Loc.Ptr);
678     AST.add(Loc.getWithNewSize(LocationSize::beforeOrAfterPointer()));
679     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
680   }
681 
682   /// Check if we can emit a run-time no-alias check for \p Access.
683   ///
684   /// Returns true if we can emit a run-time no alias check for \p Access.
685   /// If we can check this access, this also adds it to a dependence set and
686   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
687   /// we will attempt to use additional run-time checks in order to get
688   /// the bounds of the pointer.
689   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
690                             MemAccessInfo Access, Type *AccessTy,
691                             const DenseMap<Value *, const SCEV *> &Strides,
692                             DenseMap<Value *, unsigned> &DepSetId,
693                             Loop *TheLoop, unsigned &RunningDepId,
694                             unsigned ASId, bool ShouldCheckStride, bool Assume);
695 
696   /// Check whether we can check the pointers at runtime for
697   /// non-intersection.
698   ///
699   /// Returns true if we need no check or if we do and we can generate them
700   /// (i.e. the pointers have computable bounds).
701   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
702                        Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
703                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
704 
705   /// Goes over all memory accesses, checks whether a RT check is needed
706   /// and builds sets of dependent accesses.
707   void buildDependenceSets() {
708     processMemAccesses();
709   }
710 
711   /// Initial processing of memory accesses determined that we need to
712   /// perform dependency checking.
713   ///
714   /// Note that this can later be cleared if we retry memcheck analysis without
715   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
716   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
717 
718   /// We decided that no dependence analysis would be used.  Reset the state.
719   void resetDepChecks(MemoryDepChecker &DepChecker) {
720     CheckDeps.clear();
721     DepChecker.clearDependences();
722   }
723 
724   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
725 
726   const DenseMap<Value *, SmallVector<const Value *, 16>> &
727   getUnderlyingObjects() {
728     return UnderlyingObjects;
729   }
730 
731 private:
732   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
733 
734   /// Go over all memory access and check whether runtime pointer checks
735   /// are needed and build sets of dependency check candidates.
736   void processMemAccesses();
737 
738   /// Map of all accesses. Values are the types used to access memory pointed to
739   /// by the pointer.
740   PtrAccessMap Accesses;
741 
742   /// The loop being checked.
743   const Loop *TheLoop;
744 
745   /// List of accesses that need a further dependence check.
746   MemAccessInfoList CheckDeps;
747 
748   /// Set of pointers that are read only.
749   SmallPtrSet<Value*, 16> ReadOnlyPtr;
750 
751   /// Batched alias analysis results.
752   BatchAAResults BAA;
753 
754   /// An alias set tracker to partition the access set by underlying object and
755   //intrinsic property (such as TBAA metadata).
756   AliasSetTracker AST;
757 
758   LoopInfo *LI;
759 
760   /// Sets of potentially dependent accesses - members of one set share an
761   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
762   /// dependence check.
763   MemoryDepChecker::DepCandidates &DepCands;
764 
765   /// Initial processing of memory accesses determined that we may need
766   /// to add memchecks.  Perform the analysis to determine the necessary checks.
767   ///
768   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
769   /// memcheck analysis without dependency checking
770   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
771   /// cleared while this remains set if we have potentially dependent accesses.
772   bool IsRTCheckAnalysisNeeded = false;
773 
774   /// The SCEV predicate containing all the SCEV-related assumptions.
775   PredicatedScalarEvolution &PSE;
776 
777   DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
778 };
779 
780 } // end anonymous namespace
781 
782 /// Check whether a pointer can participate in a runtime bounds check.
783 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
784 /// by adding run-time checks (overflow checks) if necessary.
785 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
786                                 const SCEV *PtrScev, Loop *L, bool Assume) {
787   // The bounds for loop-invariant pointer is trivial.
788   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
789     return true;
790 
791   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
792 
793   if (!AR && Assume)
794     AR = PSE.getAsAddRec(Ptr);
795 
796   if (!AR)
797     return false;
798 
799   return AR->isAffine();
800 }
801 
802 /// Check whether a pointer address cannot wrap.
803 static bool isNoWrap(PredicatedScalarEvolution &PSE,
804                      const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
805                      Loop *L) {
806   const SCEV *PtrScev = PSE.getSCEV(Ptr);
807   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
808     return true;
809 
810   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
811   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
812     return true;
813 
814   return false;
815 }
816 
817 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
818                           function_ref<void(Value *)> AddPointer) {
819   SmallPtrSet<Value *, 8> Visited;
820   SmallVector<Value *> WorkList;
821   WorkList.push_back(StartPtr);
822 
823   while (!WorkList.empty()) {
824     Value *Ptr = WorkList.pop_back_val();
825     if (!Visited.insert(Ptr).second)
826       continue;
827     auto *PN = dyn_cast<PHINode>(Ptr);
828     // SCEV does not look through non-header PHIs inside the loop. Such phis
829     // can be analyzed by adding separate accesses for each incoming pointer
830     // value.
831     if (PN && InnermostLoop.contains(PN->getParent()) &&
832         PN->getParent() != InnermostLoop.getHeader()) {
833       for (const Use &Inc : PN->incoming_values())
834         WorkList.push_back(Inc);
835     } else
836       AddPointer(Ptr);
837   }
838 }
839 
840 // Walk back through the IR for a pointer, looking for a select like the
841 // following:
842 //
843 //  %offset = select i1 %cmp, i64 %a, i64 %b
844 //  %addr = getelementptr double, double* %base, i64 %offset
845 //  %ld = load double, double* %addr, align 8
846 //
847 // We won't be able to form a single SCEVAddRecExpr from this since the
848 // address for each loop iteration depends on %cmp. We could potentially
849 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
850 // memory safety/aliasing if needed.
851 //
852 // If we encounter some IR we don't yet handle, or something obviously fine
853 // like a constant, then we just add the SCEV for that term to the list passed
854 // in by the caller. If we have a node that may potentially yield a valid
855 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
856 // ourselves before adding to the list.
857 static void findForkedSCEVs(
858     ScalarEvolution *SE, const Loop *L, Value *Ptr,
859     SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
860     unsigned Depth) {
861   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
862   // we've exceeded our limit on recursion, just return whatever we have
863   // regardless of whether it can be used for a forked pointer or not, along
864   // with an indication of whether it might be a poison or undef value.
865   const SCEV *Scev = SE->getSCEV(Ptr);
866   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
867       !isa<Instruction>(Ptr) || Depth == 0) {
868     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
869     return;
870   }
871 
872   Depth--;
873 
874   auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
875     return get<1>(S);
876   };
877 
878   auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
879     switch (Opcode) {
880     case Instruction::Add:
881       return SE->getAddExpr(L, R);
882     case Instruction::Sub:
883       return SE->getMinusSCEV(L, R);
884     default:
885       llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
886     }
887   };
888 
889   Instruction *I = cast<Instruction>(Ptr);
890   unsigned Opcode = I->getOpcode();
891   switch (Opcode) {
892   case Instruction::GetElementPtr: {
893     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
894     Type *SourceTy = GEP->getSourceElementType();
895     // We only handle base + single offset GEPs here for now.
896     // Not dealing with preexisting gathers yet, so no vectors.
897     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
898       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
899       break;
900     }
901     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
902     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
903     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
904     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
905 
906     // See if we need to freeze our fork...
907     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
908                        any_of(OffsetScevs, UndefPoisonCheck);
909 
910     // Check that we only have a single fork, on either the base or the offset.
911     // Copy the SCEV across for the one without a fork in order to generate
912     // the full SCEV for both sides of the GEP.
913     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
914       BaseScevs.push_back(BaseScevs[0]);
915     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
916       OffsetScevs.push_back(OffsetScevs[0]);
917     else {
918       ScevList.emplace_back(Scev, NeedsFreeze);
919       break;
920     }
921 
922     // Find the pointer type we need to extend to.
923     Type *IntPtrTy = SE->getEffectiveSCEVType(
924         SE->getSCEV(GEP->getPointerOperand())->getType());
925 
926     // Find the size of the type being pointed to. We only have a single
927     // index term (guarded above) so we don't need to index into arrays or
928     // structures, just get the size of the scalar value.
929     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
930 
931     // Scale up the offsets by the size of the type, then add to the bases.
932     const SCEV *Scaled1 = SE->getMulExpr(
933         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
934     const SCEV *Scaled2 = SE->getMulExpr(
935         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
936     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
937                           NeedsFreeze);
938     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
939                           NeedsFreeze);
940     break;
941   }
942   case Instruction::Select: {
943     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
944     // A select means we've found a forked pointer, but we currently only
945     // support a single select per pointer so if there's another behind this
946     // then we just bail out and return the generic SCEV.
947     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
948     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
949     if (ChildScevs.size() == 2) {
950       ScevList.push_back(ChildScevs[0]);
951       ScevList.push_back(ChildScevs[1]);
952     } else
953       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
954     break;
955   }
956   case Instruction::PHI: {
957     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
958     // A phi means we've found a forked pointer, but we currently only
959     // support a single phi per pointer so if there's another behind this
960     // then we just bail out and return the generic SCEV.
961     if (I->getNumOperands() == 2) {
962       findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
963       findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
964     }
965     if (ChildScevs.size() == 2) {
966       ScevList.push_back(ChildScevs[0]);
967       ScevList.push_back(ChildScevs[1]);
968     } else
969       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
970     break;
971   }
972   case Instruction::Add:
973   case Instruction::Sub: {
974     SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
975     SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
976     findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
977     findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
978 
979     // See if we need to freeze our fork...
980     bool NeedsFreeze =
981         any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
982 
983     // Check that we only have a single fork, on either the left or right side.
984     // Copy the SCEV across for the one without a fork in order to generate
985     // the full SCEV for both sides of the BinOp.
986     if (LScevs.size() == 2 && RScevs.size() == 1)
987       RScevs.push_back(RScevs[0]);
988     else if (RScevs.size() == 2 && LScevs.size() == 1)
989       LScevs.push_back(LScevs[0]);
990     else {
991       ScevList.emplace_back(Scev, NeedsFreeze);
992       break;
993     }
994 
995     ScevList.emplace_back(
996         GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
997         NeedsFreeze);
998     ScevList.emplace_back(
999         GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1000         NeedsFreeze);
1001     break;
1002   }
1003   default:
1004     // Just return the current SCEV if we haven't handled the instruction yet.
1005     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1006     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1007     break;
1008   }
1009 }
1010 
1011 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1012 findForkedPointer(PredicatedScalarEvolution &PSE,
1013                   const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1014                   const Loop *L) {
1015   ScalarEvolution *SE = PSE.getSE();
1016   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1017   SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1018   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1019 
1020   // For now, we will only accept a forked pointer with two possible SCEVs
1021   // that are either SCEVAddRecExprs or loop invariant.
1022   if (Scevs.size() == 2 &&
1023       (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1024        SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1025       (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1026        SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1027     LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1028     LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1029     LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1030     return Scevs;
1031   }
1032 
1033   return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1034 }
1035 
1036 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1037                                           MemAccessInfo Access, Type *AccessTy,
1038                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1039                                           DenseMap<Value *, unsigned> &DepSetId,
1040                                           Loop *TheLoop, unsigned &RunningDepId,
1041                                           unsigned ASId, bool ShouldCheckWrap,
1042                                           bool Assume) {
1043   Value *Ptr = Access.getPointer();
1044 
1045   SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1046       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1047 
1048   for (auto &P : TranslatedPtrs) {
1049     const SCEV *PtrExpr = get<0>(P);
1050     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1051       return false;
1052 
1053     // When we run after a failing dependency check we have to make sure
1054     // we don't have wrapping pointers.
1055     if (ShouldCheckWrap) {
1056       // Skip wrap checking when translating pointers.
1057       if (TranslatedPtrs.size() > 1)
1058         return false;
1059 
1060       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1061         auto *Expr = PSE.getSCEV(Ptr);
1062         if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1063           return false;
1064         PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1065       }
1066     }
1067     // If there's only one option for Ptr, look it up after bounds and wrap
1068     // checking, because assumptions might have been added to PSE.
1069     if (TranslatedPtrs.size() == 1)
1070       TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1071                            false};
1072   }
1073 
1074   for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1075     // The id of the dependence set.
1076     unsigned DepId;
1077 
1078     if (isDependencyCheckNeeded()) {
1079       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1080       unsigned &LeaderId = DepSetId[Leader];
1081       if (!LeaderId)
1082         LeaderId = RunningDepId++;
1083       DepId = LeaderId;
1084     } else
1085       // Each access has its own dependence set.
1086       DepId = RunningDepId++;
1087 
1088     bool IsWrite = Access.getInt();
1089     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1090                    NeedsFreeze);
1091     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1092   }
1093 
1094   return true;
1095 }
1096 
1097 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1098                                      ScalarEvolution *SE, Loop *TheLoop,
1099                                      const DenseMap<Value *, const SCEV *> &StridesMap,
1100                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
1101   // Find pointers with computable bounds. We are going to use this information
1102   // to place a runtime bound check.
1103   bool CanDoRT = true;
1104 
1105   bool MayNeedRTCheck = false;
1106   if (!IsRTCheckAnalysisNeeded) return true;
1107 
1108   bool IsDepCheckNeeded = isDependencyCheckNeeded();
1109 
1110   // We assign a consecutive id to access from different alias sets.
1111   // Accesses between different groups doesn't need to be checked.
1112   unsigned ASId = 0;
1113   for (auto &AS : AST) {
1114     int NumReadPtrChecks = 0;
1115     int NumWritePtrChecks = 0;
1116     bool CanDoAliasSetRT = true;
1117     ++ASId;
1118 
1119     // We assign consecutive id to access from different dependence sets.
1120     // Accesses within the same set don't need a runtime check.
1121     unsigned RunningDepId = 1;
1122     DenseMap<Value *, unsigned> DepSetId;
1123 
1124     SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1125 
1126     // First, count how many write and read accesses are in the alias set. Also
1127     // collect MemAccessInfos for later.
1128     SmallVector<MemAccessInfo, 4> AccessInfos;
1129     for (const auto &A : AS) {
1130       Value *Ptr = A.getValue();
1131       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1132       if (IsWrite)
1133         ++NumWritePtrChecks;
1134       else
1135         ++NumReadPtrChecks;
1136       AccessInfos.emplace_back(Ptr, IsWrite);
1137     }
1138 
1139     // We do not need runtime checks for this alias set, if there are no writes
1140     // or a single write and no reads.
1141     if (NumWritePtrChecks == 0 ||
1142         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1143       assert((AS.size() <= 1 ||
1144               all_of(AS,
1145                      [this](auto AC) {
1146                        MemAccessInfo AccessWrite(AC.getValue(), true);
1147                        return DepCands.findValue(AccessWrite) == DepCands.end();
1148                      })) &&
1149              "Can only skip updating CanDoRT below, if all entries in AS "
1150              "are reads or there is at most 1 entry");
1151       continue;
1152     }
1153 
1154     for (auto &Access : AccessInfos) {
1155       for (const auto &AccessTy : Accesses[Access]) {
1156         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1157                                   DepSetId, TheLoop, RunningDepId, ASId,
1158                                   ShouldCheckWrap, false)) {
1159           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1160                             << *Access.getPointer() << '\n');
1161           Retries.push_back({Access, AccessTy});
1162           CanDoAliasSetRT = false;
1163         }
1164       }
1165     }
1166 
1167     // Note that this function computes CanDoRT and MayNeedRTCheck
1168     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1169     // we have a pointer for which we couldn't find the bounds but we don't
1170     // actually need to emit any checks so it does not matter.
1171     //
1172     // We need runtime checks for this alias set, if there are at least 2
1173     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1174     // any bound checks (because in that case the number of dependence sets is
1175     // incomplete).
1176     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1177 
1178     // We need to perform run-time alias checks, but some pointers had bounds
1179     // that couldn't be checked.
1180     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1181       // Reset the CanDoSetRt flag and retry all accesses that have failed.
1182       // We know that we need these checks, so we can now be more aggressive
1183       // and add further checks if required (overflow checks).
1184       CanDoAliasSetRT = true;
1185       for (auto Retry : Retries) {
1186         MemAccessInfo Access = Retry.first;
1187         Type *AccessTy = Retry.second;
1188         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1189                                   DepSetId, TheLoop, RunningDepId, ASId,
1190                                   ShouldCheckWrap, /*Assume=*/true)) {
1191           CanDoAliasSetRT = false;
1192           UncomputablePtr = Access.getPointer();
1193           break;
1194         }
1195       }
1196     }
1197 
1198     CanDoRT &= CanDoAliasSetRT;
1199     MayNeedRTCheck |= NeedsAliasSetRTCheck;
1200     ++ASId;
1201   }
1202 
1203   // If the pointers that we would use for the bounds comparison have different
1204   // address spaces, assume the values aren't directly comparable, so we can't
1205   // use them for the runtime check. We also have to assume they could
1206   // overlap. In the future there should be metadata for whether address spaces
1207   // are disjoint.
1208   unsigned NumPointers = RtCheck.Pointers.size();
1209   for (unsigned i = 0; i < NumPointers; ++i) {
1210     for (unsigned j = i + 1; j < NumPointers; ++j) {
1211       // Only need to check pointers between two different dependency sets.
1212       if (RtCheck.Pointers[i].DependencySetId ==
1213           RtCheck.Pointers[j].DependencySetId)
1214        continue;
1215       // Only need to check pointers in the same alias set.
1216       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1217         continue;
1218 
1219       Value *PtrI = RtCheck.Pointers[i].PointerValue;
1220       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1221 
1222       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1223       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1224       if (ASi != ASj) {
1225         LLVM_DEBUG(
1226             dbgs() << "LAA: Runtime check would require comparison between"
1227                       " different address spaces\n");
1228         return false;
1229       }
1230     }
1231   }
1232 
1233   if (MayNeedRTCheck && CanDoRT)
1234     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1235 
1236   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1237                     << " pointer comparisons.\n");
1238 
1239   // If we can do run-time checks, but there are no checks, no runtime checks
1240   // are needed. This can happen when all pointers point to the same underlying
1241   // object for example.
1242   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1243 
1244   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1245   if (!CanDoRTIfNeeded)
1246     RtCheck.reset();
1247   return CanDoRTIfNeeded;
1248 }
1249 
1250 void AccessAnalysis::processMemAccesses() {
1251   // We process the set twice: first we process read-write pointers, last we
1252   // process read-only pointers. This allows us to skip dependence tests for
1253   // read-only pointers.
1254 
1255   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1256   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1257   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1258   LLVM_DEBUG({
1259     for (auto A : Accesses)
1260       dbgs() << "\t" << *A.first.getPointer() << " ("
1261              << (A.first.getInt()
1262                      ? "write"
1263                      : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"
1264                                                                 : "read"))
1265              << ")\n";
1266   });
1267 
1268   // The AliasSetTracker has nicely partitioned our pointers by metadata
1269   // compatibility and potential for underlying-object overlap. As a result, we
1270   // only need to check for potential pointer dependencies within each alias
1271   // set.
1272   for (const auto &AS : AST) {
1273     // Note that both the alias-set tracker and the alias sets themselves used
1274     // linked lists internally and so the iteration order here is deterministic
1275     // (matching the original instruction order within each set).
1276 
1277     bool SetHasWrite = false;
1278 
1279     // Map of pointers to last access encountered.
1280     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1281     UnderlyingObjToAccessMap ObjToLastAccess;
1282 
1283     // Set of access to check after all writes have been processed.
1284     PtrAccessMap DeferredAccesses;
1285 
1286     // Iterate over each alias set twice, once to process read/write pointers,
1287     // and then to process read-only pointers.
1288     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1289       bool UseDeferred = SetIteration > 0;
1290       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1291 
1292       for (const auto &AV : AS) {
1293         Value *Ptr = AV.getValue();
1294 
1295         // For a single memory access in AliasSetTracker, Accesses may contain
1296         // both read and write, and they both need to be handled for CheckDeps.
1297         for (const auto &AC : S) {
1298           if (AC.first.getPointer() != Ptr)
1299             continue;
1300 
1301           bool IsWrite = AC.first.getInt();
1302 
1303           // If we're using the deferred access set, then it contains only
1304           // reads.
1305           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1306           if (UseDeferred && !IsReadOnlyPtr)
1307             continue;
1308           // Otherwise, the pointer must be in the PtrAccessSet, either as a
1309           // read or a write.
1310           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1311                   S.count(MemAccessInfo(Ptr, false))) &&
1312                  "Alias-set pointer not in the access set?");
1313 
1314           MemAccessInfo Access(Ptr, IsWrite);
1315           DepCands.insert(Access);
1316 
1317           // Memorize read-only pointers for later processing and skip them in
1318           // the first round (they need to be checked after we have seen all
1319           // write pointers). Note: we also mark pointer that are not
1320           // consecutive as "read-only" pointers (so that we check
1321           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1322           if (!UseDeferred && IsReadOnlyPtr) {
1323             // We only use the pointer keys, the types vector values don't
1324             // matter.
1325             DeferredAccesses.insert({Access, {}});
1326             continue;
1327           }
1328 
1329           // If this is a write - check other reads and writes for conflicts. If
1330           // this is a read only check other writes for conflicts (but only if
1331           // there is no other write to the ptr - this is an optimization to
1332           // catch "a[i] = a[i] + " without having to do a dependence check).
1333           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1334             CheckDeps.push_back(Access);
1335             IsRTCheckAnalysisNeeded = true;
1336           }
1337 
1338           if (IsWrite)
1339             SetHasWrite = true;
1340 
1341           // Create sets of pointers connected by a shared alias set and
1342           // underlying object.
1343           typedef SmallVector<const Value *, 16> ValueVector;
1344           ValueVector TempObjects;
1345 
1346           UnderlyingObjects[Ptr] = {};
1347           SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1348           ::getUnderlyingObjects(Ptr, UOs, LI);
1349           LLVM_DEBUG(dbgs()
1350                      << "Underlying objects for pointer " << *Ptr << "\n");
1351           for (const Value *UnderlyingObj : UOs) {
1352             // nullptr never alias, don't join sets for pointer that have "null"
1353             // in their UnderlyingObjects list.
1354             if (isa<ConstantPointerNull>(UnderlyingObj) &&
1355                 !NullPointerIsDefined(
1356                     TheLoop->getHeader()->getParent(),
1357                     UnderlyingObj->getType()->getPointerAddressSpace()))
1358               continue;
1359 
1360             UnderlyingObjToAccessMap::iterator Prev =
1361                 ObjToLastAccess.find(UnderlyingObj);
1362             if (Prev != ObjToLastAccess.end())
1363               DepCands.unionSets(Access, Prev->second);
1364 
1365             ObjToLastAccess[UnderlyingObj] = Access;
1366             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1367           }
1368         }
1369       }
1370     }
1371   }
1372 }
1373 
1374 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1375 /// i.e. monotonically increasing/decreasing.
1376 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1377                            PredicatedScalarEvolution &PSE, const Loop *L) {
1378 
1379   // FIXME: This should probably only return true for NUW.
1380   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1381     return true;
1382 
1383   if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1384     return true;
1385 
1386   // Scalar evolution does not propagate the non-wrapping flags to values that
1387   // are derived from a non-wrapping induction variable because non-wrapping
1388   // could be flow-sensitive.
1389   //
1390   // Look through the potentially overflowing instruction to try to prove
1391   // non-wrapping for the *specific* value of Ptr.
1392 
1393   // The arithmetic implied by an inbounds GEP can't overflow.
1394   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1395   if (!GEP || !GEP->isInBounds())
1396     return false;
1397 
1398   // Make sure there is only one non-const index and analyze that.
1399   Value *NonConstIndex = nullptr;
1400   for (Value *Index : GEP->indices())
1401     if (!isa<ConstantInt>(Index)) {
1402       if (NonConstIndex)
1403         return false;
1404       NonConstIndex = Index;
1405     }
1406   if (!NonConstIndex)
1407     // The recurrence is on the pointer, ignore for now.
1408     return false;
1409 
1410   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1411   // AddRec using a NSW operation.
1412   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1413     if (OBO->hasNoSignedWrap() &&
1414         // Assume constant for other the operand so that the AddRec can be
1415         // easily found.
1416         isa<ConstantInt>(OBO->getOperand(1))) {
1417       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1418 
1419       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1420         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1421     }
1422 
1423   return false;
1424 }
1425 
1426 /// Check whether the access through \p Ptr has a constant stride.
1427 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
1428                                           Type *AccessTy, Value *Ptr,
1429                                           const Loop *Lp,
1430                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1431                                           bool Assume, bool ShouldCheckWrap) {
1432   Type *Ty = Ptr->getType();
1433   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1434 
1435   if (isa<ScalableVectorType>(AccessTy)) {
1436     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1437                       << "\n");
1438     return std::nullopt;
1439   }
1440 
1441   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1442 
1443   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1444   if (Assume && !AR)
1445     AR = PSE.getAsAddRec(Ptr);
1446 
1447   if (!AR) {
1448     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1449                       << " SCEV: " << *PtrScev << "\n");
1450     return std::nullopt;
1451   }
1452 
1453   // The access function must stride over the innermost loop.
1454   if (Lp != AR->getLoop()) {
1455     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1456                       << *Ptr << " SCEV: " << *AR << "\n");
1457     return std::nullopt;
1458   }
1459 
1460   // Check the step is constant.
1461   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1462 
1463   // Calculate the pointer stride and check if it is constant.
1464   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1465   if (!C) {
1466     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1467                       << " SCEV: " << *AR << "\n");
1468     return std::nullopt;
1469   }
1470 
1471   auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1472   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1473   int64_t Size = AllocSize.getFixedValue();
1474   const APInt &APStepVal = C->getAPInt();
1475 
1476   // Huge step value - give up.
1477   if (APStepVal.getBitWidth() > 64)
1478     return std::nullopt;
1479 
1480   int64_t StepVal = APStepVal.getSExtValue();
1481 
1482   // Strided access.
1483   int64_t Stride = StepVal / Size;
1484   int64_t Rem = StepVal % Size;
1485   if (Rem)
1486     return std::nullopt;
1487 
1488   if (!ShouldCheckWrap)
1489     return Stride;
1490 
1491   // The address calculation must not wrap. Otherwise, a dependence could be
1492   // inverted.
1493   if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1494     return Stride;
1495 
1496   // An inbounds getelementptr that is a AddRec with a unit stride
1497   // cannot wrap per definition.  If it did, the result would be poison
1498   // and any memory access dependent on it would be immediate UB
1499   // when executed.
1500   if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1501       GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
1502     return Stride;
1503 
1504   // If the null pointer is undefined, then a access sequence which would
1505   // otherwise access it can be assumed not to unsigned wrap.  Note that this
1506   // assumes the object in memory is aligned to the natural alignment.
1507   unsigned AddrSpace = Ty->getPointerAddressSpace();
1508   if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1509       (Stride == 1 || Stride == -1))
1510     return Stride;
1511 
1512   if (Assume) {
1513     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1514     LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1515                       << "LAA:   Pointer: " << *Ptr << "\n"
1516                       << "LAA:   SCEV: " << *AR << "\n"
1517                       << "LAA:   Added an overflow assumption\n");
1518     return Stride;
1519   }
1520   LLVM_DEBUG(
1521       dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1522              << *Ptr << " SCEV: " << *AR << "\n");
1523   return std::nullopt;
1524 }
1525 
1526 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1527                                          Type *ElemTyB, Value *PtrB,
1528                                          const DataLayout &DL,
1529                                          ScalarEvolution &SE, bool StrictCheck,
1530                                          bool CheckType) {
1531   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1532 
1533   // Make sure that A and B are different pointers.
1534   if (PtrA == PtrB)
1535     return 0;
1536 
1537   // Make sure that the element types are the same if required.
1538   if (CheckType && ElemTyA != ElemTyB)
1539     return std::nullopt;
1540 
1541   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1542   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1543 
1544   // Check that the address spaces match.
1545   if (ASA != ASB)
1546     return std::nullopt;
1547   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1548 
1549   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1550   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1551   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1552 
1553   int Val;
1554   if (PtrA1 == PtrB1) {
1555     // Retrieve the address space again as pointer stripping now tracks through
1556     // `addrspacecast`.
1557     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1558     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1559     // Check that the address spaces match and that the pointers are valid.
1560     if (ASA != ASB)
1561       return std::nullopt;
1562 
1563     IdxWidth = DL.getIndexSizeInBits(ASA);
1564     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1565     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1566 
1567     OffsetB -= OffsetA;
1568     Val = OffsetB.getSExtValue();
1569   } else {
1570     // Otherwise compute the distance with SCEV between the base pointers.
1571     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1572     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1573     const auto *Diff =
1574         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1575     if (!Diff)
1576       return std::nullopt;
1577     Val = Diff->getAPInt().getSExtValue();
1578   }
1579   int Size = DL.getTypeStoreSize(ElemTyA);
1580   int Dist = Val / Size;
1581 
1582   // Ensure that the calculated distance matches the type-based one after all
1583   // the bitcasts removal in the provided pointers.
1584   if (!StrictCheck || Dist * Size == Val)
1585     return Dist;
1586   return std::nullopt;
1587 }
1588 
1589 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1590                            const DataLayout &DL, ScalarEvolution &SE,
1591                            SmallVectorImpl<unsigned> &SortedIndices) {
1592   assert(llvm::all_of(
1593              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1594          "Expected list of pointer operands.");
1595   // Walk over the pointers, and map each of them to an offset relative to
1596   // first pointer in the array.
1597   Value *Ptr0 = VL[0];
1598 
1599   using DistOrdPair = std::pair<int64_t, int>;
1600   auto Compare = llvm::less_first();
1601   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1602   Offsets.emplace(0, 0);
1603   int Cnt = 1;
1604   bool IsConsecutive = true;
1605   for (auto *Ptr : VL.drop_front()) {
1606     std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1607                                               /*StrictCheck=*/true);
1608     if (!Diff)
1609       return false;
1610 
1611     // Check if the pointer with the same offset is found.
1612     int64_t Offset = *Diff;
1613     auto Res = Offsets.emplace(Offset, Cnt);
1614     if (!Res.second)
1615       return false;
1616     // Consecutive order if the inserted element is the last one.
1617     IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1618     ++Cnt;
1619   }
1620   SortedIndices.clear();
1621   if (!IsConsecutive) {
1622     // Fill SortedIndices array only if it is non-consecutive.
1623     SortedIndices.resize(VL.size());
1624     Cnt = 0;
1625     for (const std::pair<int64_t, int> &Pair : Offsets) {
1626       SortedIndices[Cnt] = Pair.second;
1627       ++Cnt;
1628     }
1629   }
1630   return true;
1631 }
1632 
1633 /// Returns true if the memory operations \p A and \p B are consecutive.
1634 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1635                                ScalarEvolution &SE, bool CheckType) {
1636   Value *PtrA = getLoadStorePointerOperand(A);
1637   Value *PtrB = getLoadStorePointerOperand(B);
1638   if (!PtrA || !PtrB)
1639     return false;
1640   Type *ElemTyA = getLoadStoreType(A);
1641   Type *ElemTyB = getLoadStoreType(B);
1642   std::optional<int> Diff =
1643       getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1644                       /*StrictCheck=*/true, CheckType);
1645   return Diff && *Diff == 1;
1646 }
1647 
1648 void MemoryDepChecker::addAccess(StoreInst *SI) {
1649   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1650                 [this, SI](Value *Ptr) {
1651                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1652                   InstMap.push_back(SI);
1653                   ++AccessIdx;
1654                 });
1655 }
1656 
1657 void MemoryDepChecker::addAccess(LoadInst *LI) {
1658   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1659                 [this, LI](Value *Ptr) {
1660                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1661                   InstMap.push_back(LI);
1662                   ++AccessIdx;
1663                 });
1664 }
1665 
1666 MemoryDepChecker::VectorizationSafetyStatus
1667 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1668   switch (Type) {
1669   case NoDep:
1670   case Forward:
1671   case BackwardVectorizable:
1672     return VectorizationSafetyStatus::Safe;
1673 
1674   case Unknown:
1675     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1676   case ForwardButPreventsForwarding:
1677   case Backward:
1678   case BackwardVectorizableButPreventsForwarding:
1679   case IndirectUnsafe:
1680     return VectorizationSafetyStatus::Unsafe;
1681   }
1682   llvm_unreachable("unexpected DepType!");
1683 }
1684 
1685 bool MemoryDepChecker::Dependence::isBackward() const {
1686   switch (Type) {
1687   case NoDep:
1688   case Forward:
1689   case ForwardButPreventsForwarding:
1690   case Unknown:
1691   case IndirectUnsafe:
1692     return false;
1693 
1694   case BackwardVectorizable:
1695   case Backward:
1696   case BackwardVectorizableButPreventsForwarding:
1697     return true;
1698   }
1699   llvm_unreachable("unexpected DepType!");
1700 }
1701 
1702 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1703   return isBackward() || Type == Unknown;
1704 }
1705 
1706 bool MemoryDepChecker::Dependence::isForward() const {
1707   switch (Type) {
1708   case Forward:
1709   case ForwardButPreventsForwarding:
1710     return true;
1711 
1712   case NoDep:
1713   case Unknown:
1714   case BackwardVectorizable:
1715   case Backward:
1716   case BackwardVectorizableButPreventsForwarding:
1717   case IndirectUnsafe:
1718     return false;
1719   }
1720   llvm_unreachable("unexpected DepType!");
1721 }
1722 
1723 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1724                                                     uint64_t TypeByteSize) {
1725   // If loads occur at a distance that is not a multiple of a feasible vector
1726   // factor store-load forwarding does not take place.
1727   // Positive dependences might cause troubles because vectorizing them might
1728   // prevent store-load forwarding making vectorized code run a lot slower.
1729   //   a[i] = a[i-3] ^ a[i-8];
1730   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1731   //   hence on your typical architecture store-load forwarding does not take
1732   //   place. Vectorizing in such cases does not make sense.
1733   // Store-load forwarding distance.
1734 
1735   // After this many iterations store-to-load forwarding conflicts should not
1736   // cause any slowdowns.
1737   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1738   // Maximum vector factor.
1739   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1740       VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1741 
1742   // Compute the smallest VF at which the store and load would be misaligned.
1743   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1744        VF *= 2) {
1745     // If the number of vector iteration between the store and the load are
1746     // small we could incur conflicts.
1747     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1748       MaxVFWithoutSLForwardIssues = (VF >> 1);
1749       break;
1750     }
1751   }
1752 
1753   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1754     LLVM_DEBUG(
1755         dbgs() << "LAA: Distance " << Distance
1756                << " that could cause a store-load forwarding conflict\n");
1757     return true;
1758   }
1759 
1760   if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1761       MaxVFWithoutSLForwardIssues !=
1762           VectorizerParams::MaxVectorWidth * TypeByteSize)
1763     MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1764   return false;
1765 }
1766 
1767 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1768   if (Status < S)
1769     Status = S;
1770 }
1771 
1772 /// Given a dependence-distance \p Dist between two
1773 /// memory accesses, that have the same stride whose absolute value is given
1774 /// in \p Stride, and that have the same type size \p TypeByteSize,
1775 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1776 /// possible to prove statically that the dependence distance is larger
1777 /// than the range that the accesses will travel through the execution of
1778 /// the loop. If so, return true; false otherwise. This is useful for
1779 /// example in loops such as the following (PR31098):
1780 ///     for (i = 0; i < D; ++i) {
1781 ///                = out[i];
1782 ///       out[i+D] =
1783 ///     }
1784 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1785                                      const SCEV &BackedgeTakenCount,
1786                                      const SCEV &Dist, uint64_t Stride,
1787                                      uint64_t TypeByteSize) {
1788 
1789   // If we can prove that
1790   //      (**) |Dist| > BackedgeTakenCount * Step
1791   // where Step is the absolute stride of the memory accesses in bytes,
1792   // then there is no dependence.
1793   //
1794   // Rationale:
1795   // We basically want to check if the absolute distance (|Dist/Step|)
1796   // is >= the loop iteration count (or > BackedgeTakenCount).
1797   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1798   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1799   // that the dependence distance is >= VF; This is checked elsewhere.
1800   // But in some cases we can prune dependence distances early, and
1801   // even before selecting the VF, and without a runtime test, by comparing
1802   // the distance against the loop iteration count. Since the vectorized code
1803   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1804   // also guarantees that distance >= VF.
1805   //
1806   const uint64_t ByteStride = Stride * TypeByteSize;
1807   const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1808   const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1809 
1810   const SCEV *CastedDist = &Dist;
1811   const SCEV *CastedProduct = Product;
1812   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1813   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1814 
1815   // The dependence distance can be positive/negative, so we sign extend Dist;
1816   // The multiplication of the absolute stride in bytes and the
1817   // backedgeTakenCount is non-negative, so we zero extend Product.
1818   if (DistTypeSizeBits > ProductTypeSizeBits)
1819     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1820   else
1821     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1822 
1823   // Is  Dist - (BackedgeTakenCount * Step) > 0 ?
1824   // (If so, then we have proven (**) because |Dist| >= Dist)
1825   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1826   if (SE.isKnownPositive(Minus))
1827     return true;
1828 
1829   // Second try: Is  -Dist - (BackedgeTakenCount * Step) > 0 ?
1830   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1831   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1832   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1833   if (SE.isKnownPositive(Minus))
1834     return true;
1835 
1836   return false;
1837 }
1838 
1839 /// Check the dependence for two accesses with the same stride \p Stride.
1840 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1841 /// bytes.
1842 ///
1843 /// \returns true if they are independent.
1844 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1845                                           uint64_t TypeByteSize) {
1846   assert(Stride > 1 && "The stride must be greater than 1");
1847   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1848   assert(Distance > 0 && "The distance must be non-zero");
1849 
1850   // Skip if the distance is not multiple of type byte size.
1851   if (Distance % TypeByteSize)
1852     return false;
1853 
1854   uint64_t ScaledDist = Distance / TypeByteSize;
1855 
1856   // No dependence if the scaled distance is not multiple of the stride.
1857   // E.g.
1858   //      for (i = 0; i < 1024 ; i += 4)
1859   //        A[i+2] = A[i] + 1;
1860   //
1861   // Two accesses in memory (scaled distance is 2, stride is 4):
1862   //     | A[0] |      |      |      | A[4] |      |      |      |
1863   //     |      |      | A[2] |      |      |      | A[6] |      |
1864   //
1865   // E.g.
1866   //      for (i = 0; i < 1024 ; i += 3)
1867   //        A[i+4] = A[i] + 1;
1868   //
1869   // Two accesses in memory (scaled distance is 4, stride is 3):
1870   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1871   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1872   return ScaledDist % Stride;
1873 }
1874 
1875 /// Returns true if any of the underlying objects has a loop varying address,
1876 /// i.e. may change in \p L.
1877 static bool
1878 isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects,
1879                              ScalarEvolution &SE, const Loop *L) {
1880   return any_of(UnderlyingObjects, [&SE, L](const Value *UO) {
1881     return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L);
1882   });
1883 }
1884 
1885 // Get the dependence distance, stride, type size in whether i is a write for
1886 // the dependence between A and B. Returns a DepType, if we can prove there's
1887 // no dependence or the analysis fails. Outlined to lambda to limit he scope
1888 // of various temporary variables, like A/BPtr, StrideA/BPtr and others.
1889 // Returns either the dependence result, if it could already be determined, or a
1890 // tuple with (Distance, Stride, TypeSize, AIsWrite, BIsWrite).
1891 static std::variant<MemoryDepChecker::Dependence::DepType,
1892                     std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>>
1893 getDependenceDistanceStrideAndSize(
1894     const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1895     const AccessAnalysis::MemAccessInfo &B, Instruction *BInst,
1896     const DenseMap<Value *, const SCEV *> &Strides,
1897     const DenseMap<Value *, SmallVector<const Value *, 16>> &UnderlyingObjects,
1898     PredicatedScalarEvolution &PSE, const Loop *InnermostLoop) {
1899   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1900   auto &SE = *PSE.getSE();
1901   auto [APtr, AIsWrite] = A;
1902   auto [BPtr, BIsWrite] = B;
1903 
1904   // Two reads are independent.
1905   if (!AIsWrite && !BIsWrite)
1906     return MemoryDepChecker::Dependence::NoDep;
1907 
1908   Type *ATy = getLoadStoreType(AInst);
1909   Type *BTy = getLoadStoreType(BInst);
1910 
1911   // We cannot check pointers in different address spaces.
1912   if (APtr->getType()->getPointerAddressSpace() !=
1913       BPtr->getType()->getPointerAddressSpace())
1914     return MemoryDepChecker::Dependence::Unknown;
1915 
1916   int64_t StrideAPtr =
1917       getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0);
1918   int64_t StrideBPtr =
1919       getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0);
1920 
1921   const SCEV *Src = PSE.getSCEV(APtr);
1922   const SCEV *Sink = PSE.getSCEV(BPtr);
1923 
1924   // If the induction step is negative we have to invert source and sink of the
1925   // dependence when measuring the distance between them. We should not swap
1926   // AIsWrite with BIsWrite, as their uses expect them in program order.
1927   if (StrideAPtr < 0) {
1928     std::swap(Src, Sink);
1929     std::swap(AInst, BInst);
1930   }
1931 
1932   const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1933 
1934   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1935                     << "(Induction step: " << StrideAPtr << ")\n");
1936   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1937                     << ": " << *Dist << "\n");
1938 
1939   // Needs accesses where the addresses of the accessed underlying objects do
1940   // not change within the loop.
1941   if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE,
1942                                    InnermostLoop) ||
1943       isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE,
1944                                    InnermostLoop))
1945     return MemoryDepChecker::Dependence::IndirectUnsafe;
1946 
1947   // Need accesses with constant stride. We don't want to vectorize
1948   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap
1949   // in the address space.
1950   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr) {
1951     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1952     return MemoryDepChecker::Dependence::Unknown;
1953   }
1954 
1955   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1956   bool HasSameSize =
1957       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1958   if (!HasSameSize)
1959     TypeByteSize = 0;
1960   uint64_t Stride = std::abs(StrideAPtr);
1961   return std::make_tuple(Dist, Stride, TypeByteSize, AIsWrite, BIsWrite);
1962 }
1963 
1964 MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent(
1965     const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
1966     unsigned BIdx, const DenseMap<Value *, const SCEV *> &Strides,
1967     const DenseMap<Value *, SmallVector<const Value *, 16>>
1968         &UnderlyingObjects) {
1969   assert(AIdx < BIdx && "Must pass arguments in program order");
1970 
1971   // Get the dependence distance, stride, type size and what access writes for
1972   // the dependence between A and B.
1973   auto Res = getDependenceDistanceStrideAndSize(
1974       A, InstMap[AIdx], B, InstMap[BIdx], Strides, UnderlyingObjects, PSE,
1975       InnermostLoop);
1976   if (std::holds_alternative<Dependence::DepType>(Res))
1977     return std::get<Dependence::DepType>(Res);
1978 
1979   const auto &[Dist, Stride, TypeByteSize, AIsWrite, BIsWrite] =
1980       std::get<std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>>(Res);
1981   bool HasSameSize = TypeByteSize > 0;
1982 
1983   ScalarEvolution &SE = *PSE.getSE();
1984   auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1985   if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
1986       isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist,
1987                                Stride, TypeByteSize))
1988     return Dependence::NoDep;
1989 
1990   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
1991   if (!C) {
1992     LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
1993     FoundNonConstantDistanceDependence = true;
1994     return Dependence::Unknown;
1995   }
1996 
1997   const APInt &Val = C->getAPInt();
1998   int64_t Distance = Val.getSExtValue();
1999 
2000   // Attempt to prove strided accesses independent.
2001   if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
2002       areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
2003     LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2004     return Dependence::NoDep;
2005   }
2006 
2007   // Negative distances are not plausible dependencies.
2008   if (Val.isNegative()) {
2009     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2010     // There is no need to update MaxSafeVectorWidthInBits after call to
2011     // couldPreventStoreLoadForward, even if it changed MinDepDistBytes,
2012     // since a forward dependency will allow vectorization using any width.
2013     if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2014         (!HasSameSize || couldPreventStoreLoadForward(Val.abs().getZExtValue(),
2015                                                       TypeByteSize))) {
2016       LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2017       return Dependence::ForwardButPreventsForwarding;
2018     }
2019 
2020     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2021     return Dependence::Forward;
2022   }
2023 
2024   // Write to the same location with the same size.
2025   if (Val == 0) {
2026     if (HasSameSize)
2027       return Dependence::Forward;
2028     LLVM_DEBUG(
2029         dbgs() << "LAA: Zero dependence difference but different type sizes\n");
2030     return Dependence::Unknown;
2031   }
2032 
2033   assert(Val.isStrictlyPositive() && "Expect a positive value");
2034 
2035   if (!HasSameSize) {
2036     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2037                          "different type sizes\n");
2038     return Dependence::Unknown;
2039   }
2040 
2041   // Bail out early if passed-in parameters make vectorization not feasible.
2042   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2043                            VectorizerParams::VectorizationFactor : 1);
2044   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2045                            VectorizerParams::VectorizationInterleave : 1);
2046   // The minimum number of iterations for a vectorized/unrolled version.
2047   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2048 
2049   // It's not vectorizable if the distance is smaller than the minimum distance
2050   // needed for a vectroized/unrolled version. Vectorizing one iteration in
2051   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2052   // TypeByteSize (No need to plus the last gap distance).
2053   //
2054   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2055   //      foo(int *A) {
2056   //        int *B = (int *)((char *)A + 14);
2057   //        for (i = 0 ; i < 1024 ; i += 2)
2058   //          B[i] = A[i] + 1;
2059   //      }
2060   //
2061   // Two accesses in memory (stride is 2):
2062   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
2063   //                              | B[0] |      | B[2] |      | B[4] |
2064   //
2065   // Distance needs for vectorizing iterations except the last iteration:
2066   // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
2067   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2068   //
2069   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2070   // 12, which is less than distance.
2071   //
2072   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2073   // the minimum distance needed is 28, which is greater than distance. It is
2074   // not safe to do vectorization.
2075   uint64_t MinDistanceNeeded =
2076       TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
2077   if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
2078     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
2079                       << Distance << '\n');
2080     return Dependence::Backward;
2081   }
2082 
2083   // Unsafe if the minimum distance needed is greater than smallest dependence
2084   // distance distance.
2085   if (MinDistanceNeeded > MinDepDistBytes) {
2086     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2087                       << MinDistanceNeeded << " size in bytes\n");
2088     return Dependence::Backward;
2089   }
2090 
2091   // Positive distance bigger than max vectorization factor.
2092   // FIXME: Should use max factor instead of max distance in bytes, which could
2093   // not handle different types.
2094   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2095   //      void foo (int *A, char *B) {
2096   //        for (unsigned i = 0; i < 1024; i++) {
2097   //          A[i+2] = A[i] + 1;
2098   //          B[i+2] = B[i] + 1;
2099   //        }
2100   //      }
2101   //
2102   // This case is currently unsafe according to the max safe distance. If we
2103   // analyze the two accesses on array B, the max safe dependence distance
2104   // is 2. Then we analyze the accesses on array A, the minimum distance needed
2105   // is 8, which is less than 2 and forbidden vectorization, But actually
2106   // both A and B could be vectorized by 2 iterations.
2107   MinDepDistBytes =
2108       std::min(static_cast<uint64_t>(Distance), MinDepDistBytes);
2109 
2110   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2111   uint64_t MinDepDistBytesOld = MinDepDistBytes;
2112   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2113       couldPreventStoreLoadForward(Distance, TypeByteSize)) {
2114     // Sanity check that we didn't update MinDepDistBytes when calling
2115     // couldPreventStoreLoadForward
2116     assert(MinDepDistBytes == MinDepDistBytesOld &&
2117            "An update to MinDepDistBytes requires an update to "
2118            "MaxSafeVectorWidthInBits");
2119     (void)MinDepDistBytesOld;
2120     return Dependence::BackwardVectorizableButPreventsForwarding;
2121   }
2122 
2123   // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2124   // since there is a backwards dependency.
2125   uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * Stride);
2126   LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
2127                     << " with max VF = " << MaxVF << '\n');
2128   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2129   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2130   return Dependence::BackwardVectorizable;
2131 }
2132 
2133 bool MemoryDepChecker::areDepsSafe(
2134     DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
2135     const DenseMap<Value *, const SCEV *> &Strides,
2136     const DenseMap<Value *, SmallVector<const Value *, 16>>
2137         &UnderlyingObjects) {
2138 
2139   MinDepDistBytes = -1;
2140   SmallPtrSet<MemAccessInfo, 8> Visited;
2141   for (MemAccessInfo CurAccess : CheckDeps) {
2142     if (Visited.count(CurAccess))
2143       continue;
2144 
2145     // Get the relevant memory access set.
2146     EquivalenceClasses<MemAccessInfo>::iterator I =
2147       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2148 
2149     // Check accesses within this set.
2150     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2151         AccessSets.member_begin(I);
2152     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2153         AccessSets.member_end();
2154 
2155     // Check every access pair.
2156     while (AI != AE) {
2157       Visited.insert(*AI);
2158       bool AIIsWrite = AI->getInt();
2159       // Check loads only against next equivalent class, but stores also against
2160       // other stores in the same equivalence class - to the same address.
2161       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2162           (AIIsWrite ? AI : std::next(AI));
2163       while (OI != AE) {
2164         // Check every accessing instruction pair in program order.
2165         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2166              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2167           // Scan all accesses of another equivalence class, but only the next
2168           // accesses of the same equivalent class.
2169           for (std::vector<unsigned>::iterator
2170                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2171                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
2172                I2 != I2E; ++I2) {
2173             auto A = std::make_pair(&*AI, *I1);
2174             auto B = std::make_pair(&*OI, *I2);
2175 
2176             assert(*I1 != *I2);
2177             if (*I1 > *I2)
2178               std::swap(A, B);
2179 
2180             Dependence::DepType Type =
2181                 isDependent(*A.first, A.second, *B.first, B.second, Strides,
2182                             UnderlyingObjects);
2183             mergeInStatus(Dependence::isSafeForVectorization(Type));
2184 
2185             // Gather dependences unless we accumulated MaxDependences
2186             // dependences.  In that case return as soon as we find the first
2187             // unsafe dependence.  This puts a limit on this quadratic
2188             // algorithm.
2189             if (RecordDependences) {
2190               if (Type != Dependence::NoDep)
2191                 Dependences.push_back(Dependence(A.second, B.second, Type));
2192 
2193               if (Dependences.size() >= MaxDependences) {
2194                 RecordDependences = false;
2195                 Dependences.clear();
2196                 LLVM_DEBUG(dbgs()
2197                            << "Too many dependences, stopped recording\n");
2198               }
2199             }
2200             if (!RecordDependences && !isSafeForVectorization())
2201               return false;
2202           }
2203         ++OI;
2204       }
2205       AI++;
2206     }
2207   }
2208 
2209   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2210   return isSafeForVectorization();
2211 }
2212 
2213 SmallVector<Instruction *, 4>
2214 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
2215   MemAccessInfo Access(Ptr, isWrite);
2216   auto &IndexVector = Accesses.find(Access)->second;
2217 
2218   SmallVector<Instruction *, 4> Insts;
2219   transform(IndexVector,
2220                  std::back_inserter(Insts),
2221                  [&](unsigned Idx) { return this->InstMap[Idx]; });
2222   return Insts;
2223 }
2224 
2225 const char *MemoryDepChecker::Dependence::DepName[] = {
2226     "NoDep",
2227     "Unknown",
2228     "IndidrectUnsafe",
2229     "Forward",
2230     "ForwardButPreventsForwarding",
2231     "Backward",
2232     "BackwardVectorizable",
2233     "BackwardVectorizableButPreventsForwarding"};
2234 
2235 void MemoryDepChecker::Dependence::print(
2236     raw_ostream &OS, unsigned Depth,
2237     const SmallVectorImpl<Instruction *> &Instrs) const {
2238   OS.indent(Depth) << DepName[Type] << ":\n";
2239   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2240   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2241 }
2242 
2243 bool LoopAccessInfo::canAnalyzeLoop() {
2244   // We need to have a loop header.
2245   LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
2246                     << TheLoop->getHeader()->getParent()->getName() << ": "
2247                     << TheLoop->getHeader()->getName() << '\n');
2248 
2249   // We can only analyze innermost loops.
2250   if (!TheLoop->isInnermost()) {
2251     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2252     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2253     return false;
2254   }
2255 
2256   // We must have a single backedge.
2257   if (TheLoop->getNumBackEdges() != 1) {
2258     LLVM_DEBUG(
2259         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2260     recordAnalysis("CFGNotUnderstood")
2261         << "loop control flow is not understood by analyzer";
2262     return false;
2263   }
2264 
2265   // ScalarEvolution needs to be able to find the exit count.
2266   const SCEV *ExitCount = PSE->getBackedgeTakenCount();
2267   if (isa<SCEVCouldNotCompute>(ExitCount)) {
2268     recordAnalysis("CantComputeNumberOfIterations")
2269         << "could not determine number of loop iterations";
2270     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2271     return false;
2272   }
2273 
2274   return true;
2275 }
2276 
2277 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2278                                  const TargetLibraryInfo *TLI,
2279                                  DominatorTree *DT) {
2280   // Holds the Load and Store instructions.
2281   SmallVector<LoadInst *, 16> Loads;
2282   SmallVector<StoreInst *, 16> Stores;
2283 
2284   // Holds all the different accesses in the loop.
2285   unsigned NumReads = 0;
2286   unsigned NumReadWrites = 0;
2287 
2288   bool HasComplexMemInst = false;
2289 
2290   // A runtime check is only legal to insert if there are no convergent calls.
2291   HasConvergentOp = false;
2292 
2293   PtrRtChecking->Pointers.clear();
2294   PtrRtChecking->Need = false;
2295 
2296   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2297 
2298   const bool EnableMemAccessVersioningOfLoop =
2299       EnableMemAccessVersioning &&
2300       !TheLoop->getHeader()->getParent()->hasOptSize();
2301 
2302   // Traverse blocks in fixed RPOT order, regardless of their storage in the
2303   // loop info, as it may be arbitrary.
2304   LoopBlocksRPO RPOT(TheLoop);
2305   RPOT.perform(LI);
2306   for (BasicBlock *BB : RPOT) {
2307     // Scan the BB and collect legal loads and stores. Also detect any
2308     // convergent instructions.
2309     for (Instruction &I : *BB) {
2310       if (auto *Call = dyn_cast<CallBase>(&I)) {
2311         if (Call->isConvergent())
2312           HasConvergentOp = true;
2313       }
2314 
2315       // With both a non-vectorizable memory instruction and a convergent
2316       // operation, found in this loop, no reason to continue the search.
2317       if (HasComplexMemInst && HasConvergentOp) {
2318         CanVecMem = false;
2319         return;
2320       }
2321 
2322       // Avoid hitting recordAnalysis multiple times.
2323       if (HasComplexMemInst)
2324         continue;
2325 
2326       // Many math library functions read the rounding mode. We will only
2327       // vectorize a loop if it contains known function calls that don't set
2328       // the flag. Therefore, it is safe to ignore this read from memory.
2329       auto *Call = dyn_cast<CallInst>(&I);
2330       if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2331         continue;
2332 
2333       // If this is a load, save it. If this instruction can read from memory
2334       // but is not a load, then we quit. Notice that we don't handle function
2335       // calls that read or write.
2336       if (I.mayReadFromMemory()) {
2337         // If the function has an explicit vectorized counterpart, we can safely
2338         // assume that it can be vectorized.
2339         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2340             !VFDatabase::getMappings(*Call).empty())
2341           continue;
2342 
2343         auto *Ld = dyn_cast<LoadInst>(&I);
2344         if (!Ld) {
2345           recordAnalysis("CantVectorizeInstruction", Ld)
2346             << "instruction cannot be vectorized";
2347           HasComplexMemInst = true;
2348           continue;
2349         }
2350         if (!Ld->isSimple() && !IsAnnotatedParallel) {
2351           recordAnalysis("NonSimpleLoad", Ld)
2352               << "read with atomic ordering or volatile read";
2353           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2354           HasComplexMemInst = true;
2355           continue;
2356         }
2357         NumLoads++;
2358         Loads.push_back(Ld);
2359         DepChecker->addAccess(Ld);
2360         if (EnableMemAccessVersioningOfLoop)
2361           collectStridedAccess(Ld);
2362         continue;
2363       }
2364 
2365       // Save 'store' instructions. Abort if other instructions write to memory.
2366       if (I.mayWriteToMemory()) {
2367         auto *St = dyn_cast<StoreInst>(&I);
2368         if (!St) {
2369           recordAnalysis("CantVectorizeInstruction", St)
2370               << "instruction cannot be vectorized";
2371           HasComplexMemInst = true;
2372           continue;
2373         }
2374         if (!St->isSimple() && !IsAnnotatedParallel) {
2375           recordAnalysis("NonSimpleStore", St)
2376               << "write with atomic ordering or volatile write";
2377           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2378           HasComplexMemInst = true;
2379           continue;
2380         }
2381         NumStores++;
2382         Stores.push_back(St);
2383         DepChecker->addAccess(St);
2384         if (EnableMemAccessVersioningOfLoop)
2385           collectStridedAccess(St);
2386       }
2387     } // Next instr.
2388   } // Next block.
2389 
2390   if (HasComplexMemInst) {
2391     CanVecMem = false;
2392     return;
2393   }
2394 
2395   // Now we have two lists that hold the loads and the stores.
2396   // Next, we find the pointers that they use.
2397 
2398   // Check if we see any stores. If there are no stores, then we don't
2399   // care if the pointers are *restrict*.
2400   if (!Stores.size()) {
2401     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2402     CanVecMem = true;
2403     return;
2404   }
2405 
2406   MemoryDepChecker::DepCandidates DependentAccesses;
2407   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE);
2408 
2409   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2410   // multiple times on the same object. If the ptr is accessed twice, once
2411   // for read and once for write, it will only appear once (on the write
2412   // list). This is okay, since we are going to check for conflicts between
2413   // writes and between reads and writes, but not between reads and reads.
2414   SmallSet<std::pair<Value *, Type *>, 16> Seen;
2415 
2416   // Record uniform store addresses to identify if we have multiple stores
2417   // to the same address.
2418   SmallPtrSet<Value *, 16> UniformStores;
2419 
2420   for (StoreInst *ST : Stores) {
2421     Value *Ptr = ST->getPointerOperand();
2422 
2423     if (isInvariant(Ptr)) {
2424       // Record store instructions to loop invariant addresses
2425       StoresToInvariantAddresses.push_back(ST);
2426       HasDependenceInvolvingLoopInvariantAddress |=
2427           !UniformStores.insert(Ptr).second;
2428     }
2429 
2430     // If we did *not* see this pointer before, insert it to  the read-write
2431     // list. At this phase it is only a 'write' list.
2432     Type *AccessTy = getLoadStoreType(ST);
2433     if (Seen.insert({Ptr, AccessTy}).second) {
2434       ++NumReadWrites;
2435 
2436       MemoryLocation Loc = MemoryLocation::get(ST);
2437       // The TBAA metadata could have a control dependency on the predication
2438       // condition, so we cannot rely on it when determining whether or not we
2439       // need runtime pointer checks.
2440       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2441         Loc.AATags.TBAA = nullptr;
2442 
2443       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2444                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2445                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2446                       Accesses.addStore(NewLoc, AccessTy);
2447                     });
2448     }
2449   }
2450 
2451   if (IsAnnotatedParallel) {
2452     LLVM_DEBUG(
2453         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2454                << "checks.\n");
2455     CanVecMem = true;
2456     return;
2457   }
2458 
2459   for (LoadInst *LD : Loads) {
2460     Value *Ptr = LD->getPointerOperand();
2461     // If we did *not* see this pointer before, insert it to the
2462     // read list. If we *did* see it before, then it is already in
2463     // the read-write list. This allows us to vectorize expressions
2464     // such as A[i] += x;  Because the address of A[i] is a read-write
2465     // pointer. This only works if the index of A[i] is consecutive.
2466     // If the address of i is unknown (for example A[B[i]]) then we may
2467     // read a few words, modify, and write a few words, and some of the
2468     // words may be written to the same address.
2469     bool IsReadOnlyPtr = false;
2470     Type *AccessTy = getLoadStoreType(LD);
2471     if (Seen.insert({Ptr, AccessTy}).second ||
2472         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2473       ++NumReads;
2474       IsReadOnlyPtr = true;
2475     }
2476 
2477     // See if there is an unsafe dependency between a load to a uniform address and
2478     // store to the same uniform address.
2479     if (UniformStores.count(Ptr)) {
2480       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2481                            "load and uniform store to the same address!\n");
2482       HasDependenceInvolvingLoopInvariantAddress = true;
2483     }
2484 
2485     MemoryLocation Loc = MemoryLocation::get(LD);
2486     // The TBAA metadata could have a control dependency on the predication
2487     // condition, so we cannot rely on it when determining whether or not we
2488     // need runtime pointer checks.
2489     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2490       Loc.AATags.TBAA = nullptr;
2491 
2492     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2493                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2494                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2495                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2496                   });
2497   }
2498 
2499   // If we write (or read-write) to a single destination and there are no
2500   // other reads in this loop then is it safe to vectorize.
2501   if (NumReadWrites == 1 && NumReads == 0) {
2502     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2503     CanVecMem = true;
2504     return;
2505   }
2506 
2507   // Build dependence sets and check whether we need a runtime pointer bounds
2508   // check.
2509   Accesses.buildDependenceSets();
2510 
2511   // Find pointers with computable bounds. We are going to use this information
2512   // to place a runtime bound check.
2513   Value *UncomputablePtr = nullptr;
2514   bool CanDoRTIfNeeded =
2515       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2516                                SymbolicStrides, UncomputablePtr, false);
2517   if (!CanDoRTIfNeeded) {
2518     auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2519     recordAnalysis("CantIdentifyArrayBounds", I)
2520         << "cannot identify array bounds";
2521     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2522                       << "the array bounds.\n");
2523     CanVecMem = false;
2524     return;
2525   }
2526 
2527   LLVM_DEBUG(
2528     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2529 
2530   CanVecMem = true;
2531   if (Accesses.isDependencyCheckNeeded()) {
2532     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2533     CanVecMem = DepChecker->areDepsSafe(
2534         DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides,
2535         Accesses.getUnderlyingObjects());
2536 
2537     if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2538       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2539 
2540       // Clear the dependency checks. We assume they are not needed.
2541       Accesses.resetDepChecks(*DepChecker);
2542 
2543       PtrRtChecking->reset();
2544       PtrRtChecking->Need = true;
2545 
2546       auto *SE = PSE->getSE();
2547       UncomputablePtr = nullptr;
2548       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2549           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2550 
2551       // Check that we found the bounds for the pointer.
2552       if (!CanDoRTIfNeeded) {
2553         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2554         recordAnalysis("CantCheckMemDepsAtRunTime", I)
2555             << "cannot check memory dependencies at runtime";
2556         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2557         CanVecMem = false;
2558         return;
2559       }
2560 
2561       CanVecMem = true;
2562     }
2563   }
2564 
2565   if (HasConvergentOp) {
2566     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2567       << "cannot add control dependency to convergent operation";
2568     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2569                          "would be needed with a convergent operation\n");
2570     CanVecMem = false;
2571     return;
2572   }
2573 
2574   if (CanVecMem)
2575     LLVM_DEBUG(
2576         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2577                << (PtrRtChecking->Need ? "" : " don't")
2578                << " need runtime memory checks.\n");
2579   else
2580     emitUnsafeDependenceRemark();
2581 }
2582 
2583 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2584   auto Deps = getDepChecker().getDependences();
2585   if (!Deps)
2586     return;
2587   auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2588     return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2589            MemoryDepChecker::VectorizationSafetyStatus::Safe;
2590   });
2591   if (Found == Deps->end())
2592     return;
2593   MemoryDepChecker::Dependence Dep = *Found;
2594 
2595   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2596 
2597   // Emit remark for first unsafe dependence
2598   bool HasForcedDistribution = false;
2599   std::optional<const MDOperand *> Value =
2600       findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2601   if (Value) {
2602     const MDOperand *Op = *Value;
2603     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2604     HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2605   }
2606 
2607   const std::string Info =
2608       HasForcedDistribution
2609           ? "unsafe dependent memory operations in loop."
2610           : "unsafe dependent memory operations in loop. Use "
2611             "#pragma clang loop distribute(enable) to allow loop distribution "
2612             "to attempt to isolate the offending operations into a separate "
2613             "loop";
2614   OptimizationRemarkAnalysis &R =
2615       recordAnalysis("UnsafeDep", Dep.getDestination(*this)) << Info;
2616 
2617   switch (Dep.Type) {
2618   case MemoryDepChecker::Dependence::NoDep:
2619   case MemoryDepChecker::Dependence::Forward:
2620   case MemoryDepChecker::Dependence::BackwardVectorizable:
2621     llvm_unreachable("Unexpected dependence");
2622   case MemoryDepChecker::Dependence::Backward:
2623     R << "\nBackward loop carried data dependence.";
2624     break;
2625   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2626     R << "\nForward loop carried data dependence that prevents "
2627          "store-to-load forwarding.";
2628     break;
2629   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2630     R << "\nBackward loop carried data dependence that prevents "
2631          "store-to-load forwarding.";
2632     break;
2633   case MemoryDepChecker::Dependence::IndirectUnsafe:
2634     R << "\nUnsafe indirect dependence.";
2635     break;
2636   case MemoryDepChecker::Dependence::Unknown:
2637     R << "\nUnknown data dependence.";
2638     break;
2639   }
2640 
2641   if (Instruction *I = Dep.getSource(*this)) {
2642     DebugLoc SourceLoc = I->getDebugLoc();
2643     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2644       SourceLoc = DD->getDebugLoc();
2645     if (SourceLoc)
2646       R << " Memory location is the same as accessed at "
2647         << ore::NV("Location", SourceLoc);
2648   }
2649 }
2650 
2651 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2652                                            DominatorTree *DT)  {
2653   assert(TheLoop->contains(BB) && "Unknown block used");
2654 
2655   // Blocks that do not dominate the latch need predication.
2656   BasicBlock* Latch = TheLoop->getLoopLatch();
2657   return !DT->dominates(BB, Latch);
2658 }
2659 
2660 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2661                                                            Instruction *I) {
2662   assert(!Report && "Multiple reports generated");
2663 
2664   Value *CodeRegion = TheLoop->getHeader();
2665   DebugLoc DL = TheLoop->getStartLoc();
2666 
2667   if (I) {
2668     CodeRegion = I->getParent();
2669     // If there is no debug location attached to the instruction, revert back to
2670     // using the loop's.
2671     if (I->getDebugLoc())
2672       DL = I->getDebugLoc();
2673   }
2674 
2675   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2676                                                    CodeRegion);
2677   return *Report;
2678 }
2679 
2680 bool LoopAccessInfo::isInvariant(Value *V) const {
2681   auto *SE = PSE->getSE();
2682   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2683   // trivially loop-invariant FP values to be considered invariant.
2684   if (!SE->isSCEVable(V->getType()))
2685     return false;
2686   const SCEV *S = SE->getSCEV(V);
2687   return SE->isLoopInvariant(S, TheLoop);
2688 }
2689 
2690 /// Find the operand of the GEP that should be checked for consecutive
2691 /// stores. This ignores trailing indices that have no effect on the final
2692 /// pointer.
2693 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2694   const DataLayout &DL = Gep->getModule()->getDataLayout();
2695   unsigned LastOperand = Gep->getNumOperands() - 1;
2696   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2697 
2698   // Walk backwards and try to peel off zeros.
2699   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2700     // Find the type we're currently indexing into.
2701     gep_type_iterator GEPTI = gep_type_begin(Gep);
2702     std::advance(GEPTI, LastOperand - 2);
2703 
2704     // If it's a type with the same allocation size as the result of the GEP we
2705     // can peel off the zero index.
2706     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
2707       break;
2708     --LastOperand;
2709   }
2710 
2711   return LastOperand;
2712 }
2713 
2714 /// If the argument is a GEP, then returns the operand identified by
2715 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2716 /// operand, it returns that instead.
2717 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2718   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2719   if (!GEP)
2720     return Ptr;
2721 
2722   unsigned InductionOperand = getGEPInductionOperand(GEP);
2723 
2724   // Check that all of the gep indices are uniform except for our induction
2725   // operand.
2726   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
2727     if (i != InductionOperand &&
2728         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
2729       return Ptr;
2730   return GEP->getOperand(InductionOperand);
2731 }
2732 
2733 /// If a value has only one user that is a CastInst, return it.
2734 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
2735   Value *UniqueCast = nullptr;
2736   for (User *U : Ptr->users()) {
2737     CastInst *CI = dyn_cast<CastInst>(U);
2738     if (CI && CI->getType() == Ty) {
2739       if (!UniqueCast)
2740         UniqueCast = CI;
2741       else
2742         return nullptr;
2743     }
2744   }
2745   return UniqueCast;
2746 }
2747 
2748 /// Get the stride of a pointer access in a loop. Looks for symbolic
2749 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2750 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2751   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2752   if (!PtrTy || PtrTy->isAggregateType())
2753     return nullptr;
2754 
2755   // Try to remove a gep instruction to make the pointer (actually index at this
2756   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2757   // pointer, otherwise, we are analyzing the index.
2758   Value *OrigPtr = Ptr;
2759 
2760   // The size of the pointer access.
2761   int64_t PtrAccessSize = 1;
2762 
2763   Ptr = stripGetElementPtr(Ptr, SE, Lp);
2764   const SCEV *V = SE->getSCEV(Ptr);
2765 
2766   if (Ptr != OrigPtr)
2767     // Strip off casts.
2768     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2769       V = C->getOperand();
2770 
2771   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2772   if (!S)
2773     return nullptr;
2774 
2775   // If the pointer is invariant then there is no stride and it makes no
2776   // sense to add it here.
2777   if (Lp != S->getLoop())
2778     return nullptr;
2779 
2780   V = S->getStepRecurrence(*SE);
2781   if (!V)
2782     return nullptr;
2783 
2784   // Strip off the size of access multiplication if we are still analyzing the
2785   // pointer.
2786   if (OrigPtr == Ptr) {
2787     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2788       if (M->getOperand(0)->getSCEVType() != scConstant)
2789         return nullptr;
2790 
2791       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2792 
2793       // Huge step value - give up.
2794       if (APStepVal.getBitWidth() > 64)
2795         return nullptr;
2796 
2797       int64_t StepVal = APStepVal.getSExtValue();
2798       if (PtrAccessSize != StepVal)
2799         return nullptr;
2800       V = M->getOperand(1);
2801     }
2802   }
2803 
2804   // Note that the restriction after this loop invariant check are only
2805   // profitability restrictions.
2806   if (!SE->isLoopInvariant(V, Lp))
2807     return nullptr;
2808 
2809   // Look for the loop invariant symbolic value.
2810   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
2811   if (!U) {
2812     const auto *C = dyn_cast<SCEVIntegralCastExpr>(V);
2813     if (!C)
2814       return nullptr;
2815     U = dyn_cast<SCEVUnknown>(C->getOperand());
2816     if (!U)
2817       return nullptr;
2818 
2819     // Match legacy behavior - this is not needed for correctness
2820     if (!getUniqueCastUse(U->getValue(), Lp, V->getType()))
2821       return nullptr;
2822   }
2823 
2824   return V;
2825 }
2826 
2827 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2828   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2829   if (!Ptr)
2830     return;
2831 
2832   // Note: getStrideFromPointer is a *profitability* heuristic.  We
2833   // could broaden the scope of values returned here - to anything
2834   // which happens to be loop invariant and contributes to the
2835   // computation of an interesting IV - but we chose not to as we
2836   // don't have a cost model here, and broadening the scope exposes
2837   // far too many unprofitable cases.
2838   const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2839   if (!StrideExpr)
2840     return;
2841 
2842   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2843                        "versioning:");
2844   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2845 
2846   if (!SpeculateUnitStride) {
2847     LLVM_DEBUG(dbgs() << "  Chose not to due to -laa-speculate-unit-stride\n");
2848     return;
2849   }
2850 
2851   // Avoid adding the "Stride == 1" predicate when we know that
2852   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2853   // or zero iteration loop, as Trip-Count <= Stride == 1.
2854   //
2855   // TODO: We are currently not making a very informed decision on when it is
2856   // beneficial to apply stride versioning. It might make more sense that the
2857   // users of this analysis (such as the vectorizer) will trigger it, based on
2858   // their specific cost considerations; For example, in cases where stride
2859   // versioning does  not help resolving memory accesses/dependences, the
2860   // vectorizer should evaluate the cost of the runtime test, and the benefit
2861   // of various possible stride specializations, considering the alternatives
2862   // of using gather/scatters (if available).
2863 
2864   const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2865 
2866   // Match the types so we can compare the stride and the BETakenCount.
2867   // The Stride can be positive/negative, so we sign extend Stride;
2868   // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2869   const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2870   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2871   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
2872   const SCEV *CastedStride = StrideExpr;
2873   const SCEV *CastedBECount = BETakenCount;
2874   ScalarEvolution *SE = PSE->getSE();
2875   if (BETypeSizeBits >= StrideTypeSizeBits)
2876     CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2877   else
2878     CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2879   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2880   // Since TripCount == BackEdgeTakenCount + 1, checking:
2881   // "Stride >= TripCount" is equivalent to checking:
2882   // Stride - BETakenCount > 0
2883   if (SE->isKnownPositive(StrideMinusBETaken)) {
2884     LLVM_DEBUG(
2885         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2886                   "Stride==1 predicate will imply that the loop executes "
2887                   "at most once.\n");
2888     return;
2889   }
2890   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2891 
2892   // Strip back off the integer cast, and check that our result is a
2893   // SCEVUnknown as we expect.
2894   const SCEV *StrideBase = StrideExpr;
2895   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2896     StrideBase = C->getOperand();
2897   SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
2898 }
2899 
2900 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2901                                const TargetLibraryInfo *TLI, AAResults *AA,
2902                                DominatorTree *DT, LoopInfo *LI)
2903     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2904       PtrRtChecking(nullptr),
2905       DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
2906   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
2907   if (canAnalyzeLoop()) {
2908     analyzeLoop(AA, LI, TLI, DT);
2909   }
2910 }
2911 
2912 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2913   if (CanVecMem) {
2914     OS.indent(Depth) << "Memory dependences are safe";
2915     const MemoryDepChecker &DC = getDepChecker();
2916     if (!DC.isSafeForAnyVectorWidth())
2917       OS << " with a maximum safe vector width of "
2918          << DC.getMaxSafeVectorWidthInBits() << " bits";
2919     if (PtrRtChecking->Need)
2920       OS << " with run-time checks";
2921     OS << "\n";
2922   }
2923 
2924   if (HasConvergentOp)
2925     OS.indent(Depth) << "Has convergent operation in loop\n";
2926 
2927   if (Report)
2928     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2929 
2930   if (auto *Dependences = DepChecker->getDependences()) {
2931     OS.indent(Depth) << "Dependences:\n";
2932     for (const auto &Dep : *Dependences) {
2933       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2934       OS << "\n";
2935     }
2936   } else
2937     OS.indent(Depth) << "Too many dependences, not recorded\n";
2938 
2939   // List the pair of accesses need run-time checks to prove independence.
2940   PtrRtChecking->print(OS, Depth);
2941   OS << "\n";
2942 
2943   OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2944                    << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2945                    << "found in loop.\n";
2946 
2947   OS.indent(Depth) << "SCEV assumptions:\n";
2948   PSE->getPredicate().print(OS, Depth);
2949 
2950   OS << "\n";
2951 
2952   OS.indent(Depth) << "Expressions re-written:\n";
2953   PSE->print(OS, Depth);
2954 }
2955 
2956 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
2957   auto I = LoopAccessInfoMap.insert({&L, nullptr});
2958 
2959   if (I.second)
2960     I.first->second =
2961         std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI);
2962 
2963   return *I.first->second;
2964 }
2965 
2966 bool LoopAccessInfoManager::invalidate(
2967     Function &F, const PreservedAnalyses &PA,
2968     FunctionAnalysisManager::Invalidator &Inv) {
2969   // Check whether our analysis is preserved.
2970   auto PAC = PA.getChecker<LoopAccessAnalysis>();
2971   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
2972     // If not, give up now.
2973     return true;
2974 
2975   // Check whether the analyses we depend on became invalid for any reason.
2976   // Skip checking TargetLibraryAnalysis as it is immutable and can't become
2977   // invalid.
2978   return Inv.invalidate<AAManager>(F, PA) ||
2979          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
2980          Inv.invalidate<LoopAnalysis>(F, PA) ||
2981          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2982 }
2983 
2984 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
2985                                               FunctionAnalysisManager &FAM) {
2986   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
2987   auto &AA = FAM.getResult<AAManager>(F);
2988   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
2989   auto &LI = FAM.getResult<LoopAnalysis>(F);
2990   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
2991   return LoopAccessInfoManager(SE, AA, DT, LI, &TLI);
2992 }
2993 
2994 AnalysisKey LoopAccessAnalysis::Key;
2995