1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on.  It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/PhiValues.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PredIteratorCache.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <iterator>
61 #include <utility>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "memdep"
66 
67 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
68 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
69 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
70 
71 STATISTIC(NumCacheNonLocalPtr,
72           "Number of fully cached non-local ptr responses");
73 STATISTIC(NumCacheDirtyNonLocalPtr,
74           "Number of cached, but dirty, non-local ptr responses");
75 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
76 STATISTIC(NumCacheCompleteNonLocalPtr,
77           "Number of block queries that were completely cached");
78 
79 // Limit for the number of instructions to scan in a block.
80 
81 static cl::opt<unsigned> BlockScanLimit(
82     "memdep-block-scan-limit", cl::Hidden, cl::init(100),
83     cl::desc("The number of instructions to scan in a block in memory "
84              "dependency analysis (default = 100)"));
85 
86 static cl::opt<unsigned>
87     BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(1000),
88                      cl::desc("The number of blocks to scan during memory "
89                               "dependency analysis (default = 1000)"));
90 
91 // Limit on the number of memdep results to process.
92 static const unsigned int NumResultsLimit = 100;
93 
94 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
95 ///
96 /// If the set becomes empty, remove Inst's entry.
97 template <typename KeyTy>
98 static void
99 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
100                      Instruction *Inst, KeyTy Val) {
101   typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
102       ReverseMap.find(Inst);
103   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
104   bool Found = InstIt->second.erase(Val);
105   assert(Found && "Invalid reverse map!");
106   (void)Found;
107   if (InstIt->second.empty())
108     ReverseMap.erase(InstIt);
109 }
110 
111 /// If the given instruction references a specific memory location, fill in Loc
112 /// with the details, otherwise set Loc.Ptr to null.
113 ///
114 /// Returns a ModRefInfo value describing the general behavior of the
115 /// instruction.
116 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
117                               const TargetLibraryInfo &TLI) {
118   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
119     if (LI->isUnordered()) {
120       Loc = MemoryLocation::get(LI);
121       return ModRefInfo::Ref;
122     }
123     if (LI->getOrdering() == AtomicOrdering::Monotonic) {
124       Loc = MemoryLocation::get(LI);
125       return ModRefInfo::ModRef;
126     }
127     Loc = MemoryLocation();
128     return ModRefInfo::ModRef;
129   }
130 
131   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
132     if (SI->isUnordered()) {
133       Loc = MemoryLocation::get(SI);
134       return ModRefInfo::Mod;
135     }
136     if (SI->getOrdering() == AtomicOrdering::Monotonic) {
137       Loc = MemoryLocation::get(SI);
138       return ModRefInfo::ModRef;
139     }
140     Loc = MemoryLocation();
141     return ModRefInfo::ModRef;
142   }
143 
144   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
145     Loc = MemoryLocation::get(V);
146     return ModRefInfo::ModRef;
147   }
148 
149   if (const CallInst *CI = isFreeCall(Inst, &TLI)) {
150     // calls to free() deallocate the entire structure
151     Loc = MemoryLocation::getAfter(CI->getArgOperand(0));
152     return ModRefInfo::Mod;
153   }
154 
155   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
156     switch (II->getIntrinsicID()) {
157     case Intrinsic::lifetime_start:
158     case Intrinsic::lifetime_end:
159     case Intrinsic::invariant_start:
160       Loc = MemoryLocation::getForArgument(II, 1, TLI);
161       // These intrinsics don't really modify the memory, but returning Mod
162       // will allow them to be handled conservatively.
163       return ModRefInfo::Mod;
164     case Intrinsic::invariant_end:
165       Loc = MemoryLocation::getForArgument(II, 2, TLI);
166       // These intrinsics don't really modify the memory, but returning Mod
167       // will allow them to be handled conservatively.
168       return ModRefInfo::Mod;
169     case Intrinsic::masked_load:
170       Loc = MemoryLocation::getForArgument(II, 0, TLI);
171       return ModRefInfo::Ref;
172     case Intrinsic::masked_store:
173       Loc = MemoryLocation::getForArgument(II, 1, TLI);
174       return ModRefInfo::Mod;
175     default:
176       break;
177     }
178   }
179 
180   // Otherwise, just do the coarse-grained thing that always works.
181   if (Inst->mayWriteToMemory())
182     return ModRefInfo::ModRef;
183   if (Inst->mayReadFromMemory())
184     return ModRefInfo::Ref;
185   return ModRefInfo::NoModRef;
186 }
187 
188 /// Private helper for finding the local dependencies of a call site.
189 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
190     CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
191     BasicBlock *BB) {
192   unsigned Limit = getDefaultBlockScanLimit();
193 
194   // Walk backwards through the block, looking for dependencies.
195   while (ScanIt != BB->begin()) {
196     Instruction *Inst = &*--ScanIt;
197     // Debug intrinsics don't cause dependences and should not affect Limit
198     if (isa<DbgInfoIntrinsic>(Inst))
199       continue;
200 
201     // Limit the amount of scanning we do so we don't end up with quadratic
202     // running time on extreme testcases.
203     --Limit;
204     if (!Limit)
205       return MemDepResult::getUnknown();
206 
207     // If this inst is a memory op, get the pointer it accessed
208     MemoryLocation Loc;
209     ModRefInfo MR = GetLocation(Inst, Loc, TLI);
210     if (Loc.Ptr) {
211       // A simple instruction.
212       if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
213         return MemDepResult::getClobber(Inst);
214       continue;
215     }
216 
217     if (auto *CallB = dyn_cast<CallBase>(Inst)) {
218       // If these two calls do not interfere, look past it.
219       if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
220         // If the two calls are the same, return Inst as a Def, so that
221         // Call can be found redundant and eliminated.
222         if (isReadOnlyCall && !isModSet(MR) &&
223             Call->isIdenticalToWhenDefined(CallB))
224           return MemDepResult::getDef(Inst);
225 
226         // Otherwise if the two calls don't interact (e.g. CallB is readnone)
227         // keep scanning.
228         continue;
229       } else
230         return MemDepResult::getClobber(Inst);
231     }
232 
233     // If we could not obtain a pointer for the instruction and the instruction
234     // touches memory then assume that this is a dependency.
235     if (isModOrRefSet(MR))
236       return MemDepResult::getClobber(Inst);
237   }
238 
239   // No dependence found.  If this is the entry block of the function, it is
240   // unknown, otherwise it is non-local.
241   if (BB != &BB->getParent()->getEntryBlock())
242     return MemDepResult::getNonLocal();
243   return MemDepResult::getNonFuncLocal();
244 }
245 
246 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
247     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
248     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
249     BatchAAResults &BatchAA) {
250   MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
251   if (QueryInst != nullptr) {
252     if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
253       InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
254 
255       if (InvariantGroupDependency.isDef())
256         return InvariantGroupDependency;
257     }
258   }
259   MemDepResult SimpleDep = getSimplePointerDependencyFrom(
260       MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
261   if (SimpleDep.isDef())
262     return SimpleDep;
263   // Non-local invariant group dependency indicates there is non local Def
264   // (it only returns nonLocal if it finds nonLocal def), which is better than
265   // local clobber and everything else.
266   if (InvariantGroupDependency.isNonLocal())
267     return InvariantGroupDependency;
268 
269   assert(InvariantGroupDependency.isUnknown() &&
270          "InvariantGroupDependency should be only unknown at this point");
271   return SimpleDep;
272 }
273 
274 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
275     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
276     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
277   BatchAAResults BatchAA(AA);
278   return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
279                                   BatchAA);
280 }
281 
282 MemDepResult
283 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
284                                                             BasicBlock *BB) {
285 
286   if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
287     return MemDepResult::getUnknown();
288 
289   // Take the ptr operand after all casts and geps 0. This way we can search
290   // cast graph down only.
291   Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
292 
293   // It's is not safe to walk the use list of global value, because function
294   // passes aren't allowed to look outside their functions.
295   // FIXME: this could be fixed by filtering instructions from outside
296   // of current function.
297   if (isa<GlobalValue>(LoadOperand))
298     return MemDepResult::getUnknown();
299 
300   // Queue to process all pointers that are equivalent to load operand.
301   SmallVector<const Value *, 8> LoadOperandsQueue;
302   LoadOperandsQueue.push_back(LoadOperand);
303 
304   Instruction *ClosestDependency = nullptr;
305   // Order of instructions in uses list is unpredictible. In order to always
306   // get the same result, we will look for the closest dominance.
307   auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
308     assert(Other && "Must call it with not null instruction");
309     if (Best == nullptr || DT.dominates(Best, Other))
310       return Other;
311     return Best;
312   };
313 
314   // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
315   // we will see all the instructions. This should be fixed in MSSA.
316   while (!LoadOperandsQueue.empty()) {
317     const Value *Ptr = LoadOperandsQueue.pop_back_val();
318     assert(Ptr && !isa<GlobalValue>(Ptr) &&
319            "Null or GlobalValue should not be inserted");
320 
321     for (const Use &Us : Ptr->uses()) {
322       auto *U = dyn_cast<Instruction>(Us.getUser());
323       if (!U || U == LI || !DT.dominates(U, LI))
324         continue;
325 
326       // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
327       // users.      U = bitcast Ptr
328       if (isa<BitCastInst>(U)) {
329         LoadOperandsQueue.push_back(U);
330         continue;
331       }
332       // Gep with zeros is equivalent to bitcast.
333       // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
334       // or gep 0 to bitcast because of SROA, so there are 2 forms. When
335       // typeless pointers will be ready then both cases will be gone
336       // (and this BFS also won't be needed).
337       if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
338         if (GEP->hasAllZeroIndices()) {
339           LoadOperandsQueue.push_back(U);
340           continue;
341         }
342 
343       // If we hit load/store with the same invariant.group metadata (and the
344       // same pointer operand) we can assume that value pointed by pointer
345       // operand didn't change.
346       if ((isa<LoadInst>(U) ||
347            (isa<StoreInst>(U) &&
348             cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
349           U->hasMetadata(LLVMContext::MD_invariant_group))
350         ClosestDependency = GetClosestDependency(ClosestDependency, U);
351     }
352   }
353 
354   if (!ClosestDependency)
355     return MemDepResult::getUnknown();
356   if (ClosestDependency->getParent() == BB)
357     return MemDepResult::getDef(ClosestDependency);
358   // Def(U) can't be returned here because it is non-local. If local
359   // dependency won't be found then return nonLocal counting that the
360   // user will call getNonLocalPointerDependency, which will return cached
361   // result.
362   NonLocalDefsCache.try_emplace(
363       LI, NonLocalDepResult(ClosestDependency->getParent(),
364                             MemDepResult::getDef(ClosestDependency), nullptr));
365   ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
366   return MemDepResult::getNonLocal();
367 }
368 
369 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
370     const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
371     BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
372     BatchAAResults &BatchAA) {
373   bool isInvariantLoad = false;
374 
375   unsigned DefaultLimit = getDefaultBlockScanLimit();
376   if (!Limit)
377     Limit = &DefaultLimit;
378 
379   // We must be careful with atomic accesses, as they may allow another thread
380   //   to touch this location, clobbering it. We are conservative: if the
381   //   QueryInst is not a simple (non-atomic) memory access, we automatically
382   //   return getClobber.
383   // If it is simple, we know based on the results of
384   // "Compiler testing via a theory of sound optimisations in the C11/C++11
385   //   memory model" in PLDI 2013, that a non-atomic location can only be
386   //   clobbered between a pair of a release and an acquire action, with no
387   //   access to the location in between.
388   // Here is an example for giving the general intuition behind this rule.
389   // In the following code:
390   //   store x 0;
391   //   release action; [1]
392   //   acquire action; [4]
393   //   %val = load x;
394   // It is unsafe to replace %val by 0 because another thread may be running:
395   //   acquire action; [2]
396   //   store x 42;
397   //   release action; [3]
398   // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
399   // being 42. A key property of this program however is that if either
400   // 1 or 4 were missing, there would be a race between the store of 42
401   // either the store of 0 or the load (making the whole program racy).
402   // The paper mentioned above shows that the same property is respected
403   // by every program that can detect any optimization of that kind: either
404   // it is racy (undefined) or there is a release followed by an acquire
405   // between the pair of accesses under consideration.
406 
407   // If the load is invariant, we "know" that it doesn't alias *any* write. We
408   // do want to respect mustalias results since defs are useful for value
409   // forwarding, but any mayalias write can be assumed to be noalias.
410   // Arguably, this logic should be pushed inside AliasAnalysis itself.
411   if (isLoad && QueryInst) {
412     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
413     if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
414       isInvariantLoad = true;
415   }
416 
417   // Return "true" if and only if the instruction I is either a non-simple
418   // load or a non-simple store.
419   auto isNonSimpleLoadOrStore = [](Instruction *I) -> bool {
420     if (auto *LI = dyn_cast<LoadInst>(I))
421       return !LI->isSimple();
422     if (auto *SI = dyn_cast<StoreInst>(I))
423       return !SI->isSimple();
424     return false;
425   };
426 
427   // Return "true" if I is not a load and not a store, but it does access
428   // memory.
429   auto isOtherMemAccess = [](Instruction *I) -> bool {
430     return !isa<LoadInst>(I) && !isa<StoreInst>(I) && I->mayReadOrWriteMemory();
431   };
432 
433   // Walk backwards through the basic block, looking for dependencies.
434   while (ScanIt != BB->begin()) {
435     Instruction *Inst = &*--ScanIt;
436 
437     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
438       // Debug intrinsics don't (and can't) cause dependencies.
439       if (isa<DbgInfoIntrinsic>(II))
440         continue;
441 
442     // Limit the amount of scanning we do so we don't end up with quadratic
443     // running time on extreme testcases.
444     --*Limit;
445     if (!*Limit)
446       return MemDepResult::getUnknown();
447 
448     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
449       // If we reach a lifetime begin or end marker, then the query ends here
450       // because the value is undefined.
451       Intrinsic::ID ID = II->getIntrinsicID();
452       switch (ID) {
453       case Intrinsic::lifetime_start: {
454         // FIXME: This only considers queries directly on the invariant-tagged
455         // pointer, not on query pointers that are indexed off of them.  It'd
456         // be nice to handle that at some point (the right approach is to use
457         // GetPointerBaseWithConstantOffset).
458         MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
459         if (BatchAA.isMustAlias(ArgLoc, MemLoc))
460           return MemDepResult::getDef(II);
461         continue;
462       }
463       case Intrinsic::masked_load:
464       case Intrinsic::masked_store: {
465         MemoryLocation Loc;
466         /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
467         AliasResult R = BatchAA.alias(Loc, MemLoc);
468         if (R == AliasResult::NoAlias)
469           continue;
470         if (R == AliasResult::MustAlias)
471           return MemDepResult::getDef(II);
472         if (ID == Intrinsic::masked_load)
473           continue;
474         return MemDepResult::getClobber(II);
475       }
476       }
477     }
478 
479     // Values depend on loads if the pointers are must aliased.  This means
480     // that a load depends on another must aliased load from the same value.
481     // One exception is atomic loads: a value can depend on an atomic load that
482     // it does not alias with when this atomic load indicates that another
483     // thread may be accessing the location.
484     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
485       // While volatile access cannot be eliminated, they do not have to clobber
486       // non-aliasing locations, as normal accesses, for example, can be safely
487       // reordered with volatile accesses.
488       if (LI->isVolatile()) {
489         if (!QueryInst)
490           // Original QueryInst *may* be volatile
491           return MemDepResult::getClobber(LI);
492         if (QueryInst->isVolatile())
493           // Ordering required if QueryInst is itself volatile
494           return MemDepResult::getClobber(LI);
495         // Otherwise, volatile doesn't imply any special ordering
496       }
497 
498       // Atomic loads have complications involved.
499       // A Monotonic (or higher) load is OK if the query inst is itself not
500       // atomic.
501       // FIXME: This is overly conservative.
502       if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
503         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
504             isOtherMemAccess(QueryInst))
505           return MemDepResult::getClobber(LI);
506         if (LI->getOrdering() != AtomicOrdering::Monotonic)
507           return MemDepResult::getClobber(LI);
508       }
509 
510       MemoryLocation LoadLoc = MemoryLocation::get(LI);
511 
512       // If we found a pointer, check if it could be the same as our pointer.
513       AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
514 
515       if (isLoad) {
516         if (R == AliasResult::NoAlias)
517           continue;
518 
519         // Must aliased loads are defs of each other.
520         if (R == AliasResult::MustAlias)
521           return MemDepResult::getDef(Inst);
522 
523         // If we have a partial alias, then return this as a clobber for the
524         // client to handle.
525         if (R == AliasResult::PartialAlias && R.hasOffset()) {
526           ClobberOffsets[LI] = R.getOffset();
527           return MemDepResult::getClobber(Inst);
528         }
529 
530         // Random may-alias loads don't depend on each other without a
531         // dependence.
532         continue;
533       }
534 
535       // Stores don't depend on other no-aliased accesses.
536       if (R == AliasResult::NoAlias)
537         continue;
538 
539       // Stores don't alias loads from read-only memory.
540       if (BatchAA.pointsToConstantMemory(LoadLoc))
541         continue;
542 
543       // Stores depend on may/must aliased loads.
544       return MemDepResult::getDef(Inst);
545     }
546 
547     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
548       // Atomic stores have complications involved.
549       // A Monotonic store is OK if the query inst is itself not atomic.
550       // FIXME: This is overly conservative.
551       if (!SI->isUnordered() && SI->isAtomic()) {
552         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
553             isOtherMemAccess(QueryInst))
554           return MemDepResult::getClobber(SI);
555         if (SI->getOrdering() != AtomicOrdering::Monotonic)
556           return MemDepResult::getClobber(SI);
557       }
558 
559       // FIXME: this is overly conservative.
560       // While volatile access cannot be eliminated, they do not have to clobber
561       // non-aliasing locations, as normal accesses can for example be reordered
562       // with volatile accesses.
563       if (SI->isVolatile())
564         if (!QueryInst || isNonSimpleLoadOrStore(QueryInst) ||
565             isOtherMemAccess(QueryInst))
566           return MemDepResult::getClobber(SI);
567 
568       // If alias analysis can tell that this store is guaranteed to not modify
569       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
570       // the query pointer points to constant memory etc.
571       if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
572         continue;
573 
574       // Ok, this store might clobber the query pointer.  Check to see if it is
575       // a must alias: in this case, we want to return this as a def.
576       // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
577       MemoryLocation StoreLoc = MemoryLocation::get(SI);
578 
579       // If we found a pointer, check if it could be the same as our pointer.
580       AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
581 
582       if (R == AliasResult::NoAlias)
583         continue;
584       if (R == AliasResult::MustAlias)
585         return MemDepResult::getDef(Inst);
586       if (isInvariantLoad)
587         continue;
588       return MemDepResult::getClobber(Inst);
589     }
590 
591     // If this is an allocation, and if we know that the accessed pointer is to
592     // the allocation, return Def.  This means that there is no dependence and
593     // the access can be optimized based on that.  For example, a load could
594     // turn into undef.  Note that we can bypass the allocation itself when
595     // looking for a clobber in many cases; that's an alias property and is
596     // handled by BasicAA.
597     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, &TLI)) {
598       const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
599       if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
600         return MemDepResult::getDef(Inst);
601     }
602 
603     if (isInvariantLoad)
604       continue;
605 
606     // A release fence requires that all stores complete before it, but does
607     // not prevent the reordering of following loads or stores 'before' the
608     // fence.  As a result, we look past it when finding a dependency for
609     // loads.  DSE uses this to find preceding stores to delete and thus we
610     // can't bypass the fence if the query instruction is a store.
611     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
612       if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
613         continue;
614 
615     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
616     ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
617     // If necessary, perform additional analysis.
618     if (isModAndRefSet(MR))
619       MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT);
620     switch (clearMust(MR)) {
621     case ModRefInfo::NoModRef:
622       // If the call has no effect on the queried pointer, just ignore it.
623       continue;
624     case ModRefInfo::Mod:
625       return MemDepResult::getClobber(Inst);
626     case ModRefInfo::Ref:
627       // If the call is known to never store to the pointer, and if this is a
628       // load query, we can safely ignore it (scan past it).
629       if (isLoad)
630         continue;
631       LLVM_FALLTHROUGH;
632     default:
633       // Otherwise, there is a potential dependence.  Return a clobber.
634       return MemDepResult::getClobber(Inst);
635     }
636   }
637 
638   // No dependence found.  If this is the entry block of the function, it is
639   // unknown, otherwise it is non-local.
640   if (BB != &BB->getParent()->getEntryBlock())
641     return MemDepResult::getNonLocal();
642   return MemDepResult::getNonFuncLocal();
643 }
644 
645 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
646   ClobberOffsets.clear();
647   Instruction *ScanPos = QueryInst;
648 
649   // Check for a cached result
650   MemDepResult &LocalCache = LocalDeps[QueryInst];
651 
652   // If the cached entry is non-dirty, just return it.  Note that this depends
653   // on MemDepResult's default constructing to 'dirty'.
654   if (!LocalCache.isDirty())
655     return LocalCache;
656 
657   // Otherwise, if we have a dirty entry, we know we can start the scan at that
658   // instruction, which may save us some work.
659   if (Instruction *Inst = LocalCache.getInst()) {
660     ScanPos = Inst;
661 
662     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
663   }
664 
665   BasicBlock *QueryParent = QueryInst->getParent();
666 
667   // Do the scan.
668   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
669     // No dependence found. If this is the entry block of the function, it is
670     // unknown, otherwise it is non-local.
671     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
672       LocalCache = MemDepResult::getNonLocal();
673     else
674       LocalCache = MemDepResult::getNonFuncLocal();
675   } else {
676     MemoryLocation MemLoc;
677     ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
678     if (MemLoc.Ptr) {
679       // If we can do a pointer scan, make it happen.
680       bool isLoad = !isModSet(MR);
681       if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
682         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
683 
684       LocalCache =
685           getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
686                                    QueryParent, QueryInst, nullptr);
687     } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
688       bool isReadOnly = AA.onlyReadsMemory(QueryCall);
689       LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
690                                          ScanPos->getIterator(), QueryParent);
691     } else
692       // Non-memory instruction.
693       LocalCache = MemDepResult::getUnknown();
694   }
695 
696   // Remember the result!
697   if (Instruction *I = LocalCache.getInst())
698     ReverseLocalDeps[I].insert(QueryInst);
699 
700   return LocalCache;
701 }
702 
703 #ifndef NDEBUG
704 /// This method is used when -debug is specified to verify that cache arrays
705 /// are properly kept sorted.
706 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
707                          int Count = -1) {
708   if (Count == -1)
709     Count = Cache.size();
710   assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
711          "Cache isn't sorted!");
712 }
713 #endif
714 
715 const MemoryDependenceResults::NonLocalDepInfo &
716 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
717   assert(getDependency(QueryCall).isNonLocal() &&
718          "getNonLocalCallDependency should only be used on calls with "
719          "non-local deps!");
720   PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
721   NonLocalDepInfo &Cache = CacheP.first;
722 
723   // This is the set of blocks that need to be recomputed.  In the cached case,
724   // this can happen due to instructions being deleted etc. In the uncached
725   // case, this starts out as the set of predecessors we care about.
726   SmallVector<BasicBlock *, 32> DirtyBlocks;
727 
728   if (!Cache.empty()) {
729     // Okay, we have a cache entry.  If we know it is not dirty, just return it
730     // with no computation.
731     if (!CacheP.second) {
732       ++NumCacheNonLocal;
733       return Cache;
734     }
735 
736     // If we already have a partially computed set of results, scan them to
737     // determine what is dirty, seeding our initial DirtyBlocks worklist.
738     for (auto &Entry : Cache)
739       if (Entry.getResult().isDirty())
740         DirtyBlocks.push_back(Entry.getBB());
741 
742     // Sort the cache so that we can do fast binary search lookups below.
743     llvm::sort(Cache);
744 
745     ++NumCacheDirtyNonLocal;
746     // cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
747     //     << Cache.size() << " cached: " << *QueryInst;
748   } else {
749     // Seed DirtyBlocks with each of the preds of QueryInst's block.
750     BasicBlock *QueryBB = QueryCall->getParent();
751     append_range(DirtyBlocks, PredCache.get(QueryBB));
752     ++NumUncacheNonLocal;
753   }
754 
755   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
756   bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
757 
758   SmallPtrSet<BasicBlock *, 32> Visited;
759 
760   unsigned NumSortedEntries = Cache.size();
761   LLVM_DEBUG(AssertSorted(Cache));
762 
763   // Iterate while we still have blocks to update.
764   while (!DirtyBlocks.empty()) {
765     BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
766 
767     // Already processed this block?
768     if (!Visited.insert(DirtyBB).second)
769       continue;
770 
771     // Do a binary search to see if we already have an entry for this block in
772     // the cache set.  If so, find it.
773     LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
774     NonLocalDepInfo::iterator Entry =
775         std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
776                          NonLocalDepEntry(DirtyBB));
777     if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
778       --Entry;
779 
780     NonLocalDepEntry *ExistingResult = nullptr;
781     if (Entry != Cache.begin() + NumSortedEntries &&
782         Entry->getBB() == DirtyBB) {
783       // If we already have an entry, and if it isn't already dirty, the block
784       // is done.
785       if (!Entry->getResult().isDirty())
786         continue;
787 
788       // Otherwise, remember this slot so we can update the value.
789       ExistingResult = &*Entry;
790     }
791 
792     // If the dirty entry has a pointer, start scanning from it so we don't have
793     // to rescan the entire block.
794     BasicBlock::iterator ScanPos = DirtyBB->end();
795     if (ExistingResult) {
796       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
797         ScanPos = Inst->getIterator();
798         // We're removing QueryInst's use of Inst.
799         RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
800                                             QueryCall);
801       }
802     }
803 
804     // Find out if this block has a local dependency for QueryInst.
805     MemDepResult Dep;
806 
807     if (ScanPos != DirtyBB->begin()) {
808       Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
809     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
810       // No dependence found.  If this is the entry block of the function, it is
811       // a clobber, otherwise it is unknown.
812       Dep = MemDepResult::getNonLocal();
813     } else {
814       Dep = MemDepResult::getNonFuncLocal();
815     }
816 
817     // If we had a dirty entry for the block, update it.  Otherwise, just add
818     // a new entry.
819     if (ExistingResult)
820       ExistingResult->setResult(Dep);
821     else
822       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
823 
824     // If the block has a dependency (i.e. it isn't completely transparent to
825     // the value), remember the association!
826     if (!Dep.isNonLocal()) {
827       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
828       // update this when we remove instructions.
829       if (Instruction *Inst = Dep.getInst())
830         ReverseNonLocalDeps[Inst].insert(QueryCall);
831     } else {
832 
833       // If the block *is* completely transparent to the load, we need to check
834       // the predecessors of this block.  Add them to our worklist.
835       append_range(DirtyBlocks, PredCache.get(DirtyBB));
836     }
837   }
838 
839   return Cache;
840 }
841 
842 void MemoryDependenceResults::getNonLocalPointerDependency(
843     Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
844   const MemoryLocation Loc = MemoryLocation::get(QueryInst);
845   bool isLoad = isa<LoadInst>(QueryInst);
846   BasicBlock *FromBB = QueryInst->getParent();
847   assert(FromBB);
848 
849   assert(Loc.Ptr->getType()->isPointerTy() &&
850          "Can't get pointer deps of a non-pointer!");
851   Result.clear();
852   {
853     // Check if there is cached Def with invariant.group.
854     auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
855     if (NonLocalDefIt != NonLocalDefsCache.end()) {
856       Result.push_back(NonLocalDefIt->second);
857       ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
858           .erase(QueryInst);
859       NonLocalDefsCache.erase(NonLocalDefIt);
860       return;
861     }
862   }
863   // This routine does not expect to deal with volatile instructions.
864   // Doing so would require piping through the QueryInst all the way through.
865   // TODO: volatiles can't be elided, but they can be reordered with other
866   // non-volatile accesses.
867 
868   // We currently give up on any instruction which is ordered, but we do handle
869   // atomic instructions which are unordered.
870   // TODO: Handle ordered instructions
871   auto isOrdered = [](Instruction *Inst) {
872     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
873       return !LI->isUnordered();
874     } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
875       return !SI->isUnordered();
876     }
877     return false;
878   };
879   if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
880     Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
881                                        const_cast<Value *>(Loc.Ptr)));
882     return;
883   }
884   const DataLayout &DL = FromBB->getModule()->getDataLayout();
885   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
886 
887   // This is the set of blocks we've inspected, and the pointer we consider in
888   // each block.  Because of critical edges, we currently bail out if querying
889   // a block with multiple different pointers.  This can happen during PHI
890   // translation.
891   DenseMap<BasicBlock *, Value *> Visited;
892   if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
893                                    Result, Visited, true))
894     return;
895   Result.clear();
896   Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
897                                      const_cast<Value *>(Loc.Ptr)));
898 }
899 
900 /// Compute the memdep value for BB with Pointer/PointeeSize using either
901 /// cached information in Cache or by doing a lookup (which may use dirty cache
902 /// info if available).
903 ///
904 /// If we do a lookup, add the result to the cache.
905 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
906     Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
907     BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
908     BatchAAResults &BatchAA) {
909 
910   bool isInvariantLoad = false;
911 
912   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
913     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
914 
915   // Do a binary search to see if we already have an entry for this block in
916   // the cache set.  If so, find it.
917   NonLocalDepInfo::iterator Entry = std::upper_bound(
918       Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
919   if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
920     --Entry;
921 
922   NonLocalDepEntry *ExistingResult = nullptr;
923   if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
924     ExistingResult = &*Entry;
925 
926   // Use cached result for invariant load only if there is no dependency for non
927   // invariant load. In this case invariant load can not have any dependency as
928   // well.
929   if (ExistingResult && isInvariantLoad &&
930       !ExistingResult->getResult().isNonFuncLocal())
931     ExistingResult = nullptr;
932 
933   // If we have a cached entry, and it is non-dirty, use it as the value for
934   // this dependency.
935   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
936     ++NumCacheNonLocalPtr;
937     return ExistingResult->getResult();
938   }
939 
940   // Otherwise, we have to scan for the value.  If we have a dirty cache
941   // entry, start scanning from its position, otherwise we scan from the end
942   // of the block.
943   BasicBlock::iterator ScanPos = BB->end();
944   if (ExistingResult && ExistingResult->getResult().getInst()) {
945     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
946            "Instruction invalidated?");
947     ++NumCacheDirtyNonLocalPtr;
948     ScanPos = ExistingResult->getResult().getInst()->getIterator();
949 
950     // Eliminating the dirty entry from 'Cache', so update the reverse info.
951     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
952     RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
953   } else {
954     ++NumUncacheNonLocalPtr;
955   }
956 
957   // Scan the block for the dependency.
958   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
959                                               QueryInst, nullptr, BatchAA);
960 
961   // Don't cache results for invariant load.
962   if (isInvariantLoad)
963     return Dep;
964 
965   // If we had a dirty entry for the block, update it.  Otherwise, just add
966   // a new entry.
967   if (ExistingResult)
968     ExistingResult->setResult(Dep);
969   else
970     Cache->push_back(NonLocalDepEntry(BB, Dep));
971 
972   // If the block has a dependency (i.e. it isn't completely transparent to
973   // the value), remember the reverse association because we just added it
974   // to Cache!
975   if (!Dep.isDef() && !Dep.isClobber())
976     return Dep;
977 
978   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
979   // update MemDep when we remove instructions.
980   Instruction *Inst = Dep.getInst();
981   assert(Inst && "Didn't depend on anything?");
982   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
983   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
984   return Dep;
985 }
986 
987 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
988 /// array that are already properly ordered.
989 ///
990 /// This is optimized for the case when only a few entries are added.
991 static void
992 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
993                          unsigned NumSortedEntries) {
994   switch (Cache.size() - NumSortedEntries) {
995   case 0:
996     // done, no new entries.
997     break;
998   case 2: {
999     // Two new entries, insert the last one into place.
1000     NonLocalDepEntry Val = Cache.back();
1001     Cache.pop_back();
1002     MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1003         std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1004     Cache.insert(Entry, Val);
1005     LLVM_FALLTHROUGH;
1006   }
1007   case 1:
1008     // One new entry, Just insert the new value at the appropriate position.
1009     if (Cache.size() != 1) {
1010       NonLocalDepEntry Val = Cache.back();
1011       Cache.pop_back();
1012       MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1013           llvm::upper_bound(Cache, Val);
1014       Cache.insert(Entry, Val);
1015     }
1016     break;
1017   default:
1018     // Added many values, do a full scale sort.
1019     llvm::sort(Cache);
1020     break;
1021   }
1022 }
1023 
1024 /// Perform a dependency query based on pointer/pointeesize starting at the end
1025 /// of StartBB.
1026 ///
1027 /// Add any clobber/def results to the results vector and keep track of which
1028 /// blocks are visited in 'Visited'.
1029 ///
1030 /// This has special behavior for the first block queries (when SkipFirstBlock
1031 /// is true).  In this special case, it ignores the contents of the specified
1032 /// block and starts returning dependence info for its predecessors.
1033 ///
1034 /// This function returns true on success, or false to indicate that it could
1035 /// not compute dependence information for some reason.  This should be treated
1036 /// as a clobber dependence on the first instruction in the predecessor block.
1037 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1038     Instruction *QueryInst, const PHITransAddr &Pointer,
1039     const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1040     SmallVectorImpl<NonLocalDepResult> &Result,
1041     DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1042     bool IsIncomplete) {
1043   // Look up the cached info for Pointer.
1044   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1045 
1046   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1047   // CacheKey, this value will be inserted as the associated value. Otherwise,
1048   // it'll be ignored, and we'll have to check to see if the cached size and
1049   // aa tags are consistent with the current query.
1050   NonLocalPointerInfo InitialNLPI;
1051   InitialNLPI.Size = Loc.Size;
1052   InitialNLPI.AATags = Loc.AATags;
1053 
1054   bool isInvariantLoad = false;
1055   if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1056     isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1057 
1058   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1059   // already have one.
1060   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1061       NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1062   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1063 
1064   // If we already have a cache entry for this CacheKey, we may need to do some
1065   // work to reconcile the cache entry and the current query.
1066   // Invariant loads don't participate in caching. Thus no need to reconcile.
1067   if (!isInvariantLoad && !Pair.second) {
1068     if (CacheInfo->Size != Loc.Size) {
1069       bool ThrowOutEverything;
1070       if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1071         // FIXME: We may be able to do better in the face of results with mixed
1072         // precision. We don't appear to get them in practice, though, so just
1073         // be conservative.
1074         ThrowOutEverything =
1075             CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1076             CacheInfo->Size.getValue() < Loc.Size.getValue();
1077       } else {
1078         // For our purposes, unknown size > all others.
1079         ThrowOutEverything = !Loc.Size.hasValue();
1080       }
1081 
1082       if (ThrowOutEverything) {
1083         // The query's Size is greater than the cached one. Throw out the
1084         // cached data and proceed with the query at the greater size.
1085         CacheInfo->Pair = BBSkipFirstBlockPair();
1086         CacheInfo->Size = Loc.Size;
1087         for (auto &Entry : CacheInfo->NonLocalDeps)
1088           if (Instruction *Inst = Entry.getResult().getInst())
1089             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1090         CacheInfo->NonLocalDeps.clear();
1091         // The cache is cleared (in the above line) so we will have lost
1092         // information about blocks we have already visited. We therefore must
1093         // assume that the cache information is incomplete.
1094         IsIncomplete = true;
1095       } else {
1096         // This query's Size is less than the cached one. Conservatively restart
1097         // the query using the greater size.
1098         return getNonLocalPointerDepFromBB(
1099             QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1100             StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1101       }
1102     }
1103 
1104     // If the query's AATags are inconsistent with the cached one,
1105     // conservatively throw out the cached data and restart the query with
1106     // no tag if needed.
1107     if (CacheInfo->AATags != Loc.AATags) {
1108       if (CacheInfo->AATags) {
1109         CacheInfo->Pair = BBSkipFirstBlockPair();
1110         CacheInfo->AATags = AAMDNodes();
1111         for (auto &Entry : CacheInfo->NonLocalDeps)
1112           if (Instruction *Inst = Entry.getResult().getInst())
1113             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1114         CacheInfo->NonLocalDeps.clear();
1115         // The cache is cleared (in the above line) so we will have lost
1116         // information about blocks we have already visited. We therefore must
1117         // assume that the cache information is incomplete.
1118         IsIncomplete = true;
1119       }
1120       if (Loc.AATags)
1121         return getNonLocalPointerDepFromBB(
1122             QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1123             Visited, SkipFirstBlock, IsIncomplete);
1124     }
1125   }
1126 
1127   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1128 
1129   // If we have valid cached information for exactly the block we are
1130   // investigating, just return it with no recomputation.
1131   // Don't use cached information for invariant loads since it is valid for
1132   // non-invariant loads only.
1133   if (!IsIncomplete && !isInvariantLoad &&
1134       CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1135     // We have a fully cached result for this query then we can just return the
1136     // cached results and populate the visited set.  However, we have to verify
1137     // that we don't already have conflicting results for these blocks.  Check
1138     // to ensure that if a block in the results set is in the visited set that
1139     // it was for the same pointer query.
1140     if (!Visited.empty()) {
1141       for (auto &Entry : *Cache) {
1142         DenseMap<BasicBlock *, Value *>::iterator VI =
1143             Visited.find(Entry.getBB());
1144         if (VI == Visited.end() || VI->second == Pointer.getAddr())
1145           continue;
1146 
1147         // We have a pointer mismatch in a block.  Just return false, saying
1148         // that something was clobbered in this result.  We could also do a
1149         // non-fully cached query, but there is little point in doing this.
1150         return false;
1151       }
1152     }
1153 
1154     Value *Addr = Pointer.getAddr();
1155     for (auto &Entry : *Cache) {
1156       Visited.insert(std::make_pair(Entry.getBB(), Addr));
1157       if (Entry.getResult().isNonLocal()) {
1158         continue;
1159       }
1160 
1161       if (DT.isReachableFromEntry(Entry.getBB())) {
1162         Result.push_back(
1163             NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1164       }
1165     }
1166     ++NumCacheCompleteNonLocalPtr;
1167     return true;
1168   }
1169 
1170   // Otherwise, either this is a new block, a block with an invalid cache
1171   // pointer or one that we're about to invalidate by putting more info into
1172   // it than its valid cache info.  If empty and not explicitly indicated as
1173   // incomplete, the result will be valid cache info, otherwise it isn't.
1174   //
1175   // Invariant loads don't affect cache in any way thus no need to update
1176   // CacheInfo as well.
1177   if (!isInvariantLoad) {
1178     if (!IsIncomplete && Cache->empty())
1179       CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1180     else
1181       CacheInfo->Pair = BBSkipFirstBlockPair();
1182   }
1183 
1184   SmallVector<BasicBlock *, 32> Worklist;
1185   Worklist.push_back(StartBB);
1186 
1187   // PredList used inside loop.
1188   SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1189 
1190   // Keep track of the entries that we know are sorted.  Previously cached
1191   // entries will all be sorted.  The entries we add we only sort on demand (we
1192   // don't insert every element into its sorted position).  We know that we
1193   // won't get any reuse from currently inserted values, because we don't
1194   // revisit blocks after we insert info for them.
1195   unsigned NumSortedEntries = Cache->size();
1196   unsigned WorklistEntries = BlockNumberLimit;
1197   bool GotWorklistLimit = false;
1198   LLVM_DEBUG(AssertSorted(*Cache));
1199 
1200   BatchAAResults BatchAA(AA);
1201   while (!Worklist.empty()) {
1202     BasicBlock *BB = Worklist.pop_back_val();
1203 
1204     // If we do process a large number of blocks it becomes very expensive and
1205     // likely it isn't worth worrying about
1206     if (Result.size() > NumResultsLimit) {
1207       Worklist.clear();
1208       // Sort it now (if needed) so that recursive invocations of
1209       // getNonLocalPointerDepFromBB and other routines that could reuse the
1210       // cache value will only see properly sorted cache arrays.
1211       if (Cache && NumSortedEntries != Cache->size()) {
1212         SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1213       }
1214       // Since we bail out, the "Cache" set won't contain all of the
1215       // results for the query.  This is ok (we can still use it to accelerate
1216       // specific block queries) but we can't do the fastpath "return all
1217       // results from the set".  Clear out the indicator for this.
1218       CacheInfo->Pair = BBSkipFirstBlockPair();
1219       return false;
1220     }
1221 
1222     // Skip the first block if we have it.
1223     if (!SkipFirstBlock) {
1224       // Analyze the dependency of *Pointer in FromBB.  See if we already have
1225       // been here.
1226       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1227 
1228       // Get the dependency info for Pointer in BB.  If we have cached
1229       // information, we will use it, otherwise we compute it.
1230       LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1231       MemDepResult Dep = getNonLocalInfoForBlock(
1232           QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1233 
1234       // If we got a Def or Clobber, add this to the list of results.
1235       if (!Dep.isNonLocal()) {
1236         if (DT.isReachableFromEntry(BB)) {
1237           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1238           continue;
1239         }
1240       }
1241     }
1242 
1243     // If 'Pointer' is an instruction defined in this block, then we need to do
1244     // phi translation to change it into a value live in the predecessor block.
1245     // If not, we just add the predecessors to the worklist and scan them with
1246     // the same Pointer.
1247     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1248       SkipFirstBlock = false;
1249       SmallVector<BasicBlock *, 16> NewBlocks;
1250       for (BasicBlock *Pred : PredCache.get(BB)) {
1251         // Verify that we haven't looked at this block yet.
1252         std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1253             Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1254         if (InsertRes.second) {
1255           // First time we've looked at *PI.
1256           NewBlocks.push_back(Pred);
1257           continue;
1258         }
1259 
1260         // If we have seen this block before, but it was with a different
1261         // pointer then we have a phi translation failure and we have to treat
1262         // this as a clobber.
1263         if (InsertRes.first->second != Pointer.getAddr()) {
1264           // Make sure to clean up the Visited map before continuing on to
1265           // PredTranslationFailure.
1266           for (unsigned i = 0; i < NewBlocks.size(); i++)
1267             Visited.erase(NewBlocks[i]);
1268           goto PredTranslationFailure;
1269         }
1270       }
1271       if (NewBlocks.size() > WorklistEntries) {
1272         // Make sure to clean up the Visited map before continuing on to
1273         // PredTranslationFailure.
1274         for (unsigned i = 0; i < NewBlocks.size(); i++)
1275           Visited.erase(NewBlocks[i]);
1276         GotWorklistLimit = true;
1277         goto PredTranslationFailure;
1278       }
1279       WorklistEntries -= NewBlocks.size();
1280       Worklist.append(NewBlocks.begin(), NewBlocks.end());
1281       continue;
1282     }
1283 
1284     // We do need to do phi translation, if we know ahead of time we can't phi
1285     // translate this value, don't even try.
1286     if (!Pointer.IsPotentiallyPHITranslatable())
1287       goto PredTranslationFailure;
1288 
1289     // We may have added values to the cache list before this PHI translation.
1290     // If so, we haven't done anything to ensure that the cache remains sorted.
1291     // Sort it now (if needed) so that recursive invocations of
1292     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1293     // value will only see properly sorted cache arrays.
1294     if (Cache && NumSortedEntries != Cache->size()) {
1295       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1296       NumSortedEntries = Cache->size();
1297     }
1298     Cache = nullptr;
1299 
1300     PredList.clear();
1301     for (BasicBlock *Pred : PredCache.get(BB)) {
1302       PredList.push_back(std::make_pair(Pred, Pointer));
1303 
1304       // Get the PHI translated pointer in this predecessor.  This can fail if
1305       // not translatable, in which case the getAddr() returns null.
1306       PHITransAddr &PredPointer = PredList.back().second;
1307       PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1308       Value *PredPtrVal = PredPointer.getAddr();
1309 
1310       // Check to see if we have already visited this pred block with another
1311       // pointer.  If so, we can't do this lookup.  This failure can occur
1312       // with PHI translation when a critical edge exists and the PHI node in
1313       // the successor translates to a pointer value different than the
1314       // pointer the block was first analyzed with.
1315       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1316           Visited.insert(std::make_pair(Pred, PredPtrVal));
1317 
1318       if (!InsertRes.second) {
1319         // We found the pred; take it off the list of preds to visit.
1320         PredList.pop_back();
1321 
1322         // If the predecessor was visited with PredPtr, then we already did
1323         // the analysis and can ignore it.
1324         if (InsertRes.first->second == PredPtrVal)
1325           continue;
1326 
1327         // Otherwise, the block was previously analyzed with a different
1328         // pointer.  We can't represent the result of this case, so we just
1329         // treat this as a phi translation failure.
1330 
1331         // Make sure to clean up the Visited map before continuing on to
1332         // PredTranslationFailure.
1333         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1334           Visited.erase(PredList[i].first);
1335 
1336         goto PredTranslationFailure;
1337       }
1338     }
1339 
1340     // Actually process results here; this need to be a separate loop to avoid
1341     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1342     // any results for.  (getNonLocalPointerDepFromBB will modify our
1343     // datastructures in ways the code after the PredTranslationFailure label
1344     // doesn't expect.)
1345     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1346       BasicBlock *Pred = PredList[i].first;
1347       PHITransAddr &PredPointer = PredList[i].second;
1348       Value *PredPtrVal = PredPointer.getAddr();
1349 
1350       bool CanTranslate = true;
1351       // If PHI translation was unable to find an available pointer in this
1352       // predecessor, then we have to assume that the pointer is clobbered in
1353       // that predecessor.  We can still do PRE of the load, which would insert
1354       // a computation of the pointer in this predecessor.
1355       if (!PredPtrVal)
1356         CanTranslate = false;
1357 
1358       // FIXME: it is entirely possible that PHI translating will end up with
1359       // the same value.  Consider PHI translating something like:
1360       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1361       // to recurse here, pedantically speaking.
1362 
1363       // If getNonLocalPointerDepFromBB fails here, that means the cached
1364       // result conflicted with the Visited list; we have to conservatively
1365       // assume it is unknown, but this also does not block PRE of the load.
1366       if (!CanTranslate ||
1367           !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1368                                       Loc.getWithNewPtr(PredPtrVal), isLoad,
1369                                       Pred, Result, Visited)) {
1370         // Add the entry to the Result list.
1371         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1372         Result.push_back(Entry);
1373 
1374         // Since we had a phi translation failure, the cache for CacheKey won't
1375         // include all of the entries that we need to immediately satisfy future
1376         // queries.  Mark this in NonLocalPointerDeps by setting the
1377         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1378         // cached value to do more work but not miss the phi trans failure.
1379         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1380         NLPI.Pair = BBSkipFirstBlockPair();
1381         continue;
1382       }
1383     }
1384 
1385     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1386     CacheInfo = &NonLocalPointerDeps[CacheKey];
1387     Cache = &CacheInfo->NonLocalDeps;
1388     NumSortedEntries = Cache->size();
1389 
1390     // Since we did phi translation, the "Cache" set won't contain all of the
1391     // results for the query.  This is ok (we can still use it to accelerate
1392     // specific block queries) but we can't do the fastpath "return all
1393     // results from the set"  Clear out the indicator for this.
1394     CacheInfo->Pair = BBSkipFirstBlockPair();
1395     SkipFirstBlock = false;
1396     continue;
1397 
1398   PredTranslationFailure:
1399     // The following code is "failure"; we can't produce a sane translation
1400     // for the given block.  It assumes that we haven't modified any of
1401     // our datastructures while processing the current block.
1402 
1403     if (!Cache) {
1404       // Refresh the CacheInfo/Cache pointer if it got invalidated.
1405       CacheInfo = &NonLocalPointerDeps[CacheKey];
1406       Cache = &CacheInfo->NonLocalDeps;
1407       NumSortedEntries = Cache->size();
1408     }
1409 
1410     // Since we failed phi translation, the "Cache" set won't contain all of the
1411     // results for the query.  This is ok (we can still use it to accelerate
1412     // specific block queries) but we can't do the fastpath "return all
1413     // results from the set".  Clear out the indicator for this.
1414     CacheInfo->Pair = BBSkipFirstBlockPair();
1415 
1416     // If *nothing* works, mark the pointer as unknown.
1417     //
1418     // If this is the magic first block, return this as a clobber of the whole
1419     // incoming value.  Since we can't phi translate to one of the predecessors,
1420     // we have to bail out.
1421     if (SkipFirstBlock)
1422       return false;
1423 
1424     // Results of invariant loads are not cached thus no need to update cached
1425     // information.
1426     if (!isInvariantLoad) {
1427       for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1428         if (I.getBB() != BB)
1429           continue;
1430 
1431         assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1432                 !DT.isReachableFromEntry(BB)) &&
1433                "Should only be here with transparent block");
1434 
1435         I.setResult(MemDepResult::getUnknown());
1436 
1437 
1438         break;
1439       }
1440     }
1441     (void)GotWorklistLimit;
1442     // Go ahead and report unknown dependence.
1443     Result.push_back(
1444         NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1445   }
1446 
1447   // Okay, we're done now.  If we added new values to the cache, re-sort it.
1448   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1449   LLVM_DEBUG(AssertSorted(*Cache));
1450   return true;
1451 }
1452 
1453 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1454 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1455     ValueIsLoadPair P) {
1456 
1457   // Most of the time this cache is empty.
1458   if (!NonLocalDefsCache.empty()) {
1459     auto it = NonLocalDefsCache.find(P.getPointer());
1460     if (it != NonLocalDefsCache.end()) {
1461       RemoveFromReverseMap(ReverseNonLocalDefsCache,
1462                            it->second.getResult().getInst(), P.getPointer());
1463       NonLocalDefsCache.erase(it);
1464     }
1465 
1466     if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1467       auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1468       if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1469         for (const auto *entry : toRemoveIt->second)
1470           NonLocalDefsCache.erase(entry);
1471         ReverseNonLocalDefsCache.erase(toRemoveIt);
1472       }
1473     }
1474   }
1475 
1476   CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1477   if (It == NonLocalPointerDeps.end())
1478     return;
1479 
1480   // Remove all of the entries in the BB->val map.  This involves removing
1481   // instructions from the reverse map.
1482   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1483 
1484   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1485     Instruction *Target = PInfo[i].getResult().getInst();
1486     if (!Target)
1487       continue; // Ignore non-local dep results.
1488     assert(Target->getParent() == PInfo[i].getBB());
1489 
1490     // Eliminating the dirty entry from 'Cache', so update the reverse info.
1491     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1492   }
1493 
1494   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1495   NonLocalPointerDeps.erase(It);
1496 }
1497 
1498 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1499   // If Ptr isn't really a pointer, just ignore it.
1500   if (!Ptr->getType()->isPointerTy())
1501     return;
1502   // Flush store info for the pointer.
1503   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1504   // Flush load info for the pointer.
1505   removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1506   // Invalidate phis that use the pointer.
1507   PV.invalidateValue(Ptr);
1508 }
1509 
1510 void MemoryDependenceResults::invalidateCachedPredecessors() {
1511   PredCache.clear();
1512 }
1513 
1514 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1515   // Walk through the Non-local dependencies, removing this one as the value
1516   // for any cached queries.
1517   NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1518   if (NLDI != NonLocalDepsMap.end()) {
1519     NonLocalDepInfo &BlockMap = NLDI->second.first;
1520     for (auto &Entry : BlockMap)
1521       if (Instruction *Inst = Entry.getResult().getInst())
1522         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1523     NonLocalDepsMap.erase(NLDI);
1524   }
1525 
1526   // If we have a cached local dependence query for this instruction, remove it.
1527   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1528   if (LocalDepEntry != LocalDeps.end()) {
1529     // Remove us from DepInst's reverse set now that the local dep info is gone.
1530     if (Instruction *Inst = LocalDepEntry->second.getInst())
1531       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1532 
1533     // Remove this local dependency info.
1534     LocalDeps.erase(LocalDepEntry);
1535   }
1536 
1537   // If we have any cached dependencies on this instruction, remove
1538   // them.
1539 
1540   // If the instruction is a pointer, remove it from both the load info and the
1541   // store info.
1542   if (RemInst->getType()->isPointerTy()) {
1543     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1544     removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1545   } else {
1546     // Otherwise, if the instructions is in the map directly, it must be a load.
1547     // Remove it.
1548     auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1549     if (toRemoveIt != NonLocalDefsCache.end()) {
1550       assert(isa<LoadInst>(RemInst) &&
1551              "only load instructions should be added directly");
1552       const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1553       ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1554       NonLocalDefsCache.erase(toRemoveIt);
1555     }
1556   }
1557 
1558   // Loop over all of the things that depend on the instruction we're removing.
1559   SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1560 
1561   // If we find RemInst as a clobber or Def in any of the maps for other values,
1562   // we need to replace its entry with a dirty version of the instruction after
1563   // it.  If RemInst is a terminator, we use a null dirty value.
1564   //
1565   // Using a dirty version of the instruction after RemInst saves having to scan
1566   // the entire block to get to this point.
1567   MemDepResult NewDirtyVal;
1568   if (!RemInst->isTerminator())
1569     NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1570 
1571   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1572   if (ReverseDepIt != ReverseLocalDeps.end()) {
1573     // RemInst can't be the terminator if it has local stuff depending on it.
1574     assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1575            "Nothing can locally depend on a terminator");
1576 
1577     for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1578       assert(InstDependingOnRemInst != RemInst &&
1579              "Already removed our local dep info");
1580 
1581       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1582 
1583       // Make sure to remember that new things depend on NewDepInst.
1584       assert(NewDirtyVal.getInst() &&
1585              "There is no way something else can have "
1586              "a local dep on this if it is a terminator!");
1587       ReverseDepsToAdd.push_back(
1588           std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1589     }
1590 
1591     ReverseLocalDeps.erase(ReverseDepIt);
1592 
1593     // Add new reverse deps after scanning the set, to avoid invalidating the
1594     // 'ReverseDeps' reference.
1595     while (!ReverseDepsToAdd.empty()) {
1596       ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1597           ReverseDepsToAdd.back().second);
1598       ReverseDepsToAdd.pop_back();
1599     }
1600   }
1601 
1602   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1603   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1604     for (Instruction *I : ReverseDepIt->second) {
1605       assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1606 
1607       PerInstNLInfo &INLD = NonLocalDepsMap[I];
1608       // The information is now dirty!
1609       INLD.second = true;
1610 
1611       for (auto &Entry : INLD.first) {
1612         if (Entry.getResult().getInst() != RemInst)
1613           continue;
1614 
1615         // Convert to a dirty entry for the subsequent instruction.
1616         Entry.setResult(NewDirtyVal);
1617 
1618         if (Instruction *NextI = NewDirtyVal.getInst())
1619           ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1620       }
1621     }
1622 
1623     ReverseNonLocalDeps.erase(ReverseDepIt);
1624 
1625     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1626     while (!ReverseDepsToAdd.empty()) {
1627       ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1628           ReverseDepsToAdd.back().second);
1629       ReverseDepsToAdd.pop_back();
1630     }
1631   }
1632 
1633   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1634   // value in the NonLocalPointerDeps info.
1635   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1636       ReverseNonLocalPtrDeps.find(RemInst);
1637   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1638     SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1639         ReversePtrDepsToAdd;
1640 
1641     for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1642       assert(P.getPointer() != RemInst &&
1643              "Already removed NonLocalPointerDeps info for RemInst");
1644 
1645       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1646 
1647       // The cache is not valid for any specific block anymore.
1648       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1649 
1650       // Update any entries for RemInst to use the instruction after it.
1651       for (auto &Entry : NLPDI) {
1652         if (Entry.getResult().getInst() != RemInst)
1653           continue;
1654 
1655         // Convert to a dirty entry for the subsequent instruction.
1656         Entry.setResult(NewDirtyVal);
1657 
1658         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1659           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1660       }
1661 
1662       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1663       // subsequent value may invalidate the sortedness.
1664       llvm::sort(NLPDI);
1665     }
1666 
1667     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1668 
1669     while (!ReversePtrDepsToAdd.empty()) {
1670       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1671           ReversePtrDepsToAdd.back().second);
1672       ReversePtrDepsToAdd.pop_back();
1673     }
1674   }
1675 
1676   // Invalidate phis that use the removed instruction.
1677   PV.invalidateValue(RemInst);
1678 
1679   assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1680   LLVM_DEBUG(verifyRemoved(RemInst));
1681 }
1682 
1683 /// Verify that the specified instruction does not occur in our internal data
1684 /// structures.
1685 ///
1686 /// This function verifies by asserting in debug builds.
1687 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1688 #ifndef NDEBUG
1689   for (const auto &DepKV : LocalDeps) {
1690     assert(DepKV.first != D && "Inst occurs in data structures");
1691     assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1692   }
1693 
1694   for (const auto &DepKV : NonLocalPointerDeps) {
1695     assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1696     for (const auto &Entry : DepKV.second.NonLocalDeps)
1697       assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1698   }
1699 
1700   for (const auto &DepKV : NonLocalDepsMap) {
1701     assert(DepKV.first != D && "Inst occurs in data structures");
1702     const PerInstNLInfo &INLD = DepKV.second;
1703     for (const auto &Entry : INLD.first)
1704       assert(Entry.getResult().getInst() != D &&
1705              "Inst occurs in data structures");
1706   }
1707 
1708   for (const auto &DepKV : ReverseLocalDeps) {
1709     assert(DepKV.first != D && "Inst occurs in data structures");
1710     for (Instruction *Inst : DepKV.second)
1711       assert(Inst != D && "Inst occurs in data structures");
1712   }
1713 
1714   for (const auto &DepKV : ReverseNonLocalDeps) {
1715     assert(DepKV.first != D && "Inst occurs in data structures");
1716     for (Instruction *Inst : DepKV.second)
1717       assert(Inst != D && "Inst occurs in data structures");
1718   }
1719 
1720   for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1721     assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1722 
1723     for (ValueIsLoadPair P : DepKV.second)
1724       assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1725              "Inst occurs in ReverseNonLocalPtrDeps map");
1726   }
1727 #endif
1728 }
1729 
1730 AnalysisKey MemoryDependenceAnalysis::Key;
1731 
1732 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1733     : DefaultBlockScanLimit(BlockScanLimit) {}
1734 
1735 MemoryDependenceResults
1736 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1737   auto &AA = AM.getResult<AAManager>(F);
1738   auto &AC = AM.getResult<AssumptionAnalysis>(F);
1739   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1740   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1741   auto &PV = AM.getResult<PhiValuesAnalysis>(F);
1742   return MemoryDependenceResults(AA, AC, TLI, DT, PV, DefaultBlockScanLimit);
1743 }
1744 
1745 char MemoryDependenceWrapperPass::ID = 0;
1746 
1747 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1748                       "Memory Dependence Analysis", false, true)
1749 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1750 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1751 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1752 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1753 INITIALIZE_PASS_DEPENDENCY(PhiValuesWrapperPass)
1754 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1755                     "Memory Dependence Analysis", false, true)
1756 
1757 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1758   initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1759 }
1760 
1761 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1762 
1763 void MemoryDependenceWrapperPass::releaseMemory() {
1764   MemDep.reset();
1765 }
1766 
1767 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1768   AU.setPreservesAll();
1769   AU.addRequired<AssumptionCacheTracker>();
1770   AU.addRequired<DominatorTreeWrapperPass>();
1771   AU.addRequired<PhiValuesWrapperPass>();
1772   AU.addRequiredTransitive<AAResultsWrapperPass>();
1773   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1774 }
1775 
1776 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1777                                FunctionAnalysisManager::Invalidator &Inv) {
1778   // Check whether our analysis is preserved.
1779   auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1780   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1781     // If not, give up now.
1782     return true;
1783 
1784   // Check whether the analyses we depend on became invalid for any reason.
1785   if (Inv.invalidate<AAManager>(F, PA) ||
1786       Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1787       Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
1788       Inv.invalidate<PhiValuesAnalysis>(F, PA))
1789     return true;
1790 
1791   // Otherwise this analysis result remains valid.
1792   return false;
1793 }
1794 
1795 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1796   return DefaultBlockScanLimit;
1797 }
1798 
1799 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1800   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1801   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1802   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1803   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1804   auto &PV = getAnalysis<PhiValuesWrapperPass>().getResult();
1805   MemDep.emplace(AA, AC, TLI, DT, PV, BlockScanLimit);
1806   return false;
1807 }
1808