1 //===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSA class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/MemorySSA.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseMapInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFGPrinter.h"
29 #include "llvm/Analysis/IteratedDominanceFrontier.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/AssemblyAnnotationWriter.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/PassManager.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/AtomicOrdering.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdlib>
56 #include <iterator>
57 #include <memory>
58 #include <utility>
59 
60 using namespace llvm;
61 
62 #define DEBUG_TYPE "memoryssa"
63 
64 static cl::opt<std::string>
65     DotCFGMSSA("dot-cfg-mssa",
66                cl::value_desc("file name for generated dot file"),
67                cl::desc("file name for generated dot file"), cl::init(""));
68 
69 INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
70                       true)
71 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
72 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
73 INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
74                     true)
75 
76 INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
77                       "Memory SSA Printer", false, false)
78 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
79 INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
80                     "Memory SSA Printer", false, false)
81 
82 static cl::opt<unsigned> MaxCheckLimit(
83     "memssa-check-limit", cl::Hidden, cl::init(100),
84     cl::desc("The maximum number of stores/phis MemorySSA"
85              "will consider trying to walk past (default = 100)"));
86 
87 // Always verify MemorySSA if expensive checking is enabled.
88 #ifdef EXPENSIVE_CHECKS
89 bool llvm::VerifyMemorySSA = true;
90 #else
91 bool llvm::VerifyMemorySSA = false;
92 #endif
93 /// Enables memory ssa as a dependency for loop passes in legacy pass manager.
94 cl::opt<bool> llvm::EnableMSSALoopDependency(
95     "enable-mssa-loop-dependency", cl::Hidden, cl::init(true),
96     cl::desc("Enable MemorySSA dependency for loop pass manager"));
97 
98 static cl::opt<bool, true>
99     VerifyMemorySSAX("verify-memoryssa", cl::location(VerifyMemorySSA),
100                      cl::Hidden, cl::desc("Enable verification of MemorySSA."));
101 
102 namespace llvm {
103 
104 /// An assembly annotator class to print Memory SSA information in
105 /// comments.
106 class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
107   friend class MemorySSA;
108 
109   const MemorySSA *MSSA;
110 
111 public:
112   MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
113 
114   void emitBasicBlockStartAnnot(const BasicBlock *BB,
115                                 formatted_raw_ostream &OS) override {
116     if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
117       OS << "; " << *MA << "\n";
118   }
119 
120   void emitInstructionAnnot(const Instruction *I,
121                             formatted_raw_ostream &OS) override {
122     if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
123       OS << "; " << *MA << "\n";
124   }
125 };
126 
127 } // end namespace llvm
128 
129 namespace {
130 
131 /// Our current alias analysis API differentiates heavily between calls and
132 /// non-calls, and functions called on one usually assert on the other.
133 /// This class encapsulates the distinction to simplify other code that wants
134 /// "Memory affecting instructions and related data" to use as a key.
135 /// For example, this class is used as a densemap key in the use optimizer.
136 class MemoryLocOrCall {
137 public:
138   bool IsCall = false;
139 
140   MemoryLocOrCall(MemoryUseOrDef *MUD)
141       : MemoryLocOrCall(MUD->getMemoryInst()) {}
142   MemoryLocOrCall(const MemoryUseOrDef *MUD)
143       : MemoryLocOrCall(MUD->getMemoryInst()) {}
144 
145   MemoryLocOrCall(Instruction *Inst) {
146     if (auto *C = dyn_cast<CallBase>(Inst)) {
147       IsCall = true;
148       Call = C;
149     } else {
150       IsCall = false;
151       // There is no such thing as a memorylocation for a fence inst, and it is
152       // unique in that regard.
153       if (!isa<FenceInst>(Inst))
154         Loc = MemoryLocation::get(Inst);
155     }
156   }
157 
158   explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
159 
160   const CallBase *getCall() const {
161     assert(IsCall);
162     return Call;
163   }
164 
165   MemoryLocation getLoc() const {
166     assert(!IsCall);
167     return Loc;
168   }
169 
170   bool operator==(const MemoryLocOrCall &Other) const {
171     if (IsCall != Other.IsCall)
172       return false;
173 
174     if (!IsCall)
175       return Loc == Other.Loc;
176 
177     if (Call->getCalledOperand() != Other.Call->getCalledOperand())
178       return false;
179 
180     return Call->arg_size() == Other.Call->arg_size() &&
181            std::equal(Call->arg_begin(), Call->arg_end(),
182                       Other.Call->arg_begin());
183   }
184 
185 private:
186   union {
187     const CallBase *Call;
188     MemoryLocation Loc;
189   };
190 };
191 
192 } // end anonymous namespace
193 
194 namespace llvm {
195 
196 template <> struct DenseMapInfo<MemoryLocOrCall> {
197   static inline MemoryLocOrCall getEmptyKey() {
198     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
199   }
200 
201   static inline MemoryLocOrCall getTombstoneKey() {
202     return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
203   }
204 
205   static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
206     if (!MLOC.IsCall)
207       return hash_combine(
208           MLOC.IsCall,
209           DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
210 
211     hash_code hash =
212         hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
213                                       MLOC.getCall()->getCalledOperand()));
214 
215     for (const Value *Arg : MLOC.getCall()->args())
216       hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
217     return hash;
218   }
219 
220   static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
221     return LHS == RHS;
222   }
223 };
224 
225 } // end namespace llvm
226 
227 /// This does one-way checks to see if Use could theoretically be hoisted above
228 /// MayClobber. This will not check the other way around.
229 ///
230 /// This assumes that, for the purposes of MemorySSA, Use comes directly after
231 /// MayClobber, with no potentially clobbering operations in between them.
232 /// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
233 static bool areLoadsReorderable(const LoadInst *Use,
234                                 const LoadInst *MayClobber) {
235   bool VolatileUse = Use->isVolatile();
236   bool VolatileClobber = MayClobber->isVolatile();
237   // Volatile operations may never be reordered with other volatile operations.
238   if (VolatileUse && VolatileClobber)
239     return false;
240   // Otherwise, volatile doesn't matter here. From the language reference:
241   // 'optimizers may change the order of volatile operations relative to
242   // non-volatile operations.'"
243 
244   // If a load is seq_cst, it cannot be moved above other loads. If its ordering
245   // is weaker, it can be moved above other loads. We just need to be sure that
246   // MayClobber isn't an acquire load, because loads can't be moved above
247   // acquire loads.
248   //
249   // Note that this explicitly *does* allow the free reordering of monotonic (or
250   // weaker) loads of the same address.
251   bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
252   bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
253                                                      AtomicOrdering::Acquire);
254   return !(SeqCstUse || MayClobberIsAcquire);
255 }
256 
257 namespace {
258 
259 struct ClobberAlias {
260   bool IsClobber;
261   Optional<AliasResult> AR;
262 };
263 
264 } // end anonymous namespace
265 
266 // Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
267 // ignored if IsClobber = false.
268 template <typename AliasAnalysisType>
269 static ClobberAlias
270 instructionClobbersQuery(const MemoryDef *MD, const MemoryLocation &UseLoc,
271                          const Instruction *UseInst, AliasAnalysisType &AA) {
272   Instruction *DefInst = MD->getMemoryInst();
273   assert(DefInst && "Defining instruction not actually an instruction");
274   Optional<AliasResult> AR;
275 
276   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
277     // These intrinsics will show up as affecting memory, but they are just
278     // markers, mostly.
279     //
280     // FIXME: We probably don't actually want MemorySSA to model these at all
281     // (including creating MemoryAccesses for them): we just end up inventing
282     // clobbers where they don't really exist at all. Please see D43269 for
283     // context.
284     switch (II->getIntrinsicID()) {
285     case Intrinsic::invariant_start:
286     case Intrinsic::invariant_end:
287     case Intrinsic::assume:
288     case Intrinsic::experimental_noalias_scope_decl:
289       return {false, AliasResult(AliasResult::NoAlias)};
290     case Intrinsic::dbg_addr:
291     case Intrinsic::dbg_declare:
292     case Intrinsic::dbg_label:
293     case Intrinsic::dbg_value:
294       llvm_unreachable("debuginfo shouldn't have associated defs!");
295     default:
296       break;
297     }
298   }
299 
300   if (auto *CB = dyn_cast_or_null<CallBase>(UseInst)) {
301     ModRefInfo I = AA.getModRefInfo(DefInst, CB);
302     AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
303     return {isModOrRefSet(I), AR};
304   }
305 
306   if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
307     if (auto *UseLoad = dyn_cast_or_null<LoadInst>(UseInst))
308       return {!areLoadsReorderable(UseLoad, DefLoad),
309               AliasResult(AliasResult::MayAlias)};
310 
311   ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
312   AR = isMustSet(I) ? AliasResult::MustAlias : AliasResult::MayAlias;
313   return {isModSet(I), AR};
314 }
315 
316 template <typename AliasAnalysisType>
317 static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
318                                              const MemoryUseOrDef *MU,
319                                              const MemoryLocOrCall &UseMLOC,
320                                              AliasAnalysisType &AA) {
321   // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
322   // to exist while MemoryLocOrCall is pushed through places.
323   if (UseMLOC.IsCall)
324     return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
325                                     AA);
326   return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
327                                   AA);
328 }
329 
330 // Return true when MD may alias MU, return false otherwise.
331 bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
332                                         AliasAnalysis &AA) {
333   return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
334 }
335 
336 namespace {
337 
338 struct UpwardsMemoryQuery {
339   // True if our original query started off as a call
340   bool IsCall = false;
341   // The pointer location we started the query with. This will be empty if
342   // IsCall is true.
343   MemoryLocation StartingLoc;
344   // This is the instruction we were querying about.
345   const Instruction *Inst = nullptr;
346   // The MemoryAccess we actually got called with, used to test local domination
347   const MemoryAccess *OriginalAccess = nullptr;
348   Optional<AliasResult> AR = AliasResult(AliasResult::MayAlias);
349   bool SkipSelfAccess = false;
350 
351   UpwardsMemoryQuery() = default;
352 
353   UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
354       : IsCall(isa<CallBase>(Inst)), Inst(Inst), OriginalAccess(Access) {
355     if (!IsCall)
356       StartingLoc = MemoryLocation::get(Inst);
357   }
358 };
359 
360 } // end anonymous namespace
361 
362 template <typename AliasAnalysisType>
363 static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysisType &AA,
364                                                    const Instruction *I) {
365   // If the memory can't be changed, then loads of the memory can't be
366   // clobbered.
367   if (auto *LI = dyn_cast<LoadInst>(I))
368     return I->hasMetadata(LLVMContext::MD_invariant_load) ||
369            AA.pointsToConstantMemory(MemoryLocation::get(LI));
370   return false;
371 }
372 
373 /// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
374 /// inbetween `Start` and `ClobberAt` can clobbers `Start`.
375 ///
376 /// This is meant to be as simple and self-contained as possible. Because it
377 /// uses no cache, etc., it can be relatively expensive.
378 ///
379 /// \param Start     The MemoryAccess that we want to walk from.
380 /// \param ClobberAt A clobber for Start.
381 /// \param StartLoc  The MemoryLocation for Start.
382 /// \param MSSA      The MemorySSA instance that Start and ClobberAt belong to.
383 /// \param Query     The UpwardsMemoryQuery we used for our search.
384 /// \param AA        The AliasAnalysis we used for our search.
385 /// \param AllowImpreciseClobber Always false, unless we do relaxed verify.
386 
387 template <typename AliasAnalysisType>
388 LLVM_ATTRIBUTE_UNUSED static void
389 checkClobberSanity(const MemoryAccess *Start, MemoryAccess *ClobberAt,
390                    const MemoryLocation &StartLoc, const MemorySSA &MSSA,
391                    const UpwardsMemoryQuery &Query, AliasAnalysisType &AA,
392                    bool AllowImpreciseClobber = false) {
393   assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
394 
395   if (MSSA.isLiveOnEntryDef(Start)) {
396     assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
397            "liveOnEntry must clobber itself");
398     return;
399   }
400 
401   bool FoundClobber = false;
402   DenseSet<ConstMemoryAccessPair> VisitedPhis;
403   SmallVector<ConstMemoryAccessPair, 8> Worklist;
404   Worklist.emplace_back(Start, StartLoc);
405   // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
406   // is found, complain.
407   while (!Worklist.empty()) {
408     auto MAP = Worklist.pop_back_val();
409     // All we care about is that nothing from Start to ClobberAt clobbers Start.
410     // We learn nothing from revisiting nodes.
411     if (!VisitedPhis.insert(MAP).second)
412       continue;
413 
414     for (const auto *MA : def_chain(MAP.first)) {
415       if (MA == ClobberAt) {
416         if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
417           // instructionClobbersQuery isn't essentially free, so don't use `|=`,
418           // since it won't let us short-circuit.
419           //
420           // Also, note that this can't be hoisted out of the `Worklist` loop,
421           // since MD may only act as a clobber for 1 of N MemoryLocations.
422           FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
423           if (!FoundClobber) {
424             ClobberAlias CA =
425                 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
426             if (CA.IsClobber) {
427               FoundClobber = true;
428               // Not used: CA.AR;
429             }
430           }
431         }
432         break;
433       }
434 
435       // We should never hit liveOnEntry, unless it's the clobber.
436       assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
437 
438       if (const auto *MD = dyn_cast<MemoryDef>(MA)) {
439         // If Start is a Def, skip self.
440         if (MD == Start)
441           continue;
442 
443         assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
444                     .IsClobber &&
445                "Found clobber before reaching ClobberAt!");
446         continue;
447       }
448 
449       if (const auto *MU = dyn_cast<MemoryUse>(MA)) {
450         (void)MU;
451         assert (MU == Start &&
452                 "Can only find use in def chain if Start is a use");
453         continue;
454       }
455 
456       assert(isa<MemoryPhi>(MA));
457 
458       // Add reachable phi predecessors
459       for (auto ItB = upward_defs_begin(
460                     {const_cast<MemoryAccess *>(MA), MAP.second},
461                     MSSA.getDomTree()),
462                 ItE = upward_defs_end();
463            ItB != ItE; ++ItB)
464         if (MSSA.getDomTree().isReachableFromEntry(ItB.getPhiArgBlock()))
465           Worklist.emplace_back(*ItB);
466     }
467   }
468 
469   // If the verify is done following an optimization, it's possible that
470   // ClobberAt was a conservative clobbering, that we can now infer is not a
471   // true clobbering access. Don't fail the verify if that's the case.
472   // We do have accesses that claim they're optimized, but could be optimized
473   // further. Updating all these can be expensive, so allow it for now (FIXME).
474   if (AllowImpreciseClobber)
475     return;
476 
477   // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
478   // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
479   assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
480          "ClobberAt never acted as a clobber");
481 }
482 
483 namespace {
484 
485 /// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
486 /// in one class.
487 template <class AliasAnalysisType> class ClobberWalker {
488   /// Save a few bytes by using unsigned instead of size_t.
489   using ListIndex = unsigned;
490 
491   /// Represents a span of contiguous MemoryDefs, potentially ending in a
492   /// MemoryPhi.
493   struct DefPath {
494     MemoryLocation Loc;
495     // Note that, because we always walk in reverse, Last will always dominate
496     // First. Also note that First and Last are inclusive.
497     MemoryAccess *First;
498     MemoryAccess *Last;
499     Optional<ListIndex> Previous;
500 
501     DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
502             Optional<ListIndex> Previous)
503         : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
504 
505     DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
506             Optional<ListIndex> Previous)
507         : DefPath(Loc, Init, Init, Previous) {}
508   };
509 
510   const MemorySSA &MSSA;
511   AliasAnalysisType &AA;
512   DominatorTree &DT;
513   UpwardsMemoryQuery *Query;
514   unsigned *UpwardWalkLimit;
515 
516   // Phi optimization bookkeeping:
517   // List of DefPath to process during the current phi optimization walk.
518   SmallVector<DefPath, 32> Paths;
519   // List of visited <Access, Location> pairs; we can skip paths already
520   // visited with the same memory location.
521   DenseSet<ConstMemoryAccessPair> VisitedPhis;
522   // Record if phi translation has been performed during the current phi
523   // optimization walk, as merging alias results after phi translation can
524   // yield incorrect results. Context in PR46156.
525   bool PerformedPhiTranslation = false;
526 
527   /// Find the nearest def or phi that `From` can legally be optimized to.
528   const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
529     assert(From->getNumOperands() && "Phi with no operands?");
530 
531     BasicBlock *BB = From->getBlock();
532     MemoryAccess *Result = MSSA.getLiveOnEntryDef();
533     DomTreeNode *Node = DT.getNode(BB);
534     while ((Node = Node->getIDom())) {
535       auto *Defs = MSSA.getBlockDefs(Node->getBlock());
536       if (Defs)
537         return &*Defs->rbegin();
538     }
539     return Result;
540   }
541 
542   /// Result of calling walkToPhiOrClobber.
543   struct UpwardsWalkResult {
544     /// The "Result" of the walk. Either a clobber, the last thing we walked, or
545     /// both. Include alias info when clobber found.
546     MemoryAccess *Result;
547     bool IsKnownClobber;
548     Optional<AliasResult> AR;
549   };
550 
551   /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
552   /// This will update Desc.Last as it walks. It will (optionally) also stop at
553   /// StopAt.
554   ///
555   /// This does not test for whether StopAt is a clobber
556   UpwardsWalkResult
557   walkToPhiOrClobber(DefPath &Desc, const MemoryAccess *StopAt = nullptr,
558                      const MemoryAccess *SkipStopAt = nullptr) const {
559     assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
560     assert(UpwardWalkLimit && "Need a valid walk limit");
561     bool LimitAlreadyReached = false;
562     // (*UpwardWalkLimit) may be 0 here, due to the loop in tryOptimizePhi. Set
563     // it to 1. This will not do any alias() calls. It either returns in the
564     // first iteration in the loop below, or is set back to 0 if all def chains
565     // are free of MemoryDefs.
566     if (!*UpwardWalkLimit) {
567       *UpwardWalkLimit = 1;
568       LimitAlreadyReached = true;
569     }
570 
571     for (MemoryAccess *Current : def_chain(Desc.Last)) {
572       Desc.Last = Current;
573       if (Current == StopAt || Current == SkipStopAt)
574         return {Current, false, AliasResult(AliasResult::MayAlias)};
575 
576       if (auto *MD = dyn_cast<MemoryDef>(Current)) {
577         if (MSSA.isLiveOnEntryDef(MD))
578           return {MD, true, AliasResult(AliasResult::MustAlias)};
579 
580         if (!--*UpwardWalkLimit)
581           return {Current, true, AliasResult(AliasResult::MayAlias)};
582 
583         ClobberAlias CA =
584             instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
585         if (CA.IsClobber)
586           return {MD, true, CA.AR};
587       }
588     }
589 
590     if (LimitAlreadyReached)
591       *UpwardWalkLimit = 0;
592 
593     assert(isa<MemoryPhi>(Desc.Last) &&
594            "Ended at a non-clobber that's not a phi?");
595     return {Desc.Last, false, AliasResult(AliasResult::MayAlias)};
596   }
597 
598   void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
599                    ListIndex PriorNode) {
600     auto UpwardDefsBegin = upward_defs_begin({Phi, Paths[PriorNode].Loc}, DT,
601                                              &PerformedPhiTranslation);
602     auto UpwardDefs = make_range(UpwardDefsBegin, upward_defs_end());
603     for (const MemoryAccessPair &P : UpwardDefs) {
604       PausedSearches.push_back(Paths.size());
605       Paths.emplace_back(P.second, P.first, PriorNode);
606     }
607   }
608 
609   /// Represents a search that terminated after finding a clobber. This clobber
610   /// may or may not be present in the path of defs from LastNode..SearchStart,
611   /// since it may have been retrieved from cache.
612   struct TerminatedPath {
613     MemoryAccess *Clobber;
614     ListIndex LastNode;
615   };
616 
617   /// Get an access that keeps us from optimizing to the given phi.
618   ///
619   /// PausedSearches is an array of indices into the Paths array. Its incoming
620   /// value is the indices of searches that stopped at the last phi optimization
621   /// target. It's left in an unspecified state.
622   ///
623   /// If this returns None, NewPaused is a vector of searches that terminated
624   /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
625   Optional<TerminatedPath>
626   getBlockingAccess(const MemoryAccess *StopWhere,
627                     SmallVectorImpl<ListIndex> &PausedSearches,
628                     SmallVectorImpl<ListIndex> &NewPaused,
629                     SmallVectorImpl<TerminatedPath> &Terminated) {
630     assert(!PausedSearches.empty() && "No searches to continue?");
631 
632     // BFS vs DFS really doesn't make a difference here, so just do a DFS with
633     // PausedSearches as our stack.
634     while (!PausedSearches.empty()) {
635       ListIndex PathIndex = PausedSearches.pop_back_val();
636       DefPath &Node = Paths[PathIndex];
637 
638       // If we've already visited this path with this MemoryLocation, we don't
639       // need to do so again.
640       //
641       // NOTE: That we just drop these paths on the ground makes caching
642       // behavior sporadic. e.g. given a diamond:
643       //  A
644       // B C
645       //  D
646       //
647       // ...If we walk D, B, A, C, we'll only cache the result of phi
648       // optimization for A, B, and D; C will be skipped because it dies here.
649       // This arguably isn't the worst thing ever, since:
650       //   - We generally query things in a top-down order, so if we got below D
651       //     without needing cache entries for {C, MemLoc}, then chances are
652       //     that those cache entries would end up ultimately unused.
653       //   - We still cache things for A, so C only needs to walk up a bit.
654       // If this behavior becomes problematic, we can fix without a ton of extra
655       // work.
656       if (!VisitedPhis.insert({Node.Last, Node.Loc}).second) {
657         if (PerformedPhiTranslation) {
658           // If visiting this path performed Phi translation, don't continue,
659           // since it may not be correct to merge results from two paths if one
660           // relies on the phi translation.
661           TerminatedPath Term{Node.Last, PathIndex};
662           return Term;
663         }
664         continue;
665       }
666 
667       const MemoryAccess *SkipStopWhere = nullptr;
668       if (Query->SkipSelfAccess && Node.Loc == Query->StartingLoc) {
669         assert(isa<MemoryDef>(Query->OriginalAccess));
670         SkipStopWhere = Query->OriginalAccess;
671       }
672 
673       UpwardsWalkResult Res = walkToPhiOrClobber(Node,
674                                                  /*StopAt=*/StopWhere,
675                                                  /*SkipStopAt=*/SkipStopWhere);
676       if (Res.IsKnownClobber) {
677         assert(Res.Result != StopWhere && Res.Result != SkipStopWhere);
678 
679         // If this wasn't a cache hit, we hit a clobber when walking. That's a
680         // failure.
681         TerminatedPath Term{Res.Result, PathIndex};
682         if (!MSSA.dominates(Res.Result, StopWhere))
683           return Term;
684 
685         // Otherwise, it's a valid thing to potentially optimize to.
686         Terminated.push_back(Term);
687         continue;
688       }
689 
690       if (Res.Result == StopWhere || Res.Result == SkipStopWhere) {
691         // We've hit our target. Save this path off for if we want to continue
692         // walking. If we are in the mode of skipping the OriginalAccess, and
693         // we've reached back to the OriginalAccess, do not save path, we've
694         // just looped back to self.
695         if (Res.Result != SkipStopWhere)
696           NewPaused.push_back(PathIndex);
697         continue;
698       }
699 
700       assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
701       addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
702     }
703 
704     return None;
705   }
706 
707   template <typename T, typename Walker>
708   struct generic_def_path_iterator
709       : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
710                                     std::forward_iterator_tag, T *> {
711     generic_def_path_iterator() {}
712     generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
713 
714     T &operator*() const { return curNode(); }
715 
716     generic_def_path_iterator &operator++() {
717       N = curNode().Previous;
718       return *this;
719     }
720 
721     bool operator==(const generic_def_path_iterator &O) const {
722       if (N.hasValue() != O.N.hasValue())
723         return false;
724       return !N.hasValue() || *N == *O.N;
725     }
726 
727   private:
728     T &curNode() const { return W->Paths[*N]; }
729 
730     Walker *W = nullptr;
731     Optional<ListIndex> N = None;
732   };
733 
734   using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
735   using const_def_path_iterator =
736       generic_def_path_iterator<const DefPath, const ClobberWalker>;
737 
738   iterator_range<def_path_iterator> def_path(ListIndex From) {
739     return make_range(def_path_iterator(this, From), def_path_iterator());
740   }
741 
742   iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
743     return make_range(const_def_path_iterator(this, From),
744                       const_def_path_iterator());
745   }
746 
747   struct OptznResult {
748     /// The path that contains our result.
749     TerminatedPath PrimaryClobber;
750     /// The paths that we can legally cache back from, but that aren't
751     /// necessarily the result of the Phi optimization.
752     SmallVector<TerminatedPath, 4> OtherClobbers;
753   };
754 
755   ListIndex defPathIndex(const DefPath &N) const {
756     // The assert looks nicer if we don't need to do &N
757     const DefPath *NP = &N;
758     assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
759            "Out of bounds DefPath!");
760     return NP - &Paths.front();
761   }
762 
763   /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
764   /// that act as legal clobbers. Note that this won't return *all* clobbers.
765   ///
766   /// Phi optimization algorithm tl;dr:
767   ///   - Find the earliest def/phi, A, we can optimize to
768   ///   - Find if all paths from the starting memory access ultimately reach A
769   ///     - If not, optimization isn't possible.
770   ///     - Otherwise, walk from A to another clobber or phi, A'.
771   ///       - If A' is a def, we're done.
772   ///       - If A' is a phi, try to optimize it.
773   ///
774   /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
775   /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
776   OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
777                              const MemoryLocation &Loc) {
778     assert(Paths.empty() && VisitedPhis.empty() && !PerformedPhiTranslation &&
779            "Reset the optimization state.");
780 
781     Paths.emplace_back(Loc, Start, Phi, None);
782     // Stores how many "valid" optimization nodes we had prior to calling
783     // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
784     auto PriorPathsSize = Paths.size();
785 
786     SmallVector<ListIndex, 16> PausedSearches;
787     SmallVector<ListIndex, 8> NewPaused;
788     SmallVector<TerminatedPath, 4> TerminatedPaths;
789 
790     addSearches(Phi, PausedSearches, 0);
791 
792     // Moves the TerminatedPath with the "most dominated" Clobber to the end of
793     // Paths.
794     auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
795       assert(!Paths.empty() && "Need a path to move");
796       auto Dom = Paths.begin();
797       for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
798         if (!MSSA.dominates(I->Clobber, Dom->Clobber))
799           Dom = I;
800       auto Last = Paths.end() - 1;
801       if (Last != Dom)
802         std::iter_swap(Last, Dom);
803     };
804 
805     MemoryPhi *Current = Phi;
806     while (true) {
807       assert(!MSSA.isLiveOnEntryDef(Current) &&
808              "liveOnEntry wasn't treated as a clobber?");
809 
810       const auto *Target = getWalkTarget(Current);
811       // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
812       // optimization for the prior phi.
813       assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
814         return MSSA.dominates(P.Clobber, Target);
815       }));
816 
817       // FIXME: This is broken, because the Blocker may be reported to be
818       // liveOnEntry, and we'll happily wait for that to disappear (read: never)
819       // For the moment, this is fine, since we do nothing with blocker info.
820       if (Optional<TerminatedPath> Blocker = getBlockingAccess(
821               Target, PausedSearches, NewPaused, TerminatedPaths)) {
822 
823         // Find the node we started at. We can't search based on N->Last, since
824         // we may have gone around a loop with a different MemoryLocation.
825         auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
826           return defPathIndex(N) < PriorPathsSize;
827         });
828         assert(Iter != def_path_iterator());
829 
830         DefPath &CurNode = *Iter;
831         assert(CurNode.Last == Current);
832 
833         // Two things:
834         // A. We can't reliably cache all of NewPaused back. Consider a case
835         //    where we have two paths in NewPaused; one of which can't optimize
836         //    above this phi, whereas the other can. If we cache the second path
837         //    back, we'll end up with suboptimal cache entries. We can handle
838         //    cases like this a bit better when we either try to find all
839         //    clobbers that block phi optimization, or when our cache starts
840         //    supporting unfinished searches.
841         // B. We can't reliably cache TerminatedPaths back here without doing
842         //    extra checks; consider a case like:
843         //       T
844         //      / \
845         //     D   C
846         //      \ /
847         //       S
848         //    Where T is our target, C is a node with a clobber on it, D is a
849         //    diamond (with a clobber *only* on the left or right node, N), and
850         //    S is our start. Say we walk to D, through the node opposite N
851         //    (read: ignoring the clobber), and see a cache entry in the top
852         //    node of D. That cache entry gets put into TerminatedPaths. We then
853         //    walk up to C (N is later in our worklist), find the clobber, and
854         //    quit. If we append TerminatedPaths to OtherClobbers, we'll cache
855         //    the bottom part of D to the cached clobber, ignoring the clobber
856         //    in N. Again, this problem goes away if we start tracking all
857         //    blockers for a given phi optimization.
858         TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
859         return {Result, {}};
860       }
861 
862       // If there's nothing left to search, then all paths led to valid clobbers
863       // that we got from our cache; pick the nearest to the start, and allow
864       // the rest to be cached back.
865       if (NewPaused.empty()) {
866         MoveDominatedPathToEnd(TerminatedPaths);
867         TerminatedPath Result = TerminatedPaths.pop_back_val();
868         return {Result, std::move(TerminatedPaths)};
869       }
870 
871       MemoryAccess *DefChainEnd = nullptr;
872       SmallVector<TerminatedPath, 4> Clobbers;
873       for (ListIndex Paused : NewPaused) {
874         UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
875         if (WR.IsKnownClobber)
876           Clobbers.push_back({WR.Result, Paused});
877         else
878           // Micro-opt: If we hit the end of the chain, save it.
879           DefChainEnd = WR.Result;
880       }
881 
882       if (!TerminatedPaths.empty()) {
883         // If we couldn't find the dominating phi/liveOnEntry in the above loop,
884         // do it now.
885         if (!DefChainEnd)
886           for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
887             DefChainEnd = MA;
888         assert(DefChainEnd && "Failed to find dominating phi/liveOnEntry");
889 
890         // If any of the terminated paths don't dominate the phi we'll try to
891         // optimize, we need to figure out what they are and quit.
892         const BasicBlock *ChainBB = DefChainEnd->getBlock();
893         for (const TerminatedPath &TP : TerminatedPaths) {
894           // Because we know that DefChainEnd is as "high" as we can go, we
895           // don't need local dominance checks; BB dominance is sufficient.
896           if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
897             Clobbers.push_back(TP);
898         }
899       }
900 
901       // If we have clobbers in the def chain, find the one closest to Current
902       // and quit.
903       if (!Clobbers.empty()) {
904         MoveDominatedPathToEnd(Clobbers);
905         TerminatedPath Result = Clobbers.pop_back_val();
906         return {Result, std::move(Clobbers)};
907       }
908 
909       assert(all_of(NewPaused,
910                     [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
911 
912       // Because liveOnEntry is a clobber, this must be a phi.
913       auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
914 
915       PriorPathsSize = Paths.size();
916       PausedSearches.clear();
917       for (ListIndex I : NewPaused)
918         addSearches(DefChainPhi, PausedSearches, I);
919       NewPaused.clear();
920 
921       Current = DefChainPhi;
922     }
923   }
924 
925   void verifyOptResult(const OptznResult &R) const {
926     assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
927       return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
928     }));
929   }
930 
931   void resetPhiOptznState() {
932     Paths.clear();
933     VisitedPhis.clear();
934     PerformedPhiTranslation = false;
935   }
936 
937 public:
938   ClobberWalker(const MemorySSA &MSSA, AliasAnalysisType &AA, DominatorTree &DT)
939       : MSSA(MSSA), AA(AA), DT(DT) {}
940 
941   AliasAnalysisType *getAA() { return &AA; }
942   /// Finds the nearest clobber for the given query, optimizing phis if
943   /// possible.
944   MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q,
945                             unsigned &UpWalkLimit) {
946     Query = &Q;
947     UpwardWalkLimit = &UpWalkLimit;
948     // Starting limit must be > 0.
949     if (!UpWalkLimit)
950       UpWalkLimit++;
951 
952     MemoryAccess *Current = Start;
953     // This walker pretends uses don't exist. If we're handed one, silently grab
954     // its def. (This has the nice side-effect of ensuring we never cache uses)
955     if (auto *MU = dyn_cast<MemoryUse>(Start))
956       Current = MU->getDefiningAccess();
957 
958     DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
959     // Fast path for the overly-common case (no crazy phi optimization
960     // necessary)
961     UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
962     MemoryAccess *Result;
963     if (WalkResult.IsKnownClobber) {
964       Result = WalkResult.Result;
965       Q.AR = WalkResult.AR;
966     } else {
967       OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
968                                           Current, Q.StartingLoc);
969       verifyOptResult(OptRes);
970       resetPhiOptznState();
971       Result = OptRes.PrimaryClobber.Clobber;
972     }
973 
974 #ifdef EXPENSIVE_CHECKS
975     if (!Q.SkipSelfAccess && *UpwardWalkLimit > 0)
976       checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
977 #endif
978     return Result;
979   }
980 };
981 
982 struct RenamePassData {
983   DomTreeNode *DTN;
984   DomTreeNode::const_iterator ChildIt;
985   MemoryAccess *IncomingVal;
986 
987   RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
988                  MemoryAccess *M)
989       : DTN(D), ChildIt(It), IncomingVal(M) {}
990 
991   void swap(RenamePassData &RHS) {
992     std::swap(DTN, RHS.DTN);
993     std::swap(ChildIt, RHS.ChildIt);
994     std::swap(IncomingVal, RHS.IncomingVal);
995   }
996 };
997 
998 } // end anonymous namespace
999 
1000 namespace llvm {
1001 
1002 template <class AliasAnalysisType> class MemorySSA::ClobberWalkerBase {
1003   ClobberWalker<AliasAnalysisType> Walker;
1004   MemorySSA *MSSA;
1005 
1006 public:
1007   ClobberWalkerBase(MemorySSA *M, AliasAnalysisType *A, DominatorTree *D)
1008       : Walker(*M, *A, *D), MSSA(M) {}
1009 
1010   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *,
1011                                               const MemoryLocation &,
1012                                               unsigned &);
1013   // Third argument (bool), defines whether the clobber search should skip the
1014   // original queried access. If true, there will be a follow-up query searching
1015   // for a clobber access past "self". Note that the Optimized access is not
1016   // updated if a new clobber is found by this SkipSelf search. If this
1017   // additional query becomes heavily used we may decide to cache the result.
1018   // Walker instantiations will decide how to set the SkipSelf bool.
1019   MemoryAccess *getClobberingMemoryAccessBase(MemoryAccess *, unsigned &, bool);
1020 };
1021 
1022 /// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
1023 /// longer does caching on its own, but the name has been retained for the
1024 /// moment.
1025 template <class AliasAnalysisType>
1026 class MemorySSA::CachingWalker final : public MemorySSAWalker {
1027   ClobberWalkerBase<AliasAnalysisType> *Walker;
1028 
1029 public:
1030   CachingWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1031       : MemorySSAWalker(M), Walker(W) {}
1032   ~CachingWalker() override = default;
1033 
1034   using MemorySSAWalker::getClobberingMemoryAccess;
1035 
1036   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1037     return Walker->getClobberingMemoryAccessBase(MA, UWL, false);
1038   }
1039   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1040                                           const MemoryLocation &Loc,
1041                                           unsigned &UWL) {
1042     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1043   }
1044 
1045   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1046     unsigned UpwardWalkLimit = MaxCheckLimit;
1047     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1048   }
1049   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1050                                           const MemoryLocation &Loc) override {
1051     unsigned UpwardWalkLimit = MaxCheckLimit;
1052     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1053   }
1054 
1055   void invalidateInfo(MemoryAccess *MA) override {
1056     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1057       MUD->resetOptimized();
1058   }
1059 };
1060 
1061 template <class AliasAnalysisType>
1062 class MemorySSA::SkipSelfWalker final : public MemorySSAWalker {
1063   ClobberWalkerBase<AliasAnalysisType> *Walker;
1064 
1065 public:
1066   SkipSelfWalker(MemorySSA *M, ClobberWalkerBase<AliasAnalysisType> *W)
1067       : MemorySSAWalker(M), Walker(W) {}
1068   ~SkipSelfWalker() override = default;
1069 
1070   using MemorySSAWalker::getClobberingMemoryAccess;
1071 
1072   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA, unsigned &UWL) {
1073     return Walker->getClobberingMemoryAccessBase(MA, UWL, true);
1074   }
1075   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1076                                           const MemoryLocation &Loc,
1077                                           unsigned &UWL) {
1078     return Walker->getClobberingMemoryAccessBase(MA, Loc, UWL);
1079   }
1080 
1081   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA) override {
1082     unsigned UpwardWalkLimit = MaxCheckLimit;
1083     return getClobberingMemoryAccess(MA, UpwardWalkLimit);
1084   }
1085   MemoryAccess *getClobberingMemoryAccess(MemoryAccess *MA,
1086                                           const MemoryLocation &Loc) override {
1087     unsigned UpwardWalkLimit = MaxCheckLimit;
1088     return getClobberingMemoryAccess(MA, Loc, UpwardWalkLimit);
1089   }
1090 
1091   void invalidateInfo(MemoryAccess *MA) override {
1092     if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1093       MUD->resetOptimized();
1094   }
1095 };
1096 
1097 } // end namespace llvm
1098 
1099 void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
1100                                     bool RenameAllUses) {
1101   // Pass through values to our successors
1102   for (const BasicBlock *S : successors(BB)) {
1103     auto It = PerBlockAccesses.find(S);
1104     // Rename the phi nodes in our successor block
1105     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1106       continue;
1107     AccessList *Accesses = It->second.get();
1108     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1109     if (RenameAllUses) {
1110       bool ReplacementDone = false;
1111       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
1112         if (Phi->getIncomingBlock(I) == BB) {
1113           Phi->setIncomingValue(I, IncomingVal);
1114           ReplacementDone = true;
1115         }
1116       (void) ReplacementDone;
1117       assert(ReplacementDone && "Incomplete phi during partial rename");
1118     } else
1119       Phi->addIncoming(IncomingVal, BB);
1120   }
1121 }
1122 
1123 /// Rename a single basic block into MemorySSA form.
1124 /// Uses the standard SSA renaming algorithm.
1125 /// \returns The new incoming value.
1126 MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
1127                                      bool RenameAllUses) {
1128   auto It = PerBlockAccesses.find(BB);
1129   // Skip most processing if the list is empty.
1130   if (It != PerBlockAccesses.end()) {
1131     AccessList *Accesses = It->second.get();
1132     for (MemoryAccess &L : *Accesses) {
1133       if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
1134         if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
1135           MUD->setDefiningAccess(IncomingVal);
1136         if (isa<MemoryDef>(&L))
1137           IncomingVal = &L;
1138       } else {
1139         IncomingVal = &L;
1140       }
1141     }
1142   }
1143   return IncomingVal;
1144 }
1145 
1146 /// This is the standard SSA renaming algorithm.
1147 ///
1148 /// We walk the dominator tree in preorder, renaming accesses, and then filling
1149 /// in phi nodes in our successors.
1150 void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
1151                            SmallPtrSetImpl<BasicBlock *> &Visited,
1152                            bool SkipVisited, bool RenameAllUses) {
1153   assert(Root && "Trying to rename accesses in an unreachable block");
1154 
1155   SmallVector<RenamePassData, 32> WorkStack;
1156   // Skip everything if we already renamed this block and we are skipping.
1157   // Note: You can't sink this into the if, because we need it to occur
1158   // regardless of whether we skip blocks or not.
1159   bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
1160   if (SkipVisited && AlreadyVisited)
1161     return;
1162 
1163   IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
1164   renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
1165   WorkStack.push_back({Root, Root->begin(), IncomingVal});
1166 
1167   while (!WorkStack.empty()) {
1168     DomTreeNode *Node = WorkStack.back().DTN;
1169     DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1170     IncomingVal = WorkStack.back().IncomingVal;
1171 
1172     if (ChildIt == Node->end()) {
1173       WorkStack.pop_back();
1174     } else {
1175       DomTreeNode *Child = *ChildIt;
1176       ++WorkStack.back().ChildIt;
1177       BasicBlock *BB = Child->getBlock();
1178       // Note: You can't sink this into the if, because we need it to occur
1179       // regardless of whether we skip blocks or not.
1180       AlreadyVisited = !Visited.insert(BB).second;
1181       if (SkipVisited && AlreadyVisited) {
1182         // We already visited this during our renaming, which can happen when
1183         // being asked to rename multiple blocks. Figure out the incoming val,
1184         // which is the last def.
1185         // Incoming value can only change if there is a block def, and in that
1186         // case, it's the last block def in the list.
1187         if (auto *BlockDefs = getWritableBlockDefs(BB))
1188           IncomingVal = &*BlockDefs->rbegin();
1189       } else
1190         IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1191       renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
1192       WorkStack.push_back({Child, Child->begin(), IncomingVal});
1193     }
1194   }
1195 }
1196 
1197 /// This handles unreachable block accesses by deleting phi nodes in
1198 /// unreachable blocks, and marking all other unreachable MemoryAccess's as
1199 /// being uses of the live on entry definition.
1200 void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1201   assert(!DT->isReachableFromEntry(BB) &&
1202          "Reachable block found while handling unreachable blocks");
1203 
1204   // Make sure phi nodes in our reachable successors end up with a
1205   // LiveOnEntryDef for our incoming edge, even though our block is forward
1206   // unreachable.  We could just disconnect these blocks from the CFG fully,
1207   // but we do not right now.
1208   for (const BasicBlock *S : successors(BB)) {
1209     if (!DT->isReachableFromEntry(S))
1210       continue;
1211     auto It = PerBlockAccesses.find(S);
1212     // Rename the phi nodes in our successor block
1213     if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1214       continue;
1215     AccessList *Accesses = It->second.get();
1216     auto *Phi = cast<MemoryPhi>(&Accesses->front());
1217     Phi->addIncoming(LiveOnEntryDef.get(), BB);
1218   }
1219 
1220   auto It = PerBlockAccesses.find(BB);
1221   if (It == PerBlockAccesses.end())
1222     return;
1223 
1224   auto &Accesses = It->second;
1225   for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1226     auto Next = std::next(AI);
1227     // If we have a phi, just remove it. We are going to replace all
1228     // users with live on entry.
1229     if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1230       UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1231     else
1232       Accesses->erase(AI);
1233     AI = Next;
1234   }
1235 }
1236 
1237 MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1238     : AA(nullptr), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
1239       SkipWalker(nullptr), NextID(0) {
1240   // Build MemorySSA using a batch alias analysis. This reuses the internal
1241   // state that AA collects during an alias()/getModRefInfo() call. This is
1242   // safe because there are no CFG changes while building MemorySSA and can
1243   // significantly reduce the time spent by the compiler in AA, because we will
1244   // make queries about all the instructions in the Function.
1245   assert(AA && "No alias analysis?");
1246   BatchAAResults BatchAA(*AA);
1247   buildMemorySSA(BatchAA);
1248   // Intentionally leave AA to nullptr while building so we don't accidently
1249   // use non-batch AliasAnalysis.
1250   this->AA = AA;
1251   // Also create the walker here.
1252   getWalker();
1253 }
1254 
1255 MemorySSA::~MemorySSA() {
1256   // Drop all our references
1257   for (const auto &Pair : PerBlockAccesses)
1258     for (MemoryAccess &MA : *Pair.second)
1259       MA.dropAllReferences();
1260 }
1261 
1262 MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
1263   auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1264 
1265   if (Res.second)
1266     Res.first->second = std::make_unique<AccessList>();
1267   return Res.first->second.get();
1268 }
1269 
1270 MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1271   auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1272 
1273   if (Res.second)
1274     Res.first->second = std::make_unique<DefsList>();
1275   return Res.first->second.get();
1276 }
1277 
1278 namespace llvm {
1279 
1280 /// This class is a batch walker of all MemoryUse's in the program, and points
1281 /// their defining access at the thing that actually clobbers them.  Because it
1282 /// is a batch walker that touches everything, it does not operate like the
1283 /// other walkers.  This walker is basically performing a top-down SSA renaming
1284 /// pass, where the version stack is used as the cache.  This enables it to be
1285 /// significantly more time and memory efficient than using the regular walker,
1286 /// which is walking bottom-up.
1287 class MemorySSA::OptimizeUses {
1288 public:
1289   OptimizeUses(MemorySSA *MSSA, CachingWalker<BatchAAResults> *Walker,
1290                BatchAAResults *BAA, DominatorTree *DT)
1291       : MSSA(MSSA), Walker(Walker), AA(BAA), DT(DT) {}
1292 
1293   void optimizeUses();
1294 
1295 private:
1296   /// This represents where a given memorylocation is in the stack.
1297   struct MemlocStackInfo {
1298     // This essentially is keeping track of versions of the stack. Whenever
1299     // the stack changes due to pushes or pops, these versions increase.
1300     unsigned long StackEpoch;
1301     unsigned long PopEpoch;
1302     // This is the lower bound of places on the stack to check. It is equal to
1303     // the place the last stack walk ended.
1304     // Note: Correctness depends on this being initialized to 0, which densemap
1305     // does
1306     unsigned long LowerBound;
1307     const BasicBlock *LowerBoundBlock;
1308     // This is where the last walk for this memory location ended.
1309     unsigned long LastKill;
1310     bool LastKillValid;
1311     Optional<AliasResult> AR;
1312   };
1313 
1314   void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1315                            SmallVectorImpl<MemoryAccess *> &,
1316                            DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
1317 
1318   MemorySSA *MSSA;
1319   CachingWalker<BatchAAResults> *Walker;
1320   BatchAAResults *AA;
1321   DominatorTree *DT;
1322 };
1323 
1324 } // end namespace llvm
1325 
1326 /// Optimize the uses in a given block This is basically the SSA renaming
1327 /// algorithm, with one caveat: We are able to use a single stack for all
1328 /// MemoryUses.  This is because the set of *possible* reaching MemoryDefs is
1329 /// the same for every MemoryUse.  The *actual* clobbering MemoryDef is just
1330 /// going to be some position in that stack of possible ones.
1331 ///
1332 /// We track the stack positions that each MemoryLocation needs
1333 /// to check, and last ended at.  This is because we only want to check the
1334 /// things that changed since last time.  The same MemoryLocation should
1335 /// get clobbered by the same store (getModRefInfo does not use invariantness or
1336 /// things like this, and if they start, we can modify MemoryLocOrCall to
1337 /// include relevant data)
1338 void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1339     const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1340     SmallVectorImpl<MemoryAccess *> &VersionStack,
1341     DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1342 
1343   /// If no accesses, nothing to do.
1344   MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1345   if (Accesses == nullptr)
1346     return;
1347 
1348   // Pop everything that doesn't dominate the current block off the stack,
1349   // increment the PopEpoch to account for this.
1350   while (true) {
1351     assert(
1352         !VersionStack.empty() &&
1353         "Version stack should have liveOnEntry sentinel dominating everything");
1354     BasicBlock *BackBlock = VersionStack.back()->getBlock();
1355     if (DT->dominates(BackBlock, BB))
1356       break;
1357     while (VersionStack.back()->getBlock() == BackBlock)
1358       VersionStack.pop_back();
1359     ++PopEpoch;
1360   }
1361 
1362   for (MemoryAccess &MA : *Accesses) {
1363     auto *MU = dyn_cast<MemoryUse>(&MA);
1364     if (!MU) {
1365       VersionStack.push_back(&MA);
1366       ++StackEpoch;
1367       continue;
1368     }
1369 
1370     if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
1371       MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
1372       continue;
1373     }
1374 
1375     MemoryLocOrCall UseMLOC(MU);
1376     auto &LocInfo = LocStackInfo[UseMLOC];
1377     // If the pop epoch changed, it means we've removed stuff from top of
1378     // stack due to changing blocks. We may have to reset the lower bound or
1379     // last kill info.
1380     if (LocInfo.PopEpoch != PopEpoch) {
1381       LocInfo.PopEpoch = PopEpoch;
1382       LocInfo.StackEpoch = StackEpoch;
1383       // If the lower bound was in something that no longer dominates us, we
1384       // have to reset it.
1385       // We can't simply track stack size, because the stack may have had
1386       // pushes/pops in the meantime.
1387       // XXX: This is non-optimal, but only is slower cases with heavily
1388       // branching dominator trees.  To get the optimal number of queries would
1389       // be to make lowerbound and lastkill a per-loc stack, and pop it until
1390       // the top of that stack dominates us.  This does not seem worth it ATM.
1391       // A much cheaper optimization would be to always explore the deepest
1392       // branch of the dominator tree first. This will guarantee this resets on
1393       // the smallest set of blocks.
1394       if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
1395           !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
1396         // Reset the lower bound of things to check.
1397         // TODO: Some day we should be able to reset to last kill, rather than
1398         // 0.
1399         LocInfo.LowerBound = 0;
1400         LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
1401         LocInfo.LastKillValid = false;
1402       }
1403     } else if (LocInfo.StackEpoch != StackEpoch) {
1404       // If all that has changed is the StackEpoch, we only have to check the
1405       // new things on the stack, because we've checked everything before.  In
1406       // this case, the lower bound of things to check remains the same.
1407       LocInfo.PopEpoch = PopEpoch;
1408       LocInfo.StackEpoch = StackEpoch;
1409     }
1410     if (!LocInfo.LastKillValid) {
1411       LocInfo.LastKill = VersionStack.size() - 1;
1412       LocInfo.LastKillValid = true;
1413       LocInfo.AR = AliasResult::MayAlias;
1414     }
1415 
1416     // At this point, we should have corrected last kill and LowerBound to be
1417     // in bounds.
1418     assert(LocInfo.LowerBound < VersionStack.size() &&
1419            "Lower bound out of range");
1420     assert(LocInfo.LastKill < VersionStack.size() &&
1421            "Last kill info out of range");
1422     // In any case, the new upper bound is the top of the stack.
1423     unsigned long UpperBound = VersionStack.size() - 1;
1424 
1425     if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
1426       LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1427                         << *(MU->getMemoryInst()) << ")"
1428                         << " because there are "
1429                         << UpperBound - LocInfo.LowerBound
1430                         << " stores to disambiguate\n");
1431       // Because we did not walk, LastKill is no longer valid, as this may
1432       // have been a kill.
1433       LocInfo.LastKillValid = false;
1434       continue;
1435     }
1436     bool FoundClobberResult = false;
1437     unsigned UpwardWalkLimit = MaxCheckLimit;
1438     while (UpperBound > LocInfo.LowerBound) {
1439       if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1440         // For phis, use the walker, see where we ended up, go there
1441         MemoryAccess *Result =
1442             Walker->getClobberingMemoryAccess(MU, UpwardWalkLimit);
1443         // We are guaranteed to find it or something is wrong
1444         while (VersionStack[UpperBound] != Result) {
1445           assert(UpperBound != 0);
1446           --UpperBound;
1447         }
1448         FoundClobberResult = true;
1449         break;
1450       }
1451 
1452       MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
1453       ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1454       if (CA.IsClobber) {
1455         FoundClobberResult = true;
1456         LocInfo.AR = CA.AR;
1457         break;
1458       }
1459       --UpperBound;
1460     }
1461 
1462     // Note: Phis always have AliasResult AR set to MayAlias ATM.
1463 
1464     // At the end of this loop, UpperBound is either a clobber, or lower bound
1465     // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1466     if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
1467       // We were last killed now by where we got to
1468       if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1469         LocInfo.AR = None;
1470       MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
1471       LocInfo.LastKill = UpperBound;
1472     } else {
1473       // Otherwise, we checked all the new ones, and now we know we can get to
1474       // LastKill.
1475       MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
1476     }
1477     LocInfo.LowerBound = VersionStack.size() - 1;
1478     LocInfo.LowerBoundBlock = BB;
1479   }
1480 }
1481 
1482 /// Optimize uses to point to their actual clobbering definitions.
1483 void MemorySSA::OptimizeUses::optimizeUses() {
1484   SmallVector<MemoryAccess *, 16> VersionStack;
1485   DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
1486   VersionStack.push_back(MSSA->getLiveOnEntryDef());
1487 
1488   unsigned long StackEpoch = 1;
1489   unsigned long PopEpoch = 1;
1490   // We perform a non-recursive top-down dominator tree walk.
1491   for (const auto *DomNode : depth_first(DT->getRootNode()))
1492     optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1493                         LocStackInfo);
1494 }
1495 
1496 void MemorySSA::placePHINodes(
1497     const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
1498   // Determine where our MemoryPhi's should go
1499   ForwardIDFCalculator IDFs(*DT);
1500   IDFs.setDefiningBlocks(DefiningBlocks);
1501   SmallVector<BasicBlock *, 32> IDFBlocks;
1502   IDFs.calculate(IDFBlocks);
1503 
1504   // Now place MemoryPhi nodes.
1505   for (auto &BB : IDFBlocks)
1506     createMemoryPhi(BB);
1507 }
1508 
1509 void MemorySSA::buildMemorySSA(BatchAAResults &BAA) {
1510   // We create an access to represent "live on entry", for things like
1511   // arguments or users of globals, where the memory they use is defined before
1512   // the beginning of the function. We do not actually insert it into the IR.
1513   // We do not define a live on exit for the immediate uses, and thus our
1514   // semantics do *not* imply that something with no immediate uses can simply
1515   // be removed.
1516   BasicBlock &StartingPoint = F.getEntryBlock();
1517   LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1518                                      &StartingPoint, NextID++));
1519 
1520   // We maintain lists of memory accesses per-block, trading memory for time. We
1521   // could just look up the memory access for every possible instruction in the
1522   // stream.
1523   SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
1524   // Go through each block, figure out where defs occur, and chain together all
1525   // the accesses.
1526   for (BasicBlock &B : F) {
1527     bool InsertIntoDef = false;
1528     AccessList *Accesses = nullptr;
1529     DefsList *Defs = nullptr;
1530     for (Instruction &I : B) {
1531       MemoryUseOrDef *MUD = createNewAccess(&I, &BAA);
1532       if (!MUD)
1533         continue;
1534 
1535       if (!Accesses)
1536         Accesses = getOrCreateAccessList(&B);
1537       Accesses->push_back(MUD);
1538       if (isa<MemoryDef>(MUD)) {
1539         InsertIntoDef = true;
1540         if (!Defs)
1541           Defs = getOrCreateDefsList(&B);
1542         Defs->push_back(*MUD);
1543       }
1544     }
1545     if (InsertIntoDef)
1546       DefiningBlocks.insert(&B);
1547   }
1548   placePHINodes(DefiningBlocks);
1549 
1550   // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1551   // filled in with all blocks.
1552   SmallPtrSet<BasicBlock *, 16> Visited;
1553   renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1554 
1555   ClobberWalkerBase<BatchAAResults> WalkerBase(this, &BAA, DT);
1556   CachingWalker<BatchAAResults> WalkerLocal(this, &WalkerBase);
1557   OptimizeUses(this, &WalkerLocal, &BAA, DT).optimizeUses();
1558 
1559   // Mark the uses in unreachable blocks as live on entry, so that they go
1560   // somewhere.
1561   for (auto &BB : F)
1562     if (!Visited.count(&BB))
1563       markUnreachableAsLiveOnEntry(&BB);
1564 }
1565 
1566 MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1567 
1568 MemorySSA::CachingWalker<AliasAnalysis> *MemorySSA::getWalkerImpl() {
1569   if (Walker)
1570     return Walker.get();
1571 
1572   if (!WalkerBase)
1573     WalkerBase =
1574         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1575 
1576   Walker =
1577       std::make_unique<CachingWalker<AliasAnalysis>>(this, WalkerBase.get());
1578   return Walker.get();
1579 }
1580 
1581 MemorySSAWalker *MemorySSA::getSkipSelfWalker() {
1582   if (SkipWalker)
1583     return SkipWalker.get();
1584 
1585   if (!WalkerBase)
1586     WalkerBase =
1587         std::make_unique<ClobberWalkerBase<AliasAnalysis>>(this, AA, DT);
1588 
1589   SkipWalker =
1590       std::make_unique<SkipSelfWalker<AliasAnalysis>>(this, WalkerBase.get());
1591   return SkipWalker.get();
1592  }
1593 
1594 
1595 // This is a helper function used by the creation routines. It places NewAccess
1596 // into the access and defs lists for a given basic block, at the given
1597 // insertion point.
1598 void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1599                                         const BasicBlock *BB,
1600                                         InsertionPlace Point) {
1601   auto *Accesses = getOrCreateAccessList(BB);
1602   if (Point == Beginning) {
1603     // If it's a phi node, it goes first, otherwise, it goes after any phi
1604     // nodes.
1605     if (isa<MemoryPhi>(NewAccess)) {
1606       Accesses->push_front(NewAccess);
1607       auto *Defs = getOrCreateDefsList(BB);
1608       Defs->push_front(*NewAccess);
1609     } else {
1610       auto AI = find_if_not(
1611           *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1612       Accesses->insert(AI, NewAccess);
1613       if (!isa<MemoryUse>(NewAccess)) {
1614         auto *Defs = getOrCreateDefsList(BB);
1615         auto DI = find_if_not(
1616             *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1617         Defs->insert(DI, *NewAccess);
1618       }
1619     }
1620   } else {
1621     Accesses->push_back(NewAccess);
1622     if (!isa<MemoryUse>(NewAccess)) {
1623       auto *Defs = getOrCreateDefsList(BB);
1624       Defs->push_back(*NewAccess);
1625     }
1626   }
1627   BlockNumberingValid.erase(BB);
1628 }
1629 
1630 void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1631                                       AccessList::iterator InsertPt) {
1632   auto *Accesses = getWritableBlockAccesses(BB);
1633   bool WasEnd = InsertPt == Accesses->end();
1634   Accesses->insert(AccessList::iterator(InsertPt), What);
1635   if (!isa<MemoryUse>(What)) {
1636     auto *Defs = getOrCreateDefsList(BB);
1637     // If we got asked to insert at the end, we have an easy job, just shove it
1638     // at the end. If we got asked to insert before an existing def, we also get
1639     // an iterator. If we got asked to insert before a use, we have to hunt for
1640     // the next def.
1641     if (WasEnd) {
1642       Defs->push_back(*What);
1643     } else if (isa<MemoryDef>(InsertPt)) {
1644       Defs->insert(InsertPt->getDefsIterator(), *What);
1645     } else {
1646       while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1647         ++InsertPt;
1648       // Either we found a def, or we are inserting at the end
1649       if (InsertPt == Accesses->end())
1650         Defs->push_back(*What);
1651       else
1652         Defs->insert(InsertPt->getDefsIterator(), *What);
1653     }
1654   }
1655   BlockNumberingValid.erase(BB);
1656 }
1657 
1658 void MemorySSA::prepareForMoveTo(MemoryAccess *What, BasicBlock *BB) {
1659   // Keep it in the lookup tables, remove from the lists
1660   removeFromLists(What, false);
1661 
1662   // Note that moving should implicitly invalidate the optimized state of a
1663   // MemoryUse (and Phis can't be optimized). However, it doesn't do so for a
1664   // MemoryDef.
1665   if (auto *MD = dyn_cast<MemoryDef>(What))
1666     MD->resetOptimized();
1667   What->setBlock(BB);
1668 }
1669 
1670 // Move What before Where in the IR.  The end result is that What will belong to
1671 // the right lists and have the right Block set, but will not otherwise be
1672 // correct. It will not have the right defining access, and if it is a def,
1673 // things below it will not properly be updated.
1674 void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1675                        AccessList::iterator Where) {
1676   prepareForMoveTo(What, BB);
1677   insertIntoListsBefore(What, BB, Where);
1678 }
1679 
1680 void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
1681                        InsertionPlace Point) {
1682   if (isa<MemoryPhi>(What)) {
1683     assert(Point == Beginning &&
1684            "Can only move a Phi at the beginning of the block");
1685     // Update lookup table entry
1686     ValueToMemoryAccess.erase(What->getBlock());
1687     bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1688     (void)Inserted;
1689     assert(Inserted && "Cannot move a Phi to a block that already has one");
1690   }
1691 
1692   prepareForMoveTo(What, BB);
1693   insertIntoListsForBlock(What, BB, Point);
1694 }
1695 
1696 MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1697   assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
1698   MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
1699   // Phi's always are placed at the front of the block.
1700   insertIntoListsForBlock(Phi, BB, Beginning);
1701   ValueToMemoryAccess[BB] = Phi;
1702   return Phi;
1703 }
1704 
1705 MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1706                                                MemoryAccess *Definition,
1707                                                const MemoryUseOrDef *Template,
1708                                                bool CreationMustSucceed) {
1709   assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1710   MemoryUseOrDef *NewAccess = createNewAccess(I, AA, Template);
1711   if (CreationMustSucceed)
1712     assert(NewAccess != nullptr && "Tried to create a memory access for a "
1713                                    "non-memory touching instruction");
1714   if (NewAccess) {
1715     assert((!Definition || !isa<MemoryUse>(Definition)) &&
1716            "A use cannot be a defining access");
1717     NewAccess->setDefiningAccess(Definition);
1718   }
1719   return NewAccess;
1720 }
1721 
1722 // Return true if the instruction has ordering constraints.
1723 // Note specifically that this only considers stores and loads
1724 // because others are still considered ModRef by getModRefInfo.
1725 static inline bool isOrdered(const Instruction *I) {
1726   if (auto *SI = dyn_cast<StoreInst>(I)) {
1727     if (!SI->isUnordered())
1728       return true;
1729   } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1730     if (!LI->isUnordered())
1731       return true;
1732   }
1733   return false;
1734 }
1735 
1736 /// Helper function to create new memory accesses
1737 template <typename AliasAnalysisType>
1738 MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I,
1739                                            AliasAnalysisType *AAP,
1740                                            const MemoryUseOrDef *Template) {
1741   // The assume intrinsic has a control dependency which we model by claiming
1742   // that it writes arbitrarily. Debuginfo intrinsics may be considered
1743   // clobbers when we have a nonstandard AA pipeline. Ignore these fake memory
1744   // dependencies here.
1745   // FIXME: Replace this special casing with a more accurate modelling of
1746   // assume's control dependency.
1747   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1748     switch (II->getIntrinsicID()) {
1749     default:
1750       break;
1751     case Intrinsic::assume:
1752     case Intrinsic::experimental_noalias_scope_decl:
1753       return nullptr;
1754     }
1755   }
1756 
1757   // Using a nonstandard AA pipelines might leave us with unexpected modref
1758   // results for I, so add a check to not model instructions that may not read
1759   // from or write to memory. This is necessary for correctness.
1760   if (!I->mayReadFromMemory() && !I->mayWriteToMemory())
1761     return nullptr;
1762 
1763   bool Def, Use;
1764   if (Template) {
1765     Def = isa<MemoryDef>(Template);
1766     Use = isa<MemoryUse>(Template);
1767 #if !defined(NDEBUG)
1768     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1769     bool DefCheck, UseCheck;
1770     DefCheck = isModSet(ModRef) || isOrdered(I);
1771     UseCheck = isRefSet(ModRef);
1772     assert(Def == DefCheck && (Def || Use == UseCheck) && "Invalid template");
1773 #endif
1774   } else {
1775     // Find out what affect this instruction has on memory.
1776     ModRefInfo ModRef = AAP->getModRefInfo(I, None);
1777     // The isOrdered check is used to ensure that volatiles end up as defs
1778     // (atomics end up as ModRef right now anyway).  Until we separate the
1779     // ordering chain from the memory chain, this enables people to see at least
1780     // some relative ordering to volatiles.  Note that getClobberingMemoryAccess
1781     // will still give an answer that bypasses other volatile loads.  TODO:
1782     // Separate memory aliasing and ordering into two different chains so that
1783     // we can precisely represent both "what memory will this read/write/is
1784     // clobbered by" and "what instructions can I move this past".
1785     Def = isModSet(ModRef) || isOrdered(I);
1786     Use = isRefSet(ModRef);
1787   }
1788 
1789   // It's possible for an instruction to not modify memory at all. During
1790   // construction, we ignore them.
1791   if (!Def && !Use)
1792     return nullptr;
1793 
1794   MemoryUseOrDef *MUD;
1795   if (Def)
1796     MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
1797   else
1798     MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
1799   ValueToMemoryAccess[I] = MUD;
1800   return MUD;
1801 }
1802 
1803 /// Properly remove \p MA from all of MemorySSA's lookup tables.
1804 void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1805   assert(MA->use_empty() &&
1806          "Trying to remove memory access that still has uses");
1807   BlockNumbering.erase(MA);
1808   if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1809     MUD->setDefiningAccess(nullptr);
1810   // Invalidate our walker's cache if necessary
1811   if (!isa<MemoryUse>(MA))
1812     getWalker()->invalidateInfo(MA);
1813 
1814   Value *MemoryInst;
1815   if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
1816     MemoryInst = MUD->getMemoryInst();
1817   else
1818     MemoryInst = MA->getBlock();
1819 
1820   auto VMA = ValueToMemoryAccess.find(MemoryInst);
1821   if (VMA->second == MA)
1822     ValueToMemoryAccess.erase(VMA);
1823 }
1824 
1825 /// Properly remove \p MA from all of MemorySSA's lists.
1826 ///
1827 /// Because of the way the intrusive list and use lists work, it is important to
1828 /// do removal in the right order.
1829 /// ShouldDelete defaults to true, and will cause the memory access to also be
1830 /// deleted, not just removed.
1831 void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
1832   BasicBlock *BB = MA->getBlock();
1833   // The access list owns the reference, so we erase it from the non-owning list
1834   // first.
1835   if (!isa<MemoryUse>(MA)) {
1836     auto DefsIt = PerBlockDefs.find(BB);
1837     std::unique_ptr<DefsList> &Defs = DefsIt->second;
1838     Defs->remove(*MA);
1839     if (Defs->empty())
1840       PerBlockDefs.erase(DefsIt);
1841   }
1842 
1843   // The erase call here will delete it. If we don't want it deleted, we call
1844   // remove instead.
1845   auto AccessIt = PerBlockAccesses.find(BB);
1846   std::unique_ptr<AccessList> &Accesses = AccessIt->second;
1847   if (ShouldDelete)
1848     Accesses->erase(MA);
1849   else
1850     Accesses->remove(MA);
1851 
1852   if (Accesses->empty()) {
1853     PerBlockAccesses.erase(AccessIt);
1854     BlockNumberingValid.erase(BB);
1855   }
1856 }
1857 
1858 void MemorySSA::print(raw_ostream &OS) const {
1859   MemorySSAAnnotatedWriter Writer(this);
1860   F.print(OS, &Writer);
1861 }
1862 
1863 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1864 LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
1865 #endif
1866 
1867 void MemorySSA::verifyMemorySSA() const {
1868   verifyOrderingDominationAndDefUses(F);
1869   verifyDominationNumbers(F);
1870   verifyPrevDefInPhis(F);
1871   // Previously, the verification used to also verify that the clobberingAccess
1872   // cached by MemorySSA is the same as the clobberingAccess found at a later
1873   // query to AA. This does not hold true in general due to the current fragility
1874   // of BasicAA which has arbitrary caps on the things it analyzes before giving
1875   // up. As a result, transformations that are correct, will lead to BasicAA
1876   // returning different Alias answers before and after that transformation.
1877   // Invalidating MemorySSA is not an option, as the results in BasicAA can be so
1878   // random, in the worst case we'd need to rebuild MemorySSA from scratch after
1879   // every transformation, which defeats the purpose of using it. For such an
1880   // example, see test4 added in D51960.
1881 }
1882 
1883 void MemorySSA::verifyPrevDefInPhis(Function &F) const {
1884 #if !defined(NDEBUG) && defined(EXPENSIVE_CHECKS)
1885   for (const BasicBlock &BB : F) {
1886     if (MemoryPhi *Phi = getMemoryAccess(&BB)) {
1887       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1888         auto *Pred = Phi->getIncomingBlock(I);
1889         auto *IncAcc = Phi->getIncomingValue(I);
1890         // If Pred has no unreachable predecessors, get last def looking at
1891         // IDoms. If, while walkings IDoms, any of these has an unreachable
1892         // predecessor, then the incoming def can be any access.
1893         if (auto *DTNode = DT->getNode(Pred)) {
1894           while (DTNode) {
1895             if (auto *DefList = getBlockDefs(DTNode->getBlock())) {
1896               auto *LastAcc = &*(--DefList->end());
1897               assert(LastAcc == IncAcc &&
1898                      "Incorrect incoming access into phi.");
1899               break;
1900             }
1901             DTNode = DTNode->getIDom();
1902           }
1903         } else {
1904           // If Pred has unreachable predecessors, but has at least a Def, the
1905           // incoming access can be the last Def in Pred, or it could have been
1906           // optimized to LoE. After an update, though, the LoE may have been
1907           // replaced by another access, so IncAcc may be any access.
1908           // If Pred has unreachable predecessors and no Defs, incoming access
1909           // should be LoE; However, after an update, it may be any access.
1910         }
1911       }
1912     }
1913   }
1914 #endif
1915 }
1916 
1917 /// Verify that all of the blocks we believe to have valid domination numbers
1918 /// actually have valid domination numbers.
1919 void MemorySSA::verifyDominationNumbers(const Function &F) const {
1920 #ifndef NDEBUG
1921   if (BlockNumberingValid.empty())
1922     return;
1923 
1924   SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1925   for (const BasicBlock &BB : F) {
1926     if (!ValidBlocks.count(&BB))
1927       continue;
1928 
1929     ValidBlocks.erase(&BB);
1930 
1931     const AccessList *Accesses = getBlockAccesses(&BB);
1932     // It's correct to say an empty block has valid numbering.
1933     if (!Accesses)
1934       continue;
1935 
1936     // Block numbering starts at 1.
1937     unsigned long LastNumber = 0;
1938     for (const MemoryAccess &MA : *Accesses) {
1939       auto ThisNumberIter = BlockNumbering.find(&MA);
1940       assert(ThisNumberIter != BlockNumbering.end() &&
1941              "MemoryAccess has no domination number in a valid block!");
1942 
1943       unsigned long ThisNumber = ThisNumberIter->second;
1944       assert(ThisNumber > LastNumber &&
1945              "Domination numbers should be strictly increasing!");
1946       LastNumber = ThisNumber;
1947     }
1948   }
1949 
1950   assert(ValidBlocks.empty() &&
1951          "All valid BasicBlocks should exist in F -- dangling pointers?");
1952 #endif
1953 }
1954 
1955 /// Verify ordering: the order and existence of MemoryAccesses matches the
1956 /// order and existence of memory affecting instructions.
1957 /// Verify domination: each definition dominates all of its uses.
1958 /// Verify def-uses: the immediate use information - walk all the memory
1959 /// accesses and verifying that, for each use, it appears in the appropriate
1960 /// def's use list
1961 void MemorySSA::verifyOrderingDominationAndDefUses(Function &F) const {
1962 #if !defined(NDEBUG)
1963   // Walk all the blocks, comparing what the lookups think and what the access
1964   // lists think, as well as the order in the blocks vs the order in the access
1965   // lists.
1966   SmallVector<MemoryAccess *, 32> ActualAccesses;
1967   SmallVector<MemoryAccess *, 32> ActualDefs;
1968   for (BasicBlock &B : F) {
1969     const AccessList *AL = getBlockAccesses(&B);
1970     const auto *DL = getBlockDefs(&B);
1971     MemoryPhi *Phi = getMemoryAccess(&B);
1972     if (Phi) {
1973       // Verify ordering.
1974       ActualAccesses.push_back(Phi);
1975       ActualDefs.push_back(Phi);
1976       // Verify domination
1977       for (const Use &U : Phi->uses())
1978         assert(dominates(Phi, U) && "Memory PHI does not dominate it's uses");
1979 #if defined(EXPENSIVE_CHECKS)
1980       // Verify def-uses.
1981       assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1982                                           pred_begin(&B), pred_end(&B))) &&
1983              "Incomplete MemoryPhi Node");
1984       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1985         verifyUseInDefs(Phi->getIncomingValue(I), Phi);
1986         assert(is_contained(predecessors(&B), Phi->getIncomingBlock(I)) &&
1987                "Incoming phi block not a block predecessor");
1988       }
1989 #endif
1990     }
1991 
1992     for (Instruction &I : B) {
1993       MemoryUseOrDef *MA = getMemoryAccess(&I);
1994       assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1995              "We have memory affecting instructions "
1996              "in this block but they are not in the "
1997              "access list or defs list");
1998       if (MA) {
1999         // Verify ordering.
2000         ActualAccesses.push_back(MA);
2001         if (MemoryAccess *MD = dyn_cast<MemoryDef>(MA)) {
2002           // Verify ordering.
2003           ActualDefs.push_back(MA);
2004           // Verify domination.
2005           for (const Use &U : MD->uses())
2006             assert(dominates(MD, U) &&
2007                    "Memory Def does not dominate it's uses");
2008         }
2009 #if defined(EXPENSIVE_CHECKS)
2010         // Verify def-uses.
2011         verifyUseInDefs(MA->getDefiningAccess(), MA);
2012 #endif
2013       }
2014     }
2015     // Either we hit the assert, really have no accesses, or we have both
2016     // accesses and an access list. Same with defs.
2017     if (!AL && !DL)
2018       continue;
2019     // Verify ordering.
2020     assert(AL->size() == ActualAccesses.size() &&
2021            "We don't have the same number of accesses in the block as on the "
2022            "access list");
2023     assert((DL || ActualDefs.size() == 0) &&
2024            "Either we should have a defs list, or we should have no defs");
2025     assert((!DL || DL->size() == ActualDefs.size()) &&
2026            "We don't have the same number of defs in the block as on the "
2027            "def list");
2028     auto ALI = AL->begin();
2029     auto AAI = ActualAccesses.begin();
2030     while (ALI != AL->end() && AAI != ActualAccesses.end()) {
2031       assert(&*ALI == *AAI && "Not the same accesses in the same order");
2032       ++ALI;
2033       ++AAI;
2034     }
2035     ActualAccesses.clear();
2036     if (DL) {
2037       auto DLI = DL->begin();
2038       auto ADI = ActualDefs.begin();
2039       while (DLI != DL->end() && ADI != ActualDefs.end()) {
2040         assert(&*DLI == *ADI && "Not the same defs in the same order");
2041         ++DLI;
2042         ++ADI;
2043       }
2044     }
2045     ActualDefs.clear();
2046   }
2047 #endif
2048 }
2049 
2050 /// Verify the def-use lists in MemorySSA, by verifying that \p Use
2051 /// appears in the use list of \p Def.
2052 void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
2053 #ifndef NDEBUG
2054   // The live on entry use may cause us to get a NULL def here
2055   if (!Def)
2056     assert(isLiveOnEntryDef(Use) &&
2057            "Null def but use not point to live on entry def");
2058   else
2059     assert(is_contained(Def->users(), Use) &&
2060            "Did not find use in def's use list");
2061 #endif
2062 }
2063 
2064 /// Perform a local numbering on blocks so that instruction ordering can be
2065 /// determined in constant time.
2066 /// TODO: We currently just number in order.  If we numbered by N, we could
2067 /// allow at least N-1 sequences of insertBefore or insertAfter (and at least
2068 /// log2(N) sequences of mixed before and after) without needing to invalidate
2069 /// the numbering.
2070 void MemorySSA::renumberBlock(const BasicBlock *B) const {
2071   // The pre-increment ensures the numbers really start at 1.
2072   unsigned long CurrentNumber = 0;
2073   const AccessList *AL = getBlockAccesses(B);
2074   assert(AL != nullptr && "Asking to renumber an empty block");
2075   for (const auto &I : *AL)
2076     BlockNumbering[&I] = ++CurrentNumber;
2077   BlockNumberingValid.insert(B);
2078 }
2079 
2080 /// Determine, for two memory accesses in the same block,
2081 /// whether \p Dominator dominates \p Dominatee.
2082 /// \returns True if \p Dominator dominates \p Dominatee.
2083 bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
2084                                  const MemoryAccess *Dominatee) const {
2085   const BasicBlock *DominatorBlock = Dominator->getBlock();
2086 
2087   assert((DominatorBlock == Dominatee->getBlock()) &&
2088          "Asking for local domination when accesses are in different blocks!");
2089   // A node dominates itself.
2090   if (Dominatee == Dominator)
2091     return true;
2092 
2093   // When Dominatee is defined on function entry, it is not dominated by another
2094   // memory access.
2095   if (isLiveOnEntryDef(Dominatee))
2096     return false;
2097 
2098   // When Dominator is defined on function entry, it dominates the other memory
2099   // access.
2100   if (isLiveOnEntryDef(Dominator))
2101     return true;
2102 
2103   if (!BlockNumberingValid.count(DominatorBlock))
2104     renumberBlock(DominatorBlock);
2105 
2106   unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
2107   // All numbers start with 1
2108   assert(DominatorNum != 0 && "Block was not numbered properly");
2109   unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
2110   assert(DominateeNum != 0 && "Block was not numbered properly");
2111   return DominatorNum < DominateeNum;
2112 }
2113 
2114 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2115                           const MemoryAccess *Dominatee) const {
2116   if (Dominator == Dominatee)
2117     return true;
2118 
2119   if (isLiveOnEntryDef(Dominatee))
2120     return false;
2121 
2122   if (Dominator->getBlock() != Dominatee->getBlock())
2123     return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
2124   return locallyDominates(Dominator, Dominatee);
2125 }
2126 
2127 bool MemorySSA::dominates(const MemoryAccess *Dominator,
2128                           const Use &Dominatee) const {
2129   if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
2130     BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
2131     // The def must dominate the incoming block of the phi.
2132     if (UseBB != Dominator->getBlock())
2133       return DT->dominates(Dominator->getBlock(), UseBB);
2134     // If the UseBB and the DefBB are the same, compare locally.
2135     return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
2136   }
2137   // If it's not a PHI node use, the normal dominates can already handle it.
2138   return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
2139 }
2140 
2141 const static char LiveOnEntryStr[] = "liveOnEntry";
2142 
2143 void MemoryAccess::print(raw_ostream &OS) const {
2144   switch (getValueID()) {
2145   case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
2146   case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
2147   case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
2148   }
2149   llvm_unreachable("invalid value id");
2150 }
2151 
2152 void MemoryDef::print(raw_ostream &OS) const {
2153   MemoryAccess *UO = getDefiningAccess();
2154 
2155   auto printID = [&OS](MemoryAccess *A) {
2156     if (A && A->getID())
2157       OS << A->getID();
2158     else
2159       OS << LiveOnEntryStr;
2160   };
2161 
2162   OS << getID() << " = MemoryDef(";
2163   printID(UO);
2164   OS << ")";
2165 
2166   if (isOptimized()) {
2167     OS << "->";
2168     printID(getOptimized());
2169 
2170     if (Optional<AliasResult> AR = getOptimizedAccessType())
2171       OS << " " << *AR;
2172   }
2173 }
2174 
2175 void MemoryPhi::print(raw_ostream &OS) const {
2176   ListSeparator LS(",");
2177   OS << getID() << " = MemoryPhi(";
2178   for (const auto &Op : operands()) {
2179     BasicBlock *BB = getIncomingBlock(Op);
2180     MemoryAccess *MA = cast<MemoryAccess>(Op);
2181 
2182     OS << LS << '{';
2183     if (BB->hasName())
2184       OS << BB->getName();
2185     else
2186       BB->printAsOperand(OS, false);
2187     OS << ',';
2188     if (unsigned ID = MA->getID())
2189       OS << ID;
2190     else
2191       OS << LiveOnEntryStr;
2192     OS << '}';
2193   }
2194   OS << ')';
2195 }
2196 
2197 void MemoryUse::print(raw_ostream &OS) const {
2198   MemoryAccess *UO = getDefiningAccess();
2199   OS << "MemoryUse(";
2200   if (UO && UO->getID())
2201     OS << UO->getID();
2202   else
2203     OS << LiveOnEntryStr;
2204   OS << ')';
2205 
2206   if (Optional<AliasResult> AR = getOptimizedAccessType())
2207     OS << " " << *AR;
2208 }
2209 
2210 void MemoryAccess::dump() const {
2211 // Cannot completely remove virtual function even in release mode.
2212 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2213   print(dbgs());
2214   dbgs() << "\n";
2215 #endif
2216 }
2217 
2218 char MemorySSAPrinterLegacyPass::ID = 0;
2219 
2220 MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
2221   initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
2222 }
2223 
2224 void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
2225   AU.setPreservesAll();
2226   AU.addRequired<MemorySSAWrapperPass>();
2227 }
2228 
2229 class DOTFuncMSSAInfo {
2230 private:
2231   const Function &F;
2232   MemorySSAAnnotatedWriter MSSAWriter;
2233 
2234 public:
2235   DOTFuncMSSAInfo(const Function &F, MemorySSA &MSSA)
2236       : F(F), MSSAWriter(&MSSA) {}
2237 
2238   const Function *getFunction() { return &F; }
2239   MemorySSAAnnotatedWriter &getWriter() { return MSSAWriter; }
2240 };
2241 
2242 namespace llvm {
2243 
2244 template <>
2245 struct GraphTraits<DOTFuncMSSAInfo *> : public GraphTraits<const BasicBlock *> {
2246   static NodeRef getEntryNode(DOTFuncMSSAInfo *CFGInfo) {
2247     return &(CFGInfo->getFunction()->getEntryBlock());
2248   }
2249 
2250   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
2251   using nodes_iterator = pointer_iterator<Function::const_iterator>;
2252 
2253   static nodes_iterator nodes_begin(DOTFuncMSSAInfo *CFGInfo) {
2254     return nodes_iterator(CFGInfo->getFunction()->begin());
2255   }
2256 
2257   static nodes_iterator nodes_end(DOTFuncMSSAInfo *CFGInfo) {
2258     return nodes_iterator(CFGInfo->getFunction()->end());
2259   }
2260 
2261   static size_t size(DOTFuncMSSAInfo *CFGInfo) {
2262     return CFGInfo->getFunction()->size();
2263   }
2264 };
2265 
2266 template <>
2267 struct DOTGraphTraits<DOTFuncMSSAInfo *> : public DefaultDOTGraphTraits {
2268 
2269   DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
2270 
2271   static std::string getGraphName(DOTFuncMSSAInfo *CFGInfo) {
2272     return "MSSA CFG for '" + CFGInfo->getFunction()->getName().str() +
2273            "' function";
2274   }
2275 
2276   std::string getNodeLabel(const BasicBlock *Node, DOTFuncMSSAInfo *CFGInfo) {
2277     return DOTGraphTraits<DOTFuncInfo *>::getCompleteNodeLabel(
2278         Node, nullptr,
2279         [CFGInfo](raw_string_ostream &OS, const BasicBlock &BB) -> void {
2280           BB.print(OS, &CFGInfo->getWriter(), true, true);
2281         },
2282         [](std::string &S, unsigned &I, unsigned Idx) -> void {
2283           std::string Str = S.substr(I, Idx - I);
2284           StringRef SR = Str;
2285           if (SR.count(" = MemoryDef(") || SR.count(" = MemoryPhi(") ||
2286               SR.count("MemoryUse("))
2287             return;
2288           DOTGraphTraits<DOTFuncInfo *>::eraseComment(S, I, Idx);
2289         });
2290   }
2291 
2292   static std::string getEdgeSourceLabel(const BasicBlock *Node,
2293                                         const_succ_iterator I) {
2294     return DOTGraphTraits<DOTFuncInfo *>::getEdgeSourceLabel(Node, I);
2295   }
2296 
2297   /// Display the raw branch weights from PGO.
2298   std::string getEdgeAttributes(const BasicBlock *Node, const_succ_iterator I,
2299                                 DOTFuncMSSAInfo *CFGInfo) {
2300     return "";
2301   }
2302 
2303   std::string getNodeAttributes(const BasicBlock *Node,
2304                                 DOTFuncMSSAInfo *CFGInfo) {
2305     return getNodeLabel(Node, CFGInfo).find(';') != std::string::npos
2306                ? "style=filled, fillcolor=lightpink"
2307                : "";
2308   }
2309 };
2310 
2311 } // namespace llvm
2312 
2313 bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
2314   auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2315   if (DotCFGMSSA != "") {
2316     DOTFuncMSSAInfo CFGInfo(F, MSSA);
2317     WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2318   } else
2319     MSSA.print(dbgs());
2320 
2321   if (VerifyMemorySSA)
2322     MSSA.verifyMemorySSA();
2323   return false;
2324 }
2325 
2326 AnalysisKey MemorySSAAnalysis::Key;
2327 
2328 MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2329                                                  FunctionAnalysisManager &AM) {
2330   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2331   auto &AA = AM.getResult<AAManager>(F);
2332   return MemorySSAAnalysis::Result(std::make_unique<MemorySSA>(F, &AA, &DT));
2333 }
2334 
2335 bool MemorySSAAnalysis::Result::invalidate(
2336     Function &F, const PreservedAnalyses &PA,
2337     FunctionAnalysisManager::Invalidator &Inv) {
2338   auto PAC = PA.getChecker<MemorySSAAnalysis>();
2339   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
2340          Inv.invalidate<AAManager>(F, PA) ||
2341          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
2342 }
2343 
2344 PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2345                                             FunctionAnalysisManager &AM) {
2346   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2347   if (DotCFGMSSA != "") {
2348     DOTFuncMSSAInfo CFGInfo(F, MSSA);
2349     WriteGraph(&CFGInfo, "", false, "MSSA", DotCFGMSSA);
2350   } else {
2351     OS << "MemorySSA for function: " << F.getName() << "\n";
2352     MSSA.print(OS);
2353   }
2354 
2355   return PreservedAnalyses::all();
2356 }
2357 
2358 PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2359                                              FunctionAnalysisManager &AM) {
2360   AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
2361 
2362   return PreservedAnalyses::all();
2363 }
2364 
2365 char MemorySSAWrapperPass::ID = 0;
2366 
2367 MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2368   initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2369 }
2370 
2371 void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2372 
2373 void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
2374   AU.setPreservesAll();
2375   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2376   AU.addRequiredTransitive<AAResultsWrapperPass>();
2377 }
2378 
2379 bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2380   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2381   auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2382   MSSA.reset(new MemorySSA(F, &AA, &DT));
2383   return false;
2384 }
2385 
2386 void MemorySSAWrapperPass::verifyAnalysis() const {
2387   if (VerifyMemorySSA)
2388     MSSA->verifyMemorySSA();
2389 }
2390 
2391 void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
2392   MSSA->print(OS);
2393 }
2394 
2395 MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2396 
2397 /// Walk the use-def chains starting at \p StartingAccess and find
2398 /// the MemoryAccess that actually clobbers Loc.
2399 ///
2400 /// \returns our clobbering memory access
2401 template <typename AliasAnalysisType>
2402 MemoryAccess *
2403 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2404     MemoryAccess *StartingAccess, const MemoryLocation &Loc,
2405     unsigned &UpwardWalkLimit) {
2406   assert(!isa<MemoryUse>(StartingAccess) && "Use cannot be defining access");
2407 
2408   Instruction *I = nullptr;
2409   if (auto *StartingUseOrDef = dyn_cast<MemoryUseOrDef>(StartingAccess)) {
2410     if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2411       return StartingUseOrDef;
2412 
2413     I = StartingUseOrDef->getMemoryInst();
2414 
2415     // Conservatively, fences are always clobbers, so don't perform the walk if
2416     // we hit a fence.
2417     if (!isa<CallBase>(I) && I->isFenceLike())
2418       return StartingUseOrDef;
2419   }
2420 
2421   UpwardsMemoryQuery Q;
2422   Q.OriginalAccess = StartingAccess;
2423   Q.StartingLoc = Loc;
2424   Q.Inst = nullptr;
2425   Q.IsCall = false;
2426 
2427   // Unlike the other function, do not walk to the def of a def, because we are
2428   // handed something we already believe is the clobbering access.
2429   // We never set SkipSelf to true in Q in this method.
2430   MemoryAccess *Clobber =
2431       Walker.findClobber(StartingAccess, Q, UpwardWalkLimit);
2432   LLVM_DEBUG({
2433     dbgs() << "Clobber starting at access " << *StartingAccess << "\n";
2434     if (I)
2435       dbgs() << "  for instruction " << *I << "\n";
2436     dbgs() << "  is " << *Clobber << "\n";
2437   });
2438   return Clobber;
2439 }
2440 
2441 template <typename AliasAnalysisType>
2442 MemoryAccess *
2443 MemorySSA::ClobberWalkerBase<AliasAnalysisType>::getClobberingMemoryAccessBase(
2444     MemoryAccess *MA, unsigned &UpwardWalkLimit, bool SkipSelf) {
2445   auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2446   // If this is a MemoryPhi, we can't do anything.
2447   if (!StartingAccess)
2448     return MA;
2449 
2450   bool IsOptimized = false;
2451 
2452   // If this is an already optimized use or def, return the optimized result.
2453   // Note: Currently, we store the optimized def result in a separate field,
2454   // since we can't use the defining access.
2455   if (StartingAccess->isOptimized()) {
2456     if (!SkipSelf || !isa<MemoryDef>(StartingAccess))
2457       return StartingAccess->getOptimized();
2458     IsOptimized = true;
2459   }
2460 
2461   const Instruction *I = StartingAccess->getMemoryInst();
2462   // We can't sanely do anything with a fence, since they conservatively clobber
2463   // all memory, and have no locations to get pointers from to try to
2464   // disambiguate.
2465   if (!isa<CallBase>(I) && I->isFenceLike())
2466     return StartingAccess;
2467 
2468   UpwardsMemoryQuery Q(I, StartingAccess);
2469 
2470   if (isUseTriviallyOptimizableToLiveOnEntry(*Walker.getAA(), I)) {
2471     MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
2472     StartingAccess->setOptimized(LiveOnEntry);
2473     StartingAccess->setOptimizedAccessType(None);
2474     return LiveOnEntry;
2475   }
2476 
2477   MemoryAccess *OptimizedAccess;
2478   if (!IsOptimized) {
2479     // Start with the thing we already think clobbers this location
2480     MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2481 
2482     // At this point, DefiningAccess may be the live on entry def.
2483     // If it is, we will not get a better result.
2484     if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
2485       StartingAccess->setOptimized(DefiningAccess);
2486       StartingAccess->setOptimizedAccessType(None);
2487       return DefiningAccess;
2488     }
2489 
2490     OptimizedAccess = Walker.findClobber(DefiningAccess, Q, UpwardWalkLimit);
2491     StartingAccess->setOptimized(OptimizedAccess);
2492     if (MSSA->isLiveOnEntryDef(OptimizedAccess))
2493       StartingAccess->setOptimizedAccessType(None);
2494     else if (Q.AR && *Q.AR == AliasResult::MustAlias)
2495       StartingAccess->setOptimizedAccessType(
2496           AliasResult(AliasResult::MustAlias));
2497   } else
2498     OptimizedAccess = StartingAccess->getOptimized();
2499 
2500   LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2501   LLVM_DEBUG(dbgs() << *StartingAccess << "\n");
2502   LLVM_DEBUG(dbgs() << "Optimized Memory SSA clobber for " << *I << " is ");
2503   LLVM_DEBUG(dbgs() << *OptimizedAccess << "\n");
2504 
2505   MemoryAccess *Result;
2506   if (SkipSelf && isa<MemoryPhi>(OptimizedAccess) &&
2507       isa<MemoryDef>(StartingAccess) && UpwardWalkLimit) {
2508     assert(isa<MemoryDef>(Q.OriginalAccess));
2509     Q.SkipSelfAccess = true;
2510     Result = Walker.findClobber(OptimizedAccess, Q, UpwardWalkLimit);
2511   } else
2512     Result = OptimizedAccess;
2513 
2514   LLVM_DEBUG(dbgs() << "Result Memory SSA clobber [SkipSelf = " << SkipSelf);
2515   LLVM_DEBUG(dbgs() << "] for " << *I << " is " << *Result << "\n");
2516 
2517   return Result;
2518 }
2519 
2520 MemoryAccess *
2521 DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2522   if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2523     return Use->getDefiningAccess();
2524   return MA;
2525 }
2526 
2527 MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
2528     MemoryAccess *StartingAccess, const MemoryLocation &) {
2529   if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2530     return Use->getDefiningAccess();
2531   return StartingAccess;
2532 }
2533 
2534 void MemoryPhi::deleteMe(DerivedUser *Self) {
2535   delete static_cast<MemoryPhi *>(Self);
2536 }
2537 
2538 void MemoryDef::deleteMe(DerivedUser *Self) {
2539   delete static_cast<MemoryDef *>(Self);
2540 }
2541 
2542 void MemoryUse::deleteMe(DerivedUser *Self) {
2543   delete static_cast<MemoryUse *>(Self);
2544 }
2545 
2546 bool upward_defs_iterator::IsGuaranteedLoopInvariant(Value *Ptr) const {
2547   auto IsGuaranteedLoopInvariantBase = [](Value *Ptr) {
2548     Ptr = Ptr->stripPointerCasts();
2549     if (!isa<Instruction>(Ptr))
2550       return true;
2551     return isa<AllocaInst>(Ptr);
2552   };
2553 
2554   Ptr = Ptr->stripPointerCasts();
2555   if (auto *I = dyn_cast<Instruction>(Ptr)) {
2556     if (I->getParent()->isEntryBlock())
2557       return true;
2558   }
2559   if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2560     return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
2561            GEP->hasAllConstantIndices();
2562   }
2563   return IsGuaranteedLoopInvariantBase(Ptr);
2564 }
2565