1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions identifies calls to builtin functions that allocate
10 // or free memory.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/MemoryBuiltins.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <utility>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "memory-builtins"
51 
52 enum AllocType : uint8_t {
53   OpNewLike          = 1<<0, // allocates; never returns null
54   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
55   AlignedAllocLike   = 1<<2, // allocates with alignment; may return null
56   CallocLike         = 1<<3, // allocates + bzero
57   ReallocLike        = 1<<4, // reallocates
58   StrDupLike         = 1<<5,
59   MallocOrCallocLike = MallocLike | CallocLike | AlignedAllocLike,
60   AllocLike          = MallocOrCallocLike | StrDupLike,
61   AnyAlloc           = AllocLike | ReallocLike
62 };
63 
64 struct AllocFnsTy {
65   AllocType AllocTy;
66   unsigned NumParams;
67   // First and Second size parameters (or -1 if unused)
68   int FstParam, SndParam;
69 };
70 
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74   {LibFunc_malloc,              {MallocLike,  1, 0,  -1}},
75   {LibFunc_vec_malloc,          {MallocLike,  1, 0,  -1}},
76   {LibFunc_valloc,              {MallocLike,  1, 0,  -1}},
77   {LibFunc_Znwj,                {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
78   {LibFunc_ZnwjRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
79   {LibFunc_ZnwjSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned int, align_val_t)
80   {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
81                                 {MallocLike,  3, 0,  -1}},
82   {LibFunc_Znwm,                {OpNewLike,   1, 0,  -1}}, // new(unsigned long)
83   {LibFunc_ZnwmRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new(unsigned long, nothrow)
84   {LibFunc_ZnwmSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new(unsigned long, align_val_t)
85   {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
86                                 {MallocLike,  3, 0,  -1}},
87   {LibFunc_Znaj,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
88   {LibFunc_ZnajRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
89   {LibFunc_ZnajSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned int, align_val_t)
90   {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
91                                 {MallocLike,  3, 0,  -1}},
92   {LibFunc_Znam,                {OpNewLike,   1, 0,  -1}}, // new[](unsigned long)
93   {LibFunc_ZnamRKSt9nothrow_t,  {MallocLike,  2, 0,  -1}}, // new[](unsigned long, nothrow)
94   {LibFunc_ZnamSt11align_val_t, {OpNewLike,   2, 0,  -1}}, // new[](unsigned long, align_val_t)
95   {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
96                                  {MallocLike,  3, 0,  -1}},
97   {LibFunc_msvc_new_int,         {OpNewLike,   1, 0,  -1}}, // new(unsigned int)
98   {LibFunc_msvc_new_int_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned int, nothrow)
99   {LibFunc_msvc_new_longlong,         {OpNewLike,   1, 0,  -1}}, // new(unsigned long long)
100   {LibFunc_msvc_new_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new(unsigned long long, nothrow)
101   {LibFunc_msvc_new_array_int,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned int)
102   {LibFunc_msvc_new_array_int_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned int, nothrow)
103   {LibFunc_msvc_new_array_longlong,         {OpNewLike,   1, 0,  -1}}, // new[](unsigned long long)
104   {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike,  2, 0,  -1}}, // new[](unsigned long long, nothrow)
105   {LibFunc_aligned_alloc,       {AlignedAllocLike, 2, 1,  -1}},
106   {LibFunc_memalign,            {AlignedAllocLike, 2, 1,  -1}},
107   {LibFunc_calloc,              {CallocLike,  2, 0,   1}},
108   {LibFunc_vec_calloc,          {CallocLike,  2, 0,   1}},
109   {LibFunc_realloc,             {ReallocLike, 2, 1,  -1}},
110   {LibFunc_vec_realloc,         {ReallocLike, 2, 1,  -1}},
111   {LibFunc_reallocf,            {ReallocLike, 2, 1,  -1}},
112   {LibFunc_strdup,              {StrDupLike,  1, -1, -1}},
113   {LibFunc_strndup,             {StrDupLike,  2, 1,  -1}},
114   {LibFunc___kmpc_alloc_shared, {MallocLike,  1, 0,  -1}}
115   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
116 };
117 
118 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
119                                          bool &IsNoBuiltin) {
120   // Don't care about intrinsics in this case.
121   if (isa<IntrinsicInst>(V))
122     return nullptr;
123 
124   if (LookThroughBitCast)
125     V = V->stripPointerCasts();
126 
127   const auto *CB = dyn_cast<CallBase>(V);
128   if (!CB)
129     return nullptr;
130 
131   IsNoBuiltin = CB->isNoBuiltin();
132 
133   if (const Function *Callee = CB->getCalledFunction())
134     return Callee;
135   return nullptr;
136 }
137 
138 /// Returns the allocation data for the given value if it's either a call to a
139 /// known allocation function, or a call to a function with the allocsize
140 /// attribute.
141 static Optional<AllocFnsTy>
142 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
143                              const TargetLibraryInfo *TLI) {
144   // Make sure that the function is available.
145   LibFunc TLIFn;
146   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
147     return None;
148 
149   const auto *Iter = find_if(
150       AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
151         return P.first == TLIFn;
152       });
153 
154   if (Iter == std::end(AllocationFnData))
155     return None;
156 
157   const AllocFnsTy *FnData = &Iter->second;
158   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
159     return None;
160 
161   // Check function prototype.
162   int FstParam = FnData->FstParam;
163   int SndParam = FnData->SndParam;
164   FunctionType *FTy = Callee->getFunctionType();
165 
166   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
167       FTy->getNumParams() == FnData->NumParams &&
168       (FstParam < 0 ||
169        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
170         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
171       (SndParam < 0 ||
172        FTy->getParamType(SndParam)->isIntegerTy(32) ||
173        FTy->getParamType(SndParam)->isIntegerTy(64)))
174     return *FnData;
175   return None;
176 }
177 
178 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
179                                               const TargetLibraryInfo *TLI,
180                                               bool LookThroughBitCast = false) {
181   bool IsNoBuiltinCall;
182   if (const Function *Callee =
183           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
184     if (!IsNoBuiltinCall)
185       return getAllocationDataForFunction(Callee, AllocTy, TLI);
186   return None;
187 }
188 
189 static Optional<AllocFnsTy>
190 getAllocationData(const Value *V, AllocType AllocTy,
191                   function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
192                   bool LookThroughBitCast = false) {
193   bool IsNoBuiltinCall;
194   if (const Function *Callee =
195           getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
196     if (!IsNoBuiltinCall)
197       return getAllocationDataForFunction(
198           Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
199   return None;
200 }
201 
202 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
203                                               const TargetLibraryInfo *TLI) {
204   bool IsNoBuiltinCall;
205   const Function *Callee =
206       getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
207   if (!Callee)
208     return None;
209 
210   // Prefer to use existing information over allocsize. This will give us an
211   // accurate AllocTy.
212   if (!IsNoBuiltinCall)
213     if (Optional<AllocFnsTy> Data =
214             getAllocationDataForFunction(Callee, AnyAlloc, TLI))
215       return Data;
216 
217   Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
218   if (Attr == Attribute())
219     return None;
220 
221   std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
222 
223   AllocFnsTy Result;
224   // Because allocsize only tells us how many bytes are allocated, we're not
225   // really allowed to assume anything, so we use MallocLike.
226   Result.AllocTy = MallocLike;
227   Result.NumParams = Callee->getNumOperands();
228   Result.FstParam = Args.first;
229   Result.SndParam = Args.second.getValueOr(-1);
230   return Result;
231 }
232 
233 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
234   const auto *CB =
235       dyn_cast<CallBase>(LookThroughBitCast ? V->stripPointerCasts() : V);
236   return CB && CB->hasRetAttr(Attribute::NoAlias);
237 }
238 
239 /// Tests if a value is a call or invoke to a library function that
240 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
241 /// like).
242 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
243                           bool LookThroughBitCast) {
244   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
245 }
246 bool llvm::isAllocationFn(
247     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
248     bool LookThroughBitCast) {
249   return getAllocationData(V, AnyAlloc, GetTLI, LookThroughBitCast).hasValue();
250 }
251 
252 /// Tests if a value is a call or invoke to a function that returns a
253 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
254 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
255                        bool LookThroughBitCast) {
256   // it's safe to consider realloc as noalias since accessing the original
257   // pointer is undefined behavior
258   return isAllocationFn(V, TLI, LookThroughBitCast) ||
259          hasNoAliasAttr(V, LookThroughBitCast);
260 }
261 
262 /// Tests if a value is a call or invoke to a library function that
263 /// allocates uninitialized memory (such as malloc).
264 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
265                           bool LookThroughBitCast) {
266   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
267 }
268 bool llvm::isMallocLikeFn(
269     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
270     bool LookThroughBitCast) {
271   return getAllocationData(V, MallocLike, GetTLI, LookThroughBitCast)
272       .hasValue();
273 }
274 
275 /// Tests if a value is a call or invoke to a library function that
276 /// allocates uninitialized memory with alignment (such as aligned_alloc).
277 bool llvm::isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
278                                 bool LookThroughBitCast) {
279   return getAllocationData(V, AlignedAllocLike, TLI, LookThroughBitCast)
280       .hasValue();
281 }
282 bool llvm::isAlignedAllocLikeFn(
283     const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI,
284     bool LookThroughBitCast) {
285   return getAllocationData(V, AlignedAllocLike, GetTLI, LookThroughBitCast)
286       .hasValue();
287 }
288 
289 /// Tests if a value is a call or invoke to a library function that
290 /// allocates zero-filled memory (such as calloc).
291 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
292                           bool LookThroughBitCast) {
293   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
294 }
295 
296 /// Tests if a value is a call or invoke to a library function that
297 /// allocates memory similar to malloc or calloc.
298 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
299                                   bool LookThroughBitCast) {
300   return getAllocationData(V, MallocOrCallocLike, TLI,
301                            LookThroughBitCast).hasValue();
302 }
303 
304 /// Tests if a value is a call or invoke to a library function that
305 /// allocates memory (either malloc, calloc, or strdup like).
306 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
307                          bool LookThroughBitCast) {
308   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
309 }
310 
311 /// Tests if a value is a call or invoke to a library function that
312 /// reallocates memory (e.g., realloc).
313 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
314                      bool LookThroughBitCast) {
315   return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast).hasValue();
316 }
317 
318 /// Tests if a functions is a call or invoke to a library function that
319 /// reallocates memory (e.g., realloc).
320 bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
321   return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
322 }
323 
324 /// Tests if a value is a call or invoke to a library function that
325 /// allocates memory and throws if an allocation failed (e.g., new).
326 bool llvm::isOpNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
327                      bool LookThroughBitCast) {
328   return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast).hasValue();
329 }
330 
331 /// Tests if a value is a call or invoke to a library function that
332 /// allocates memory (strdup, strndup).
333 bool llvm::isStrdupLikeFn(const Value *V, const TargetLibraryInfo *TLI,
334                           bool LookThroughBitCast) {
335   return getAllocationData(V, StrDupLike, TLI, LookThroughBitCast).hasValue();
336 }
337 
338 /// extractMallocCall - Returns the corresponding CallInst if the instruction
339 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
340 /// ignore InvokeInst here.
341 const CallInst *llvm::extractMallocCall(
342     const Value *I,
343     function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
344   return isMallocLikeFn(I, GetTLI) ? dyn_cast<CallInst>(I) : nullptr;
345 }
346 
347 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
348                                const TargetLibraryInfo *TLI,
349                                bool LookThroughSExt = false) {
350   if (!CI)
351     return nullptr;
352 
353   // The size of the malloc's result type must be known to determine array size.
354   Type *T = getMallocAllocatedType(CI, TLI);
355   if (!T || !T->isSized())
356     return nullptr;
357 
358   unsigned ElementSize = DL.getTypeAllocSize(T);
359   if (StructType *ST = dyn_cast<StructType>(T))
360     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
361 
362   // If malloc call's arg can be determined to be a multiple of ElementSize,
363   // return the multiple.  Otherwise, return NULL.
364   Value *MallocArg = CI->getArgOperand(0);
365   Value *Multiple = nullptr;
366   if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
367     return Multiple;
368 
369   return nullptr;
370 }
371 
372 /// getMallocType - Returns the PointerType resulting from the malloc call.
373 /// The PointerType depends on the number of bitcast uses of the malloc call:
374 ///   0: PointerType is the calls' return type.
375 ///   1: PointerType is the bitcast's result type.
376 ///  >1: Unique PointerType cannot be determined, return NULL.
377 PointerType *llvm::getMallocType(const CallInst *CI,
378                                  const TargetLibraryInfo *TLI) {
379   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
380 
381   PointerType *MallocType = nullptr;
382   unsigned NumOfBitCastUses = 0;
383 
384   // Determine if CallInst has a bitcast use.
385   for (const User *U : CI->users())
386     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
387       MallocType = cast<PointerType>(BCI->getDestTy());
388       NumOfBitCastUses++;
389     }
390 
391   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
392   if (NumOfBitCastUses == 1)
393     return MallocType;
394 
395   // Malloc call was not bitcast, so type is the malloc function's return type.
396   if (NumOfBitCastUses == 0)
397     return cast<PointerType>(CI->getType());
398 
399   // Type could not be determined.
400   return nullptr;
401 }
402 
403 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
404 /// The Type depends on the number of bitcast uses of the malloc call:
405 ///   0: PointerType is the malloc calls' return type.
406 ///   1: PointerType is the bitcast's result type.
407 ///  >1: Unique PointerType cannot be determined, return NULL.
408 Type *llvm::getMallocAllocatedType(const CallInst *CI,
409                                    const TargetLibraryInfo *TLI) {
410   PointerType *PT = getMallocType(CI, TLI);
411   return PT ? PT->getElementType() : nullptr;
412 }
413 
414 /// getMallocArraySize - Returns the array size of a malloc call.  If the
415 /// argument passed to malloc is a multiple of the size of the malloced type,
416 /// then return that multiple.  For non-array mallocs, the multiple is
417 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
418 /// determined.
419 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
420                                 const TargetLibraryInfo *TLI,
421                                 bool LookThroughSExt) {
422   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
423   return computeArraySize(CI, DL, TLI, LookThroughSExt);
424 }
425 
426 /// extractCallocCall - Returns the corresponding CallInst if the instruction
427 /// is a calloc call.
428 const CallInst *llvm::extractCallocCall(const Value *I,
429                                         const TargetLibraryInfo *TLI) {
430   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
431 }
432 
433 /// isLibFreeFunction - Returns true if the function is a builtin free()
434 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
435   unsigned ExpectedNumParams;
436   if (TLIFn == LibFunc_free ||
437       TLIFn == LibFunc_ZdlPv || // operator delete(void*)
438       TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
439       TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
440       TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
441       TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
442       TLIFn == LibFunc_msvc_delete_array_ptr64)   // operator delete[](void*)
443     ExpectedNumParams = 1;
444   else if (TLIFn == LibFunc_ZdlPvj ||              // delete(void*, uint)
445            TLIFn == LibFunc_ZdlPvm ||              // delete(void*, ulong)
446            TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
447            TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
448            TLIFn == LibFunc_ZdaPvj ||              // delete[](void*, uint)
449            TLIFn == LibFunc_ZdaPvm ||              // delete[](void*, ulong)
450            TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
451            TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
452            TLIFn == LibFunc_msvc_delete_ptr32_int ||      // delete(void*, uint)
453            TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
454            TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
455            TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
456            TLIFn == LibFunc_msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
457            TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
458            TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
459            TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow || // delete[](void*, nothrow)
460            TLIFn == LibFunc___kmpc_free_shared) // OpenMP Offloading RTL free
461     ExpectedNumParams = 2;
462   else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
463            TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t || // delete[](void*, align_val_t, nothrow)
464            TLIFn == LibFunc_ZdlPvjSt11align_val_t || // delete(void*, unsigned long, align_val_t)
465            TLIFn == LibFunc_ZdlPvmSt11align_val_t || // delete(void*, unsigned long, align_val_t)
466            TLIFn == LibFunc_ZdaPvjSt11align_val_t || // delete[](void*, unsigned int, align_val_t)
467            TLIFn == LibFunc_ZdaPvmSt11align_val_t) // delete[](void*, unsigned long, align_val_t)
468     ExpectedNumParams = 3;
469   else
470     return false;
471 
472   // Check free prototype.
473   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
474   // attribute will exist.
475   FunctionType *FTy = F->getFunctionType();
476   if (!FTy->getReturnType()->isVoidTy())
477     return false;
478   if (FTy->getNumParams() != ExpectedNumParams)
479     return false;
480   if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
481     return false;
482 
483   return true;
484 }
485 
486 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
487 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
488   bool IsNoBuiltinCall;
489   const Function *Callee =
490       getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
491   if (Callee == nullptr || IsNoBuiltinCall)
492     return nullptr;
493 
494   LibFunc TLIFn;
495   if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
496     return nullptr;
497 
498   return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
499 }
500 
501 
502 //===----------------------------------------------------------------------===//
503 //  Utility functions to compute size of objects.
504 //
505 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
506   if (Data.second.isNegative() || Data.first.ult(Data.second))
507     return APInt(Data.first.getBitWidth(), 0);
508   return Data.first - Data.second;
509 }
510 
511 /// Compute the size of the object pointed by Ptr. Returns true and the
512 /// object size in Size if successful, and false otherwise.
513 /// If RoundToAlign is true, then Size is rounded up to the alignment of
514 /// allocas, byval arguments, and global variables.
515 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
516                          const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
517   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
518   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
519   if (!Visitor.bothKnown(Data))
520     return false;
521 
522   Size = getSizeWithOverflow(Data).getZExtValue();
523   return true;
524 }
525 
526 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
527                                  const DataLayout &DL,
528                                  const TargetLibraryInfo *TLI,
529                                  bool MustSucceed) {
530   assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
531          "ObjectSize must be a call to llvm.objectsize!");
532 
533   bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
534   ObjectSizeOpts EvalOptions;
535   // Unless we have to fold this to something, try to be as accurate as
536   // possible.
537   if (MustSucceed)
538     EvalOptions.EvalMode =
539         MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
540   else
541     EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
542 
543   EvalOptions.NullIsUnknownSize =
544       cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
545 
546   auto *ResultType = cast<IntegerType>(ObjectSize->getType());
547   bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
548   if (StaticOnly) {
549     // FIXME: Does it make sense to just return a failure value if the size won't
550     // fit in the output and `!MustSucceed`?
551     uint64_t Size;
552     if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
553         isUIntN(ResultType->getBitWidth(), Size))
554       return ConstantInt::get(ResultType, Size);
555   } else {
556     LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
557     ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
558     SizeOffsetEvalType SizeOffsetPair =
559         Eval.compute(ObjectSize->getArgOperand(0));
560 
561     if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
562       IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
563       Builder.SetInsertPoint(ObjectSize);
564 
565       // If we've outside the end of the object, then we can always access
566       // exactly 0 bytes.
567       Value *ResultSize =
568           Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
569       Value *UseZero =
570           Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
571       ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
572       Value *Ret = Builder.CreateSelect(
573           UseZero, ConstantInt::get(ResultType, 0), ResultSize);
574 
575       // The non-constant size expression cannot evaluate to -1.
576       if (!isa<Constant>(SizeOffsetPair.first) ||
577           !isa<Constant>(SizeOffsetPair.second))
578         Builder.CreateAssumption(
579             Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
580 
581       return Ret;
582     }
583   }
584 
585   if (!MustSucceed)
586     return nullptr;
587 
588   return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
589 }
590 
591 STATISTIC(ObjectVisitorArgument,
592           "Number of arguments with unsolved size and offset");
593 STATISTIC(ObjectVisitorLoad,
594           "Number of load instructions with unsolved size and offset");
595 
596 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Alignment) {
597   if (Options.RoundToAlign && Alignment)
598     return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align(Alignment)));
599   return Size;
600 }
601 
602 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
603                                                  const TargetLibraryInfo *TLI,
604                                                  LLVMContext &Context,
605                                                  ObjectSizeOpts Options)
606     : DL(DL), TLI(TLI), Options(Options) {
607   // Pointer size must be rechecked for each object visited since it could have
608   // a different address space.
609 }
610 
611 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
612   IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
613   Zero = APInt::getNullValue(IntTyBits);
614 
615   V = V->stripPointerCasts();
616   if (Instruction *I = dyn_cast<Instruction>(V)) {
617     // If we have already seen this instruction, bail out. Cycles can happen in
618     // unreachable code after constant propagation.
619     if (!SeenInsts.insert(I).second)
620       return unknown();
621 
622     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
623       return visitGEPOperator(*GEP);
624     return visit(*I);
625   }
626   if (Argument *A = dyn_cast<Argument>(V))
627     return visitArgument(*A);
628   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
629     return visitConstantPointerNull(*P);
630   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
631     return visitGlobalAlias(*GA);
632   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
633     return visitGlobalVariable(*GV);
634   if (UndefValue *UV = dyn_cast<UndefValue>(V))
635     return visitUndefValue(*UV);
636   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
637     if (CE->getOpcode() == Instruction::IntToPtr)
638       return unknown(); // clueless
639     if (CE->getOpcode() == Instruction::GetElementPtr)
640       return visitGEPOperator(cast<GEPOperator>(*CE));
641   }
642 
643   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
644                     << *V << '\n');
645   return unknown();
646 }
647 
648 /// When we're compiling N-bit code, and the user uses parameters that are
649 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
650 /// trouble with APInt size issues. This function handles resizing + overflow
651 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
652 /// I's value.
653 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
654   // More bits than we can handle. Checking the bit width isn't necessary, but
655   // it's faster than checking active bits, and should give `false` in the
656   // vast majority of cases.
657   if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
658     return false;
659   if (I.getBitWidth() != IntTyBits)
660     I = I.zextOrTrunc(IntTyBits);
661   return true;
662 }
663 
664 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
665   if (!I.getAllocatedType()->isSized())
666     return unknown();
667 
668   if (isa<ScalableVectorType>(I.getAllocatedType()))
669     return unknown();
670 
671   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
672   if (!I.isArrayAllocation())
673     return std::make_pair(align(Size, I.getAlignment()), Zero);
674 
675   Value *ArraySize = I.getArraySize();
676   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
677     APInt NumElems = C->getValue();
678     if (!CheckedZextOrTrunc(NumElems))
679       return unknown();
680 
681     bool Overflow;
682     Size = Size.umul_ov(NumElems, Overflow);
683     return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
684                                                  Zero);
685   }
686   return unknown();
687 }
688 
689 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
690   Type *MemoryTy = A.getPointeeInMemoryValueType();
691   // No interprocedural analysis is done at the moment.
692   if (!MemoryTy|| !MemoryTy->isSized()) {
693     ++ObjectVisitorArgument;
694     return unknown();
695   }
696 
697   APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
698   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
699 }
700 
701 SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
702   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
703   if (!FnData)
704     return unknown();
705 
706   // Handle strdup-like functions separately.
707   if (FnData->AllocTy == StrDupLike) {
708     APInt Size(IntTyBits, GetStringLength(CB.getArgOperand(0)));
709     if (!Size)
710       return unknown();
711 
712     // Strndup limits strlen.
713     if (FnData->FstParam > 0) {
714       ConstantInt *Arg =
715           dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
716       if (!Arg)
717         return unknown();
718 
719       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
720       if (Size.ugt(MaxSize))
721         Size = MaxSize + 1;
722     }
723     return std::make_pair(Size, Zero);
724   }
725 
726   ConstantInt *Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->FstParam));
727   if (!Arg)
728     return unknown();
729 
730   APInt Size = Arg->getValue();
731   if (!CheckedZextOrTrunc(Size))
732     return unknown();
733 
734   // Size is determined by just 1 parameter.
735   if (FnData->SndParam < 0)
736     return std::make_pair(Size, Zero);
737 
738   Arg = dyn_cast<ConstantInt>(CB.getArgOperand(FnData->SndParam));
739   if (!Arg)
740     return unknown();
741 
742   APInt NumElems = Arg->getValue();
743   if (!CheckedZextOrTrunc(NumElems))
744     return unknown();
745 
746   bool Overflow;
747   Size = Size.umul_ov(NumElems, Overflow);
748   return Overflow ? unknown() : std::make_pair(Size, Zero);
749 
750   // TODO: handle more standard functions (+ wchar cousins):
751   // - strdup / strndup
752   // - strcpy / strncpy
753   // - strcat / strncat
754   // - memcpy / memmove
755   // - strcat / strncat
756   // - memset
757 }
758 
759 SizeOffsetType
760 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
761   // If null is unknown, there's nothing we can do. Additionally, non-zero
762   // address spaces can make use of null, so we don't presume to know anything
763   // about that.
764   //
765   // TODO: How should this work with address space casts? We currently just drop
766   // them on the floor, but it's unclear what we should do when a NULL from
767   // addrspace(1) gets casted to addrspace(0) (or vice-versa).
768   if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
769     return unknown();
770   return std::make_pair(Zero, Zero);
771 }
772 
773 SizeOffsetType
774 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
775   return unknown();
776 }
777 
778 SizeOffsetType
779 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
780   // Easy cases were already folded by previous passes.
781   return unknown();
782 }
783 
784 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
785   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
786   APInt Offset(DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()), 0);
787   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
788     return unknown();
789 
790   return std::make_pair(PtrData.first, PtrData.second + Offset);
791 }
792 
793 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
794   if (GA.isInterposable())
795     return unknown();
796   return compute(GA.getAliasee());
797 }
798 
799 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
800   if (!GV.hasDefinitiveInitializer())
801     return unknown();
802 
803   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
804   return std::make_pair(align(Size, GV.getAlignment()), Zero);
805 }
806 
807 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
808   // clueless
809   return unknown();
810 }
811 
812 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
813   ++ObjectVisitorLoad;
814   return unknown();
815 }
816 
817 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
818   // too complex to analyze statically.
819   return unknown();
820 }
821 
822 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
823   SizeOffsetType TrueSide  = compute(I.getTrueValue());
824   SizeOffsetType FalseSide = compute(I.getFalseValue());
825   if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
826     if (TrueSide == FalseSide) {
827         return TrueSide;
828     }
829 
830     APInt TrueResult = getSizeWithOverflow(TrueSide);
831     APInt FalseResult = getSizeWithOverflow(FalseSide);
832 
833     if (TrueResult == FalseResult) {
834       return TrueSide;
835     }
836     if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
837       if (TrueResult.slt(FalseResult))
838         return TrueSide;
839       return FalseSide;
840     }
841     if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
842       if (TrueResult.sgt(FalseResult))
843         return TrueSide;
844       return FalseSide;
845     }
846   }
847   return unknown();
848 }
849 
850 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
851   return std::make_pair(Zero, Zero);
852 }
853 
854 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
855   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
856                     << '\n');
857   return unknown();
858 }
859 
860 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
861     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
862     ObjectSizeOpts EvalOpts)
863     : DL(DL), TLI(TLI), Context(Context),
864       Builder(Context, TargetFolder(DL),
865               IRBuilderCallbackInserter(
866                   [&](Instruction *I) { InsertedInstructions.insert(I); })),
867       EvalOpts(EvalOpts) {
868   // IntTy and Zero must be set for each compute() since the address space may
869   // be different for later objects.
870 }
871 
872 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
873   // XXX - Are vectors of pointers possible here?
874   IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
875   Zero = ConstantInt::get(IntTy, 0);
876 
877   SizeOffsetEvalType Result = compute_(V);
878 
879   if (!bothKnown(Result)) {
880     // Erase everything that was computed in this iteration from the cache, so
881     // that no dangling references are left behind. We could be a bit smarter if
882     // we kept a dependency graph. It's probably not worth the complexity.
883     for (const Value *SeenVal : SeenVals) {
884       CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
885       // non-computable results can be safely cached
886       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
887         CacheMap.erase(CacheIt);
888     }
889 
890     // Erase any instructions we inserted as part of the traversal.
891     for (Instruction *I : InsertedInstructions) {
892       I->replaceAllUsesWith(UndefValue::get(I->getType()));
893       I->eraseFromParent();
894     }
895   }
896 
897   SeenVals.clear();
898   InsertedInstructions.clear();
899   return Result;
900 }
901 
902 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
903   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
904   SizeOffsetType Const = Visitor.compute(V);
905   if (Visitor.bothKnown(Const))
906     return std::make_pair(ConstantInt::get(Context, Const.first),
907                           ConstantInt::get(Context, Const.second));
908 
909   V = V->stripPointerCasts();
910 
911   // Check cache.
912   CacheMapTy::iterator CacheIt = CacheMap.find(V);
913   if (CacheIt != CacheMap.end())
914     return CacheIt->second;
915 
916   // Always generate code immediately before the instruction being
917   // processed, so that the generated code dominates the same BBs.
918   BuilderTy::InsertPointGuard Guard(Builder);
919   if (Instruction *I = dyn_cast<Instruction>(V))
920     Builder.SetInsertPoint(I);
921 
922   // Now compute the size and offset.
923   SizeOffsetEvalType Result;
924 
925   // Record the pointers that were handled in this run, so that they can be
926   // cleaned later if something fails. We also use this set to break cycles that
927   // can occur in dead code.
928   if (!SeenVals.insert(V).second) {
929     Result = unknown();
930   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
931     Result = visitGEPOperator(*GEP);
932   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
933     Result = visit(*I);
934   } else if (isa<Argument>(V) ||
935              (isa<ConstantExpr>(V) &&
936               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
937              isa<GlobalAlias>(V) ||
938              isa<GlobalVariable>(V)) {
939     // Ignore values where we cannot do more than ObjectSizeVisitor.
940     Result = unknown();
941   } else {
942     LLVM_DEBUG(
943         dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
944                << '\n');
945     Result = unknown();
946   }
947 
948   // Don't reuse CacheIt since it may be invalid at this point.
949   CacheMap[V] = Result;
950   return Result;
951 }
952 
953 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
954   if (!I.getAllocatedType()->isSized())
955     return unknown();
956 
957   // must be a VLA
958   assert(I.isArrayAllocation());
959 
960   // If needed, adjust the alloca's operand size to match the pointer size.
961   // Subsequent math operations expect the types to match.
962   Value *ArraySize = Builder.CreateZExtOrTrunc(
963       I.getArraySize(), DL.getIntPtrType(I.getContext()));
964   assert(ArraySize->getType() == Zero->getType() &&
965          "Expected zero constant to have pointer type");
966 
967   Value *Size = ConstantInt::get(ArraySize->getType(),
968                                  DL.getTypeAllocSize(I.getAllocatedType()));
969   Size = Builder.CreateMul(Size, ArraySize);
970   return std::make_pair(Size, Zero);
971 }
972 
973 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
974   Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
975   if (!FnData)
976     return unknown();
977 
978   // Handle strdup-like functions separately.
979   if (FnData->AllocTy == StrDupLike) {
980     // TODO
981     return unknown();
982   }
983 
984   Value *FirstArg = CB.getArgOperand(FnData->FstParam);
985   FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
986   if (FnData->SndParam < 0)
987     return std::make_pair(FirstArg, Zero);
988 
989   Value *SecondArg = CB.getArgOperand(FnData->SndParam);
990   SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
991   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
992   return std::make_pair(Size, Zero);
993 
994   // TODO: handle more standard functions (+ wchar cousins):
995   // - strdup / strndup
996   // - strcpy / strncpy
997   // - strcat / strncat
998   // - memcpy / memmove
999   // - strcat / strncat
1000   // - memset
1001 }
1002 
1003 SizeOffsetEvalType
1004 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
1005   return unknown();
1006 }
1007 
1008 SizeOffsetEvalType
1009 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
1010   return unknown();
1011 }
1012 
1013 SizeOffsetEvalType
1014 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
1015   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
1016   if (!bothKnown(PtrData))
1017     return unknown();
1018 
1019   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
1020   Offset = Builder.CreateAdd(PtrData.second, Offset);
1021   return std::make_pair(PtrData.first, Offset);
1022 }
1023 
1024 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
1025   // clueless
1026   return unknown();
1027 }
1028 
1029 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
1030   return unknown();
1031 }
1032 
1033 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
1034   // Create 2 PHIs: one for size and another for offset.
1035   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1036   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
1037 
1038   // Insert right away in the cache to handle recursive PHIs.
1039   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
1040 
1041   // Compute offset/size for each PHI incoming pointer.
1042   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
1043     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
1044     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
1045 
1046     if (!bothKnown(EdgeData)) {
1047       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
1048       OffsetPHI->eraseFromParent();
1049       InsertedInstructions.erase(OffsetPHI);
1050       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
1051       SizePHI->eraseFromParent();
1052       InsertedInstructions.erase(SizePHI);
1053       return unknown();
1054     }
1055     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
1056     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
1057   }
1058 
1059   Value *Size = SizePHI, *Offset = OffsetPHI;
1060   if (Value *Tmp = SizePHI->hasConstantValue()) {
1061     Size = Tmp;
1062     SizePHI->replaceAllUsesWith(Size);
1063     SizePHI->eraseFromParent();
1064     InsertedInstructions.erase(SizePHI);
1065   }
1066   if (Value *Tmp = OffsetPHI->hasConstantValue()) {
1067     Offset = Tmp;
1068     OffsetPHI->replaceAllUsesWith(Offset);
1069     OffsetPHI->eraseFromParent();
1070     InsertedInstructions.erase(OffsetPHI);
1071   }
1072   return std::make_pair(Size, Offset);
1073 }
1074 
1075 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
1076   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
1077   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
1078 
1079   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
1080     return unknown();
1081   if (TrueSide == FalseSide)
1082     return TrueSide;
1083 
1084   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
1085                                      FalseSide.first);
1086   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
1087                                        FalseSide.second);
1088   return std::make_pair(Size, Offset);
1089 }
1090 
1091 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
1092   LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
1093                     << '\n');
1094   return unknown();
1095 }
1096