1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/TargetLibraryInfo.h"
83 #include "llvm/Analysis/ValueTracking.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/Constant.h"
89 #include "llvm/IR/ConstantRange.h"
90 #include "llvm/IR/Constants.h"
91 #include "llvm/IR/DataLayout.h"
92 #include "llvm/IR/DerivedTypes.h"
93 #include "llvm/IR/Dominators.h"
94 #include "llvm/IR/Function.h"
95 #include "llvm/IR/GlobalAlias.h"
96 #include "llvm/IR/GlobalValue.h"
97 #include "llvm/IR/InstIterator.h"
98 #include "llvm/IR/InstrTypes.h"
99 #include "llvm/IR/Instruction.h"
100 #include "llvm/IR/Instructions.h"
101 #include "llvm/IR/IntrinsicInst.h"
102 #include "llvm/IR/Intrinsics.h"
103 #include "llvm/IR/LLVMContext.h"
104 #include "llvm/IR/Operator.h"
105 #include "llvm/IR/PatternMatch.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/IR/Verifier.h"
111 #include "llvm/InitializePasses.h"
112 #include "llvm/Pass.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/Compiler.h"
116 #include "llvm/Support/Debug.h"
117 #include "llvm/Support/ErrorHandling.h"
118 #include "llvm/Support/KnownBits.h"
119 #include "llvm/Support/SaveAndRestore.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include <algorithm>
122 #include <cassert>
123 #include <climits>
124 #include <cstdint>
125 #include <cstdlib>
126 #include <map>
127 #include <memory>
128 #include <numeric>
129 #include <optional>
130 #include <tuple>
131 #include <utility>
132 #include <vector>
133 
134 using namespace llvm;
135 using namespace PatternMatch;
136 
137 #define DEBUG_TYPE "scalar-evolution"
138 
139 STATISTIC(NumExitCountsComputed,
140           "Number of loop exits with predictable exit counts");
141 STATISTIC(NumExitCountsNotComputed,
142           "Number of loop exits without predictable exit counts");
143 STATISTIC(NumBruteForceTripCountsComputed,
144           "Number of loops with trip counts computed by force");
145 
146 #ifdef EXPENSIVE_CHECKS
147 bool llvm::VerifySCEV = true;
148 #else
149 bool llvm::VerifySCEV = false;
150 #endif
151 
152 static cl::opt<unsigned>
153     MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
154                             cl::desc("Maximum number of iterations SCEV will "
155                                      "symbolically execute a constant "
156                                      "derived loop"),
157                             cl::init(100));
158 
159 static cl::opt<bool, true> VerifySCEVOpt(
160     "verify-scev", cl::Hidden, cl::location(VerifySCEV),
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 
166 static cl::opt<bool> VerifyIR(
167     "scev-verify-ir", cl::Hidden,
168     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
169     cl::init(false));
170 
171 static cl::opt<unsigned> MulOpsInlineThreshold(
172     "scev-mulops-inline-threshold", cl::Hidden,
173     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
174     cl::init(32));
175 
176 static cl::opt<unsigned> AddOpsInlineThreshold(
177     "scev-addops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining addition operands into a SCEV"),
179     cl::init(500));
180 
181 static cl::opt<unsigned> MaxSCEVCompareDepth(
182     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
183     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
184     cl::init(32));
185 
186 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
187     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
189     cl::init(2));
190 
191 static cl::opt<unsigned> MaxValueCompareDepth(
192     "scalar-evolution-max-value-compare-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive value complexity comparisons"),
194     cl::init(2));
195 
196 static cl::opt<unsigned>
197     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
198                   cl::desc("Maximum depth of recursive arithmetics"),
199                   cl::init(32));
200 
201 static cl::opt<unsigned> MaxConstantEvolvingDepth(
202     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
203     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
204 
205 static cl::opt<unsigned>
206     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
207                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
208                  cl::init(8));
209 
210 static cl::opt<unsigned>
211     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
212                   cl::desc("Max coefficients in AddRec during evolving"),
213                   cl::init(8));
214 
215 static cl::opt<unsigned>
216     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
217                   cl::desc("Size of the expression which is considered huge"),
218                   cl::init(4096));
219 
220 static cl::opt<unsigned> RangeIterThreshold(
221     "scev-range-iter-threshold", cl::Hidden,
222     cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
223     cl::init(32));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
237     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
238     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239              "Phi strongly connected components"),
240     cl::init(8));
241 
242 static cl::opt<bool>
243     EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden,
244                             cl::desc("Handle <= and >= in finite loops"),
245                             cl::init(true));
246 
247 static cl::opt<bool> UseContextForNoWrapFlagInference(
248     "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden,
249     cl::desc("Infer nuw/nsw flags using context where suitable"),
250     cl::init(true));
251 
252 //===----------------------------------------------------------------------===//
253 //                           SCEV class definitions
254 //===----------------------------------------------------------------------===//
255 
256 //===----------------------------------------------------------------------===//
257 // Implementation of the SCEV class.
258 //
259 
260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
261 LLVM_DUMP_METHOD void SCEV::dump() const {
262   print(dbgs());
263   dbgs() << '\n';
264 }
265 #endif
266 
267 void SCEV::print(raw_ostream &OS) const {
268   switch (getSCEVType()) {
269   case scConstant:
270     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
271     return;
272   case scVScale:
273     OS << "vscale";
274     return;
275   case scPtrToInt: {
276     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
277     const SCEV *Op = PtrToInt->getOperand();
278     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
279        << *PtrToInt->getType() << ")";
280     return;
281   }
282   case scTruncate: {
283     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
284     const SCEV *Op = Trunc->getOperand();
285     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
286        << *Trunc->getType() << ")";
287     return;
288   }
289   case scZeroExtend: {
290     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
291     const SCEV *Op = ZExt->getOperand();
292     OS << "(zext " << *Op->getType() << " " << *Op << " to "
293        << *ZExt->getType() << ")";
294     return;
295   }
296   case scSignExtend: {
297     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
298     const SCEV *Op = SExt->getOperand();
299     OS << "(sext " << *Op->getType() << " " << *Op << " to "
300        << *SExt->getType() << ")";
301     return;
302   }
303   case scAddRecExpr: {
304     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
305     OS << "{" << *AR->getOperand(0);
306     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
307       OS << ",+," << *AR->getOperand(i);
308     OS << "}<";
309     if (AR->hasNoUnsignedWrap())
310       OS << "nuw><";
311     if (AR->hasNoSignedWrap())
312       OS << "nsw><";
313     if (AR->hasNoSelfWrap() &&
314         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
315       OS << "nw><";
316     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
317     OS << ">";
318     return;
319   }
320   case scAddExpr:
321   case scMulExpr:
322   case scUMaxExpr:
323   case scSMaxExpr:
324   case scUMinExpr:
325   case scSMinExpr:
326   case scSequentialUMinExpr: {
327     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
328     const char *OpStr = nullptr;
329     switch (NAry->getSCEVType()) {
330     case scAddExpr: OpStr = " + "; break;
331     case scMulExpr: OpStr = " * "; break;
332     case scUMaxExpr: OpStr = " umax "; break;
333     case scSMaxExpr: OpStr = " smax "; break;
334     case scUMinExpr:
335       OpStr = " umin ";
336       break;
337     case scSMinExpr:
338       OpStr = " smin ";
339       break;
340     case scSequentialUMinExpr:
341       OpStr = " umin_seq ";
342       break;
343     default:
344       llvm_unreachable("There are no other nary expression types.");
345     }
346     OS << "(";
347     ListSeparator LS(OpStr);
348     for (const SCEV *Op : NAry->operands())
349       OS << LS << *Op;
350     OS << ")";
351     switch (NAry->getSCEVType()) {
352     case scAddExpr:
353     case scMulExpr:
354       if (NAry->hasNoUnsignedWrap())
355         OS << "<nuw>";
356       if (NAry->hasNoSignedWrap())
357         OS << "<nsw>";
358       break;
359     default:
360       // Nothing to print for other nary expressions.
361       break;
362     }
363     return;
364   }
365   case scUDivExpr: {
366     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
367     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
368     return;
369   }
370   case scUnknown:
371     cast<SCEVUnknown>(this)->getValue()->printAsOperand(OS, false);
372     return;
373   case scCouldNotCompute:
374     OS << "***COULDNOTCOMPUTE***";
375     return;
376   }
377   llvm_unreachable("Unknown SCEV kind!");
378 }
379 
380 Type *SCEV::getType() const {
381   switch (getSCEVType()) {
382   case scConstant:
383     return cast<SCEVConstant>(this)->getType();
384   case scVScale:
385     return cast<SCEVVScale>(this)->getType();
386   case scPtrToInt:
387   case scTruncate:
388   case scZeroExtend:
389   case scSignExtend:
390     return cast<SCEVCastExpr>(this)->getType();
391   case scAddRecExpr:
392     return cast<SCEVAddRecExpr>(this)->getType();
393   case scMulExpr:
394     return cast<SCEVMulExpr>(this)->getType();
395   case scUMaxExpr:
396   case scSMaxExpr:
397   case scUMinExpr:
398   case scSMinExpr:
399     return cast<SCEVMinMaxExpr>(this)->getType();
400   case scSequentialUMinExpr:
401     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
402   case scAddExpr:
403     return cast<SCEVAddExpr>(this)->getType();
404   case scUDivExpr:
405     return cast<SCEVUDivExpr>(this)->getType();
406   case scUnknown:
407     return cast<SCEVUnknown>(this)->getType();
408   case scCouldNotCompute:
409     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
410   }
411   llvm_unreachable("Unknown SCEV kind!");
412 }
413 
414 ArrayRef<const SCEV *> SCEV::operands() const {
415   switch (getSCEVType()) {
416   case scConstant:
417   case scVScale:
418   case scUnknown:
419     return {};
420   case scPtrToInt:
421   case scTruncate:
422   case scZeroExtend:
423   case scSignExtend:
424     return cast<SCEVCastExpr>(this)->operands();
425   case scAddRecExpr:
426   case scAddExpr:
427   case scMulExpr:
428   case scUMaxExpr:
429   case scSMaxExpr:
430   case scUMinExpr:
431   case scSMinExpr:
432   case scSequentialUMinExpr:
433     return cast<SCEVNAryExpr>(this)->operands();
434   case scUDivExpr:
435     return cast<SCEVUDivExpr>(this)->operands();
436   case scCouldNotCompute:
437     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
438   }
439   llvm_unreachable("Unknown SCEV kind!");
440 }
441 
442 bool SCEV::isZero() const {
443   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
444     return SC->getValue()->isZero();
445   return false;
446 }
447 
448 bool SCEV::isOne() const {
449   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
450     return SC->getValue()->isOne();
451   return false;
452 }
453 
454 bool SCEV::isAllOnesValue() const {
455   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
456     return SC->getValue()->isMinusOne();
457   return false;
458 }
459 
460 bool SCEV::isNonConstantNegative() const {
461   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
462   if (!Mul) return false;
463 
464   // If there is a constant factor, it will be first.
465   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
466   if (!SC) return false;
467 
468   // Return true if the value is negative, this matches things like (-42 * V).
469   return SC->getAPInt().isNegative();
470 }
471 
472 SCEVCouldNotCompute::SCEVCouldNotCompute() :
473   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
474 
475 bool SCEVCouldNotCompute::classof(const SCEV *S) {
476   return S->getSCEVType() == scCouldNotCompute;
477 }
478 
479 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
480   FoldingSetNodeID ID;
481   ID.AddInteger(scConstant);
482   ID.AddPointer(V);
483   void *IP = nullptr;
484   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
485   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
486   UniqueSCEVs.InsertNode(S, IP);
487   return S;
488 }
489 
490 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
491   return getConstant(ConstantInt::get(getContext(), Val));
492 }
493 
494 const SCEV *
495 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
496   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
497   return getConstant(ConstantInt::get(ITy, V, isSigned));
498 }
499 
500 const SCEV *ScalarEvolution::getVScale(Type *Ty) {
501   FoldingSetNodeID ID;
502   ID.AddInteger(scVScale);
503   ID.AddPointer(Ty);
504   void *IP = nullptr;
505   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
506     return S;
507   SCEV *S = new (SCEVAllocator) SCEVVScale(ID.Intern(SCEVAllocator), Ty);
508   UniqueSCEVs.InsertNode(S, IP);
509   return S;
510 }
511 
512 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
513                            const SCEV *op, Type *ty)
514     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
515 
516 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
517                                    Type *ITy)
518     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
519   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
520          "Must be a non-bit-width-changing pointer-to-integer cast!");
521 }
522 
523 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
524                                            SCEVTypes SCEVTy, const SCEV *op,
525                                            Type *ty)
526     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
527 
528 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
529                                    Type *ty)
530     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
531   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
532          "Cannot truncate non-integer value!");
533 }
534 
535 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
536                                        const SCEV *op, Type *ty)
537     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
538   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
539          "Cannot zero extend non-integer value!");
540 }
541 
542 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
543                                        const SCEV *op, Type *ty)
544     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
545   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
546          "Cannot sign extend non-integer value!");
547 }
548 
549 void SCEVUnknown::deleted() {
550   // Clear this SCEVUnknown from various maps.
551   SE->forgetMemoizedResults(this);
552 
553   // Remove this SCEVUnknown from the uniquing map.
554   SE->UniqueSCEVs.RemoveNode(this);
555 
556   // Release the value.
557   setValPtr(nullptr);
558 }
559 
560 void SCEVUnknown::allUsesReplacedWith(Value *New) {
561   // Clear this SCEVUnknown from various maps.
562   SE->forgetMemoizedResults(this);
563 
564   // Remove this SCEVUnknown from the uniquing map.
565   SE->UniqueSCEVs.RemoveNode(this);
566 
567   // Replace the value pointer in case someone is still using this SCEVUnknown.
568   setValPtr(New);
569 }
570 
571 //===----------------------------------------------------------------------===//
572 //                               SCEV Utilities
573 //===----------------------------------------------------------------------===//
574 
575 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
576 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
577 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
578 /// have been previously deemed to be "equally complex" by this routine.  It is
579 /// intended to avoid exponential time complexity in cases like:
580 ///
581 ///   %a = f(%x, %y)
582 ///   %b = f(%a, %a)
583 ///   %c = f(%b, %b)
584 ///
585 ///   %d = f(%x, %y)
586 ///   %e = f(%d, %d)
587 ///   %f = f(%e, %e)
588 ///
589 ///   CompareValueComplexity(%f, %c)
590 ///
591 /// Since we do not continue running this routine on expression trees once we
592 /// have seen unequal values, there is no need to track them in the cache.
593 static int
594 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
595                        const LoopInfo *const LI, Value *LV, Value *RV,
596                        unsigned Depth) {
597   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
598     return 0;
599 
600   // Order pointer values after integer values. This helps SCEVExpander form
601   // GEPs.
602   bool LIsPointer = LV->getType()->isPointerTy(),
603        RIsPointer = RV->getType()->isPointerTy();
604   if (LIsPointer != RIsPointer)
605     return (int)LIsPointer - (int)RIsPointer;
606 
607   // Compare getValueID values.
608   unsigned LID = LV->getValueID(), RID = RV->getValueID();
609   if (LID != RID)
610     return (int)LID - (int)RID;
611 
612   // Sort arguments by their position.
613   if (const auto *LA = dyn_cast<Argument>(LV)) {
614     const auto *RA = cast<Argument>(RV);
615     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
616     return (int)LArgNo - (int)RArgNo;
617   }
618 
619   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
620     const auto *RGV = cast<GlobalValue>(RV);
621 
622     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
623       auto LT = GV->getLinkage();
624       return !(GlobalValue::isPrivateLinkage(LT) ||
625                GlobalValue::isInternalLinkage(LT));
626     };
627 
628     // Use the names to distinguish the two values, but only if the
629     // names are semantically important.
630     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
631       return LGV->getName().compare(RGV->getName());
632   }
633 
634   // For instructions, compare their loop depth, and their operand count.  This
635   // is pretty loose.
636   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
637     const auto *RInst = cast<Instruction>(RV);
638 
639     // Compare loop depths.
640     const BasicBlock *LParent = LInst->getParent(),
641                      *RParent = RInst->getParent();
642     if (LParent != RParent) {
643       unsigned LDepth = LI->getLoopDepth(LParent),
644                RDepth = LI->getLoopDepth(RParent);
645       if (LDepth != RDepth)
646         return (int)LDepth - (int)RDepth;
647     }
648 
649     // Compare the number of operands.
650     unsigned LNumOps = LInst->getNumOperands(),
651              RNumOps = RInst->getNumOperands();
652     if (LNumOps != RNumOps)
653       return (int)LNumOps - (int)RNumOps;
654 
655     for (unsigned Idx : seq(0u, LNumOps)) {
656       int Result =
657           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
658                                  RInst->getOperand(Idx), Depth + 1);
659       if (Result != 0)
660         return Result;
661     }
662   }
663 
664   EqCacheValue.unionSets(LV, RV);
665   return 0;
666 }
667 
668 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
669 // than RHS, respectively. A three-way result allows recursive comparisons to be
670 // more efficient.
671 // If the max analysis depth was reached, return std::nullopt, assuming we do
672 // not know if they are equivalent for sure.
673 static std::optional<int>
674 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
675                       EquivalenceClasses<const Value *> &EqCacheValue,
676                       const LoopInfo *const LI, const SCEV *LHS,
677                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
678   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
679   if (LHS == RHS)
680     return 0;
681 
682   // Primarily, sort the SCEVs by their getSCEVType().
683   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
684   if (LType != RType)
685     return (int)LType - (int)RType;
686 
687   if (EqCacheSCEV.isEquivalent(LHS, RHS))
688     return 0;
689 
690   if (Depth > MaxSCEVCompareDepth)
691     return std::nullopt;
692 
693   // Aside from the getSCEVType() ordering, the particular ordering
694   // isn't very important except that it's beneficial to be consistent,
695   // so that (a + b) and (b + a) don't end up as different expressions.
696   switch (LType) {
697   case scUnknown: {
698     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
699     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
700 
701     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
702                                    RU->getValue(), Depth + 1);
703     if (X == 0)
704       EqCacheSCEV.unionSets(LHS, RHS);
705     return X;
706   }
707 
708   case scConstant: {
709     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
710     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
711 
712     // Compare constant values.
713     const APInt &LA = LC->getAPInt();
714     const APInt &RA = RC->getAPInt();
715     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
716     if (LBitWidth != RBitWidth)
717       return (int)LBitWidth - (int)RBitWidth;
718     return LA.ult(RA) ? -1 : 1;
719   }
720 
721   case scVScale: {
722     const auto *LTy = cast<IntegerType>(cast<SCEVVScale>(LHS)->getType());
723     const auto *RTy = cast<IntegerType>(cast<SCEVVScale>(RHS)->getType());
724     return LTy->getBitWidth() - RTy->getBitWidth();
725   }
726 
727   case scAddRecExpr: {
728     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
729     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
730 
731     // There is always a dominance between two recs that are used by one SCEV,
732     // so we can safely sort recs by loop header dominance. We require such
733     // order in getAddExpr.
734     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
735     if (LLoop != RLoop) {
736       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
737       assert(LHead != RHead && "Two loops share the same header?");
738       if (DT.dominates(LHead, RHead))
739         return 1;
740       assert(DT.dominates(RHead, LHead) &&
741              "No dominance between recurrences used by one SCEV?");
742       return -1;
743     }
744 
745     [[fallthrough]];
746   }
747 
748   case scTruncate:
749   case scZeroExtend:
750   case scSignExtend:
751   case scPtrToInt:
752   case scAddExpr:
753   case scMulExpr:
754   case scUDivExpr:
755   case scSMaxExpr:
756   case scUMaxExpr:
757   case scSMinExpr:
758   case scUMinExpr:
759   case scSequentialUMinExpr: {
760     ArrayRef<const SCEV *> LOps = LHS->operands();
761     ArrayRef<const SCEV *> ROps = RHS->operands();
762 
763     // Lexicographically compare n-ary-like expressions.
764     unsigned LNumOps = LOps.size(), RNumOps = ROps.size();
765     if (LNumOps != RNumOps)
766       return (int)LNumOps - (int)RNumOps;
767 
768     for (unsigned i = 0; i != LNumOps; ++i) {
769       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LOps[i],
770                                      ROps[i], DT, Depth + 1);
771       if (X != 0)
772         return X;
773     }
774     EqCacheSCEV.unionSets(LHS, RHS);
775     return 0;
776   }
777 
778   case scCouldNotCompute:
779     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
780   }
781   llvm_unreachable("Unknown SCEV kind!");
782 }
783 
784 /// Given a list of SCEV objects, order them by their complexity, and group
785 /// objects of the same complexity together by value.  When this routine is
786 /// finished, we know that any duplicates in the vector are consecutive and that
787 /// complexity is monotonically increasing.
788 ///
789 /// Note that we go take special precautions to ensure that we get deterministic
790 /// results from this routine.  In other words, we don't want the results of
791 /// this to depend on where the addresses of various SCEV objects happened to
792 /// land in memory.
793 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
794                               LoopInfo *LI, DominatorTree &DT) {
795   if (Ops.size() < 2) return;  // Noop
796 
797   EquivalenceClasses<const SCEV *> EqCacheSCEV;
798   EquivalenceClasses<const Value *> EqCacheValue;
799 
800   // Whether LHS has provably less complexity than RHS.
801   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
802     auto Complexity =
803         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
804     return Complexity && *Complexity < 0;
805   };
806   if (Ops.size() == 2) {
807     // This is the common case, which also happens to be trivially simple.
808     // Special case it.
809     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
810     if (IsLessComplex(RHS, LHS))
811       std::swap(LHS, RHS);
812     return;
813   }
814 
815   // Do the rough sort by complexity.
816   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
817     return IsLessComplex(LHS, RHS);
818   });
819 
820   // Now that we are sorted by complexity, group elements of the same
821   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
822   // be extremely short in practice.  Note that we take this approach because we
823   // do not want to depend on the addresses of the objects we are grouping.
824   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
825     const SCEV *S = Ops[i];
826     unsigned Complexity = S->getSCEVType();
827 
828     // If there are any objects of the same complexity and same value as this
829     // one, group them.
830     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
831       if (Ops[j] == S) { // Found a duplicate.
832         // Move it to immediately after i'th element.
833         std::swap(Ops[i+1], Ops[j]);
834         ++i;   // no need to rescan it.
835         if (i == e-2) return;  // Done!
836       }
837     }
838   }
839 }
840 
841 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
842 /// least HugeExprThreshold nodes).
843 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
844   return any_of(Ops, [](const SCEV *S) {
845     return S->getExpressionSize() >= HugeExprThreshold;
846   });
847 }
848 
849 //===----------------------------------------------------------------------===//
850 //                      Simple SCEV method implementations
851 //===----------------------------------------------------------------------===//
852 
853 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
854 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
855                                        ScalarEvolution &SE,
856                                        Type *ResultTy) {
857   // Handle the simplest case efficiently.
858   if (K == 1)
859     return SE.getTruncateOrZeroExtend(It, ResultTy);
860 
861   // We are using the following formula for BC(It, K):
862   //
863   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
864   //
865   // Suppose, W is the bitwidth of the return value.  We must be prepared for
866   // overflow.  Hence, we must assure that the result of our computation is
867   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
868   // safe in modular arithmetic.
869   //
870   // However, this code doesn't use exactly that formula; the formula it uses
871   // is something like the following, where T is the number of factors of 2 in
872   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
873   // exponentiation:
874   //
875   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
876   //
877   // This formula is trivially equivalent to the previous formula.  However,
878   // this formula can be implemented much more efficiently.  The trick is that
879   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
880   // arithmetic.  To do exact division in modular arithmetic, all we have
881   // to do is multiply by the inverse.  Therefore, this step can be done at
882   // width W.
883   //
884   // The next issue is how to safely do the division by 2^T.  The way this
885   // is done is by doing the multiplication step at a width of at least W + T
886   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
887   // when we perform the division by 2^T (which is equivalent to a right shift
888   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
889   // truncated out after the division by 2^T.
890   //
891   // In comparison to just directly using the first formula, this technique
892   // is much more efficient; using the first formula requires W * K bits,
893   // but this formula less than W + K bits. Also, the first formula requires
894   // a division step, whereas this formula only requires multiplies and shifts.
895   //
896   // It doesn't matter whether the subtraction step is done in the calculation
897   // width or the input iteration count's width; if the subtraction overflows,
898   // the result must be zero anyway.  We prefer here to do it in the width of
899   // the induction variable because it helps a lot for certain cases; CodeGen
900   // isn't smart enough to ignore the overflow, which leads to much less
901   // efficient code if the width of the subtraction is wider than the native
902   // register width.
903   //
904   // (It's possible to not widen at all by pulling out factors of 2 before
905   // the multiplication; for example, K=2 can be calculated as
906   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
907   // extra arithmetic, so it's not an obvious win, and it gets
908   // much more complicated for K > 3.)
909 
910   // Protection from insane SCEVs; this bound is conservative,
911   // but it probably doesn't matter.
912   if (K > 1000)
913     return SE.getCouldNotCompute();
914 
915   unsigned W = SE.getTypeSizeInBits(ResultTy);
916 
917   // Calculate K! / 2^T and T; we divide out the factors of two before
918   // multiplying for calculating K! / 2^T to avoid overflow.
919   // Other overflow doesn't matter because we only care about the bottom
920   // W bits of the result.
921   APInt OddFactorial(W, 1);
922   unsigned T = 1;
923   for (unsigned i = 3; i <= K; ++i) {
924     APInt Mult(W, i);
925     unsigned TwoFactors = Mult.countr_zero();
926     T += TwoFactors;
927     Mult.lshrInPlace(TwoFactors);
928     OddFactorial *= Mult;
929   }
930 
931   // We need at least W + T bits for the multiplication step
932   unsigned CalculationBits = W + T;
933 
934   // Calculate 2^T, at width T+W.
935   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
936 
937   // Calculate the multiplicative inverse of K! / 2^T;
938   // this multiplication factor will perform the exact division by
939   // K! / 2^T.
940   APInt Mod = APInt::getSignedMinValue(W+1);
941   APInt MultiplyFactor = OddFactorial.zext(W+1);
942   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
943   MultiplyFactor = MultiplyFactor.trunc(W);
944 
945   // Calculate the product, at width T+W
946   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
947                                                       CalculationBits);
948   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
949   for (unsigned i = 1; i != K; ++i) {
950     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
951     Dividend = SE.getMulExpr(Dividend,
952                              SE.getTruncateOrZeroExtend(S, CalculationTy));
953   }
954 
955   // Divide by 2^T
956   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
957 
958   // Truncate the result, and divide by K! / 2^T.
959 
960   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
961                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
962 }
963 
964 /// Return the value of this chain of recurrences at the specified iteration
965 /// number.  We can evaluate this recurrence by multiplying each element in the
966 /// chain by the binomial coefficient corresponding to it.  In other words, we
967 /// can evaluate {A,+,B,+,C,+,D} as:
968 ///
969 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
970 ///
971 /// where BC(It, k) stands for binomial coefficient.
972 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
973                                                 ScalarEvolution &SE) const {
974   return evaluateAtIteration(operands(), It, SE);
975 }
976 
977 const SCEV *
978 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
979                                     const SCEV *It, ScalarEvolution &SE) {
980   assert(Operands.size() > 0);
981   const SCEV *Result = Operands[0];
982   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
983     // The computation is correct in the face of overflow provided that the
984     // multiplication is performed _after_ the evaluation of the binomial
985     // coefficient.
986     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
987     if (isa<SCEVCouldNotCompute>(Coeff))
988       return Coeff;
989 
990     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
991   }
992   return Result;
993 }
994 
995 //===----------------------------------------------------------------------===//
996 //                    SCEV Expression folder implementations
997 //===----------------------------------------------------------------------===//
998 
999 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1000                                                      unsigned Depth) {
1001   assert(Depth <= 1 &&
1002          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1003 
1004   // We could be called with an integer-typed operands during SCEV rewrites.
1005   // Since the operand is an integer already, just perform zext/trunc/self cast.
1006   if (!Op->getType()->isPointerTy())
1007     return Op;
1008 
1009   // What would be an ID for such a SCEV cast expression?
1010   FoldingSetNodeID ID;
1011   ID.AddInteger(scPtrToInt);
1012   ID.AddPointer(Op);
1013 
1014   void *IP = nullptr;
1015 
1016   // Is there already an expression for such a cast?
1017   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1018     return S;
1019 
1020   // It isn't legal for optimizations to construct new ptrtoint expressions
1021   // for non-integral pointers.
1022   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1023     return getCouldNotCompute();
1024 
1025   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1026 
1027   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1028   // is sufficiently wide to represent all possible pointer values.
1029   // We could theoretically teach SCEV to truncate wider pointers, but
1030   // that isn't implemented for now.
1031   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1032       getDataLayout().getTypeSizeInBits(IntPtrTy))
1033     return getCouldNotCompute();
1034 
1035   // If not, is this expression something we can't reduce any further?
1036   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1037     // Perform some basic constant folding. If the operand of the ptr2int cast
1038     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1039     // left as-is), but produce a zero constant.
1040     // NOTE: We could handle a more general case, but lack motivational cases.
1041     if (isa<ConstantPointerNull>(U->getValue()))
1042       return getZero(IntPtrTy);
1043 
1044     // Create an explicit cast node.
1045     // We can reuse the existing insert position since if we get here,
1046     // we won't have made any changes which would invalidate it.
1047     SCEV *S = new (SCEVAllocator)
1048         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1049     UniqueSCEVs.InsertNode(S, IP);
1050     registerUser(S, Op);
1051     return S;
1052   }
1053 
1054   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1055                        "non-SCEVUnknown's.");
1056 
1057   // Otherwise, we've got some expression that is more complex than just a
1058   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1059   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1060   // only, and the expressions must otherwise be integer-typed.
1061   // So sink the cast down to the SCEVUnknown's.
1062 
1063   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1064   /// which computes a pointer-typed value, and rewrites the whole expression
1065   /// tree so that *all* the computations are done on integers, and the only
1066   /// pointer-typed operands in the expression are SCEVUnknown.
1067   class SCEVPtrToIntSinkingRewriter
1068       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1069     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1070 
1071   public:
1072     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1073 
1074     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1075       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1076       return Rewriter.visit(Scev);
1077     }
1078 
1079     const SCEV *visit(const SCEV *S) {
1080       Type *STy = S->getType();
1081       // If the expression is not pointer-typed, just keep it as-is.
1082       if (!STy->isPointerTy())
1083         return S;
1084       // Else, recursively sink the cast down into it.
1085       return Base::visit(S);
1086     }
1087 
1088     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1089       SmallVector<const SCEV *, 2> Operands;
1090       bool Changed = false;
1091       for (const auto *Op : Expr->operands()) {
1092         Operands.push_back(visit(Op));
1093         Changed |= Op != Operands.back();
1094       }
1095       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1096     }
1097 
1098     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1099       SmallVector<const SCEV *, 2> Operands;
1100       bool Changed = false;
1101       for (const auto *Op : Expr->operands()) {
1102         Operands.push_back(visit(Op));
1103         Changed |= Op != Operands.back();
1104       }
1105       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1106     }
1107 
1108     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1109       assert(Expr->getType()->isPointerTy() &&
1110              "Should only reach pointer-typed SCEVUnknown's.");
1111       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1112     }
1113   };
1114 
1115   // And actually perform the cast sinking.
1116   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1117   assert(IntOp->getType()->isIntegerTy() &&
1118          "We must have succeeded in sinking the cast, "
1119          "and ending up with an integer-typed expression!");
1120   return IntOp;
1121 }
1122 
1123 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1124   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1125 
1126   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1127   if (isa<SCEVCouldNotCompute>(IntOp))
1128     return IntOp;
1129 
1130   return getTruncateOrZeroExtend(IntOp, Ty);
1131 }
1132 
1133 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1134                                              unsigned Depth) {
1135   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1136          "This is not a truncating conversion!");
1137   assert(isSCEVable(Ty) &&
1138          "This is not a conversion to a SCEVable type!");
1139   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1140   Ty = getEffectiveSCEVType(Ty);
1141 
1142   FoldingSetNodeID ID;
1143   ID.AddInteger(scTruncate);
1144   ID.AddPointer(Op);
1145   ID.AddPointer(Ty);
1146   void *IP = nullptr;
1147   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1148 
1149   // Fold if the operand is constant.
1150   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1151     return getConstant(
1152       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1153 
1154   // trunc(trunc(x)) --> trunc(x)
1155   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1156     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1157 
1158   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1159   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1160     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1161 
1162   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1163   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1164     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1165 
1166   if (Depth > MaxCastDepth) {
1167     SCEV *S =
1168         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1169     UniqueSCEVs.InsertNode(S, IP);
1170     registerUser(S, Op);
1171     return S;
1172   }
1173 
1174   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1175   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1176   // if after transforming we have at most one truncate, not counting truncates
1177   // that replace other casts.
1178   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1179     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1180     SmallVector<const SCEV *, 4> Operands;
1181     unsigned numTruncs = 0;
1182     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1183          ++i) {
1184       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1185       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1186           isa<SCEVTruncateExpr>(S))
1187         numTruncs++;
1188       Operands.push_back(S);
1189     }
1190     if (numTruncs < 2) {
1191       if (isa<SCEVAddExpr>(Op))
1192         return getAddExpr(Operands);
1193       if (isa<SCEVMulExpr>(Op))
1194         return getMulExpr(Operands);
1195       llvm_unreachable("Unexpected SCEV type for Op.");
1196     }
1197     // Although we checked in the beginning that ID is not in the cache, it is
1198     // possible that during recursion and different modification ID was inserted
1199     // into the cache. So if we find it, just return it.
1200     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1201       return S;
1202   }
1203 
1204   // If the input value is a chrec scev, truncate the chrec's operands.
1205   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1206     SmallVector<const SCEV *, 4> Operands;
1207     for (const SCEV *Op : AddRec->operands())
1208       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1209     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1210   }
1211 
1212   // Return zero if truncating to known zeros.
1213   uint32_t MinTrailingZeros = getMinTrailingZeros(Op);
1214   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1215     return getZero(Ty);
1216 
1217   // The cast wasn't folded; create an explicit cast node. We can reuse
1218   // the existing insert position since if we get here, we won't have
1219   // made any changes which would invalidate it.
1220   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1221                                                  Op, Ty);
1222   UniqueSCEVs.InsertNode(S, IP);
1223   registerUser(S, Op);
1224   return S;
1225 }
1226 
1227 // Get the limit of a recurrence such that incrementing by Step cannot cause
1228 // signed overflow as long as the value of the recurrence within the
1229 // loop does not exceed this limit before incrementing.
1230 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1231                                                  ICmpInst::Predicate *Pred,
1232                                                  ScalarEvolution *SE) {
1233   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1234   if (SE->isKnownPositive(Step)) {
1235     *Pred = ICmpInst::ICMP_SLT;
1236     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1237                            SE->getSignedRangeMax(Step));
1238   }
1239   if (SE->isKnownNegative(Step)) {
1240     *Pred = ICmpInst::ICMP_SGT;
1241     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1242                            SE->getSignedRangeMin(Step));
1243   }
1244   return nullptr;
1245 }
1246 
1247 // Get the limit of a recurrence such that incrementing by Step cannot cause
1248 // unsigned overflow as long as the value of the recurrence within the loop does
1249 // not exceed this limit before incrementing.
1250 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1251                                                    ICmpInst::Predicate *Pred,
1252                                                    ScalarEvolution *SE) {
1253   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1254   *Pred = ICmpInst::ICMP_ULT;
1255 
1256   return SE->getConstant(APInt::getMinValue(BitWidth) -
1257                          SE->getUnsignedRangeMax(Step));
1258 }
1259 
1260 namespace {
1261 
1262 struct ExtendOpTraitsBase {
1263   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1264                                                           unsigned);
1265 };
1266 
1267 // Used to make code generic over signed and unsigned overflow.
1268 template <typename ExtendOp> struct ExtendOpTraits {
1269   // Members present:
1270   //
1271   // static const SCEV::NoWrapFlags WrapType;
1272   //
1273   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1274   //
1275   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1276   //                                           ICmpInst::Predicate *Pred,
1277   //                                           ScalarEvolution *SE);
1278 };
1279 
1280 template <>
1281 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1282   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1283 
1284   static const GetExtendExprTy GetExtendExpr;
1285 
1286   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1287                                              ICmpInst::Predicate *Pred,
1288                                              ScalarEvolution *SE) {
1289     return getSignedOverflowLimitForStep(Step, Pred, SE);
1290   }
1291 };
1292 
1293 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1294     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1295 
1296 template <>
1297 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1298   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1299 
1300   static const GetExtendExprTy GetExtendExpr;
1301 
1302   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1303                                              ICmpInst::Predicate *Pred,
1304                                              ScalarEvolution *SE) {
1305     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1306   }
1307 };
1308 
1309 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1310     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1311 
1312 } // end anonymous namespace
1313 
1314 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1315 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1316 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1317 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1318 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1319 // expression "Step + sext/zext(PreIncAR)" is congruent with
1320 // "sext/zext(PostIncAR)"
1321 template <typename ExtendOpTy>
1322 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1323                                         ScalarEvolution *SE, unsigned Depth) {
1324   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1325   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1326 
1327   const Loop *L = AR->getLoop();
1328   const SCEV *Start = AR->getStart();
1329   const SCEV *Step = AR->getStepRecurrence(*SE);
1330 
1331   // Check for a simple looking step prior to loop entry.
1332   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1333   if (!SA)
1334     return nullptr;
1335 
1336   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1337   // subtraction is expensive. For this purpose, perform a quick and dirty
1338   // difference, by checking for Step in the operand list.
1339   SmallVector<const SCEV *, 4> DiffOps;
1340   for (const SCEV *Op : SA->operands())
1341     if (Op != Step)
1342       DiffOps.push_back(Op);
1343 
1344   if (DiffOps.size() == SA->getNumOperands())
1345     return nullptr;
1346 
1347   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1348   // `Step`:
1349 
1350   // 1. NSW/NUW flags on the step increment.
1351   auto PreStartFlags =
1352     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1353   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1354   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1355       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1356 
1357   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1358   // "S+X does not sign/unsign-overflow".
1359   //
1360 
1361   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1362   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1363       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1364     return PreStart;
1365 
1366   // 2. Direct overflow check on the step operation's expression.
1367   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1368   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1369   const SCEV *OperandExtendedStart =
1370       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1371                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1372   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1373     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1374       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1375       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1376       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1377       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1378     }
1379     return PreStart;
1380   }
1381 
1382   // 3. Loop precondition.
1383   ICmpInst::Predicate Pred;
1384   const SCEV *OverflowLimit =
1385       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1386 
1387   if (OverflowLimit &&
1388       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1389     return PreStart;
1390 
1391   return nullptr;
1392 }
1393 
1394 // Get the normalized zero or sign extended expression for this AddRec's Start.
1395 template <typename ExtendOpTy>
1396 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1397                                         ScalarEvolution *SE,
1398                                         unsigned Depth) {
1399   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1400 
1401   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1402   if (!PreStart)
1403     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1404 
1405   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1406                                              Depth),
1407                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1408 }
1409 
1410 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1411 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1412 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1413 //
1414 // Formally:
1415 //
1416 //     {S,+,X} == {S-T,+,X} + T
1417 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1418 //
1419 // If ({S-T,+,X} + T) does not overflow  ... (1)
1420 //
1421 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1422 //
1423 // If {S-T,+,X} does not overflow  ... (2)
1424 //
1425 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1426 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1427 //
1428 // If (S-T)+T does not overflow  ... (3)
1429 //
1430 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1431 //      == {Ext(S),+,Ext(X)} == LHS
1432 //
1433 // Thus, if (1), (2) and (3) are true for some T, then
1434 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1435 //
1436 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1437 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1438 // to check for (1) and (2).
1439 //
1440 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1441 // is `Delta` (defined below).
1442 template <typename ExtendOpTy>
1443 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1444                                                 const SCEV *Step,
1445                                                 const Loop *L) {
1446   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1447 
1448   // We restrict `Start` to a constant to prevent SCEV from spending too much
1449   // time here.  It is correct (but more expensive) to continue with a
1450   // non-constant `Start` and do a general SCEV subtraction to compute
1451   // `PreStart` below.
1452   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1453   if (!StartC)
1454     return false;
1455 
1456   APInt StartAI = StartC->getAPInt();
1457 
1458   for (unsigned Delta : {-2, -1, 1, 2}) {
1459     const SCEV *PreStart = getConstant(StartAI - Delta);
1460 
1461     FoldingSetNodeID ID;
1462     ID.AddInteger(scAddRecExpr);
1463     ID.AddPointer(PreStart);
1464     ID.AddPointer(Step);
1465     ID.AddPointer(L);
1466     void *IP = nullptr;
1467     const auto *PreAR =
1468       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1469 
1470     // Give up if we don't already have the add recurrence we need because
1471     // actually constructing an add recurrence is relatively expensive.
1472     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1473       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1474       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1475       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1476           DeltaS, &Pred, this);
1477       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1478         return true;
1479     }
1480   }
1481 
1482   return false;
1483 }
1484 
1485 // Finds an integer D for an expression (C + x + y + ...) such that the top
1486 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1487 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1488 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1489 // the (C + x + y + ...) expression is \p WholeAddExpr.
1490 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1491                                             const SCEVConstant *ConstantTerm,
1492                                             const SCEVAddExpr *WholeAddExpr) {
1493   const APInt &C = ConstantTerm->getAPInt();
1494   const unsigned BitWidth = C.getBitWidth();
1495   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1496   uint32_t TZ = BitWidth;
1497   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1498     TZ = std::min(TZ, SE.getMinTrailingZeros(WholeAddExpr->getOperand(I)));
1499   if (TZ) {
1500     // Set D to be as many least significant bits of C as possible while still
1501     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1502     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1503   }
1504   return APInt(BitWidth, 0);
1505 }
1506 
1507 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1508 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1509 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1510 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1511 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1512                                             const APInt &ConstantStart,
1513                                             const SCEV *Step) {
1514   const unsigned BitWidth = ConstantStart.getBitWidth();
1515   const uint32_t TZ = SE.getMinTrailingZeros(Step);
1516   if (TZ)
1517     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1518                          : ConstantStart;
1519   return APInt(BitWidth, 0);
1520 }
1521 
1522 static void insertFoldCacheEntry(
1523     const ScalarEvolution::FoldID &ID, const SCEV *S,
1524     DenseMap<ScalarEvolution::FoldID, const SCEV *> &FoldCache,
1525     DenseMap<const SCEV *, SmallVector<ScalarEvolution::FoldID, 2>>
1526         &FoldCacheUser) {
1527   auto I = FoldCache.insert({ID, S});
1528   if (!I.second) {
1529     // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1530     // entry.
1531     auto &UserIDs = FoldCacheUser[I.first->second];
1532     assert(count(UserIDs, ID) == 1 && "unexpected duplicates in UserIDs");
1533     for (unsigned I = 0; I != UserIDs.size(); ++I)
1534       if (UserIDs[I] == ID) {
1535         std::swap(UserIDs[I], UserIDs.back());
1536         break;
1537       }
1538     UserIDs.pop_back();
1539     I.first->second = S;
1540   }
1541   auto R = FoldCacheUser.insert({S, {}});
1542   R.first->second.push_back(ID);
1543 }
1544 
1545 const SCEV *
1546 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1547   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1548          "This is not an extending conversion!");
1549   assert(isSCEVable(Ty) &&
1550          "This is not a conversion to a SCEVable type!");
1551   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1552   Ty = getEffectiveSCEVType(Ty);
1553 
1554   FoldID ID(scZeroExtend, Op, Ty);
1555   auto Iter = FoldCache.find(ID);
1556   if (Iter != FoldCache.end())
1557     return Iter->second;
1558 
1559   const SCEV *S = getZeroExtendExprImpl(Op, Ty, Depth);
1560   if (!isa<SCEVZeroExtendExpr>(S))
1561     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1562   return S;
1563 }
1564 
1565 const SCEV *ScalarEvolution::getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
1566                                                    unsigned Depth) {
1567   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1568          "This is not an extending conversion!");
1569   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1570   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1571 
1572   // Fold if the operand is constant.
1573   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1574     return getConstant(
1575       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1576 
1577   // zext(zext(x)) --> zext(x)
1578   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1579     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1580 
1581   // Before doing any expensive analysis, check to see if we've already
1582   // computed a SCEV for this Op and Ty.
1583   FoldingSetNodeID ID;
1584   ID.AddInteger(scZeroExtend);
1585   ID.AddPointer(Op);
1586   ID.AddPointer(Ty);
1587   void *IP = nullptr;
1588   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1589   if (Depth > MaxCastDepth) {
1590     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1591                                                      Op, Ty);
1592     UniqueSCEVs.InsertNode(S, IP);
1593     registerUser(S, Op);
1594     return S;
1595   }
1596 
1597   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1598   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1599     // It's possible the bits taken off by the truncate were all zero bits. If
1600     // so, we should be able to simplify this further.
1601     const SCEV *X = ST->getOperand();
1602     ConstantRange CR = getUnsignedRange(X);
1603     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1604     unsigned NewBits = getTypeSizeInBits(Ty);
1605     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1606             CR.zextOrTrunc(NewBits)))
1607       return getTruncateOrZeroExtend(X, Ty, Depth);
1608   }
1609 
1610   // If the input value is a chrec scev, and we can prove that the value
1611   // did not overflow the old, smaller, value, we can zero extend all of the
1612   // operands (often constants).  This allows analysis of something like
1613   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1614   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1615     if (AR->isAffine()) {
1616       const SCEV *Start = AR->getStart();
1617       const SCEV *Step = AR->getStepRecurrence(*this);
1618       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1619       const Loop *L = AR->getLoop();
1620 
1621       // If we have special knowledge that this addrec won't overflow,
1622       // we don't need to do any further analysis.
1623       if (AR->hasNoUnsignedWrap()) {
1624         Start =
1625             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1626         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1627         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1628       }
1629 
1630       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1631       // Note that this serves two purposes: It filters out loops that are
1632       // simply not analyzable, and it covers the case where this code is
1633       // being called from within backedge-taken count analysis, such that
1634       // attempting to ask for the backedge-taken count would likely result
1635       // in infinite recursion. In the later case, the analysis code will
1636       // cope with a conservative value, and it will take care to purge
1637       // that value once it has finished.
1638       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1639       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1640         // Manually compute the final value for AR, checking for overflow.
1641 
1642         // Check whether the backedge-taken count can be losslessly casted to
1643         // the addrec's type. The count is always unsigned.
1644         const SCEV *CastedMaxBECount =
1645             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1646         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1647             CastedMaxBECount, MaxBECount->getType(), Depth);
1648         if (MaxBECount == RecastedMaxBECount) {
1649           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1650           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1651           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1652                                         SCEV::FlagAnyWrap, Depth + 1);
1653           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1654                                                           SCEV::FlagAnyWrap,
1655                                                           Depth + 1),
1656                                                WideTy, Depth + 1);
1657           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1658           const SCEV *WideMaxBECount =
1659             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1660           const SCEV *OperandExtendedAdd =
1661             getAddExpr(WideStart,
1662                        getMulExpr(WideMaxBECount,
1663                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1664                                   SCEV::FlagAnyWrap, Depth + 1),
1665                        SCEV::FlagAnyWrap, Depth + 1);
1666           if (ZAdd == OperandExtendedAdd) {
1667             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1668             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1669             // Return the expression with the addrec on the outside.
1670             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1671                                                              Depth + 1);
1672             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1673             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1674           }
1675           // Similar to above, only this time treat the step value as signed.
1676           // This covers loops that count down.
1677           OperandExtendedAdd =
1678             getAddExpr(WideStart,
1679                        getMulExpr(WideMaxBECount,
1680                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1681                                   SCEV::FlagAnyWrap, Depth + 1),
1682                        SCEV::FlagAnyWrap, Depth + 1);
1683           if (ZAdd == OperandExtendedAdd) {
1684             // Cache knowledge of AR NW, which is propagated to this AddRec.
1685             // Negative step causes unsigned wrap, but it still can't self-wrap.
1686             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1687             // Return the expression with the addrec on the outside.
1688             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1689                                                              Depth + 1);
1690             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1691             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1692           }
1693         }
1694       }
1695 
1696       // Normally, in the cases we can prove no-overflow via a
1697       // backedge guarding condition, we can also compute a backedge
1698       // taken count for the loop.  The exceptions are assumptions and
1699       // guards present in the loop -- SCEV is not great at exploiting
1700       // these to compute max backedge taken counts, but can still use
1701       // these to prove lack of overflow.  Use this fact to avoid
1702       // doing extra work that may not pay off.
1703       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1704           !AC.assumptions().empty()) {
1705 
1706         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1707         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1708         if (AR->hasNoUnsignedWrap()) {
1709           // Same as nuw case above - duplicated here to avoid a compile time
1710           // issue.  It's not clear that the order of checks does matter, but
1711           // it's one of two issue possible causes for a change which was
1712           // reverted.  Be conservative for the moment.
1713           Start =
1714               getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1715           Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1716           return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1717         }
1718 
1719         // For a negative step, we can extend the operands iff doing so only
1720         // traverses values in the range zext([0,UINT_MAX]).
1721         if (isKnownNegative(Step)) {
1722           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1723                                       getSignedRangeMin(Step));
1724           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1725               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1726             // Cache knowledge of AR NW, which is propagated to this
1727             // AddRec.  Negative step causes unsigned wrap, but it
1728             // still can't self-wrap.
1729             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1730             // Return the expression with the addrec on the outside.
1731             Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1732                                                              Depth + 1);
1733             Step = getSignExtendExpr(Step, Ty, Depth + 1);
1734             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1735           }
1736         }
1737       }
1738 
1739       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1740       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1741       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1742       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1743         const APInt &C = SC->getAPInt();
1744         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1745         if (D != 0) {
1746           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1747           const SCEV *SResidual =
1748               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1749           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1750           return getAddExpr(SZExtD, SZExtR,
1751                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1752                             Depth + 1);
1753         }
1754       }
1755 
1756       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1757         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1758         Start =
1759             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1);
1760         Step = getZeroExtendExpr(Step, Ty, Depth + 1);
1761         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
1762       }
1763     }
1764 
1765   // zext(A % B) --> zext(A) % zext(B)
1766   {
1767     const SCEV *LHS;
1768     const SCEV *RHS;
1769     if (matchURem(Op, LHS, RHS))
1770       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1771                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1772   }
1773 
1774   // zext(A / B) --> zext(A) / zext(B).
1775   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1776     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1777                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1778 
1779   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1780     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1781     if (SA->hasNoUnsignedWrap()) {
1782       // If the addition does not unsign overflow then we can, by definition,
1783       // commute the zero extension with the addition operation.
1784       SmallVector<const SCEV *, 4> Ops;
1785       for (const auto *Op : SA->operands())
1786         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1787       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1788     }
1789 
1790     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1791     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1792     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1793     //
1794     // Often address arithmetics contain expressions like
1795     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1796     // This transformation is useful while proving that such expressions are
1797     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1798     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1799       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1800       if (D != 0) {
1801         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1802         const SCEV *SResidual =
1803             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1804         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1805         return getAddExpr(SZExtD, SZExtR,
1806                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1807                           Depth + 1);
1808       }
1809     }
1810   }
1811 
1812   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1813     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1814     if (SM->hasNoUnsignedWrap()) {
1815       // If the multiply does not unsign overflow then we can, by definition,
1816       // commute the zero extension with the multiply operation.
1817       SmallVector<const SCEV *, 4> Ops;
1818       for (const auto *Op : SM->operands())
1819         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1820       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1821     }
1822 
1823     // zext(2^K * (trunc X to iN)) to iM ->
1824     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1825     //
1826     // Proof:
1827     //
1828     //     zext(2^K * (trunc X to iN)) to iM
1829     //   = zext((trunc X to iN) << K) to iM
1830     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1831     //     (because shl removes the top K bits)
1832     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1833     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1834     //
1835     if (SM->getNumOperands() == 2)
1836       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1837         if (MulLHS->getAPInt().isPowerOf2())
1838           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1839             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1840                                MulLHS->getAPInt().logBase2();
1841             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1842             return getMulExpr(
1843                 getZeroExtendExpr(MulLHS, Ty),
1844                 getZeroExtendExpr(
1845                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1846                 SCEV::FlagNUW, Depth + 1);
1847           }
1848   }
1849 
1850   // zext(umin(x, y)) -> umin(zext(x), zext(y))
1851   // zext(umax(x, y)) -> umax(zext(x), zext(y))
1852   if (isa<SCEVUMinExpr>(Op) || isa<SCEVUMaxExpr>(Op)) {
1853     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
1854     SmallVector<const SCEV *, 4> Operands;
1855     for (auto *Operand : MinMax->operands())
1856       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1857     if (isa<SCEVUMinExpr>(MinMax))
1858       return getUMinExpr(Operands);
1859     return getUMaxExpr(Operands);
1860   }
1861 
1862   // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1863   if (auto *MinMax = dyn_cast<SCEVSequentialMinMaxExpr>(Op)) {
1864     assert(isa<SCEVSequentialUMinExpr>(MinMax) && "Not supported!");
1865     SmallVector<const SCEV *, 4> Operands;
1866     for (auto *Operand : MinMax->operands())
1867       Operands.push_back(getZeroExtendExpr(Operand, Ty));
1868     return getUMinExpr(Operands, /*Sequential*/ true);
1869   }
1870 
1871   // The cast wasn't folded; create an explicit cast node.
1872   // Recompute the insert position, as it may have been invalidated.
1873   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1874   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1875                                                    Op, Ty);
1876   UniqueSCEVs.InsertNode(S, IP);
1877   registerUser(S, Op);
1878   return S;
1879 }
1880 
1881 const SCEV *
1882 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1883   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1884          "This is not an extending conversion!");
1885   assert(isSCEVable(Ty) &&
1886          "This is not a conversion to a SCEVable type!");
1887   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1888   Ty = getEffectiveSCEVType(Ty);
1889 
1890   FoldID ID(scSignExtend, Op, Ty);
1891   auto Iter = FoldCache.find(ID);
1892   if (Iter != FoldCache.end())
1893     return Iter->second;
1894 
1895   const SCEV *S = getSignExtendExprImpl(Op, Ty, Depth);
1896   if (!isa<SCEVSignExtendExpr>(S))
1897     insertFoldCacheEntry(ID, S, FoldCache, FoldCacheUser);
1898   return S;
1899 }
1900 
1901 const SCEV *ScalarEvolution::getSignExtendExprImpl(const SCEV *Op, Type *Ty,
1902                                                    unsigned Depth) {
1903   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1904          "This is not an extending conversion!");
1905   assert(isSCEVable(Ty) && "This is not a conversion to a SCEVable type!");
1906   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1907   Ty = getEffectiveSCEVType(Ty);
1908 
1909   // Fold if the operand is constant.
1910   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1911     return getConstant(
1912       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1913 
1914   // sext(sext(x)) --> sext(x)
1915   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1916     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1917 
1918   // sext(zext(x)) --> zext(x)
1919   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1920     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1921 
1922   // Before doing any expensive analysis, check to see if we've already
1923   // computed a SCEV for this Op and Ty.
1924   FoldingSetNodeID ID;
1925   ID.AddInteger(scSignExtend);
1926   ID.AddPointer(Op);
1927   ID.AddPointer(Ty);
1928   void *IP = nullptr;
1929   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1930   // Limit recursion depth.
1931   if (Depth > MaxCastDepth) {
1932     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1933                                                      Op, Ty);
1934     UniqueSCEVs.InsertNode(S, IP);
1935     registerUser(S, Op);
1936     return S;
1937   }
1938 
1939   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1940   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1941     // It's possible the bits taken off by the truncate were all sign bits. If
1942     // so, we should be able to simplify this further.
1943     const SCEV *X = ST->getOperand();
1944     ConstantRange CR = getSignedRange(X);
1945     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1946     unsigned NewBits = getTypeSizeInBits(Ty);
1947     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1948             CR.sextOrTrunc(NewBits)))
1949       return getTruncateOrSignExtend(X, Ty, Depth);
1950   }
1951 
1952   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1953     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1954     if (SA->hasNoSignedWrap()) {
1955       // If the addition does not sign overflow then we can, by definition,
1956       // commute the sign extension with the addition operation.
1957       SmallVector<const SCEV *, 4> Ops;
1958       for (const auto *Op : SA->operands())
1959         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1960       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1961     }
1962 
1963     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1964     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1965     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1966     //
1967     // For instance, this will bring two seemingly different expressions:
1968     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1969     //         sext(6 + 20 * %x + 24 * %y)
1970     // to the same form:
1971     //     2 + sext(4 + 20 * %x + 24 * %y)
1972     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1973       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1974       if (D != 0) {
1975         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1976         const SCEV *SResidual =
1977             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1978         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1979         return getAddExpr(SSExtD, SSExtR,
1980                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1981                           Depth + 1);
1982       }
1983     }
1984   }
1985   // If the input value is a chrec scev, and we can prove that the value
1986   // did not overflow the old, smaller, value, we can sign extend all of the
1987   // operands (often constants).  This allows analysis of something like
1988   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1989   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1990     if (AR->isAffine()) {
1991       const SCEV *Start = AR->getStart();
1992       const SCEV *Step = AR->getStepRecurrence(*this);
1993       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1994       const Loop *L = AR->getLoop();
1995 
1996       // If we have special knowledge that this addrec won't overflow,
1997       // we don't need to do any further analysis.
1998       if (AR->hasNoSignedWrap()) {
1999         Start =
2000             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2001         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2002         return getAddRecExpr(Start, Step, L, SCEV::FlagNSW);
2003       }
2004 
2005       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2006       // Note that this serves two purposes: It filters out loops that are
2007       // simply not analyzable, and it covers the case where this code is
2008       // being called from within backedge-taken count analysis, such that
2009       // attempting to ask for the backedge-taken count would likely result
2010       // in infinite recursion. In the later case, the analysis code will
2011       // cope with a conservative value, and it will take care to purge
2012       // that value once it has finished.
2013       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2014       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2015         // Manually compute the final value for AR, checking for
2016         // overflow.
2017 
2018         // Check whether the backedge-taken count can be losslessly casted to
2019         // the addrec's type. The count is always unsigned.
2020         const SCEV *CastedMaxBECount =
2021             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2022         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2023             CastedMaxBECount, MaxBECount->getType(), Depth);
2024         if (MaxBECount == RecastedMaxBECount) {
2025           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2026           // Check whether Start+Step*MaxBECount has no signed overflow.
2027           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2028                                         SCEV::FlagAnyWrap, Depth + 1);
2029           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2030                                                           SCEV::FlagAnyWrap,
2031                                                           Depth + 1),
2032                                                WideTy, Depth + 1);
2033           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2034           const SCEV *WideMaxBECount =
2035             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2036           const SCEV *OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2044             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2045             // Return the expression with the addrec on the outside.
2046             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2047                                                              Depth + 1);
2048             Step = getSignExtendExpr(Step, Ty, Depth + 1);
2049             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2050           }
2051           // Similar to above, only this time treat the step value as unsigned.
2052           // This covers loops that count up with an unsigned step.
2053           OperandExtendedAdd =
2054             getAddExpr(WideStart,
2055                        getMulExpr(WideMaxBECount,
2056                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2057                                   SCEV::FlagAnyWrap, Depth + 1),
2058                        SCEV::FlagAnyWrap, Depth + 1);
2059           if (SAdd == OperandExtendedAdd) {
2060             // If AR wraps around then
2061             //
2062             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2063             // => SAdd != OperandExtendedAdd
2064             //
2065             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2066             // (SAdd == OperandExtendedAdd => AR is NW)
2067 
2068             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2069 
2070             // Return the expression with the addrec on the outside.
2071             Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2072                                                              Depth + 1);
2073             Step = getZeroExtendExpr(Step, Ty, Depth + 1);
2074             return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2075           }
2076         }
2077       }
2078 
2079       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2080       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2081       if (AR->hasNoSignedWrap()) {
2082         // Same as nsw case above - duplicated here to avoid a compile time
2083         // issue.  It's not clear that the order of checks does matter, but
2084         // it's one of two issue possible causes for a change which was
2085         // reverted.  Be conservative for the moment.
2086         Start =
2087             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2088         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2089         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2090       }
2091 
2092       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2093       // if D + (C - D + Step * n) could be proven to not signed wrap
2094       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2095       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2096         const APInt &C = SC->getAPInt();
2097         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2098         if (D != 0) {
2099           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2100           const SCEV *SResidual =
2101               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2102           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2103           return getAddExpr(SSExtD, SSExtR,
2104                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2105                             Depth + 1);
2106         }
2107       }
2108 
2109       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2110         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2111         Start =
2112             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1);
2113         Step = getSignExtendExpr(Step, Ty, Depth + 1);
2114         return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags());
2115       }
2116     }
2117 
2118   // If the input value is provably positive and we could not simplify
2119   // away the sext build a zext instead.
2120   if (isKnownNonNegative(Op))
2121     return getZeroExtendExpr(Op, Ty, Depth + 1);
2122 
2123   // sext(smin(x, y)) -> smin(sext(x), sext(y))
2124   // sext(smax(x, y)) -> smax(sext(x), sext(y))
2125   if (isa<SCEVSMinExpr>(Op) || isa<SCEVSMaxExpr>(Op)) {
2126     auto *MinMax = cast<SCEVMinMaxExpr>(Op);
2127     SmallVector<const SCEV *, 4> Operands;
2128     for (auto *Operand : MinMax->operands())
2129       Operands.push_back(getSignExtendExpr(Operand, Ty));
2130     if (isa<SCEVSMinExpr>(MinMax))
2131       return getSMinExpr(Operands);
2132     return getSMaxExpr(Operands);
2133   }
2134 
2135   // The cast wasn't folded; create an explicit cast node.
2136   // Recompute the insert position, as it may have been invalidated.
2137   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2138   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2139                                                    Op, Ty);
2140   UniqueSCEVs.InsertNode(S, IP);
2141   registerUser(S, { Op });
2142   return S;
2143 }
2144 
2145 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2146                                          Type *Ty) {
2147   switch (Kind) {
2148   case scTruncate:
2149     return getTruncateExpr(Op, Ty);
2150   case scZeroExtend:
2151     return getZeroExtendExpr(Op, Ty);
2152   case scSignExtend:
2153     return getSignExtendExpr(Op, Ty);
2154   case scPtrToInt:
2155     return getPtrToIntExpr(Op, Ty);
2156   default:
2157     llvm_unreachable("Not a SCEV cast expression!");
2158   }
2159 }
2160 
2161 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2162 /// unspecified bits out to the given type.
2163 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2164                                               Type *Ty) {
2165   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2166          "This is not an extending conversion!");
2167   assert(isSCEVable(Ty) &&
2168          "This is not a conversion to a SCEVable type!");
2169   Ty = getEffectiveSCEVType(Ty);
2170 
2171   // Sign-extend negative constants.
2172   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2173     if (SC->getAPInt().isNegative())
2174       return getSignExtendExpr(Op, Ty);
2175 
2176   // Peel off a truncate cast.
2177   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2178     const SCEV *NewOp = T->getOperand();
2179     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2180       return getAnyExtendExpr(NewOp, Ty);
2181     return getTruncateOrNoop(NewOp, Ty);
2182   }
2183 
2184   // Next try a zext cast. If the cast is folded, use it.
2185   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2186   if (!isa<SCEVZeroExtendExpr>(ZExt))
2187     return ZExt;
2188 
2189   // Next try a sext cast. If the cast is folded, use it.
2190   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2191   if (!isa<SCEVSignExtendExpr>(SExt))
2192     return SExt;
2193 
2194   // Force the cast to be folded into the operands of an addrec.
2195   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2196     SmallVector<const SCEV *, 4> Ops;
2197     for (const SCEV *Op : AR->operands())
2198       Ops.push_back(getAnyExtendExpr(Op, Ty));
2199     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2200   }
2201 
2202   // If the expression is obviously signed, use the sext cast value.
2203   if (isa<SCEVSMaxExpr>(Op))
2204     return SExt;
2205 
2206   // Absent any other information, use the zext cast value.
2207   return ZExt;
2208 }
2209 
2210 /// Process the given Ops list, which is a list of operands to be added under
2211 /// the given scale, update the given map. This is a helper function for
2212 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2213 /// that would form an add expression like this:
2214 ///
2215 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2216 ///
2217 /// where A and B are constants, update the map with these values:
2218 ///
2219 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2220 ///
2221 /// and add 13 + A*B*29 to AccumulatedConstant.
2222 /// This will allow getAddRecExpr to produce this:
2223 ///
2224 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2225 ///
2226 /// This form often exposes folding opportunities that are hidden in
2227 /// the original operand list.
2228 ///
2229 /// Return true iff it appears that any interesting folding opportunities
2230 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2231 /// the common case where no interesting opportunities are present, and
2232 /// is also used as a check to avoid infinite recursion.
2233 static bool
2234 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2235                              SmallVectorImpl<const SCEV *> &NewOps,
2236                              APInt &AccumulatedConstant,
2237                              ArrayRef<const SCEV *> Ops, const APInt &Scale,
2238                              ScalarEvolution &SE) {
2239   bool Interesting = false;
2240 
2241   // Iterate over the add operands. They are sorted, with constants first.
2242   unsigned i = 0;
2243   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2244     ++i;
2245     // Pull a buried constant out to the outside.
2246     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2247       Interesting = true;
2248     AccumulatedConstant += Scale * C->getAPInt();
2249   }
2250 
2251   // Next comes everything else. We're especially interested in multiplies
2252   // here, but they're in the middle, so just visit the rest with one loop.
2253   for (; i != Ops.size(); ++i) {
2254     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2255     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2256       APInt NewScale =
2257           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2258       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2259         // A multiplication of a constant with another add; recurse.
2260         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2261         Interesting |=
2262           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2263                                        Add->operands(), NewScale, SE);
2264       } else {
2265         // A multiplication of a constant with some other value. Update
2266         // the map.
2267         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2268         const SCEV *Key = SE.getMulExpr(MulOps);
2269         auto Pair = M.insert({Key, NewScale});
2270         if (Pair.second) {
2271           NewOps.push_back(Pair.first->first);
2272         } else {
2273           Pair.first->second += NewScale;
2274           // The map already had an entry for this value, which may indicate
2275           // a folding opportunity.
2276           Interesting = true;
2277         }
2278       }
2279     } else {
2280       // An ordinary operand. Update the map.
2281       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2282           M.insert({Ops[i], Scale});
2283       if (Pair.second) {
2284         NewOps.push_back(Pair.first->first);
2285       } else {
2286         Pair.first->second += Scale;
2287         // The map already had an entry for this value, which may indicate
2288         // a folding opportunity.
2289         Interesting = true;
2290       }
2291     }
2292   }
2293 
2294   return Interesting;
2295 }
2296 
2297 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2298                                       const SCEV *LHS, const SCEV *RHS,
2299                                       const Instruction *CtxI) {
2300   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2301                                             SCEV::NoWrapFlags, unsigned);
2302   switch (BinOp) {
2303   default:
2304     llvm_unreachable("Unsupported binary op");
2305   case Instruction::Add:
2306     Operation = &ScalarEvolution::getAddExpr;
2307     break;
2308   case Instruction::Sub:
2309     Operation = &ScalarEvolution::getMinusSCEV;
2310     break;
2311   case Instruction::Mul:
2312     Operation = &ScalarEvolution::getMulExpr;
2313     break;
2314   }
2315 
2316   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2317       Signed ? &ScalarEvolution::getSignExtendExpr
2318              : &ScalarEvolution::getZeroExtendExpr;
2319 
2320   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2321   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2322   auto *WideTy =
2323       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2324 
2325   const SCEV *A = (this->*Extension)(
2326       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2327   const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0);
2328   const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0);
2329   const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0);
2330   if (A == B)
2331     return true;
2332   // Can we use context to prove the fact we need?
2333   if (!CtxI)
2334     return false;
2335   // TODO: Support mul.
2336   if (BinOp == Instruction::Mul)
2337     return false;
2338   auto *RHSC = dyn_cast<SCEVConstant>(RHS);
2339   // TODO: Lift this limitation.
2340   if (!RHSC)
2341     return false;
2342   APInt C = RHSC->getAPInt();
2343   unsigned NumBits = C.getBitWidth();
2344   bool IsSub = (BinOp == Instruction::Sub);
2345   bool IsNegativeConst = (Signed && C.isNegative());
2346   // Compute the direction and magnitude by which we need to check overflow.
2347   bool OverflowDown = IsSub ^ IsNegativeConst;
2348   APInt Magnitude = C;
2349   if (IsNegativeConst) {
2350     if (C == APInt::getSignedMinValue(NumBits))
2351       // TODO: SINT_MIN on inversion gives the same negative value, we don't
2352       // want to deal with that.
2353       return false;
2354     Magnitude = -C;
2355   }
2356 
2357   ICmpInst::Predicate Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
2358   if (OverflowDown) {
2359     // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2360     APInt Min = Signed ? APInt::getSignedMinValue(NumBits)
2361                        : APInt::getMinValue(NumBits);
2362     APInt Limit = Min + Magnitude;
2363     return isKnownPredicateAt(Pred, getConstant(Limit), LHS, CtxI);
2364   } else {
2365     // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2366     APInt Max = Signed ? APInt::getSignedMaxValue(NumBits)
2367                        : APInt::getMaxValue(NumBits);
2368     APInt Limit = Max - Magnitude;
2369     return isKnownPredicateAt(Pred, LHS, getConstant(Limit), CtxI);
2370   }
2371 }
2372 
2373 std::optional<SCEV::NoWrapFlags>
2374 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2375     const OverflowingBinaryOperator *OBO) {
2376   // It cannot be done any better.
2377   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2378     return std::nullopt;
2379 
2380   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2381 
2382   if (OBO->hasNoUnsignedWrap())
2383     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2384   if (OBO->hasNoSignedWrap())
2385     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2386 
2387   bool Deduced = false;
2388 
2389   if (OBO->getOpcode() != Instruction::Add &&
2390       OBO->getOpcode() != Instruction::Sub &&
2391       OBO->getOpcode() != Instruction::Mul)
2392     return std::nullopt;
2393 
2394   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2395   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2396 
2397   const Instruction *CtxI =
2398       UseContextForNoWrapFlagInference ? dyn_cast<Instruction>(OBO) : nullptr;
2399   if (!OBO->hasNoUnsignedWrap() &&
2400       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2401                       /* Signed */ false, LHS, RHS, CtxI)) {
2402     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2403     Deduced = true;
2404   }
2405 
2406   if (!OBO->hasNoSignedWrap() &&
2407       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2408                       /* Signed */ true, LHS, RHS, CtxI)) {
2409     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2410     Deduced = true;
2411   }
2412 
2413   if (Deduced)
2414     return Flags;
2415   return std::nullopt;
2416 }
2417 
2418 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2419 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2420 // can't-overflow flags for the operation if possible.
2421 static SCEV::NoWrapFlags
2422 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2423                       const ArrayRef<const SCEV *> Ops,
2424                       SCEV::NoWrapFlags Flags) {
2425   using namespace std::placeholders;
2426 
2427   using OBO = OverflowingBinaryOperator;
2428 
2429   bool CanAnalyze =
2430       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2431   (void)CanAnalyze;
2432   assert(CanAnalyze && "don't call from other places!");
2433 
2434   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2435   SCEV::NoWrapFlags SignOrUnsignWrap =
2436       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2437 
2438   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2439   auto IsKnownNonNegative = [&](const SCEV *S) {
2440     return SE->isKnownNonNegative(S);
2441   };
2442 
2443   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2444     Flags =
2445         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2446 
2447   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2448 
2449   if (SignOrUnsignWrap != SignOrUnsignMask &&
2450       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2451       isa<SCEVConstant>(Ops[0])) {
2452 
2453     auto Opcode = [&] {
2454       switch (Type) {
2455       case scAddExpr:
2456         return Instruction::Add;
2457       case scMulExpr:
2458         return Instruction::Mul;
2459       default:
2460         llvm_unreachable("Unexpected SCEV op.");
2461       }
2462     }();
2463 
2464     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2465 
2466     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2467     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2468       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2469           Opcode, C, OBO::NoSignedWrap);
2470       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2471         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2472     }
2473 
2474     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2475     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2476       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2477           Opcode, C, OBO::NoUnsignedWrap);
2478       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2479         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2480     }
2481   }
2482 
2483   // <0,+,nonnegative><nw> is also nuw
2484   // TODO: Add corresponding nsw case
2485   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2486       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2487       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2488     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2489 
2490   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2491   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2492       Ops.size() == 2) {
2493     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2494       if (UDiv->getOperand(1) == Ops[1])
2495         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2496     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2497       if (UDiv->getOperand(1) == Ops[0])
2498         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2499   }
2500 
2501   return Flags;
2502 }
2503 
2504 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2505   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2506 }
2507 
2508 /// Get a canonical add expression, or something simpler if possible.
2509 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2510                                         SCEV::NoWrapFlags OrigFlags,
2511                                         unsigned Depth) {
2512   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2513          "only nuw or nsw allowed");
2514   assert(!Ops.empty() && "Cannot get empty add!");
2515   if (Ops.size() == 1) return Ops[0];
2516 #ifndef NDEBUG
2517   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2518   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2519     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2520            "SCEVAddExpr operand types don't match!");
2521   unsigned NumPtrs = count_if(
2522       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2523   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2524 #endif
2525 
2526   // Sort by complexity, this groups all similar expression types together.
2527   GroupByComplexity(Ops, &LI, DT);
2528 
2529   // If there are any constants, fold them together.
2530   unsigned Idx = 0;
2531   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2532     ++Idx;
2533     assert(Idx < Ops.size());
2534     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2535       // We found two constants, fold them together!
2536       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2537       if (Ops.size() == 2) return Ops[0];
2538       Ops.erase(Ops.begin()+1);  // Erase the folded element
2539       LHSC = cast<SCEVConstant>(Ops[0]);
2540     }
2541 
2542     // If we are left with a constant zero being added, strip it off.
2543     if (LHSC->getValue()->isZero()) {
2544       Ops.erase(Ops.begin());
2545       --Idx;
2546     }
2547 
2548     if (Ops.size() == 1) return Ops[0];
2549   }
2550 
2551   // Delay expensive flag strengthening until necessary.
2552   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2553     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2554   };
2555 
2556   // Limit recursion calls depth.
2557   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2558     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2559 
2560   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2561     // Don't strengthen flags if we have no new information.
2562     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2563     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2564       Add->setNoWrapFlags(ComputeFlags(Ops));
2565     return S;
2566   }
2567 
2568   // Okay, check to see if the same value occurs in the operand list more than
2569   // once.  If so, merge them together into an multiply expression.  Since we
2570   // sorted the list, these values are required to be adjacent.
2571   Type *Ty = Ops[0]->getType();
2572   bool FoundMatch = false;
2573   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2574     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2575       // Scan ahead to count how many equal operands there are.
2576       unsigned Count = 2;
2577       while (i+Count != e && Ops[i+Count] == Ops[i])
2578         ++Count;
2579       // Merge the values into a multiply.
2580       const SCEV *Scale = getConstant(Ty, Count);
2581       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2582       if (Ops.size() == Count)
2583         return Mul;
2584       Ops[i] = Mul;
2585       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2586       --i; e -= Count - 1;
2587       FoundMatch = true;
2588     }
2589   if (FoundMatch)
2590     return getAddExpr(Ops, OrigFlags, Depth + 1);
2591 
2592   // Check for truncates. If all the operands are truncated from the same
2593   // type, see if factoring out the truncate would permit the result to be
2594   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2595   // if the contents of the resulting outer trunc fold to something simple.
2596   auto FindTruncSrcType = [&]() -> Type * {
2597     // We're ultimately looking to fold an addrec of truncs and muls of only
2598     // constants and truncs, so if we find any other types of SCEV
2599     // as operands of the addrec then we bail and return nullptr here.
2600     // Otherwise, we return the type of the operand of a trunc that we find.
2601     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2602       return T->getOperand()->getType();
2603     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2604       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2605       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2606         return T->getOperand()->getType();
2607     }
2608     return nullptr;
2609   };
2610   if (auto *SrcType = FindTruncSrcType()) {
2611     SmallVector<const SCEV *, 8> LargeOps;
2612     bool Ok = true;
2613     // Check all the operands to see if they can be represented in the
2614     // source type of the truncate.
2615     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2616       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2617         if (T->getOperand()->getType() != SrcType) {
2618           Ok = false;
2619           break;
2620         }
2621         LargeOps.push_back(T->getOperand());
2622       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2623         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2624       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2625         SmallVector<const SCEV *, 8> LargeMulOps;
2626         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2627           if (const SCEVTruncateExpr *T =
2628                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2629             if (T->getOperand()->getType() != SrcType) {
2630               Ok = false;
2631               break;
2632             }
2633             LargeMulOps.push_back(T->getOperand());
2634           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2635             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2636           } else {
2637             Ok = false;
2638             break;
2639           }
2640         }
2641         if (Ok)
2642           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2643       } else {
2644         Ok = false;
2645         break;
2646       }
2647     }
2648     if (Ok) {
2649       // Evaluate the expression in the larger type.
2650       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2651       // If it folds to something simple, use it. Otherwise, don't.
2652       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2653         return getTruncateExpr(Fold, Ty);
2654     }
2655   }
2656 
2657   if (Ops.size() == 2) {
2658     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2659     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2660     // C1).
2661     const SCEV *A = Ops[0];
2662     const SCEV *B = Ops[1];
2663     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2664     auto *C = dyn_cast<SCEVConstant>(A);
2665     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2666       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2667       auto C2 = C->getAPInt();
2668       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2669 
2670       APInt ConstAdd = C1 + C2;
2671       auto AddFlags = AddExpr->getNoWrapFlags();
2672       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2673       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2674           ConstAdd.ule(C1)) {
2675         PreservedFlags =
2676             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2677       }
2678 
2679       // Adding a constant with the same sign and small magnitude is NSW, if the
2680       // original AddExpr was NSW.
2681       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2682           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2683           ConstAdd.abs().ule(C1.abs())) {
2684         PreservedFlags =
2685             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2686       }
2687 
2688       if (PreservedFlags != SCEV::FlagAnyWrap) {
2689         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2690         NewOps[0] = getConstant(ConstAdd);
2691         return getAddExpr(NewOps, PreservedFlags);
2692       }
2693     }
2694   }
2695 
2696   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2697   if (Ops.size() == 2) {
2698     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2699     if (Mul && Mul->getNumOperands() == 2 &&
2700         Mul->getOperand(0)->isAllOnesValue()) {
2701       const SCEV *X;
2702       const SCEV *Y;
2703       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2704         return getMulExpr(Y, getUDivExpr(X, Y));
2705       }
2706     }
2707   }
2708 
2709   // Skip past any other cast SCEVs.
2710   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2711     ++Idx;
2712 
2713   // If there are add operands they would be next.
2714   if (Idx < Ops.size()) {
2715     bool DeletedAdd = false;
2716     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2717     // common NUW flag for expression after inlining. Other flags cannot be
2718     // preserved, because they may depend on the original order of operations.
2719     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2720     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2721       if (Ops.size() > AddOpsInlineThreshold ||
2722           Add->getNumOperands() > AddOpsInlineThreshold)
2723         break;
2724       // If we have an add, expand the add operands onto the end of the operands
2725       // list.
2726       Ops.erase(Ops.begin()+Idx);
2727       append_range(Ops, Add->operands());
2728       DeletedAdd = true;
2729       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2730     }
2731 
2732     // If we deleted at least one add, we added operands to the end of the list,
2733     // and they are not necessarily sorted.  Recurse to resort and resimplify
2734     // any operands we just acquired.
2735     if (DeletedAdd)
2736       return getAddExpr(Ops, CommonFlags, Depth + 1);
2737   }
2738 
2739   // Skip over the add expression until we get to a multiply.
2740   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2741     ++Idx;
2742 
2743   // Check to see if there are any folding opportunities present with
2744   // operands multiplied by constant values.
2745   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2746     uint64_t BitWidth = getTypeSizeInBits(Ty);
2747     DenseMap<const SCEV *, APInt> M;
2748     SmallVector<const SCEV *, 8> NewOps;
2749     APInt AccumulatedConstant(BitWidth, 0);
2750     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2751                                      Ops, APInt(BitWidth, 1), *this)) {
2752       struct APIntCompare {
2753         bool operator()(const APInt &LHS, const APInt &RHS) const {
2754           return LHS.ult(RHS);
2755         }
2756       };
2757 
2758       // Some interesting folding opportunity is present, so its worthwhile to
2759       // re-generate the operands list. Group the operands by constant scale,
2760       // to avoid multiplying by the same constant scale multiple times.
2761       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2762       for (const SCEV *NewOp : NewOps)
2763         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2764       // Re-generate the operands list.
2765       Ops.clear();
2766       if (AccumulatedConstant != 0)
2767         Ops.push_back(getConstant(AccumulatedConstant));
2768       for (auto &MulOp : MulOpLists) {
2769         if (MulOp.first == 1) {
2770           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2771         } else if (MulOp.first != 0) {
2772           Ops.push_back(getMulExpr(
2773               getConstant(MulOp.first),
2774               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2775               SCEV::FlagAnyWrap, Depth + 1));
2776         }
2777       }
2778       if (Ops.empty())
2779         return getZero(Ty);
2780       if (Ops.size() == 1)
2781         return Ops[0];
2782       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2783     }
2784   }
2785 
2786   // If we are adding something to a multiply expression, make sure the
2787   // something is not already an operand of the multiply.  If so, merge it into
2788   // the multiply.
2789   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2790     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2791     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2792       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2793       if (isa<SCEVConstant>(MulOpSCEV))
2794         continue;
2795       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2796         if (MulOpSCEV == Ops[AddOp]) {
2797           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2798           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2799           if (Mul->getNumOperands() != 2) {
2800             // If the multiply has more than two operands, we must get the
2801             // Y*Z term.
2802             SmallVector<const SCEV *, 4> MulOps(
2803                 Mul->operands().take_front(MulOp));
2804             append_range(MulOps, Mul->operands().drop_front(MulOp + 1));
2805             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2806           }
2807           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2808           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2809           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2810                                             SCEV::FlagAnyWrap, Depth + 1);
2811           if (Ops.size() == 2) return OuterMul;
2812           if (AddOp < Idx) {
2813             Ops.erase(Ops.begin()+AddOp);
2814             Ops.erase(Ops.begin()+Idx-1);
2815           } else {
2816             Ops.erase(Ops.begin()+Idx);
2817             Ops.erase(Ops.begin()+AddOp-1);
2818           }
2819           Ops.push_back(OuterMul);
2820           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2821         }
2822 
2823       // Check this multiply against other multiplies being added together.
2824       for (unsigned OtherMulIdx = Idx+1;
2825            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2826            ++OtherMulIdx) {
2827         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2828         // If MulOp occurs in OtherMul, we can fold the two multiplies
2829         // together.
2830         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2831              OMulOp != e; ++OMulOp)
2832           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2833             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2834             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2835             if (Mul->getNumOperands() != 2) {
2836               SmallVector<const SCEV *, 4> MulOps(
2837                   Mul->operands().take_front(MulOp));
2838               append_range(MulOps, Mul->operands().drop_front(MulOp+1));
2839               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2840             }
2841             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2842             if (OtherMul->getNumOperands() != 2) {
2843               SmallVector<const SCEV *, 4> MulOps(
2844                   OtherMul->operands().take_front(OMulOp));
2845               append_range(MulOps, OtherMul->operands().drop_front(OMulOp+1));
2846               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2847             }
2848             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2849             const SCEV *InnerMulSum =
2850                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2851             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2852                                               SCEV::FlagAnyWrap, Depth + 1);
2853             if (Ops.size() == 2) return OuterMul;
2854             Ops.erase(Ops.begin()+Idx);
2855             Ops.erase(Ops.begin()+OtherMulIdx-1);
2856             Ops.push_back(OuterMul);
2857             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2858           }
2859       }
2860     }
2861   }
2862 
2863   // If there are any add recurrences in the operands list, see if any other
2864   // added values are loop invariant.  If so, we can fold them into the
2865   // recurrence.
2866   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2867     ++Idx;
2868 
2869   // Scan over all recurrences, trying to fold loop invariants into them.
2870   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2871     // Scan all of the other operands to this add and add them to the vector if
2872     // they are loop invariant w.r.t. the recurrence.
2873     SmallVector<const SCEV *, 8> LIOps;
2874     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2875     const Loop *AddRecLoop = AddRec->getLoop();
2876     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2877       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2878         LIOps.push_back(Ops[i]);
2879         Ops.erase(Ops.begin()+i);
2880         --i; --e;
2881       }
2882 
2883     // If we found some loop invariants, fold them into the recurrence.
2884     if (!LIOps.empty()) {
2885       // Compute nowrap flags for the addition of the loop-invariant ops and
2886       // the addrec. Temporarily push it as an operand for that purpose. These
2887       // flags are valid in the scope of the addrec only.
2888       LIOps.push_back(AddRec);
2889       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2890       LIOps.pop_back();
2891 
2892       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2893       LIOps.push_back(AddRec->getStart());
2894 
2895       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2896 
2897       // It is not in general safe to propagate flags valid on an add within
2898       // the addrec scope to one outside it.  We must prove that the inner
2899       // scope is guaranteed to execute if the outer one does to be able to
2900       // safely propagate.  We know the program is undefined if poison is
2901       // produced on the inner scoped addrec.  We also know that *for this use*
2902       // the outer scoped add can't overflow (because of the flags we just
2903       // computed for the inner scoped add) without the program being undefined.
2904       // Proving that entry to the outer scope neccesitates entry to the inner
2905       // scope, thus proves the program undefined if the flags would be violated
2906       // in the outer scope.
2907       SCEV::NoWrapFlags AddFlags = Flags;
2908       if (AddFlags != SCEV::FlagAnyWrap) {
2909         auto *DefI = getDefiningScopeBound(LIOps);
2910         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2911         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2912           AddFlags = SCEV::FlagAnyWrap;
2913       }
2914       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2915 
2916       // Build the new addrec. Propagate the NUW and NSW flags if both the
2917       // outer add and the inner addrec are guaranteed to have no overflow.
2918       // Always propagate NW.
2919       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2920       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2921 
2922       // If all of the other operands were loop invariant, we are done.
2923       if (Ops.size() == 1) return NewRec;
2924 
2925       // Otherwise, add the folded AddRec by the non-invariant parts.
2926       for (unsigned i = 0;; ++i)
2927         if (Ops[i] == AddRec) {
2928           Ops[i] = NewRec;
2929           break;
2930         }
2931       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2932     }
2933 
2934     // Okay, if there weren't any loop invariants to be folded, check to see if
2935     // there are multiple AddRec's with the same loop induction variable being
2936     // added together.  If so, we can fold them.
2937     for (unsigned OtherIdx = Idx+1;
2938          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2939          ++OtherIdx) {
2940       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2941       // so that the 1st found AddRecExpr is dominated by all others.
2942       assert(DT.dominates(
2943            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2944            AddRec->getLoop()->getHeader()) &&
2945         "AddRecExprs are not sorted in reverse dominance order?");
2946       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2947         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2948         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2949         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2950              ++OtherIdx) {
2951           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2952           if (OtherAddRec->getLoop() == AddRecLoop) {
2953             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2954                  i != e; ++i) {
2955               if (i >= AddRecOps.size()) {
2956                 append_range(AddRecOps, OtherAddRec->operands().drop_front(i));
2957                 break;
2958               }
2959               SmallVector<const SCEV *, 2> TwoOps = {
2960                   AddRecOps[i], OtherAddRec->getOperand(i)};
2961               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2962             }
2963             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2964           }
2965         }
2966         // Step size has changed, so we cannot guarantee no self-wraparound.
2967         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2968         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2969       }
2970     }
2971 
2972     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2973     // next one.
2974   }
2975 
2976   // Okay, it looks like we really DO need an add expr.  Check to see if we
2977   // already have one, otherwise create a new one.
2978   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2979 }
2980 
2981 const SCEV *
2982 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2983                                     SCEV::NoWrapFlags Flags) {
2984   FoldingSetNodeID ID;
2985   ID.AddInteger(scAddExpr);
2986   for (const SCEV *Op : Ops)
2987     ID.AddPointer(Op);
2988   void *IP = nullptr;
2989   SCEVAddExpr *S =
2990       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2991   if (!S) {
2992     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2993     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2994     S = new (SCEVAllocator)
2995         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2996     UniqueSCEVs.InsertNode(S, IP);
2997     registerUser(S, Ops);
2998   }
2999   S->setNoWrapFlags(Flags);
3000   return S;
3001 }
3002 
3003 const SCEV *
3004 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
3005                                        const Loop *L, SCEV::NoWrapFlags Flags) {
3006   FoldingSetNodeID ID;
3007   ID.AddInteger(scAddRecExpr);
3008   for (const SCEV *Op : Ops)
3009     ID.AddPointer(Op);
3010   ID.AddPointer(L);
3011   void *IP = nullptr;
3012   SCEVAddRecExpr *S =
3013       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3014   if (!S) {
3015     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3016     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3017     S = new (SCEVAllocator)
3018         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
3019     UniqueSCEVs.InsertNode(S, IP);
3020     LoopUsers[L].push_back(S);
3021     registerUser(S, Ops);
3022   }
3023   setNoWrapFlags(S, Flags);
3024   return S;
3025 }
3026 
3027 const SCEV *
3028 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
3029                                     SCEV::NoWrapFlags Flags) {
3030   FoldingSetNodeID ID;
3031   ID.AddInteger(scMulExpr);
3032   for (const SCEV *Op : Ops)
3033     ID.AddPointer(Op);
3034   void *IP = nullptr;
3035   SCEVMulExpr *S =
3036     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3037   if (!S) {
3038     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3039     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3040     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
3041                                         O, Ops.size());
3042     UniqueSCEVs.InsertNode(S, IP);
3043     registerUser(S, Ops);
3044   }
3045   S->setNoWrapFlags(Flags);
3046   return S;
3047 }
3048 
3049 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
3050   uint64_t k = i*j;
3051   if (j > 1 && k / j != i) Overflow = true;
3052   return k;
3053 }
3054 
3055 /// Compute the result of "n choose k", the binomial coefficient.  If an
3056 /// intermediate computation overflows, Overflow will be set and the return will
3057 /// be garbage. Overflow is not cleared on absence of overflow.
3058 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3059   // We use the multiplicative formula:
3060   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3061   // At each iteration, we take the n-th term of the numeral and divide by the
3062   // (k-n)th term of the denominator.  This division will always produce an
3063   // integral result, and helps reduce the chance of overflow in the
3064   // intermediate computations. However, we can still overflow even when the
3065   // final result would fit.
3066 
3067   if (n == 0 || n == k) return 1;
3068   if (k > n) return 0;
3069 
3070   if (k > n/2)
3071     k = n-k;
3072 
3073   uint64_t r = 1;
3074   for (uint64_t i = 1; i <= k; ++i) {
3075     r = umul_ov(r, n-(i-1), Overflow);
3076     r /= i;
3077   }
3078   return r;
3079 }
3080 
3081 /// Determine if any of the operands in this SCEV are a constant or if
3082 /// any of the add or multiply expressions in this SCEV contain a constant.
3083 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3084   struct FindConstantInAddMulChain {
3085     bool FoundConstant = false;
3086 
3087     bool follow(const SCEV *S) {
3088       FoundConstant |= isa<SCEVConstant>(S);
3089       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3090     }
3091 
3092     bool isDone() const {
3093       return FoundConstant;
3094     }
3095   };
3096 
3097   FindConstantInAddMulChain F;
3098   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3099   ST.visitAll(StartExpr);
3100   return F.FoundConstant;
3101 }
3102 
3103 /// Get a canonical multiply expression, or something simpler if possible.
3104 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3105                                         SCEV::NoWrapFlags OrigFlags,
3106                                         unsigned Depth) {
3107   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3108          "only nuw or nsw allowed");
3109   assert(!Ops.empty() && "Cannot get empty mul!");
3110   if (Ops.size() == 1) return Ops[0];
3111 #ifndef NDEBUG
3112   Type *ETy = Ops[0]->getType();
3113   assert(!ETy->isPointerTy());
3114   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3115     assert(Ops[i]->getType() == ETy &&
3116            "SCEVMulExpr operand types don't match!");
3117 #endif
3118 
3119   // Sort by complexity, this groups all similar expression types together.
3120   GroupByComplexity(Ops, &LI, DT);
3121 
3122   // If there are any constants, fold them together.
3123   unsigned Idx = 0;
3124   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3125     ++Idx;
3126     assert(Idx < Ops.size());
3127     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3128       // We found two constants, fold them together!
3129       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3130       if (Ops.size() == 2) return Ops[0];
3131       Ops.erase(Ops.begin()+1);  // Erase the folded element
3132       LHSC = cast<SCEVConstant>(Ops[0]);
3133     }
3134 
3135     // If we have a multiply of zero, it will always be zero.
3136     if (LHSC->getValue()->isZero())
3137       return LHSC;
3138 
3139     // If we are left with a constant one being multiplied, strip it off.
3140     if (LHSC->getValue()->isOne()) {
3141       Ops.erase(Ops.begin());
3142       --Idx;
3143     }
3144 
3145     if (Ops.size() == 1)
3146       return Ops[0];
3147   }
3148 
3149   // Delay expensive flag strengthening until necessary.
3150   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3151     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3152   };
3153 
3154   // Limit recursion calls depth.
3155   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3156     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3157 
3158   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3159     // Don't strengthen flags if we have no new information.
3160     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3161     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3162       Mul->setNoWrapFlags(ComputeFlags(Ops));
3163     return S;
3164   }
3165 
3166   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3167     if (Ops.size() == 2) {
3168       // C1*(C2+V) -> C1*C2 + C1*V
3169       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3170         // If any of Add's ops are Adds or Muls with a constant, apply this
3171         // transformation as well.
3172         //
3173         // TODO: There are some cases where this transformation is not
3174         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3175         // this transformation should be narrowed down.
3176         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) {
3177           const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0),
3178                                        SCEV::FlagAnyWrap, Depth + 1);
3179           const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1),
3180                                        SCEV::FlagAnyWrap, Depth + 1);
3181           return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1);
3182         }
3183 
3184       if (Ops[0]->isAllOnesValue()) {
3185         // If we have a mul by -1 of an add, try distributing the -1 among the
3186         // add operands.
3187         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3188           SmallVector<const SCEV *, 4> NewOps;
3189           bool AnyFolded = false;
3190           for (const SCEV *AddOp : Add->operands()) {
3191             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3192                                          Depth + 1);
3193             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3194             NewOps.push_back(Mul);
3195           }
3196           if (AnyFolded)
3197             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3198         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3199           // Negation preserves a recurrence's no self-wrap property.
3200           SmallVector<const SCEV *, 4> Operands;
3201           for (const SCEV *AddRecOp : AddRec->operands())
3202             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3203                                           Depth + 1));
3204           // Let M be the minimum representable signed value. AddRec with nsw
3205           // multiplied by -1 can have signed overflow if and only if it takes a
3206           // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3207           // maximum signed value. In all other cases signed overflow is
3208           // impossible.
3209           auto FlagsMask = SCEV::FlagNW;
3210           if (hasFlags(AddRec->getNoWrapFlags(), SCEV::FlagNSW)) {
3211             auto MinInt =
3212                 APInt::getSignedMinValue(getTypeSizeInBits(AddRec->getType()));
3213             if (getSignedRangeMin(AddRec) != MinInt)
3214               FlagsMask = setFlags(FlagsMask, SCEV::FlagNSW);
3215           }
3216           return getAddRecExpr(Operands, AddRec->getLoop(),
3217                                AddRec->getNoWrapFlags(FlagsMask));
3218         }
3219       }
3220     }
3221   }
3222 
3223   // Skip over the add expression until we get to a multiply.
3224   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3225     ++Idx;
3226 
3227   // If there are mul operands inline them all into this expression.
3228   if (Idx < Ops.size()) {
3229     bool DeletedMul = false;
3230     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3231       if (Ops.size() > MulOpsInlineThreshold)
3232         break;
3233       // If we have an mul, expand the mul operands onto the end of the
3234       // operands list.
3235       Ops.erase(Ops.begin()+Idx);
3236       append_range(Ops, Mul->operands());
3237       DeletedMul = true;
3238     }
3239 
3240     // If we deleted at least one mul, we added operands to the end of the
3241     // list, and they are not necessarily sorted.  Recurse to resort and
3242     // resimplify any operands we just acquired.
3243     if (DeletedMul)
3244       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3245   }
3246 
3247   // If there are any add recurrences in the operands list, see if any other
3248   // added values are loop invariant.  If so, we can fold them into the
3249   // recurrence.
3250   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3251     ++Idx;
3252 
3253   // Scan over all recurrences, trying to fold loop invariants into them.
3254   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3255     // Scan all of the other operands to this mul and add them to the vector
3256     // if they are loop invariant w.r.t. the recurrence.
3257     SmallVector<const SCEV *, 8> LIOps;
3258     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3259     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3260       if (isAvailableAtLoopEntry(Ops[i], AddRec->getLoop())) {
3261         LIOps.push_back(Ops[i]);
3262         Ops.erase(Ops.begin()+i);
3263         --i; --e;
3264       }
3265 
3266     // If we found some loop invariants, fold them into the recurrence.
3267     if (!LIOps.empty()) {
3268       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3269       SmallVector<const SCEV *, 4> NewOps;
3270       NewOps.reserve(AddRec->getNumOperands());
3271       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3272       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3273         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3274                                     SCEV::FlagAnyWrap, Depth + 1));
3275 
3276       // Build the new addrec. Propagate the NUW and NSW flags if both the
3277       // outer mul and the inner addrec are guaranteed to have no overflow.
3278       //
3279       // No self-wrap cannot be guaranteed after changing the step size, but
3280       // will be inferred if either NUW or NSW is true.
3281       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3282       const SCEV *NewRec = getAddRecExpr(
3283           NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(Flags));
3284 
3285       // If all of the other operands were loop invariant, we are done.
3286       if (Ops.size() == 1) return NewRec;
3287 
3288       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3289       for (unsigned i = 0;; ++i)
3290         if (Ops[i] == AddRec) {
3291           Ops[i] = NewRec;
3292           break;
3293         }
3294       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3295     }
3296 
3297     // Okay, if there weren't any loop invariants to be folded, check to see
3298     // if there are multiple AddRec's with the same loop induction variable
3299     // being multiplied together.  If so, we can fold them.
3300 
3301     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3302     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3303     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3304     //   ]]],+,...up to x=2n}.
3305     // Note that the arguments to choose() are always integers with values
3306     // known at compile time, never SCEV objects.
3307     //
3308     // The implementation avoids pointless extra computations when the two
3309     // addrec's are of different length (mathematically, it's equivalent to
3310     // an infinite stream of zeros on the right).
3311     bool OpsModified = false;
3312     for (unsigned OtherIdx = Idx+1;
3313          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3314          ++OtherIdx) {
3315       const SCEVAddRecExpr *OtherAddRec =
3316         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3317       if (!OtherAddRec || OtherAddRec->getLoop() != AddRec->getLoop())
3318         continue;
3319 
3320       // Limit max number of arguments to avoid creation of unreasonably big
3321       // SCEVAddRecs with very complex operands.
3322       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3323           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3324         continue;
3325 
3326       bool Overflow = false;
3327       Type *Ty = AddRec->getType();
3328       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3329       SmallVector<const SCEV*, 7> AddRecOps;
3330       for (int x = 0, xe = AddRec->getNumOperands() +
3331              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3332         SmallVector <const SCEV *, 7> SumOps;
3333         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3334           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3335           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3336                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3337                z < ze && !Overflow; ++z) {
3338             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3339             uint64_t Coeff;
3340             if (LargerThan64Bits)
3341               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3342             else
3343               Coeff = Coeff1*Coeff2;
3344             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3345             const SCEV *Term1 = AddRec->getOperand(y-z);
3346             const SCEV *Term2 = OtherAddRec->getOperand(z);
3347             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3348                                         SCEV::FlagAnyWrap, Depth + 1));
3349           }
3350         }
3351         if (SumOps.empty())
3352           SumOps.push_back(getZero(Ty));
3353         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3354       }
3355       if (!Overflow) {
3356         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3357                                               SCEV::FlagAnyWrap);
3358         if (Ops.size() == 2) return NewAddRec;
3359         Ops[Idx] = NewAddRec;
3360         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3361         OpsModified = true;
3362         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3363         if (!AddRec)
3364           break;
3365       }
3366     }
3367     if (OpsModified)
3368       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3369 
3370     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3371     // next one.
3372   }
3373 
3374   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3375   // already have one, otherwise create a new one.
3376   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3377 }
3378 
3379 /// Represents an unsigned remainder expression based on unsigned division.
3380 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3381                                          const SCEV *RHS) {
3382   assert(getEffectiveSCEVType(LHS->getType()) ==
3383          getEffectiveSCEVType(RHS->getType()) &&
3384          "SCEVURemExpr operand types don't match!");
3385 
3386   // Short-circuit easy cases
3387   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3388     // If constant is one, the result is trivial
3389     if (RHSC->getValue()->isOne())
3390       return getZero(LHS->getType()); // X urem 1 --> 0
3391 
3392     // If constant is a power of two, fold into a zext(trunc(LHS)).
3393     if (RHSC->getAPInt().isPowerOf2()) {
3394       Type *FullTy = LHS->getType();
3395       Type *TruncTy =
3396           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3397       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3398     }
3399   }
3400 
3401   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3402   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3403   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3404   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3405 }
3406 
3407 /// Get a canonical unsigned division expression, or something simpler if
3408 /// possible.
3409 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3410                                          const SCEV *RHS) {
3411   assert(!LHS->getType()->isPointerTy() &&
3412          "SCEVUDivExpr operand can't be pointer!");
3413   assert(LHS->getType() == RHS->getType() &&
3414          "SCEVUDivExpr operand types don't match!");
3415 
3416   FoldingSetNodeID ID;
3417   ID.AddInteger(scUDivExpr);
3418   ID.AddPointer(LHS);
3419   ID.AddPointer(RHS);
3420   void *IP = nullptr;
3421   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3422     return S;
3423 
3424   // 0 udiv Y == 0
3425   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3426     if (LHSC->getValue()->isZero())
3427       return LHS;
3428 
3429   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3430     if (RHSC->getValue()->isOne())
3431       return LHS;                               // X udiv 1 --> x
3432     // If the denominator is zero, the result of the udiv is undefined. Don't
3433     // try to analyze it, because the resolution chosen here may differ from
3434     // the resolution chosen in other parts of the compiler.
3435     if (!RHSC->getValue()->isZero()) {
3436       // Determine if the division can be folded into the operands of
3437       // its operands.
3438       // TODO: Generalize this to non-constants by using known-bits information.
3439       Type *Ty = LHS->getType();
3440       unsigned LZ = RHSC->getAPInt().countl_zero();
3441       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3442       // For non-power-of-two values, effectively round the value up to the
3443       // nearest power of two.
3444       if (!RHSC->getAPInt().isPowerOf2())
3445         ++MaxShiftAmt;
3446       IntegerType *ExtTy =
3447         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3448       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3449         if (const SCEVConstant *Step =
3450             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3451           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3452           const APInt &StepInt = Step->getAPInt();
3453           const APInt &DivInt = RHSC->getAPInt();
3454           if (!StepInt.urem(DivInt) &&
3455               getZeroExtendExpr(AR, ExtTy) ==
3456               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3457                             getZeroExtendExpr(Step, ExtTy),
3458                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3459             SmallVector<const SCEV *, 4> Operands;
3460             for (const SCEV *Op : AR->operands())
3461               Operands.push_back(getUDivExpr(Op, RHS));
3462             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3463           }
3464           /// Get a canonical UDivExpr for a recurrence.
3465           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3466           // We can currently only fold X%N if X is constant.
3467           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3468           if (StartC && !DivInt.urem(StepInt) &&
3469               getZeroExtendExpr(AR, ExtTy) ==
3470               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3471                             getZeroExtendExpr(Step, ExtTy),
3472                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3473             const APInt &StartInt = StartC->getAPInt();
3474             const APInt &StartRem = StartInt.urem(StepInt);
3475             if (StartRem != 0) {
3476               const SCEV *NewLHS =
3477                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3478                                 AR->getLoop(), SCEV::FlagNW);
3479               if (LHS != NewLHS) {
3480                 LHS = NewLHS;
3481 
3482                 // Reset the ID to include the new LHS, and check if it is
3483                 // already cached.
3484                 ID.clear();
3485                 ID.AddInteger(scUDivExpr);
3486                 ID.AddPointer(LHS);
3487                 ID.AddPointer(RHS);
3488                 IP = nullptr;
3489                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3490                   return S;
3491               }
3492             }
3493           }
3494         }
3495       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3496       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3497         SmallVector<const SCEV *, 4> Operands;
3498         for (const SCEV *Op : M->operands())
3499           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3500         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3501           // Find an operand that's safely divisible.
3502           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3503             const SCEV *Op = M->getOperand(i);
3504             const SCEV *Div = getUDivExpr(Op, RHSC);
3505             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3506               Operands = SmallVector<const SCEV *, 4>(M->operands());
3507               Operands[i] = Div;
3508               return getMulExpr(Operands);
3509             }
3510           }
3511       }
3512 
3513       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3514       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3515         if (auto *DivisorConstant =
3516                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3517           bool Overflow = false;
3518           APInt NewRHS =
3519               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3520           if (Overflow) {
3521             return getConstant(RHSC->getType(), 0, false);
3522           }
3523           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3524         }
3525       }
3526 
3527       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3528       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3529         SmallVector<const SCEV *, 4> Operands;
3530         for (const SCEV *Op : A->operands())
3531           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3532         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3533           Operands.clear();
3534           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3535             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3536             if (isa<SCEVUDivExpr>(Op) ||
3537                 getMulExpr(Op, RHS) != A->getOperand(i))
3538               break;
3539             Operands.push_back(Op);
3540           }
3541           if (Operands.size() == A->getNumOperands())
3542             return getAddExpr(Operands);
3543         }
3544       }
3545 
3546       // Fold if both operands are constant.
3547       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3548         return getConstant(LHSC->getAPInt().udiv(RHSC->getAPInt()));
3549     }
3550   }
3551 
3552   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3553   // changes). Make sure we get a new one.
3554   IP = nullptr;
3555   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3556   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3557                                              LHS, RHS);
3558   UniqueSCEVs.InsertNode(S, IP);
3559   registerUser(S, {LHS, RHS});
3560   return S;
3561 }
3562 
3563 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3564   APInt A = C1->getAPInt().abs();
3565   APInt B = C2->getAPInt().abs();
3566   uint32_t ABW = A.getBitWidth();
3567   uint32_t BBW = B.getBitWidth();
3568 
3569   if (ABW > BBW)
3570     B = B.zext(ABW);
3571   else if (ABW < BBW)
3572     A = A.zext(BBW);
3573 
3574   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3575 }
3576 
3577 /// Get a canonical unsigned division expression, or something simpler if
3578 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3579 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3580 /// it's not exact because the udiv may be clearing bits.
3581 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3582                                               const SCEV *RHS) {
3583   // TODO: we could try to find factors in all sorts of things, but for now we
3584   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3585   // end of this file for inspiration.
3586 
3587   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3588   if (!Mul || !Mul->hasNoUnsignedWrap())
3589     return getUDivExpr(LHS, RHS);
3590 
3591   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3592     // If the mulexpr multiplies by a constant, then that constant must be the
3593     // first element of the mulexpr.
3594     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3595       if (LHSCst == RHSCst) {
3596         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3597         return getMulExpr(Operands);
3598       }
3599 
3600       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3601       // that there's a factor provided by one of the other terms. We need to
3602       // check.
3603       APInt Factor = gcd(LHSCst, RHSCst);
3604       if (!Factor.isIntN(1)) {
3605         LHSCst =
3606             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3607         RHSCst =
3608             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3609         SmallVector<const SCEV *, 2> Operands;
3610         Operands.push_back(LHSCst);
3611         append_range(Operands, Mul->operands().drop_front());
3612         LHS = getMulExpr(Operands);
3613         RHS = RHSCst;
3614         Mul = dyn_cast<SCEVMulExpr>(LHS);
3615         if (!Mul)
3616           return getUDivExactExpr(LHS, RHS);
3617       }
3618     }
3619   }
3620 
3621   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3622     if (Mul->getOperand(i) == RHS) {
3623       SmallVector<const SCEV *, 2> Operands;
3624       append_range(Operands, Mul->operands().take_front(i));
3625       append_range(Operands, Mul->operands().drop_front(i + 1));
3626       return getMulExpr(Operands);
3627     }
3628   }
3629 
3630   return getUDivExpr(LHS, RHS);
3631 }
3632 
3633 /// Get an add recurrence expression for the specified loop.  Simplify the
3634 /// expression as much as possible.
3635 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3636                                            const Loop *L,
3637                                            SCEV::NoWrapFlags Flags) {
3638   SmallVector<const SCEV *, 4> Operands;
3639   Operands.push_back(Start);
3640   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3641     if (StepChrec->getLoop() == L) {
3642       append_range(Operands, StepChrec->operands());
3643       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3644     }
3645 
3646   Operands.push_back(Step);
3647   return getAddRecExpr(Operands, L, Flags);
3648 }
3649 
3650 /// Get an add recurrence expression for the specified loop.  Simplify the
3651 /// expression as much as possible.
3652 const SCEV *
3653 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3654                                const Loop *L, SCEV::NoWrapFlags Flags) {
3655   if (Operands.size() == 1) return Operands[0];
3656 #ifndef NDEBUG
3657   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3658   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3659     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3660            "SCEVAddRecExpr operand types don't match!");
3661     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3662   }
3663   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3664     assert(isLoopInvariant(Operands[i], L) &&
3665            "SCEVAddRecExpr operand is not loop-invariant!");
3666 #endif
3667 
3668   if (Operands.back()->isZero()) {
3669     Operands.pop_back();
3670     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3671   }
3672 
3673   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3674   // use that information to infer NUW and NSW flags. However, computing a
3675   // BE count requires calling getAddRecExpr, so we may not yet have a
3676   // meaningful BE count at this point (and if we don't, we'd be stuck
3677   // with a SCEVCouldNotCompute as the cached BE count).
3678 
3679   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3680 
3681   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3682   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3683     const Loop *NestedLoop = NestedAR->getLoop();
3684     if (L->contains(NestedLoop)
3685             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3686             : (!NestedLoop->contains(L) &&
3687                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3688       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3689       Operands[0] = NestedAR->getStart();
3690       // AddRecs require their operands be loop-invariant with respect to their
3691       // loops. Don't perform this transformation if it would break this
3692       // requirement.
3693       bool AllInvariant = all_of(
3694           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3695 
3696       if (AllInvariant) {
3697         // Create a recurrence for the outer loop with the same step size.
3698         //
3699         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3700         // inner recurrence has the same property.
3701         SCEV::NoWrapFlags OuterFlags =
3702           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3703 
3704         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3705         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3706           return isLoopInvariant(Op, NestedLoop);
3707         });
3708 
3709         if (AllInvariant) {
3710           // Ok, both add recurrences are valid after the transformation.
3711           //
3712           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3713           // the outer recurrence has the same property.
3714           SCEV::NoWrapFlags InnerFlags =
3715             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3716           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3717         }
3718       }
3719       // Reset Operands to its original state.
3720       Operands[0] = NestedAR;
3721     }
3722   }
3723 
3724   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3725   // already have one, otherwise create a new one.
3726   return getOrCreateAddRecExpr(Operands, L, Flags);
3727 }
3728 
3729 const SCEV *
3730 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3731                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3732   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3733   // getSCEV(Base)->getType() has the same address space as Base->getType()
3734   // because SCEV::getType() preserves the address space.
3735   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3736   const bool AssumeInBoundsFlags = [&]() {
3737     if (!GEP->isInBounds())
3738       return false;
3739 
3740     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3741     // but to do that, we have to ensure that said flag is valid in the entire
3742     // defined scope of the SCEV.
3743     auto *GEPI = dyn_cast<Instruction>(GEP);
3744     // TODO: non-instructions have global scope.  We might be able to prove
3745     // some global scope cases
3746     return GEPI && isSCEVExprNeverPoison(GEPI);
3747   }();
3748 
3749   SCEV::NoWrapFlags OffsetWrap =
3750     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3751 
3752   Type *CurTy = GEP->getType();
3753   bool FirstIter = true;
3754   SmallVector<const SCEV *, 4> Offsets;
3755   for (const SCEV *IndexExpr : IndexExprs) {
3756     // Compute the (potentially symbolic) offset in bytes for this index.
3757     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3758       // For a struct, add the member offset.
3759       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3760       unsigned FieldNo = Index->getZExtValue();
3761       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3762       Offsets.push_back(FieldOffset);
3763 
3764       // Update CurTy to the type of the field at Index.
3765       CurTy = STy->getTypeAtIndex(Index);
3766     } else {
3767       // Update CurTy to its element type.
3768       if (FirstIter) {
3769         assert(isa<PointerType>(CurTy) &&
3770                "The first index of a GEP indexes a pointer");
3771         CurTy = GEP->getSourceElementType();
3772         FirstIter = false;
3773       } else {
3774         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3775       }
3776       // For an array, add the element offset, explicitly scaled.
3777       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3778       // Getelementptr indices are signed.
3779       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3780 
3781       // Multiply the index by the element size to compute the element offset.
3782       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3783       Offsets.push_back(LocalOffset);
3784     }
3785   }
3786 
3787   // Handle degenerate case of GEP without offsets.
3788   if (Offsets.empty())
3789     return BaseExpr;
3790 
3791   // Add the offsets together, assuming nsw if inbounds.
3792   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3793   // Add the base address and the offset. We cannot use the nsw flag, as the
3794   // base address is unsigned. However, if we know that the offset is
3795   // non-negative, we can use nuw.
3796   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3797                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3798   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3799   assert(BaseExpr->getType() == GEPExpr->getType() &&
3800          "GEP should not change type mid-flight.");
3801   return GEPExpr;
3802 }
3803 
3804 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3805                                                ArrayRef<const SCEV *> Ops) {
3806   FoldingSetNodeID ID;
3807   ID.AddInteger(SCEVType);
3808   for (const SCEV *Op : Ops)
3809     ID.AddPointer(Op);
3810   void *IP = nullptr;
3811   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3812 }
3813 
3814 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3815   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3816   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3817 }
3818 
3819 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3820                                            SmallVectorImpl<const SCEV *> &Ops) {
3821   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3822   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3823   if (Ops.size() == 1) return Ops[0];
3824 #ifndef NDEBUG
3825   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3826   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3827     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3828            "Operand types don't match!");
3829     assert(Ops[0]->getType()->isPointerTy() ==
3830                Ops[i]->getType()->isPointerTy() &&
3831            "min/max should be consistently pointerish");
3832   }
3833 #endif
3834 
3835   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3836   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3837 
3838   // Sort by complexity, this groups all similar expression types together.
3839   GroupByComplexity(Ops, &LI, DT);
3840 
3841   // Check if we have created the same expression before.
3842   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3843     return S;
3844   }
3845 
3846   // If there are any constants, fold them together.
3847   unsigned Idx = 0;
3848   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3849     ++Idx;
3850     assert(Idx < Ops.size());
3851     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3852       switch (Kind) {
3853       case scSMaxExpr:
3854         return APIntOps::smax(LHS, RHS);
3855       case scSMinExpr:
3856         return APIntOps::smin(LHS, RHS);
3857       case scUMaxExpr:
3858         return APIntOps::umax(LHS, RHS);
3859       case scUMinExpr:
3860         return APIntOps::umin(LHS, RHS);
3861       default:
3862         llvm_unreachable("Unknown SCEV min/max opcode");
3863       }
3864     };
3865 
3866     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3867       // We found two constants, fold them together!
3868       ConstantInt *Fold = ConstantInt::get(
3869           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3870       Ops[0] = getConstant(Fold);
3871       Ops.erase(Ops.begin()+1);  // Erase the folded element
3872       if (Ops.size() == 1) return Ops[0];
3873       LHSC = cast<SCEVConstant>(Ops[0]);
3874     }
3875 
3876     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3877     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3878 
3879     if (IsMax ? IsMinV : IsMaxV) {
3880       // If we are left with a constant minimum(/maximum)-int, strip it off.
3881       Ops.erase(Ops.begin());
3882       --Idx;
3883     } else if (IsMax ? IsMaxV : IsMinV) {
3884       // If we have a max(/min) with a constant maximum(/minimum)-int,
3885       // it will always be the extremum.
3886       return LHSC;
3887     }
3888 
3889     if (Ops.size() == 1) return Ops[0];
3890   }
3891 
3892   // Find the first operation of the same kind
3893   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3894     ++Idx;
3895 
3896   // Check to see if one of the operands is of the same kind. If so, expand its
3897   // operands onto our operand list, and recurse to simplify.
3898   if (Idx < Ops.size()) {
3899     bool DeletedAny = false;
3900     while (Ops[Idx]->getSCEVType() == Kind) {
3901       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3902       Ops.erase(Ops.begin()+Idx);
3903       append_range(Ops, SMME->operands());
3904       DeletedAny = true;
3905     }
3906 
3907     if (DeletedAny)
3908       return getMinMaxExpr(Kind, Ops);
3909   }
3910 
3911   // Okay, check to see if the same value occurs in the operand list twice.  If
3912   // so, delete one.  Since we sorted the list, these values are required to
3913   // be adjacent.
3914   llvm::CmpInst::Predicate GEPred =
3915       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3916   llvm::CmpInst::Predicate LEPred =
3917       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3918   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3919   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3920   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3921     if (Ops[i] == Ops[i + 1] ||
3922         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3923       //  X op Y op Y  -->  X op Y
3924       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3925       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3926       --i;
3927       --e;
3928     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3929                                                Ops[i + 1])) {
3930       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3931       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3932       --i;
3933       --e;
3934     }
3935   }
3936 
3937   if (Ops.size() == 1) return Ops[0];
3938 
3939   assert(!Ops.empty() && "Reduced smax down to nothing!");
3940 
3941   // Okay, it looks like we really DO need an expr.  Check to see if we
3942   // already have one, otherwise create a new one.
3943   FoldingSetNodeID ID;
3944   ID.AddInteger(Kind);
3945   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3946     ID.AddPointer(Ops[i]);
3947   void *IP = nullptr;
3948   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3949   if (ExistingSCEV)
3950     return ExistingSCEV;
3951   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3952   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3953   SCEV *S = new (SCEVAllocator)
3954       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3955 
3956   UniqueSCEVs.InsertNode(S, IP);
3957   registerUser(S, Ops);
3958   return S;
3959 }
3960 
3961 namespace {
3962 
3963 class SCEVSequentialMinMaxDeduplicatingVisitor final
3964     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3965                          std::optional<const SCEV *>> {
3966   using RetVal = std::optional<const SCEV *>;
3967   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3968 
3969   ScalarEvolution &SE;
3970   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3971   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3972   SmallPtrSet<const SCEV *, 16> SeenOps;
3973 
3974   bool canRecurseInto(SCEVTypes Kind) const {
3975     // We can only recurse into the SCEV expression of the same effective type
3976     // as the type of our root SCEV expression.
3977     return RootKind == Kind || NonSequentialRootKind == Kind;
3978   };
3979 
3980   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3981     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3982            "Only for min/max expressions.");
3983     SCEVTypes Kind = S->getSCEVType();
3984 
3985     if (!canRecurseInto(Kind))
3986       return S;
3987 
3988     auto *NAry = cast<SCEVNAryExpr>(S);
3989     SmallVector<const SCEV *> NewOps;
3990     bool Changed = visit(Kind, NAry->operands(), NewOps);
3991 
3992     if (!Changed)
3993       return S;
3994     if (NewOps.empty())
3995       return std::nullopt;
3996 
3997     return isa<SCEVSequentialMinMaxExpr>(S)
3998                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
3999                : SE.getMinMaxExpr(Kind, NewOps);
4000   }
4001 
4002   RetVal visit(const SCEV *S) {
4003     // Has the whole operand been seen already?
4004     if (!SeenOps.insert(S).second)
4005       return std::nullopt;
4006     return Base::visit(S);
4007   }
4008 
4009 public:
4010   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
4011                                            SCEVTypes RootKind)
4012       : SE(SE), RootKind(RootKind),
4013         NonSequentialRootKind(
4014             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4015                 RootKind)) {}
4016 
4017   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
4018                          SmallVectorImpl<const SCEV *> &NewOps) {
4019     bool Changed = false;
4020     SmallVector<const SCEV *> Ops;
4021     Ops.reserve(OrigOps.size());
4022 
4023     for (const SCEV *Op : OrigOps) {
4024       RetVal NewOp = visit(Op);
4025       if (NewOp != Op)
4026         Changed = true;
4027       if (NewOp)
4028         Ops.emplace_back(*NewOp);
4029     }
4030 
4031     if (Changed)
4032       NewOps = std::move(Ops);
4033     return Changed;
4034   }
4035 
4036   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
4037 
4038   RetVal visitVScale(const SCEVVScale *VScale) { return VScale; }
4039 
4040   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
4041 
4042   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
4043 
4044   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
4045 
4046   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
4047 
4048   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
4049 
4050   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
4051 
4052   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
4053 
4054   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
4055 
4056   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
4057     return visitAnyMinMaxExpr(Expr);
4058   }
4059 
4060   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
4061     return visitAnyMinMaxExpr(Expr);
4062   }
4063 
4064   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
4065     return visitAnyMinMaxExpr(Expr);
4066   }
4067 
4068   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
4069     return visitAnyMinMaxExpr(Expr);
4070   }
4071 
4072   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4073     return visitAnyMinMaxExpr(Expr);
4074   }
4075 
4076   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4077 
4078   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4079 };
4080 
4081 } // namespace
4082 
4083 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind) {
4084   switch (Kind) {
4085   case scConstant:
4086   case scVScale:
4087   case scTruncate:
4088   case scZeroExtend:
4089   case scSignExtend:
4090   case scPtrToInt:
4091   case scAddExpr:
4092   case scMulExpr:
4093   case scUDivExpr:
4094   case scAddRecExpr:
4095   case scUMaxExpr:
4096   case scSMaxExpr:
4097   case scUMinExpr:
4098   case scSMinExpr:
4099   case scUnknown:
4100     // If any operand is poison, the whole expression is poison.
4101     return true;
4102   case scSequentialUMinExpr:
4103     // FIXME: if the *first* operand is poison, the whole expression is poison.
4104     return false; // Pessimistically, say that it does not propagate poison.
4105   case scCouldNotCompute:
4106     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4107   }
4108   llvm_unreachable("Unknown SCEV kind!");
4109 }
4110 
4111 /// Return true if V is poison given that AssumedPoison is already poison.
4112 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) {
4113   // The only way poison may be introduced in a SCEV expression is from a
4114   // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4115   // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4116   // introduce poison -- they encode guaranteed, non-speculated knowledge.
4117   //
4118   // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4119   // with the notable exception of umin_seq, where only poison from the first
4120   // operand is (unconditionally) propagated.
4121   struct SCEVPoisonCollector {
4122     bool LookThroughMaybePoisonBlocking;
4123     SmallPtrSet<const SCEV *, 4> MaybePoison;
4124     SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking)
4125         : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking) {}
4126 
4127     bool follow(const SCEV *S) {
4128       if (!LookThroughMaybePoisonBlocking &&
4129           !scevUnconditionallyPropagatesPoisonFromOperands(S->getSCEVType()))
4130         return false;
4131 
4132       if (auto *SU = dyn_cast<SCEVUnknown>(S)) {
4133         if (!isGuaranteedNotToBePoison(SU->getValue()))
4134           MaybePoison.insert(S);
4135       }
4136       return true;
4137     }
4138     bool isDone() const { return false; }
4139   };
4140 
4141   // First collect all SCEVs that might result in AssumedPoison to be poison.
4142   // We need to look through potentially poison-blocking operations here,
4143   // because we want to find all SCEVs that *might* result in poison, not only
4144   // those that are *required* to.
4145   SCEVPoisonCollector PC1(/* LookThroughMaybePoisonBlocking */ true);
4146   visitAll(AssumedPoison, PC1);
4147 
4148   // AssumedPoison is never poison. As the assumption is false, the implication
4149   // is true. Don't bother walking the other SCEV in this case.
4150   if (PC1.MaybePoison.empty())
4151     return true;
4152 
4153   // Collect all SCEVs in S that, if poison, *will* result in S being poison
4154   // as well. We cannot look through potentially poison-blocking operations
4155   // here, as their arguments only *may* make the result poison.
4156   SCEVPoisonCollector PC2(/* LookThroughMaybePoisonBlocking */ false);
4157   visitAll(S, PC2);
4158 
4159   // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4160   // it will also make S poison by being part of PC2.MaybePoison.
4161   return all_of(PC1.MaybePoison,
4162                 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); });
4163 }
4164 
4165 const SCEV *
4166 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4167                                          SmallVectorImpl<const SCEV *> &Ops) {
4168   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4169          "Not a SCEVSequentialMinMaxExpr!");
4170   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4171   if (Ops.size() == 1)
4172     return Ops[0];
4173 #ifndef NDEBUG
4174   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4175   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4176     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4177            "Operand types don't match!");
4178     assert(Ops[0]->getType()->isPointerTy() ==
4179                Ops[i]->getType()->isPointerTy() &&
4180            "min/max should be consistently pointerish");
4181   }
4182 #endif
4183 
4184   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4185   // so we can *NOT* do any kind of sorting of the expressions!
4186 
4187   // Check if we have created the same expression before.
4188   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4189     return S;
4190 
4191   // FIXME: there are *some* simplifications that we can do here.
4192 
4193   // Keep only the first instance of an operand.
4194   {
4195     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4196     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4197     if (Changed)
4198       return getSequentialMinMaxExpr(Kind, Ops);
4199   }
4200 
4201   // Check to see if one of the operands is of the same kind. If so, expand its
4202   // operands onto our operand list, and recurse to simplify.
4203   {
4204     unsigned Idx = 0;
4205     bool DeletedAny = false;
4206     while (Idx < Ops.size()) {
4207       if (Ops[Idx]->getSCEVType() != Kind) {
4208         ++Idx;
4209         continue;
4210       }
4211       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4212       Ops.erase(Ops.begin() + Idx);
4213       Ops.insert(Ops.begin() + Idx, SMME->operands().begin(),
4214                  SMME->operands().end());
4215       DeletedAny = true;
4216     }
4217 
4218     if (DeletedAny)
4219       return getSequentialMinMaxExpr(Kind, Ops);
4220   }
4221 
4222   const SCEV *SaturationPoint;
4223   ICmpInst::Predicate Pred;
4224   switch (Kind) {
4225   case scSequentialUMinExpr:
4226     SaturationPoint = getZero(Ops[0]->getType());
4227     Pred = ICmpInst::ICMP_ULE;
4228     break;
4229   default:
4230     llvm_unreachable("Not a sequential min/max type.");
4231   }
4232 
4233   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4234     // We can replace %x umin_seq %y with %x umin %y if either:
4235     //  * %y being poison implies %x is also poison.
4236     //  * %x cannot be the saturating value (e.g. zero for umin).
4237     if (::impliesPoison(Ops[i], Ops[i - 1]) ||
4238         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1],
4239                                         SaturationPoint)) {
4240       SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]};
4241       Ops[i - 1] = getMinMaxExpr(
4242           SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4243           SeqOps);
4244       Ops.erase(Ops.begin() + i);
4245       return getSequentialMinMaxExpr(Kind, Ops);
4246     }
4247     // Fold %x umin_seq %y to %x if %x ule %y.
4248     // TODO: We might be able to prove the predicate for a later operand.
4249     if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) {
4250       Ops.erase(Ops.begin() + i);
4251       return getSequentialMinMaxExpr(Kind, Ops);
4252     }
4253   }
4254 
4255   // Okay, it looks like we really DO need an expr.  Check to see if we
4256   // already have one, otherwise create a new one.
4257   FoldingSetNodeID ID;
4258   ID.AddInteger(Kind);
4259   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4260     ID.AddPointer(Ops[i]);
4261   void *IP = nullptr;
4262   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4263   if (ExistingSCEV)
4264     return ExistingSCEV;
4265 
4266   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4267   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4268   SCEV *S = new (SCEVAllocator)
4269       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4270 
4271   UniqueSCEVs.InsertNode(S, IP);
4272   registerUser(S, Ops);
4273   return S;
4274 }
4275 
4276 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4277   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4278   return getSMaxExpr(Ops);
4279 }
4280 
4281 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4282   return getMinMaxExpr(scSMaxExpr, Ops);
4283 }
4284 
4285 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4286   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4287   return getUMaxExpr(Ops);
4288 }
4289 
4290 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4291   return getMinMaxExpr(scUMaxExpr, Ops);
4292 }
4293 
4294 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4295                                          const SCEV *RHS) {
4296   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4297   return getSMinExpr(Ops);
4298 }
4299 
4300 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4301   return getMinMaxExpr(scSMinExpr, Ops);
4302 }
4303 
4304 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4305                                          bool Sequential) {
4306   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4307   return getUMinExpr(Ops, Sequential);
4308 }
4309 
4310 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4311                                          bool Sequential) {
4312   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4313                     : getMinMaxExpr(scUMinExpr, Ops);
4314 }
4315 
4316 const SCEV *
4317 ScalarEvolution::getSizeOfExpr(Type *IntTy, TypeSize Size) {
4318   const SCEV *Res = getConstant(IntTy, Size.getKnownMinValue());
4319   if (Size.isScalable())
4320     Res = getMulExpr(Res, getVScale(IntTy));
4321   return Res;
4322 }
4323 
4324 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4325   return getSizeOfExpr(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4326 }
4327 
4328 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4329   return getSizeOfExpr(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4330 }
4331 
4332 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4333                                              StructType *STy,
4334                                              unsigned FieldNo) {
4335   // We can bypass creating a target-independent constant expression and then
4336   // folding it back into a ConstantInt. This is just a compile-time
4337   // optimization.
4338   const StructLayout *SL = getDataLayout().getStructLayout(STy);
4339   assert(!SL->getSizeInBits().isScalable() &&
4340          "Cannot get offset for structure containing scalable vector types");
4341   return getConstant(IntTy, SL->getElementOffset(FieldNo));
4342 }
4343 
4344 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4345   // Don't attempt to do anything other than create a SCEVUnknown object
4346   // here.  createSCEV only calls getUnknown after checking for all other
4347   // interesting possibilities, and any other code that calls getUnknown
4348   // is doing so in order to hide a value from SCEV canonicalization.
4349 
4350   FoldingSetNodeID ID;
4351   ID.AddInteger(scUnknown);
4352   ID.AddPointer(V);
4353   void *IP = nullptr;
4354   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4355     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4356            "Stale SCEVUnknown in uniquing map!");
4357     return S;
4358   }
4359   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4360                                             FirstUnknown);
4361   FirstUnknown = cast<SCEVUnknown>(S);
4362   UniqueSCEVs.InsertNode(S, IP);
4363   return S;
4364 }
4365 
4366 //===----------------------------------------------------------------------===//
4367 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4368 //
4369 
4370 /// Test if values of the given type are analyzable within the SCEV
4371 /// framework. This primarily includes integer types, and it can optionally
4372 /// include pointer types if the ScalarEvolution class has access to
4373 /// target-specific information.
4374 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4375   // Integers and pointers are always SCEVable.
4376   return Ty->isIntOrPtrTy();
4377 }
4378 
4379 /// Return the size in bits of the specified type, for which isSCEVable must
4380 /// return true.
4381 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4382   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4383   if (Ty->isPointerTy())
4384     return getDataLayout().getIndexTypeSizeInBits(Ty);
4385   return getDataLayout().getTypeSizeInBits(Ty);
4386 }
4387 
4388 /// Return a type with the same bitwidth as the given type and which represents
4389 /// how SCEV will treat the given type, for which isSCEVable must return
4390 /// true. For pointer types, this is the pointer index sized integer type.
4391 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4392   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4393 
4394   if (Ty->isIntegerTy())
4395     return Ty;
4396 
4397   // The only other support type is pointer.
4398   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4399   return getDataLayout().getIndexType(Ty);
4400 }
4401 
4402 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4403   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4404 }
4405 
4406 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4407                                                          const SCEV *B) {
4408   /// For a valid use point to exist, the defining scope of one operand
4409   /// must dominate the other.
4410   bool PreciseA, PreciseB;
4411   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4412   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4413   if (!PreciseA || !PreciseB)
4414     // Can't tell.
4415     return false;
4416   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4417     DT.dominates(ScopeB, ScopeA);
4418 }
4419 
4420 
4421 const SCEV *ScalarEvolution::getCouldNotCompute() {
4422   return CouldNotCompute.get();
4423 }
4424 
4425 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4426   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4427     auto *SU = dyn_cast<SCEVUnknown>(S);
4428     return SU && SU->getValue() == nullptr;
4429   });
4430 
4431   return !ContainsNulls;
4432 }
4433 
4434 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4435   HasRecMapType::iterator I = HasRecMap.find(S);
4436   if (I != HasRecMap.end())
4437     return I->second;
4438 
4439   bool FoundAddRec =
4440       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4441   HasRecMap.insert({S, FoundAddRec});
4442   return FoundAddRec;
4443 }
4444 
4445 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4446 /// by the value and offset from any ValueOffsetPair in the set.
4447 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) {
4448   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4449   if (SI == ExprValueMap.end())
4450     return std::nullopt;
4451   return SI->second.getArrayRef();
4452 }
4453 
4454 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4455 /// cannot be used separately. eraseValueFromMap should be used to remove
4456 /// V from ValueExprMap and ExprValueMap at the same time.
4457 void ScalarEvolution::eraseValueFromMap(Value *V) {
4458   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4459   if (I != ValueExprMap.end()) {
4460     auto EVIt = ExprValueMap.find(I->second);
4461     bool Removed = EVIt->second.remove(V);
4462     (void) Removed;
4463     assert(Removed && "Value not in ExprValueMap?");
4464     ValueExprMap.erase(I);
4465   }
4466 }
4467 
4468 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4469   // A recursive query may have already computed the SCEV. It should be
4470   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4471   // inferred nowrap flags.
4472   auto It = ValueExprMap.find_as(V);
4473   if (It == ValueExprMap.end()) {
4474     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4475     ExprValueMap[S].insert(V);
4476   }
4477 }
4478 
4479 /// Determine whether this instruction is either not SCEVable or will always
4480 /// produce a SCEVUnknown. We do not have to walk past such instructions when
4481 /// invalidating.
4482 static bool isAlwaysUnknown(const Instruction *I) {
4483   switch (I->getOpcode()) {
4484   case Instruction::Load:
4485     return true;
4486   default:
4487     return false;
4488   }
4489 }
4490 
4491 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4492 /// create a new one.
4493 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4494   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4495 
4496   if (const SCEV *S = getExistingSCEV(V))
4497     return S;
4498   const SCEV *S = createSCEVIter(V);
4499   assert((!isa<Instruction>(V) || !isAlwaysUnknown(cast<Instruction>(V)) ||
4500           isa<SCEVUnknown>(S)) &&
4501          "isAlwaysUnknown() instruction is not SCEVUnknown");
4502   return S;
4503 }
4504 
4505 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4506   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4507 
4508   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4509   if (I != ValueExprMap.end()) {
4510     const SCEV *S = I->second;
4511     assert(checkValidity(S) &&
4512            "existing SCEV has not been properly invalidated");
4513     return S;
4514   }
4515   return nullptr;
4516 }
4517 
4518 /// Return a SCEV corresponding to -V = -1*V
4519 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4520                                              SCEV::NoWrapFlags Flags) {
4521   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4522     return getConstant(
4523                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4524 
4525   Type *Ty = V->getType();
4526   Ty = getEffectiveSCEVType(Ty);
4527   return getMulExpr(V, getMinusOne(Ty), Flags);
4528 }
4529 
4530 /// If Expr computes ~A, return A else return nullptr
4531 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4532   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4533   if (!Add || Add->getNumOperands() != 2 ||
4534       !Add->getOperand(0)->isAllOnesValue())
4535     return nullptr;
4536 
4537   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4538   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4539       !AddRHS->getOperand(0)->isAllOnesValue())
4540     return nullptr;
4541 
4542   return AddRHS->getOperand(1);
4543 }
4544 
4545 /// Return a SCEV corresponding to ~V = -1-V
4546 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4547   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4548 
4549   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4550     return getConstant(
4551                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4552 
4553   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4554   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4555     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4556       SmallVector<const SCEV *, 2> MatchedOperands;
4557       for (const SCEV *Operand : MME->operands()) {
4558         const SCEV *Matched = MatchNotExpr(Operand);
4559         if (!Matched)
4560           return (const SCEV *)nullptr;
4561         MatchedOperands.push_back(Matched);
4562       }
4563       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4564                            MatchedOperands);
4565     };
4566     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4567       return Replaced;
4568   }
4569 
4570   Type *Ty = V->getType();
4571   Ty = getEffectiveSCEVType(Ty);
4572   return getMinusSCEV(getMinusOne(Ty), V);
4573 }
4574 
4575 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4576   assert(P->getType()->isPointerTy());
4577 
4578   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4579     // The base of an AddRec is the first operand.
4580     SmallVector<const SCEV *> Ops{AddRec->operands()};
4581     Ops[0] = removePointerBase(Ops[0]);
4582     // Don't try to transfer nowrap flags for now. We could in some cases
4583     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4584     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4585   }
4586   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4587     // The base of an Add is the pointer operand.
4588     SmallVector<const SCEV *> Ops{Add->operands()};
4589     const SCEV **PtrOp = nullptr;
4590     for (const SCEV *&AddOp : Ops) {
4591       if (AddOp->getType()->isPointerTy()) {
4592         assert(!PtrOp && "Cannot have multiple pointer ops");
4593         PtrOp = &AddOp;
4594       }
4595     }
4596     *PtrOp = removePointerBase(*PtrOp);
4597     // Don't try to transfer nowrap flags for now. We could in some cases
4598     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4599     return getAddExpr(Ops);
4600   }
4601   // Any other expression must be a pointer base.
4602   return getZero(P->getType());
4603 }
4604 
4605 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4606                                           SCEV::NoWrapFlags Flags,
4607                                           unsigned Depth) {
4608   // Fast path: X - X --> 0.
4609   if (LHS == RHS)
4610     return getZero(LHS->getType());
4611 
4612   // If we subtract two pointers with different pointer bases, bail.
4613   // Eventually, we're going to add an assertion to getMulExpr that we
4614   // can't multiply by a pointer.
4615   if (RHS->getType()->isPointerTy()) {
4616     if (!LHS->getType()->isPointerTy() ||
4617         getPointerBase(LHS) != getPointerBase(RHS))
4618       return getCouldNotCompute();
4619     LHS = removePointerBase(LHS);
4620     RHS = removePointerBase(RHS);
4621   }
4622 
4623   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4624   // makes it so that we cannot make much use of NUW.
4625   auto AddFlags = SCEV::FlagAnyWrap;
4626   const bool RHSIsNotMinSigned =
4627       !getSignedRangeMin(RHS).isMinSignedValue();
4628   if (hasFlags(Flags, SCEV::FlagNSW)) {
4629     // Let M be the minimum representable signed value. Then (-1)*RHS
4630     // signed-wraps if and only if RHS is M. That can happen even for
4631     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4632     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4633     // (-1)*RHS, we need to prove that RHS != M.
4634     //
4635     // If LHS is non-negative and we know that LHS - RHS does not
4636     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4637     // either by proving that RHS > M or that LHS >= 0.
4638     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4639       AddFlags = SCEV::FlagNSW;
4640     }
4641   }
4642 
4643   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4644   // RHS is NSW and LHS >= 0.
4645   //
4646   // The difficulty here is that the NSW flag may have been proven
4647   // relative to a loop that is to be found in a recurrence in LHS and
4648   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4649   // larger scope than intended.
4650   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4651 
4652   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4653 }
4654 
4655 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4656                                                      unsigned Depth) {
4657   Type *SrcTy = V->getType();
4658   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4659          "Cannot truncate or zero extend with non-integer arguments!");
4660   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4661     return V;  // No conversion
4662   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4663     return getTruncateExpr(V, Ty, Depth);
4664   return getZeroExtendExpr(V, Ty, Depth);
4665 }
4666 
4667 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4668                                                      unsigned Depth) {
4669   Type *SrcTy = V->getType();
4670   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4671          "Cannot truncate or zero extend with non-integer arguments!");
4672   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4673     return V;  // No conversion
4674   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4675     return getTruncateExpr(V, Ty, Depth);
4676   return getSignExtendExpr(V, Ty, Depth);
4677 }
4678 
4679 const SCEV *
4680 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4681   Type *SrcTy = V->getType();
4682   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4683          "Cannot noop or zero extend with non-integer arguments!");
4684   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4685          "getNoopOrZeroExtend cannot truncate!");
4686   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4687     return V;  // No conversion
4688   return getZeroExtendExpr(V, Ty);
4689 }
4690 
4691 const SCEV *
4692 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4693   Type *SrcTy = V->getType();
4694   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4695          "Cannot noop or sign extend with non-integer arguments!");
4696   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4697          "getNoopOrSignExtend cannot truncate!");
4698   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4699     return V;  // No conversion
4700   return getSignExtendExpr(V, Ty);
4701 }
4702 
4703 const SCEV *
4704 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4705   Type *SrcTy = V->getType();
4706   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4707          "Cannot noop or any extend with non-integer arguments!");
4708   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4709          "getNoopOrAnyExtend cannot truncate!");
4710   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4711     return V;  // No conversion
4712   return getAnyExtendExpr(V, Ty);
4713 }
4714 
4715 const SCEV *
4716 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4717   Type *SrcTy = V->getType();
4718   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4719          "Cannot truncate or noop with non-integer arguments!");
4720   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4721          "getTruncateOrNoop cannot extend!");
4722   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4723     return V;  // No conversion
4724   return getTruncateExpr(V, Ty);
4725 }
4726 
4727 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4728                                                         const SCEV *RHS) {
4729   const SCEV *PromotedLHS = LHS;
4730   const SCEV *PromotedRHS = RHS;
4731 
4732   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4733     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4734   else
4735     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4736 
4737   return getUMaxExpr(PromotedLHS, PromotedRHS);
4738 }
4739 
4740 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4741                                                         const SCEV *RHS,
4742                                                         bool Sequential) {
4743   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4744   return getUMinFromMismatchedTypes(Ops, Sequential);
4745 }
4746 
4747 const SCEV *
4748 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4749                                             bool Sequential) {
4750   assert(!Ops.empty() && "At least one operand must be!");
4751   // Trivial case.
4752   if (Ops.size() == 1)
4753     return Ops[0];
4754 
4755   // Find the max type first.
4756   Type *MaxType = nullptr;
4757   for (const auto *S : Ops)
4758     if (MaxType)
4759       MaxType = getWiderType(MaxType, S->getType());
4760     else
4761       MaxType = S->getType();
4762   assert(MaxType && "Failed to find maximum type!");
4763 
4764   // Extend all ops to max type.
4765   SmallVector<const SCEV *, 2> PromotedOps;
4766   for (const auto *S : Ops)
4767     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4768 
4769   // Generate umin.
4770   return getUMinExpr(PromotedOps, Sequential);
4771 }
4772 
4773 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4774   // A pointer operand may evaluate to a nonpointer expression, such as null.
4775   if (!V->getType()->isPointerTy())
4776     return V;
4777 
4778   while (true) {
4779     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4780       V = AddRec->getStart();
4781     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4782       const SCEV *PtrOp = nullptr;
4783       for (const SCEV *AddOp : Add->operands()) {
4784         if (AddOp->getType()->isPointerTy()) {
4785           assert(!PtrOp && "Cannot have multiple pointer ops");
4786           PtrOp = AddOp;
4787         }
4788       }
4789       assert(PtrOp && "Must have pointer op");
4790       V = PtrOp;
4791     } else // Not something we can look further into.
4792       return V;
4793   }
4794 }
4795 
4796 /// Push users of the given Instruction onto the given Worklist.
4797 static void PushDefUseChildren(Instruction *I,
4798                                SmallVectorImpl<Instruction *> &Worklist,
4799                                SmallPtrSetImpl<Instruction *> &Visited) {
4800   // Push the def-use children onto the Worklist stack.
4801   for (User *U : I->users()) {
4802     auto *UserInsn = cast<Instruction>(U);
4803     if (isAlwaysUnknown(UserInsn))
4804       continue;
4805     if (Visited.insert(UserInsn).second)
4806       Worklist.push_back(UserInsn);
4807   }
4808 }
4809 
4810 namespace {
4811 
4812 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4813 /// expression in case its Loop is L. If it is not L then
4814 /// if IgnoreOtherLoops is true then use AddRec itself
4815 /// otherwise rewrite cannot be done.
4816 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4817 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4818 public:
4819   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4820                              bool IgnoreOtherLoops = true) {
4821     SCEVInitRewriter Rewriter(L, SE);
4822     const SCEV *Result = Rewriter.visit(S);
4823     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4824       return SE.getCouldNotCompute();
4825     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4826                ? SE.getCouldNotCompute()
4827                : Result;
4828   }
4829 
4830   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4831     if (!SE.isLoopInvariant(Expr, L))
4832       SeenLoopVariantSCEVUnknown = true;
4833     return Expr;
4834   }
4835 
4836   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4837     // Only re-write AddRecExprs for this loop.
4838     if (Expr->getLoop() == L)
4839       return Expr->getStart();
4840     SeenOtherLoops = true;
4841     return Expr;
4842   }
4843 
4844   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4845 
4846   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4847 
4848 private:
4849   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4850       : SCEVRewriteVisitor(SE), L(L) {}
4851 
4852   const Loop *L;
4853   bool SeenLoopVariantSCEVUnknown = false;
4854   bool SeenOtherLoops = false;
4855 };
4856 
4857 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4858 /// increment expression in case its Loop is L. If it is not L then
4859 /// use AddRec itself.
4860 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4861 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4862 public:
4863   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4864     SCEVPostIncRewriter Rewriter(L, SE);
4865     const SCEV *Result = Rewriter.visit(S);
4866     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4867         ? SE.getCouldNotCompute()
4868         : Result;
4869   }
4870 
4871   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4872     if (!SE.isLoopInvariant(Expr, L))
4873       SeenLoopVariantSCEVUnknown = true;
4874     return Expr;
4875   }
4876 
4877   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4878     // Only re-write AddRecExprs for this loop.
4879     if (Expr->getLoop() == L)
4880       return Expr->getPostIncExpr(SE);
4881     SeenOtherLoops = true;
4882     return Expr;
4883   }
4884 
4885   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4886 
4887   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4888 
4889 private:
4890   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4891       : SCEVRewriteVisitor(SE), L(L) {}
4892 
4893   const Loop *L;
4894   bool SeenLoopVariantSCEVUnknown = false;
4895   bool SeenOtherLoops = false;
4896 };
4897 
4898 /// This class evaluates the compare condition by matching it against the
4899 /// condition of loop latch. If there is a match we assume a true value
4900 /// for the condition while building SCEV nodes.
4901 class SCEVBackedgeConditionFolder
4902     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4903 public:
4904   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4905                              ScalarEvolution &SE) {
4906     bool IsPosBECond = false;
4907     Value *BECond = nullptr;
4908     if (BasicBlock *Latch = L->getLoopLatch()) {
4909       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4910       if (BI && BI->isConditional()) {
4911         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4912                "Both outgoing branches should not target same header!");
4913         BECond = BI->getCondition();
4914         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4915       } else {
4916         return S;
4917       }
4918     }
4919     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4920     return Rewriter.visit(S);
4921   }
4922 
4923   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4924     const SCEV *Result = Expr;
4925     bool InvariantF = SE.isLoopInvariant(Expr, L);
4926 
4927     if (!InvariantF) {
4928       Instruction *I = cast<Instruction>(Expr->getValue());
4929       switch (I->getOpcode()) {
4930       case Instruction::Select: {
4931         SelectInst *SI = cast<SelectInst>(I);
4932         std::optional<const SCEV *> Res =
4933             compareWithBackedgeCondition(SI->getCondition());
4934         if (Res) {
4935           bool IsOne = cast<SCEVConstant>(*Res)->getValue()->isOne();
4936           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4937         }
4938         break;
4939       }
4940       default: {
4941         std::optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4942         if (Res)
4943           Result = *Res;
4944         break;
4945       }
4946       }
4947     }
4948     return Result;
4949   }
4950 
4951 private:
4952   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4953                                        bool IsPosBECond, ScalarEvolution &SE)
4954       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4955         IsPositiveBECond(IsPosBECond) {}
4956 
4957   std::optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4958 
4959   const Loop *L;
4960   /// Loop back condition.
4961   Value *BackedgeCond = nullptr;
4962   /// Set to true if loop back is on positive branch condition.
4963   bool IsPositiveBECond;
4964 };
4965 
4966 std::optional<const SCEV *>
4967 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4968 
4969   // If value matches the backedge condition for loop latch,
4970   // then return a constant evolution node based on loopback
4971   // branch taken.
4972   if (BackedgeCond == IC)
4973     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4974                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4975   return std::nullopt;
4976 }
4977 
4978 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4979 public:
4980   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4981                              ScalarEvolution &SE) {
4982     SCEVShiftRewriter Rewriter(L, SE);
4983     const SCEV *Result = Rewriter.visit(S);
4984     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4985   }
4986 
4987   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4988     // Only allow AddRecExprs for this loop.
4989     if (!SE.isLoopInvariant(Expr, L))
4990       Valid = false;
4991     return Expr;
4992   }
4993 
4994   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4995     if (Expr->getLoop() == L && Expr->isAffine())
4996       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4997     Valid = false;
4998     return Expr;
4999   }
5000 
5001   bool isValid() { return Valid; }
5002 
5003 private:
5004   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
5005       : SCEVRewriteVisitor(SE), L(L) {}
5006 
5007   const Loop *L;
5008   bool Valid = true;
5009 };
5010 
5011 } // end anonymous namespace
5012 
5013 SCEV::NoWrapFlags
5014 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
5015   if (!AR->isAffine())
5016     return SCEV::FlagAnyWrap;
5017 
5018   using OBO = OverflowingBinaryOperator;
5019 
5020   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
5021 
5022   if (!AR->hasNoSelfWrap()) {
5023     const SCEV *BECount = getConstantMaxBackedgeTakenCount(AR->getLoop());
5024     if (const SCEVConstant *BECountMax = dyn_cast<SCEVConstant>(BECount)) {
5025       ConstantRange StepCR = getSignedRange(AR->getStepRecurrence(*this));
5026       const APInt &BECountAP = BECountMax->getAPInt();
5027       unsigned NoOverflowBitWidth =
5028         BECountAP.getActiveBits() + StepCR.getMinSignedBits();
5029       if (NoOverflowBitWidth <= getTypeSizeInBits(AR->getType()))
5030         Result = ScalarEvolution::setFlags(Result, SCEV::FlagNW);
5031     }
5032   }
5033 
5034   if (!AR->hasNoSignedWrap()) {
5035     ConstantRange AddRecRange = getSignedRange(AR);
5036     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
5037 
5038     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5039         Instruction::Add, IncRange, OBO::NoSignedWrap);
5040     if (NSWRegion.contains(AddRecRange))
5041       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
5042   }
5043 
5044   if (!AR->hasNoUnsignedWrap()) {
5045     ConstantRange AddRecRange = getUnsignedRange(AR);
5046     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
5047 
5048     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
5049         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
5050     if (NUWRegion.contains(AddRecRange))
5051       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
5052   }
5053 
5054   return Result;
5055 }
5056 
5057 SCEV::NoWrapFlags
5058 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5059   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5060 
5061   if (AR->hasNoSignedWrap())
5062     return Result;
5063 
5064   if (!AR->isAffine())
5065     return Result;
5066 
5067   // This function can be expensive, only try to prove NSW once per AddRec.
5068   if (!SignedWrapViaInductionTried.insert(AR).second)
5069     return Result;
5070 
5071   const SCEV *Step = AR->getStepRecurrence(*this);
5072   const Loop *L = AR->getLoop();
5073 
5074   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5075   // Note that this serves two purposes: It filters out loops that are
5076   // simply not analyzable, and it covers the case where this code is
5077   // being called from within backedge-taken count analysis, such that
5078   // attempting to ask for the backedge-taken count would likely result
5079   // in infinite recursion. In the later case, the analysis code will
5080   // cope with a conservative value, and it will take care to purge
5081   // that value once it has finished.
5082   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5083 
5084   // Normally, in the cases we can prove no-overflow via a
5085   // backedge guarding condition, we can also compute a backedge
5086   // taken count for the loop.  The exceptions are assumptions and
5087   // guards present in the loop -- SCEV is not great at exploiting
5088   // these to compute max backedge taken counts, but can still use
5089   // these to prove lack of overflow.  Use this fact to avoid
5090   // doing extra work that may not pay off.
5091 
5092   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5093       AC.assumptions().empty())
5094     return Result;
5095 
5096   // If the backedge is guarded by a comparison with the pre-inc  value the
5097   // addrec is safe. Also, if the entry is guarded by a comparison with the
5098   // start value and the backedge is guarded by a comparison with the post-inc
5099   // value, the addrec is safe.
5100   ICmpInst::Predicate Pred;
5101   const SCEV *OverflowLimit =
5102     getSignedOverflowLimitForStep(Step, &Pred, this);
5103   if (OverflowLimit &&
5104       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
5105        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
5106     Result = setFlags(Result, SCEV::FlagNSW);
5107   }
5108   return Result;
5109 }
5110 SCEV::NoWrapFlags
5111 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
5112   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
5113 
5114   if (AR->hasNoUnsignedWrap())
5115     return Result;
5116 
5117   if (!AR->isAffine())
5118     return Result;
5119 
5120   // This function can be expensive, only try to prove NUW once per AddRec.
5121   if (!UnsignedWrapViaInductionTried.insert(AR).second)
5122     return Result;
5123 
5124   const SCEV *Step = AR->getStepRecurrence(*this);
5125   unsigned BitWidth = getTypeSizeInBits(AR->getType());
5126   const Loop *L = AR->getLoop();
5127 
5128   // Check whether the backedge-taken count is SCEVCouldNotCompute.
5129   // Note that this serves two purposes: It filters out loops that are
5130   // simply not analyzable, and it covers the case where this code is
5131   // being called from within backedge-taken count analysis, such that
5132   // attempting to ask for the backedge-taken count would likely result
5133   // in infinite recursion. In the later case, the analysis code will
5134   // cope with a conservative value, and it will take care to purge
5135   // that value once it has finished.
5136   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
5137 
5138   // Normally, in the cases we can prove no-overflow via a
5139   // backedge guarding condition, we can also compute a backedge
5140   // taken count for the loop.  The exceptions are assumptions and
5141   // guards present in the loop -- SCEV is not great at exploiting
5142   // these to compute max backedge taken counts, but can still use
5143   // these to prove lack of overflow.  Use this fact to avoid
5144   // doing extra work that may not pay off.
5145 
5146   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
5147       AC.assumptions().empty())
5148     return Result;
5149 
5150   // If the backedge is guarded by a comparison with the pre-inc  value the
5151   // addrec is safe. Also, if the entry is guarded by a comparison with the
5152   // start value and the backedge is guarded by a comparison with the post-inc
5153   // value, the addrec is safe.
5154   if (isKnownPositive(Step)) {
5155     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5156                                 getUnsignedRangeMax(Step));
5157     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5158         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5159       Result = setFlags(Result, SCEV::FlagNUW);
5160     }
5161   }
5162 
5163   return Result;
5164 }
5165 
5166 namespace {
5167 
5168 /// Represents an abstract binary operation.  This may exist as a
5169 /// normal instruction or constant expression, or may have been
5170 /// derived from an expression tree.
5171 struct BinaryOp {
5172   unsigned Opcode;
5173   Value *LHS;
5174   Value *RHS;
5175   bool IsNSW = false;
5176   bool IsNUW = false;
5177 
5178   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5179   /// constant expression.
5180   Operator *Op = nullptr;
5181 
5182   explicit BinaryOp(Operator *Op)
5183       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5184         Op(Op) {
5185     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5186       IsNSW = OBO->hasNoSignedWrap();
5187       IsNUW = OBO->hasNoUnsignedWrap();
5188     }
5189   }
5190 
5191   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5192                     bool IsNUW = false)
5193       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5194 };
5195 
5196 } // end anonymous namespace
5197 
5198 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5199 static std::optional<BinaryOp> MatchBinaryOp(Value *V, const DataLayout &DL,
5200                                              AssumptionCache &AC,
5201                                              const DominatorTree &DT,
5202                                              const Instruction *CxtI) {
5203   auto *Op = dyn_cast<Operator>(V);
5204   if (!Op)
5205     return std::nullopt;
5206 
5207   // Implementation detail: all the cleverness here should happen without
5208   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5209   // SCEV expressions when possible, and we should not break that.
5210 
5211   switch (Op->getOpcode()) {
5212   case Instruction::Add:
5213   case Instruction::Sub:
5214   case Instruction::Mul:
5215   case Instruction::UDiv:
5216   case Instruction::URem:
5217   case Instruction::And:
5218   case Instruction::AShr:
5219   case Instruction::Shl:
5220     return BinaryOp(Op);
5221 
5222   case Instruction::Or: {
5223     // LLVM loves to convert `add` of operands with no common bits
5224     // into an `or`. But SCEV really doesn't deal with `or` that well,
5225     // so try extra hard to recognize this `or` as an `add`.
5226     if (haveNoCommonBitsSet(Op->getOperand(0), Op->getOperand(1), DL, &AC, CxtI,
5227                             &DT, /*UseInstrInfo=*/true))
5228       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1),
5229                       /*IsNSW=*/true, /*IsNUW=*/true);
5230     return BinaryOp(Op);
5231   }
5232 
5233   case Instruction::Xor:
5234     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5235       // If the RHS of the xor is a signmask, then this is just an add.
5236       // Instcombine turns add of signmask into xor as a strength reduction step.
5237       if (RHSC->getValue().isSignMask())
5238         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5239     // Binary `xor` is a bit-wise `add`.
5240     if (V->getType()->isIntegerTy(1))
5241       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5242     return BinaryOp(Op);
5243 
5244   case Instruction::LShr:
5245     // Turn logical shift right of a constant into a unsigned divide.
5246     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5247       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5248 
5249       // If the shift count is not less than the bitwidth, the result of
5250       // the shift is undefined. Don't try to analyze it, because the
5251       // resolution chosen here may differ from the resolution chosen in
5252       // other parts of the compiler.
5253       if (SA->getValue().ult(BitWidth)) {
5254         Constant *X =
5255             ConstantInt::get(SA->getContext(),
5256                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5257         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5258       }
5259     }
5260     return BinaryOp(Op);
5261 
5262   case Instruction::ExtractValue: {
5263     auto *EVI = cast<ExtractValueInst>(Op);
5264     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5265       break;
5266 
5267     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5268     if (!WO)
5269       break;
5270 
5271     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5272     bool Signed = WO->isSigned();
5273     // TODO: Should add nuw/nsw flags for mul as well.
5274     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5275       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5276 
5277     // Now that we know that all uses of the arithmetic-result component of
5278     // CI are guarded by the overflow check, we can go ahead and pretend
5279     // that the arithmetic is non-overflowing.
5280     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5281                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5282   }
5283 
5284   default:
5285     break;
5286   }
5287 
5288   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5289   // semantics as a Sub, return a binary sub expression.
5290   if (auto *II = dyn_cast<IntrinsicInst>(V))
5291     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5292       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5293 
5294   return std::nullopt;
5295 }
5296 
5297 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5298 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5299 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5300 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5301 /// follows one of the following patterns:
5302 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5303 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5304 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5305 /// we return the type of the truncation operation, and indicate whether the
5306 /// truncated type should be treated as signed/unsigned by setting
5307 /// \p Signed to true/false, respectively.
5308 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5309                                bool &Signed, ScalarEvolution &SE) {
5310   // The case where Op == SymbolicPHI (that is, with no type conversions on
5311   // the way) is handled by the regular add recurrence creating logic and
5312   // would have already been triggered in createAddRecForPHI. Reaching it here
5313   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5314   // because one of the other operands of the SCEVAddExpr updating this PHI is
5315   // not invariant).
5316   //
5317   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5318   // this case predicates that allow us to prove that Op == SymbolicPHI will
5319   // be added.
5320   if (Op == SymbolicPHI)
5321     return nullptr;
5322 
5323   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5324   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5325   if (SourceBits != NewBits)
5326     return nullptr;
5327 
5328   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5329   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5330   if (!SExt && !ZExt)
5331     return nullptr;
5332   const SCEVTruncateExpr *Trunc =
5333       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5334            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5335   if (!Trunc)
5336     return nullptr;
5337   const SCEV *X = Trunc->getOperand();
5338   if (X != SymbolicPHI)
5339     return nullptr;
5340   Signed = SExt != nullptr;
5341   return Trunc->getType();
5342 }
5343 
5344 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5345   if (!PN->getType()->isIntegerTy())
5346     return nullptr;
5347   const Loop *L = LI.getLoopFor(PN->getParent());
5348   if (!L || L->getHeader() != PN->getParent())
5349     return nullptr;
5350   return L;
5351 }
5352 
5353 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5354 // computation that updates the phi follows the following pattern:
5355 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5356 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5357 // If so, try to see if it can be rewritten as an AddRecExpr under some
5358 // Predicates. If successful, return them as a pair. Also cache the results
5359 // of the analysis.
5360 //
5361 // Example usage scenario:
5362 //    Say the Rewriter is called for the following SCEV:
5363 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5364 //    where:
5365 //         %X = phi i64 (%Start, %BEValue)
5366 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5367 //    and call this function with %SymbolicPHI = %X.
5368 //
5369 //    The analysis will find that the value coming around the backedge has
5370 //    the following SCEV:
5371 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5372 //    Upon concluding that this matches the desired pattern, the function
5373 //    will return the pair {NewAddRec, SmallPredsVec} where:
5374 //         NewAddRec = {%Start,+,%Step}
5375 //         SmallPredsVec = {P1, P2, P3} as follows:
5376 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5377 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5378 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5379 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5380 //    under the predicates {P1,P2,P3}.
5381 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5382 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5383 //
5384 // TODO's:
5385 //
5386 // 1) Extend the Induction descriptor to also support inductions that involve
5387 //    casts: When needed (namely, when we are called in the context of the
5388 //    vectorizer induction analysis), a Set of cast instructions will be
5389 //    populated by this method, and provided back to isInductionPHI. This is
5390 //    needed to allow the vectorizer to properly record them to be ignored by
5391 //    the cost model and to avoid vectorizing them (otherwise these casts,
5392 //    which are redundant under the runtime overflow checks, will be
5393 //    vectorized, which can be costly).
5394 //
5395 // 2) Support additional induction/PHISCEV patterns: We also want to support
5396 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5397 //    after the induction update operation (the induction increment):
5398 //
5399 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5400 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5401 //
5402 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5403 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5404 //
5405 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5406 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5407 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5408   SmallVector<const SCEVPredicate *, 3> Predicates;
5409 
5410   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5411   // return an AddRec expression under some predicate.
5412 
5413   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5414   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5415   assert(L && "Expecting an integer loop header phi");
5416 
5417   // The loop may have multiple entrances or multiple exits; we can analyze
5418   // this phi as an addrec if it has a unique entry value and a unique
5419   // backedge value.
5420   Value *BEValueV = nullptr, *StartValueV = nullptr;
5421   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5422     Value *V = PN->getIncomingValue(i);
5423     if (L->contains(PN->getIncomingBlock(i))) {
5424       if (!BEValueV) {
5425         BEValueV = V;
5426       } else if (BEValueV != V) {
5427         BEValueV = nullptr;
5428         break;
5429       }
5430     } else if (!StartValueV) {
5431       StartValueV = V;
5432     } else if (StartValueV != V) {
5433       StartValueV = nullptr;
5434       break;
5435     }
5436   }
5437   if (!BEValueV || !StartValueV)
5438     return std::nullopt;
5439 
5440   const SCEV *BEValue = getSCEV(BEValueV);
5441 
5442   // If the value coming around the backedge is an add with the symbolic
5443   // value we just inserted, possibly with casts that we can ignore under
5444   // an appropriate runtime guard, then we found a simple induction variable!
5445   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5446   if (!Add)
5447     return std::nullopt;
5448 
5449   // If there is a single occurrence of the symbolic value, possibly
5450   // casted, replace it with a recurrence.
5451   unsigned FoundIndex = Add->getNumOperands();
5452   Type *TruncTy = nullptr;
5453   bool Signed;
5454   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5455     if ((TruncTy =
5456              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5457       if (FoundIndex == e) {
5458         FoundIndex = i;
5459         break;
5460       }
5461 
5462   if (FoundIndex == Add->getNumOperands())
5463     return std::nullopt;
5464 
5465   // Create an add with everything but the specified operand.
5466   SmallVector<const SCEV *, 8> Ops;
5467   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5468     if (i != FoundIndex)
5469       Ops.push_back(Add->getOperand(i));
5470   const SCEV *Accum = getAddExpr(Ops);
5471 
5472   // The runtime checks will not be valid if the step amount is
5473   // varying inside the loop.
5474   if (!isLoopInvariant(Accum, L))
5475     return std::nullopt;
5476 
5477   // *** Part2: Create the predicates
5478 
5479   // Analysis was successful: we have a phi-with-cast pattern for which we
5480   // can return an AddRec expression under the following predicates:
5481   //
5482   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5483   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5484   // P2: An Equal predicate that guarantees that
5485   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5486   // P3: An Equal predicate that guarantees that
5487   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5488   //
5489   // As we next prove, the above predicates guarantee that:
5490   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5491   //
5492   //
5493   // More formally, we want to prove that:
5494   //     Expr(i+1) = Start + (i+1) * Accum
5495   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5496   //
5497   // Given that:
5498   // 1) Expr(0) = Start
5499   // 2) Expr(1) = Start + Accum
5500   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5501   // 3) Induction hypothesis (step i):
5502   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5503   //
5504   // Proof:
5505   //  Expr(i+1) =
5506   //   = Start + (i+1)*Accum
5507   //   = (Start + i*Accum) + Accum
5508   //   = Expr(i) + Accum
5509   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5510   //                                                             :: from step i
5511   //
5512   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5513   //
5514   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5515   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5516   //     + Accum                                                     :: from P3
5517   //
5518   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5519   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5520   //
5521   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5522   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5523   //
5524   // By induction, the same applies to all iterations 1<=i<n:
5525   //
5526 
5527   // Create a truncated addrec for which we will add a no overflow check (P1).
5528   const SCEV *StartVal = getSCEV(StartValueV);
5529   const SCEV *PHISCEV =
5530       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5531                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5532 
5533   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5534   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5535   // will be constant.
5536   //
5537   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5538   // add P1.
5539   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5540     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5541         Signed ? SCEVWrapPredicate::IncrementNSSW
5542                : SCEVWrapPredicate::IncrementNUSW;
5543     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5544     Predicates.push_back(AddRecPred);
5545   }
5546 
5547   // Create the Equal Predicates P2,P3:
5548 
5549   // It is possible that the predicates P2 and/or P3 are computable at
5550   // compile time due to StartVal and/or Accum being constants.
5551   // If either one is, then we can check that now and escape if either P2
5552   // or P3 is false.
5553 
5554   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5555   // for each of StartVal and Accum
5556   auto getExtendedExpr = [&](const SCEV *Expr,
5557                              bool CreateSignExtend) -> const SCEV * {
5558     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5559     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5560     const SCEV *ExtendedExpr =
5561         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5562                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5563     return ExtendedExpr;
5564   };
5565 
5566   // Given:
5567   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5568   //               = getExtendedExpr(Expr)
5569   // Determine whether the predicate P: Expr == ExtendedExpr
5570   // is known to be false at compile time
5571   auto PredIsKnownFalse = [&](const SCEV *Expr,
5572                               const SCEV *ExtendedExpr) -> bool {
5573     return Expr != ExtendedExpr &&
5574            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5575   };
5576 
5577   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5578   if (PredIsKnownFalse(StartVal, StartExtended)) {
5579     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5580     return std::nullopt;
5581   }
5582 
5583   // The Step is always Signed (because the overflow checks are either
5584   // NSSW or NUSW)
5585   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5586   if (PredIsKnownFalse(Accum, AccumExtended)) {
5587     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5588     return std::nullopt;
5589   }
5590 
5591   auto AppendPredicate = [&](const SCEV *Expr,
5592                              const SCEV *ExtendedExpr) -> void {
5593     if (Expr != ExtendedExpr &&
5594         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5595       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5596       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5597       Predicates.push_back(Pred);
5598     }
5599   };
5600 
5601   AppendPredicate(StartVal, StartExtended);
5602   AppendPredicate(Accum, AccumExtended);
5603 
5604   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5605   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5606   // into NewAR if it will also add the runtime overflow checks specified in
5607   // Predicates.
5608   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5609 
5610   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5611       std::make_pair(NewAR, Predicates);
5612   // Remember the result of the analysis for this SCEV at this locayyytion.
5613   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5614   return PredRewrite;
5615 }
5616 
5617 std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5618 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5619   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5620   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5621   if (!L)
5622     return std::nullopt;
5623 
5624   // Check to see if we already analyzed this PHI.
5625   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5626   if (I != PredicatedSCEVRewrites.end()) {
5627     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5628         I->second;
5629     // Analysis was done before and failed to create an AddRec:
5630     if (Rewrite.first == SymbolicPHI)
5631       return std::nullopt;
5632     // Analysis was done before and succeeded to create an AddRec under
5633     // a predicate:
5634     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5635     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5636     return Rewrite;
5637   }
5638 
5639   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5640     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5641 
5642   // Record in the cache that the analysis failed
5643   if (!Rewrite) {
5644     SmallVector<const SCEVPredicate *, 3> Predicates;
5645     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5646     return std::nullopt;
5647   }
5648 
5649   return Rewrite;
5650 }
5651 
5652 // FIXME: This utility is currently required because the Rewriter currently
5653 // does not rewrite this expression:
5654 // {0, +, (sext ix (trunc iy to ix) to iy)}
5655 // into {0, +, %step},
5656 // even when the following Equal predicate exists:
5657 // "%step == (sext ix (trunc iy to ix) to iy)".
5658 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5659     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5660   if (AR1 == AR2)
5661     return true;
5662 
5663   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5664     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5665         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5666       return false;
5667     return true;
5668   };
5669 
5670   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5671       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5672     return false;
5673   return true;
5674 }
5675 
5676 /// A helper function for createAddRecFromPHI to handle simple cases.
5677 ///
5678 /// This function tries to find an AddRec expression for the simplest (yet most
5679 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5680 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5681 /// technique for finding the AddRec expression.
5682 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5683                                                       Value *BEValueV,
5684                                                       Value *StartValueV) {
5685   const Loop *L = LI.getLoopFor(PN->getParent());
5686   assert(L && L->getHeader() == PN->getParent());
5687   assert(BEValueV && StartValueV);
5688 
5689   auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN);
5690   if (!BO)
5691     return nullptr;
5692 
5693   if (BO->Opcode != Instruction::Add)
5694     return nullptr;
5695 
5696   const SCEV *Accum = nullptr;
5697   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5698     Accum = getSCEV(BO->RHS);
5699   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5700     Accum = getSCEV(BO->LHS);
5701 
5702   if (!Accum)
5703     return nullptr;
5704 
5705   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5706   if (BO->IsNUW)
5707     Flags = setFlags(Flags, SCEV::FlagNUW);
5708   if (BO->IsNSW)
5709     Flags = setFlags(Flags, SCEV::FlagNSW);
5710 
5711   const SCEV *StartVal = getSCEV(StartValueV);
5712   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5713   insertValueToMap(PN, PHISCEV);
5714 
5715   if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5716     setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5717                    (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5718                                        proveNoWrapViaConstantRanges(AR)));
5719   }
5720 
5721   // We can add Flags to the post-inc expression only if we
5722   // know that it is *undefined behavior* for BEValueV to
5723   // overflow.
5724   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5725     assert(isLoopInvariant(Accum, L) &&
5726            "Accum is defined outside L, but is not invariant?");
5727     if (isAddRecNeverPoison(BEInst, L))
5728       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5729   }
5730 
5731   return PHISCEV;
5732 }
5733 
5734 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5735   const Loop *L = LI.getLoopFor(PN->getParent());
5736   if (!L || L->getHeader() != PN->getParent())
5737     return nullptr;
5738 
5739   // The loop may have multiple entrances or multiple exits; we can analyze
5740   // this phi as an addrec if it has a unique entry value and a unique
5741   // backedge value.
5742   Value *BEValueV = nullptr, *StartValueV = nullptr;
5743   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5744     Value *V = PN->getIncomingValue(i);
5745     if (L->contains(PN->getIncomingBlock(i))) {
5746       if (!BEValueV) {
5747         BEValueV = V;
5748       } else if (BEValueV != V) {
5749         BEValueV = nullptr;
5750         break;
5751       }
5752     } else if (!StartValueV) {
5753       StartValueV = V;
5754     } else if (StartValueV != V) {
5755       StartValueV = nullptr;
5756       break;
5757     }
5758   }
5759   if (!BEValueV || !StartValueV)
5760     return nullptr;
5761 
5762   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5763          "PHI node already processed?");
5764 
5765   // First, try to find AddRec expression without creating a fictituos symbolic
5766   // value for PN.
5767   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5768     return S;
5769 
5770   // Handle PHI node value symbolically.
5771   const SCEV *SymbolicName = getUnknown(PN);
5772   insertValueToMap(PN, SymbolicName);
5773 
5774   // Using this symbolic name for the PHI, analyze the value coming around
5775   // the back-edge.
5776   const SCEV *BEValue = getSCEV(BEValueV);
5777 
5778   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5779   // has a special value for the first iteration of the loop.
5780 
5781   // If the value coming around the backedge is an add with the symbolic
5782   // value we just inserted, then we found a simple induction variable!
5783   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5784     // If there is a single occurrence of the symbolic value, replace it
5785     // with a recurrence.
5786     unsigned FoundIndex = Add->getNumOperands();
5787     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5788       if (Add->getOperand(i) == SymbolicName)
5789         if (FoundIndex == e) {
5790           FoundIndex = i;
5791           break;
5792         }
5793 
5794     if (FoundIndex != Add->getNumOperands()) {
5795       // Create an add with everything but the specified operand.
5796       SmallVector<const SCEV *, 8> Ops;
5797       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5798         if (i != FoundIndex)
5799           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5800                                                              L, *this));
5801       const SCEV *Accum = getAddExpr(Ops);
5802 
5803       // This is not a valid addrec if the step amount is varying each
5804       // loop iteration, but is not itself an addrec in this loop.
5805       if (isLoopInvariant(Accum, L) ||
5806           (isa<SCEVAddRecExpr>(Accum) &&
5807            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5808         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5809 
5810         if (auto BO = MatchBinaryOp(BEValueV, getDataLayout(), AC, DT, PN)) {
5811           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5812             if (BO->IsNUW)
5813               Flags = setFlags(Flags, SCEV::FlagNUW);
5814             if (BO->IsNSW)
5815               Flags = setFlags(Flags, SCEV::FlagNSW);
5816           }
5817         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5818           // If the increment is an inbounds GEP, then we know the address
5819           // space cannot be wrapped around. We cannot make any guarantee
5820           // about signed or unsigned overflow because pointers are
5821           // unsigned but we may have a negative index from the base
5822           // pointer. We can guarantee that no unsigned wrap occurs if the
5823           // indices form a positive value.
5824           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5825             Flags = setFlags(Flags, SCEV::FlagNW);
5826             if (isKnownPositive(Accum))
5827               Flags = setFlags(Flags, SCEV::FlagNUW);
5828           }
5829 
5830           // We cannot transfer nuw and nsw flags from subtraction
5831           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5832           // for instance.
5833         }
5834 
5835         const SCEV *StartVal = getSCEV(StartValueV);
5836         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5837 
5838         // Okay, for the entire analysis of this edge we assumed the PHI
5839         // to be symbolic.  We now need to go back and purge all of the
5840         // entries for the scalars that use the symbolic expression.
5841         forgetMemoizedResults(SymbolicName);
5842         insertValueToMap(PN, PHISCEV);
5843 
5844         if (auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5845           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR),
5846                          (SCEV::NoWrapFlags)(AR->getNoWrapFlags() |
5847                                              proveNoWrapViaConstantRanges(AR)));
5848         }
5849 
5850         // We can add Flags to the post-inc expression only if we
5851         // know that it is *undefined behavior* for BEValueV to
5852         // overflow.
5853         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5854           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5855             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5856 
5857         return PHISCEV;
5858       }
5859     }
5860   } else {
5861     // Otherwise, this could be a loop like this:
5862     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5863     // In this case, j = {1,+,1}  and BEValue is j.
5864     // Because the other in-value of i (0) fits the evolution of BEValue
5865     // i really is an addrec evolution.
5866     //
5867     // We can generalize this saying that i is the shifted value of BEValue
5868     // by one iteration:
5869     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5870     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5871     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5872     if (Shifted != getCouldNotCompute() &&
5873         Start != getCouldNotCompute()) {
5874       const SCEV *StartVal = getSCEV(StartValueV);
5875       if (Start == StartVal) {
5876         // Okay, for the entire analysis of this edge we assumed the PHI
5877         // to be symbolic.  We now need to go back and purge all of the
5878         // entries for the scalars that use the symbolic expression.
5879         forgetMemoizedResults(SymbolicName);
5880         insertValueToMap(PN, Shifted);
5881         return Shifted;
5882       }
5883     }
5884   }
5885 
5886   // Remove the temporary PHI node SCEV that has been inserted while intending
5887   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5888   // as it will prevent later (possibly simpler) SCEV expressions to be added
5889   // to the ValueExprMap.
5890   eraseValueFromMap(PN);
5891 
5892   return nullptr;
5893 }
5894 
5895 // Try to match a control flow sequence that branches out at BI and merges back
5896 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5897 // match.
5898 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5899                           Value *&C, Value *&LHS, Value *&RHS) {
5900   C = BI->getCondition();
5901 
5902   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5903   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5904 
5905   if (!LeftEdge.isSingleEdge())
5906     return false;
5907 
5908   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5909 
5910   Use &LeftUse = Merge->getOperandUse(0);
5911   Use &RightUse = Merge->getOperandUse(1);
5912 
5913   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5914     LHS = LeftUse;
5915     RHS = RightUse;
5916     return true;
5917   }
5918 
5919   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5920     LHS = RightUse;
5921     RHS = LeftUse;
5922     return true;
5923   }
5924 
5925   return false;
5926 }
5927 
5928 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5929   auto IsReachable =
5930       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5931   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5932     // Try to match
5933     //
5934     //  br %cond, label %left, label %right
5935     // left:
5936     //  br label %merge
5937     // right:
5938     //  br label %merge
5939     // merge:
5940     //  V = phi [ %x, %left ], [ %y, %right ]
5941     //
5942     // as "select %cond, %x, %y"
5943 
5944     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5945     assert(IDom && "At least the entry block should dominate PN");
5946 
5947     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5948     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5949 
5950     if (BI && BI->isConditional() &&
5951         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5952         properlyDominates(getSCEV(LHS), PN->getParent()) &&
5953         properlyDominates(getSCEV(RHS), PN->getParent()))
5954       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5955   }
5956 
5957   return nullptr;
5958 }
5959 
5960 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5961   if (const SCEV *S = createAddRecFromPHI(PN))
5962     return S;
5963 
5964   if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5965     return getSCEV(V);
5966 
5967   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5968     return S;
5969 
5970   // If it's not a loop phi, we can't handle it yet.
5971   return getUnknown(PN);
5972 }
5973 
5974 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
5975                             SCEVTypes RootKind) {
5976   struct FindClosure {
5977     const SCEV *OperandToFind;
5978     const SCEVTypes RootKind; // Must be a sequential min/max expression.
5979     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
5980 
5981     bool Found = false;
5982 
5983     bool canRecurseInto(SCEVTypes Kind) const {
5984       // We can only recurse into the SCEV expression of the same effective type
5985       // as the type of our root SCEV expression, and into zero-extensions.
5986       return RootKind == Kind || NonSequentialRootKind == Kind ||
5987              scZeroExtend == Kind;
5988     };
5989 
5990     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
5991         : OperandToFind(OperandToFind), RootKind(RootKind),
5992           NonSequentialRootKind(
5993               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
5994                   RootKind)) {}
5995 
5996     bool follow(const SCEV *S) {
5997       Found = S == OperandToFind;
5998 
5999       return !isDone() && canRecurseInto(S->getSCEVType());
6000     }
6001 
6002     bool isDone() const { return Found; }
6003   };
6004 
6005   FindClosure FC(OperandToFind, RootKind);
6006   visitAll(Root, FC);
6007   return FC.Found;
6008 }
6009 
6010 std::optional<const SCEV *>
6011 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty,
6012                                                               ICmpInst *Cond,
6013                                                               Value *TrueVal,
6014                                                               Value *FalseVal) {
6015   // Try to match some simple smax or umax patterns.
6016   auto *ICI = Cond;
6017 
6018   Value *LHS = ICI->getOperand(0);
6019   Value *RHS = ICI->getOperand(1);
6020 
6021   switch (ICI->getPredicate()) {
6022   case ICmpInst::ICMP_SLT:
6023   case ICmpInst::ICMP_SLE:
6024   case ICmpInst::ICMP_ULT:
6025   case ICmpInst::ICMP_ULE:
6026     std::swap(LHS, RHS);
6027     [[fallthrough]];
6028   case ICmpInst::ICMP_SGT:
6029   case ICmpInst::ICMP_SGE:
6030   case ICmpInst::ICMP_UGT:
6031   case ICmpInst::ICMP_UGE:
6032     // a > b ? a+x : b+x  ->  max(a, b)+x
6033     // a > b ? b+x : a+x  ->  min(a, b)+x
6034     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty)) {
6035       bool Signed = ICI->isSigned();
6036       const SCEV *LA = getSCEV(TrueVal);
6037       const SCEV *RA = getSCEV(FalseVal);
6038       const SCEV *LS = getSCEV(LHS);
6039       const SCEV *RS = getSCEV(RHS);
6040       if (LA->getType()->isPointerTy()) {
6041         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6042         // Need to make sure we can't produce weird expressions involving
6043         // negated pointers.
6044         if (LA == LS && RA == RS)
6045           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
6046         if (LA == RS && RA == LS)
6047           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
6048       }
6049       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
6050         if (Op->getType()->isPointerTy()) {
6051           Op = getLosslessPtrToIntExpr(Op);
6052           if (isa<SCEVCouldNotCompute>(Op))
6053             return Op;
6054         }
6055         if (Signed)
6056           Op = getNoopOrSignExtend(Op, Ty);
6057         else
6058           Op = getNoopOrZeroExtend(Op, Ty);
6059         return Op;
6060       };
6061       LS = CoerceOperand(LS);
6062       RS = CoerceOperand(RS);
6063       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
6064         break;
6065       const SCEV *LDiff = getMinusSCEV(LA, LS);
6066       const SCEV *RDiff = getMinusSCEV(RA, RS);
6067       if (LDiff == RDiff)
6068         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
6069                           LDiff);
6070       LDiff = getMinusSCEV(LA, RS);
6071       RDiff = getMinusSCEV(RA, LS);
6072       if (LDiff == RDiff)
6073         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
6074                           LDiff);
6075     }
6076     break;
6077   case ICmpInst::ICMP_NE:
6078     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6079     std::swap(TrueVal, FalseVal);
6080     [[fallthrough]];
6081   case ICmpInst::ICMP_EQ:
6082     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6083     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(Ty) &&
6084         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6085       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), Ty);
6086       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6087       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6088       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6089       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6090       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6091         return getAddExpr(getUMaxExpr(X, C), Y);
6092     }
6093     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6094     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6095     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6096     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6097     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6098         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6099       const SCEV *X = getSCEV(LHS);
6100       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6101         X = ZExt->getOperand();
6102       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(Ty)) {
6103         const SCEV *FalseValExpr = getSCEV(FalseVal);
6104         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6105           return getUMinExpr(getNoopOrZeroExtend(X, Ty), FalseValExpr,
6106                              /*Sequential=*/true);
6107       }
6108     }
6109     break;
6110   default:
6111     break;
6112   }
6113 
6114   return std::nullopt;
6115 }
6116 
6117 static std::optional<const SCEV *>
6118 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr,
6119                               const SCEV *TrueExpr, const SCEV *FalseExpr) {
6120   assert(CondExpr->getType()->isIntegerTy(1) &&
6121          TrueExpr->getType() == FalseExpr->getType() &&
6122          TrueExpr->getType()->isIntegerTy(1) &&
6123          "Unexpected operands of a select.");
6124 
6125   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6126   //                        -->  C + (umin_seq  cond, x - C)
6127   //
6128   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6129   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6130   //                        -->  C + (umin_seq ~cond, x - C)
6131 
6132   // FIXME: while we can't legally model the case where both of the hands
6133   // are fully variable, we only require that the *difference* is constant.
6134   if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr))
6135     return std::nullopt;
6136 
6137   const SCEV *X, *C;
6138   if (isa<SCEVConstant>(TrueExpr)) {
6139     CondExpr = SE->getNotSCEV(CondExpr);
6140     X = FalseExpr;
6141     C = TrueExpr;
6142   } else {
6143     X = TrueExpr;
6144     C = FalseExpr;
6145   }
6146   return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C),
6147                                            /*Sequential=*/true));
6148 }
6149 
6150 static std::optional<const SCEV *>
6151 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, Value *Cond, Value *TrueVal,
6152                               Value *FalseVal) {
6153   if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal))
6154     return std::nullopt;
6155 
6156   const auto *SECond = SE->getSCEV(Cond);
6157   const auto *SETrue = SE->getSCEV(TrueVal);
6158   const auto *SEFalse = SE->getSCEV(FalseVal);
6159   return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse);
6160 }
6161 
6162 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6163     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6164   assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6165   assert(TrueVal->getType() == FalseVal->getType() &&
6166          V->getType() == TrueVal->getType() &&
6167          "Types of select hands and of the result must match.");
6168 
6169   // For now, only deal with i1-typed `select`s.
6170   if (!V->getType()->isIntegerTy(1))
6171     return getUnknown(V);
6172 
6173   if (std::optional<const SCEV *> S =
6174           createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal))
6175     return *S;
6176 
6177   return getUnknown(V);
6178 }
6179 
6180 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6181                                                       Value *TrueVal,
6182                                                       Value *FalseVal) {
6183   // Handle "constant" branch or select. This can occur for instance when a
6184   // loop pass transforms an inner loop and moves on to process the outer loop.
6185   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6186     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6187 
6188   if (auto *I = dyn_cast<Instruction>(V)) {
6189     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6190       if (std::optional<const SCEV *> S =
6191               createNodeForSelectOrPHIInstWithICmpInstCond(I->getType(), ICI,
6192                                                            TrueVal, FalseVal))
6193         return *S;
6194     }
6195   }
6196 
6197   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6198 }
6199 
6200 /// Expand GEP instructions into add and multiply operations. This allows them
6201 /// to be analyzed by regular SCEV code.
6202 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6203   assert(GEP->getSourceElementType()->isSized() &&
6204          "GEP source element type must be sized");
6205 
6206   SmallVector<const SCEV *, 4> IndexExprs;
6207   for (Value *Index : GEP->indices())
6208     IndexExprs.push_back(getSCEV(Index));
6209   return getGEPExpr(GEP, IndexExprs);
6210 }
6211 
6212 APInt ScalarEvolution::getConstantMultipleImpl(const SCEV *S) {
6213   uint64_t BitWidth = getTypeSizeInBits(S->getType());
6214   auto GetShiftedByZeros = [BitWidth](uint32_t TrailingZeros) {
6215     return TrailingZeros >= BitWidth
6216                ? APInt::getZero(BitWidth)
6217                : APInt::getOneBitSet(BitWidth, TrailingZeros);
6218   };
6219   auto GetGCDMultiple = [this](const SCEVNAryExpr *N) {
6220     // The result is GCD of all operands results.
6221     APInt Res = getConstantMultiple(N->getOperand(0));
6222     for (unsigned I = 1, E = N->getNumOperands(); I < E && Res != 1; ++I)
6223       Res = APIntOps::GreatestCommonDivisor(
6224           Res, getConstantMultiple(N->getOperand(I)));
6225     return Res;
6226   };
6227 
6228   switch (S->getSCEVType()) {
6229   case scConstant:
6230     return cast<SCEVConstant>(S)->getAPInt();
6231   case scPtrToInt:
6232     return getConstantMultiple(cast<SCEVPtrToIntExpr>(S)->getOperand());
6233   case scUDivExpr:
6234   case scVScale:
6235     return APInt(BitWidth, 1);
6236   case scTruncate: {
6237     // Only multiples that are a power of 2 will hold after truncation.
6238     const SCEVTruncateExpr *T = cast<SCEVTruncateExpr>(S);
6239     uint32_t TZ = getMinTrailingZeros(T->getOperand());
6240     return GetShiftedByZeros(TZ);
6241   }
6242   case scZeroExtend: {
6243     const SCEVZeroExtendExpr *Z = cast<SCEVZeroExtendExpr>(S);
6244     return getConstantMultiple(Z->getOperand()).zext(BitWidth);
6245   }
6246   case scSignExtend: {
6247     const SCEVSignExtendExpr *E = cast<SCEVSignExtendExpr>(S);
6248     return getConstantMultiple(E->getOperand()).sext(BitWidth);
6249   }
6250   case scMulExpr: {
6251     const SCEVMulExpr *M = cast<SCEVMulExpr>(S);
6252     if (M->hasNoUnsignedWrap()) {
6253       // The result is the product of all operand results.
6254       APInt Res = getConstantMultiple(M->getOperand(0));
6255       for (const SCEV *Operand : M->operands().drop_front())
6256         Res = Res * getConstantMultiple(Operand);
6257       return Res;
6258     }
6259 
6260     // If there are no wrap guarentees, find the trailing zeros, which is the
6261     // sum of trailing zeros for all its operands.
6262     uint32_t TZ = 0;
6263     for (const SCEV *Operand : M->operands())
6264       TZ += getMinTrailingZeros(Operand);
6265     return GetShiftedByZeros(TZ);
6266   }
6267   case scAddExpr:
6268   case scAddRecExpr: {
6269     const SCEVNAryExpr *N = cast<SCEVNAryExpr>(S);
6270     if (N->hasNoUnsignedWrap())
6271         return GetGCDMultiple(N);
6272     // Find the trailing bits, which is the minimum of its operands.
6273     uint32_t TZ = getMinTrailingZeros(N->getOperand(0));
6274     for (const SCEV *Operand : N->operands().drop_front())
6275       TZ = std::min(TZ, getMinTrailingZeros(Operand));
6276     return GetShiftedByZeros(TZ);
6277   }
6278   case scUMaxExpr:
6279   case scSMaxExpr:
6280   case scUMinExpr:
6281   case scSMinExpr:
6282   case scSequentialUMinExpr:
6283     return GetGCDMultiple(cast<SCEVNAryExpr>(S));
6284   case scUnknown: {
6285     // ask ValueTracking for known bits
6286     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6287     unsigned Known =
6288         computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT)
6289             .countMinTrailingZeros();
6290     return GetShiftedByZeros(Known);
6291   }
6292   case scCouldNotCompute:
6293     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6294   }
6295   llvm_unreachable("Unknown SCEV kind!");
6296 }
6297 
6298 APInt ScalarEvolution::getConstantMultiple(const SCEV *S) {
6299   auto I = ConstantMultipleCache.find(S);
6300   if (I != ConstantMultipleCache.end())
6301     return I->second;
6302 
6303   APInt Result = getConstantMultipleImpl(S);
6304   auto InsertPair = ConstantMultipleCache.insert({S, Result});
6305   assert(InsertPair.second && "Should insert a new key");
6306   return InsertPair.first->second;
6307 }
6308 
6309 APInt ScalarEvolution::getNonZeroConstantMultiple(const SCEV *S) {
6310   APInt Multiple = getConstantMultiple(S);
6311   return Multiple == 0 ? APInt(Multiple.getBitWidth(), 1) : Multiple;
6312 }
6313 
6314 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV *S) {
6315   return std::min(getConstantMultiple(S).countTrailingZeros(),
6316                   (unsigned)getTypeSizeInBits(S->getType()));
6317 }
6318 
6319 /// Helper method to assign a range to V from metadata present in the IR.
6320 static std::optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6321   if (Instruction *I = dyn_cast<Instruction>(V))
6322     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6323       return getConstantRangeFromMetadata(*MD);
6324 
6325   return std::nullopt;
6326 }
6327 
6328 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6329                                      SCEV::NoWrapFlags Flags) {
6330   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6331     AddRec->setNoWrapFlags(Flags);
6332     UnsignedRanges.erase(AddRec);
6333     SignedRanges.erase(AddRec);
6334     ConstantMultipleCache.erase(AddRec);
6335   }
6336 }
6337 
6338 ConstantRange ScalarEvolution::
6339 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6340   const DataLayout &DL = getDataLayout();
6341 
6342   unsigned BitWidth = getTypeSizeInBits(U->getType());
6343   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6344 
6345   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6346   // use information about the trip count to improve our available range.  Note
6347   // that the trip count independent cases are already handled by known bits.
6348   // WARNING: The definition of recurrence used here is subtly different than
6349   // the one used by AddRec (and thus most of this file).  Step is allowed to
6350   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6351   // and other addrecs in the same loop (for non-affine addrecs).  The code
6352   // below intentionally handles the case where step is not loop invariant.
6353   auto *P = dyn_cast<PHINode>(U->getValue());
6354   if (!P)
6355     return FullSet;
6356 
6357   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6358   // even the values that are not available in these blocks may come from them,
6359   // and this leads to false-positive recurrence test.
6360   for (auto *Pred : predecessors(P->getParent()))
6361     if (!DT.isReachableFromEntry(Pred))
6362       return FullSet;
6363 
6364   BinaryOperator *BO;
6365   Value *Start, *Step;
6366   if (!matchSimpleRecurrence(P, BO, Start, Step))
6367     return FullSet;
6368 
6369   // If we found a recurrence in reachable code, we must be in a loop. Note
6370   // that BO might be in some subloop of L, and that's completely okay.
6371   auto *L = LI.getLoopFor(P->getParent());
6372   assert(L && L->getHeader() == P->getParent());
6373   if (!L->contains(BO->getParent()))
6374     // NOTE: This bailout should be an assert instead.  However, asserting
6375     // the condition here exposes a case where LoopFusion is querying SCEV
6376     // with malformed loop information during the midst of the transform.
6377     // There doesn't appear to be an obvious fix, so for the moment bailout
6378     // until the caller issue can be fixed.  PR49566 tracks the bug.
6379     return FullSet;
6380 
6381   // TODO: Extend to other opcodes such as mul, and div
6382   switch (BO->getOpcode()) {
6383   default:
6384     return FullSet;
6385   case Instruction::AShr:
6386   case Instruction::LShr:
6387   case Instruction::Shl:
6388     break;
6389   };
6390 
6391   if (BO->getOperand(0) != P)
6392     // TODO: Handle the power function forms some day.
6393     return FullSet;
6394 
6395   unsigned TC = getSmallConstantMaxTripCount(L);
6396   if (!TC || TC >= BitWidth)
6397     return FullSet;
6398 
6399   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6400   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6401   assert(KnownStart.getBitWidth() == BitWidth &&
6402          KnownStep.getBitWidth() == BitWidth);
6403 
6404   // Compute total shift amount, being careful of overflow and bitwidths.
6405   auto MaxShiftAmt = KnownStep.getMaxValue();
6406   APInt TCAP(BitWidth, TC-1);
6407   bool Overflow = false;
6408   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6409   if (Overflow)
6410     return FullSet;
6411 
6412   switch (BO->getOpcode()) {
6413   default:
6414     llvm_unreachable("filtered out above");
6415   case Instruction::AShr: {
6416     // For each ashr, three cases:
6417     //   shift = 0 => unchanged value
6418     //   saturation => 0 or -1
6419     //   other => a value closer to zero (of the same sign)
6420     // Thus, the end value is closer to zero than the start.
6421     auto KnownEnd = KnownBits::ashr(KnownStart,
6422                                     KnownBits::makeConstant(TotalShift));
6423     if (KnownStart.isNonNegative())
6424       // Analogous to lshr (simply not yet canonicalized)
6425       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6426                                         KnownStart.getMaxValue() + 1);
6427     if (KnownStart.isNegative())
6428       // End >=u Start && End <=s Start
6429       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6430                                         KnownEnd.getMaxValue() + 1);
6431     break;
6432   }
6433   case Instruction::LShr: {
6434     // For each lshr, three cases:
6435     //   shift = 0 => unchanged value
6436     //   saturation => 0
6437     //   other => a smaller positive number
6438     // Thus, the low end of the unsigned range is the last value produced.
6439     auto KnownEnd = KnownBits::lshr(KnownStart,
6440                                     KnownBits::makeConstant(TotalShift));
6441     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6442                                       KnownStart.getMaxValue() + 1);
6443   }
6444   case Instruction::Shl: {
6445     // Iff no bits are shifted out, value increases on every shift.
6446     auto KnownEnd = KnownBits::shl(KnownStart,
6447                                    KnownBits::makeConstant(TotalShift));
6448     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6449       return ConstantRange(KnownStart.getMinValue(),
6450                            KnownEnd.getMaxValue() + 1);
6451     break;
6452   }
6453   };
6454   return FullSet;
6455 }
6456 
6457 const ConstantRange &
6458 ScalarEvolution::getRangeRefIter(const SCEV *S,
6459                                  ScalarEvolution::RangeSignHint SignHint) {
6460   DenseMap<const SCEV *, ConstantRange> &Cache =
6461       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6462                                                        : SignedRanges;
6463   SmallVector<const SCEV *> WorkList;
6464   SmallPtrSet<const SCEV *, 8> Seen;
6465 
6466   // Add Expr to the worklist, if Expr is either an N-ary expression or a
6467   // SCEVUnknown PHI node.
6468   auto AddToWorklist = [&WorkList, &Seen, &Cache](const SCEV *Expr) {
6469     if (!Seen.insert(Expr).second)
6470       return;
6471     if (Cache.contains(Expr))
6472       return;
6473     switch (Expr->getSCEVType()) {
6474     case scUnknown:
6475       if (!isa<PHINode>(cast<SCEVUnknown>(Expr)->getValue()))
6476         break;
6477       [[fallthrough]];
6478     case scConstant:
6479     case scVScale:
6480     case scTruncate:
6481     case scZeroExtend:
6482     case scSignExtend:
6483     case scPtrToInt:
6484     case scAddExpr:
6485     case scMulExpr:
6486     case scUDivExpr:
6487     case scAddRecExpr:
6488     case scUMaxExpr:
6489     case scSMaxExpr:
6490     case scUMinExpr:
6491     case scSMinExpr:
6492     case scSequentialUMinExpr:
6493       WorkList.push_back(Expr);
6494       break;
6495     case scCouldNotCompute:
6496       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6497     }
6498   };
6499   AddToWorklist(S);
6500 
6501   // Build worklist by queuing operands of N-ary expressions and phi nodes.
6502   for (unsigned I = 0; I != WorkList.size(); ++I) {
6503     const SCEV *P = WorkList[I];
6504     auto *UnknownS = dyn_cast<SCEVUnknown>(P);
6505     // If it is not a `SCEVUnknown`, just recurse into operands.
6506     if (!UnknownS) {
6507       for (const SCEV *Op : P->operands())
6508         AddToWorklist(Op);
6509       continue;
6510     }
6511     // `SCEVUnknown`'s require special treatment.
6512     if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue())) {
6513       if (!PendingPhiRangesIter.insert(P).second)
6514         continue;
6515       for (auto &Op : reverse(P->operands()))
6516         AddToWorklist(getSCEV(Op));
6517     }
6518   }
6519 
6520   if (!WorkList.empty()) {
6521     // Use getRangeRef to compute ranges for items in the worklist in reverse
6522     // order. This will force ranges for earlier operands to be computed before
6523     // their users in most cases.
6524     for (const SCEV *P :
6525          reverse(make_range(WorkList.begin() + 1, WorkList.end()))) {
6526       getRangeRef(P, SignHint);
6527 
6528       if (auto *UnknownS = dyn_cast<SCEVUnknown>(P))
6529         if (const PHINode *P = dyn_cast<PHINode>(UnknownS->getValue()))
6530           PendingPhiRangesIter.erase(P);
6531     }
6532   }
6533 
6534   return getRangeRef(S, SignHint, 0);
6535 }
6536 
6537 /// Determine the range for a particular SCEV.  If SignHint is
6538 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6539 /// with a "cleaner" unsigned (resp. signed) representation.
6540 const ConstantRange &ScalarEvolution::getRangeRef(
6541     const SCEV *S, ScalarEvolution::RangeSignHint SignHint, unsigned Depth) {
6542   DenseMap<const SCEV *, ConstantRange> &Cache =
6543       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6544                                                        : SignedRanges;
6545   ConstantRange::PreferredRangeType RangeType =
6546       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6547                                                        : ConstantRange::Signed;
6548 
6549   // See if we've computed this range already.
6550   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6551   if (I != Cache.end())
6552     return I->second;
6553 
6554   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6555     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6556 
6557   // Switch to iteratively computing the range for S, if it is part of a deeply
6558   // nested expression.
6559   if (Depth > RangeIterThreshold)
6560     return getRangeRefIter(S, SignHint);
6561 
6562   unsigned BitWidth = getTypeSizeInBits(S->getType());
6563   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6564   using OBO = OverflowingBinaryOperator;
6565 
6566   // If the value has known zeros, the maximum value will have those known zeros
6567   // as well.
6568   if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
6569     APInt Multiple = getNonZeroConstantMultiple(S);
6570     APInt Remainder = APInt::getMaxValue(BitWidth).urem(Multiple);
6571     if (!Remainder.isZero())
6572       ConservativeResult =
6573           ConstantRange(APInt::getMinValue(BitWidth),
6574                         APInt::getMaxValue(BitWidth) - Remainder + 1);
6575   }
6576   else {
6577     uint32_t TZ = getMinTrailingZeros(S);
6578     if (TZ != 0) {
6579       ConservativeResult = ConstantRange(
6580           APInt::getSignedMinValue(BitWidth),
6581           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6582     }
6583   }
6584 
6585   switch (S->getSCEVType()) {
6586   case scConstant:
6587     llvm_unreachable("Already handled above.");
6588   case scVScale:
6589     return setRange(S, SignHint, getVScaleRange(&F, BitWidth));
6590   case scTruncate: {
6591     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(S);
6592     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint, Depth + 1);
6593     return setRange(
6594         Trunc, SignHint,
6595         ConservativeResult.intersectWith(X.truncate(BitWidth), RangeType));
6596   }
6597   case scZeroExtend: {
6598     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(S);
6599     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint, Depth + 1);
6600     return setRange(
6601         ZExt, SignHint,
6602         ConservativeResult.intersectWith(X.zeroExtend(BitWidth), RangeType));
6603   }
6604   case scSignExtend: {
6605     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(S);
6606     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint, Depth + 1);
6607     return setRange(
6608         SExt, SignHint,
6609         ConservativeResult.intersectWith(X.signExtend(BitWidth), RangeType));
6610   }
6611   case scPtrToInt: {
6612     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(S);
6613     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint, Depth + 1);
6614     return setRange(PtrToInt, SignHint, X);
6615   }
6616   case scAddExpr: {
6617     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
6618     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint, Depth + 1);
6619     unsigned WrapType = OBO::AnyWrap;
6620     if (Add->hasNoSignedWrap())
6621       WrapType |= OBO::NoSignedWrap;
6622     if (Add->hasNoUnsignedWrap())
6623       WrapType |= OBO::NoUnsignedWrap;
6624     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6625       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint, Depth + 1),
6626                           WrapType, RangeType);
6627     return setRange(Add, SignHint,
6628                     ConservativeResult.intersectWith(X, RangeType));
6629   }
6630   case scMulExpr: {
6631     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(S);
6632     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint, Depth + 1);
6633     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6634       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint, Depth + 1));
6635     return setRange(Mul, SignHint,
6636                     ConservativeResult.intersectWith(X, RangeType));
6637   }
6638   case scUDivExpr: {
6639     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6640     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint, Depth + 1);
6641     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint, Depth + 1);
6642     return setRange(UDiv, SignHint,
6643                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6644   }
6645   case scAddRecExpr: {
6646     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(S);
6647     // If there's no unsigned wrap, the value will never be less than its
6648     // initial value.
6649     if (AddRec->hasNoUnsignedWrap()) {
6650       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6651       if (!UnsignedMinValue.isZero())
6652         ConservativeResult = ConservativeResult.intersectWith(
6653             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6654     }
6655 
6656     // If there's no signed wrap, and all the operands except initial value have
6657     // the same sign or zero, the value won't ever be:
6658     // 1: smaller than initial value if operands are non negative,
6659     // 2: bigger than initial value if operands are non positive.
6660     // For both cases, value can not cross signed min/max boundary.
6661     if (AddRec->hasNoSignedWrap()) {
6662       bool AllNonNeg = true;
6663       bool AllNonPos = true;
6664       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6665         if (!isKnownNonNegative(AddRec->getOperand(i)))
6666           AllNonNeg = false;
6667         if (!isKnownNonPositive(AddRec->getOperand(i)))
6668           AllNonPos = false;
6669       }
6670       if (AllNonNeg)
6671         ConservativeResult = ConservativeResult.intersectWith(
6672             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6673                                        APInt::getSignedMinValue(BitWidth)),
6674             RangeType);
6675       else if (AllNonPos)
6676         ConservativeResult = ConservativeResult.intersectWith(
6677             ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth),
6678                                        getSignedRangeMax(AddRec->getStart()) +
6679                                            1),
6680             RangeType);
6681     }
6682 
6683     // TODO: non-affine addrec
6684     if (AddRec->isAffine()) {
6685       const SCEV *MaxBEScev =
6686           getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6687       if (!isa<SCEVCouldNotCompute>(MaxBEScev)) {
6688         APInt MaxBECount = cast<SCEVConstant>(MaxBEScev)->getAPInt();
6689 
6690         // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6691         // MaxBECount's active bits are all <= AddRec's bit width.
6692         if (MaxBECount.getBitWidth() > BitWidth &&
6693             MaxBECount.getActiveBits() <= BitWidth)
6694           MaxBECount = MaxBECount.trunc(BitWidth);
6695         else if (MaxBECount.getBitWidth() < BitWidth)
6696           MaxBECount = MaxBECount.zext(BitWidth);
6697 
6698         if (MaxBECount.getBitWidth() == BitWidth) {
6699           auto RangeFromAffine = getRangeForAffineAR(
6700               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6701           ConservativeResult =
6702               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6703 
6704           auto RangeFromFactoring = getRangeViaFactoring(
6705               AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount);
6706           ConservativeResult =
6707               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6708         }
6709       }
6710 
6711       // Now try symbolic BE count and more powerful methods.
6712       if (UseExpensiveRangeSharpening) {
6713         const SCEV *SymbolicMaxBECount =
6714             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6715         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6716             getTypeSizeInBits(MaxBEScev->getType()) <= BitWidth &&
6717             AddRec->hasNoSelfWrap()) {
6718           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6719               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6720           ConservativeResult =
6721               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6722         }
6723       }
6724     }
6725 
6726     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6727   }
6728   case scUMaxExpr:
6729   case scSMaxExpr:
6730   case scUMinExpr:
6731   case scSMinExpr:
6732   case scSequentialUMinExpr: {
6733     Intrinsic::ID ID;
6734     switch (S->getSCEVType()) {
6735     case scUMaxExpr:
6736       ID = Intrinsic::umax;
6737       break;
6738     case scSMaxExpr:
6739       ID = Intrinsic::smax;
6740       break;
6741     case scUMinExpr:
6742     case scSequentialUMinExpr:
6743       ID = Intrinsic::umin;
6744       break;
6745     case scSMinExpr:
6746       ID = Intrinsic::smin;
6747       break;
6748     default:
6749       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6750     }
6751 
6752     const auto *NAry = cast<SCEVNAryExpr>(S);
6753     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint, Depth + 1);
6754     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6755       X = X.intrinsic(
6756           ID, {X, getRangeRef(NAry->getOperand(i), SignHint, Depth + 1)});
6757     return setRange(S, SignHint,
6758                     ConservativeResult.intersectWith(X, RangeType));
6759   }
6760   case scUnknown: {
6761     const SCEVUnknown *U = cast<SCEVUnknown>(S);
6762     Value *V = U->getValue();
6763 
6764     // Check if the IR explicitly contains !range metadata.
6765     std::optional<ConstantRange> MDRange = GetRangeFromMetadata(V);
6766     if (MDRange)
6767       ConservativeResult =
6768           ConservativeResult.intersectWith(*MDRange, RangeType);
6769 
6770     // Use facts about recurrences in the underlying IR.  Note that add
6771     // recurrences are AddRecExprs and thus don't hit this path.  This
6772     // primarily handles shift recurrences.
6773     auto CR = getRangeForUnknownRecurrence(U);
6774     ConservativeResult = ConservativeResult.intersectWith(CR);
6775 
6776     // See if ValueTracking can give us a useful range.
6777     const DataLayout &DL = getDataLayout();
6778     KnownBits Known = computeKnownBits(V, DL, 0, &AC, nullptr, &DT);
6779     if (Known.getBitWidth() != BitWidth)
6780       Known = Known.zextOrTrunc(BitWidth);
6781 
6782     // ValueTracking may be able to compute a tighter result for the number of
6783     // sign bits than for the value of those sign bits.
6784     unsigned NS = ComputeNumSignBits(V, DL, 0, &AC, nullptr, &DT);
6785     if (U->getType()->isPointerTy()) {
6786       // If the pointer size is larger than the index size type, this can cause
6787       // NS to be larger than BitWidth. So compensate for this.
6788       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6789       int ptrIdxDiff = ptrSize - BitWidth;
6790       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6791         NS -= ptrIdxDiff;
6792     }
6793 
6794     if (NS > 1) {
6795       // If we know any of the sign bits, we know all of the sign bits.
6796       if (!Known.Zero.getHiBits(NS).isZero())
6797         Known.Zero.setHighBits(NS);
6798       if (!Known.One.getHiBits(NS).isZero())
6799         Known.One.setHighBits(NS);
6800     }
6801 
6802     if (Known.getMinValue() != Known.getMaxValue() + 1)
6803       ConservativeResult = ConservativeResult.intersectWith(
6804           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6805           RangeType);
6806     if (NS > 1)
6807       ConservativeResult = ConservativeResult.intersectWith(
6808           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6809                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6810           RangeType);
6811 
6812     if (U->getType()->isPointerTy() && SignHint == HINT_RANGE_UNSIGNED) {
6813       // Strengthen the range if the underlying IR value is a
6814       // global/alloca/heap allocation using the size of the object.
6815       ObjectSizeOpts Opts;
6816       Opts.RoundToAlign = false;
6817       Opts.NullIsUnknownSize = true;
6818       uint64_t ObjSize;
6819       if ((isa<GlobalVariable>(V) || isa<AllocaInst>(V) ||
6820            isAllocationFn(V, &TLI)) &&
6821           getObjectSize(V, ObjSize, DL, &TLI, Opts) && ObjSize > 1) {
6822         // The highest address the object can start is ObjSize bytes before the
6823         // end (unsigned max value). If this value is not a multiple of the
6824         // alignment, the last possible start value is the next lowest multiple
6825         // of the alignment. Note: The computations below cannot overflow,
6826         // because if they would there's no possible start address for the
6827         // object.
6828         APInt MaxVal = APInt::getMaxValue(BitWidth) - APInt(BitWidth, ObjSize);
6829         uint64_t Align = U->getValue()->getPointerAlignment(DL).value();
6830         uint64_t Rem = MaxVal.urem(Align);
6831         MaxVal -= APInt(BitWidth, Rem);
6832         APInt MinVal = APInt::getZero(BitWidth);
6833         if (llvm::isKnownNonZero(V, DL))
6834           MinVal = Align;
6835         ConservativeResult = ConservativeResult.intersectWith(
6836             ConstantRange::getNonEmpty(MinVal, MaxVal + 1), RangeType);
6837       }
6838     }
6839 
6840     // A range of Phi is a subset of union of all ranges of its input.
6841     if (PHINode *Phi = dyn_cast<PHINode>(V)) {
6842       // Make sure that we do not run over cycled Phis.
6843       if (PendingPhiRanges.insert(Phi).second) {
6844         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6845 
6846         for (const auto &Op : Phi->operands()) {
6847           auto OpRange = getRangeRef(getSCEV(Op), SignHint, Depth + 1);
6848           RangeFromOps = RangeFromOps.unionWith(OpRange);
6849           // No point to continue if we already have a full set.
6850           if (RangeFromOps.isFullSet())
6851             break;
6852         }
6853         ConservativeResult =
6854             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6855         bool Erased = PendingPhiRanges.erase(Phi);
6856         assert(Erased && "Failed to erase Phi properly?");
6857         (void)Erased;
6858       }
6859     }
6860 
6861     // vscale can't be equal to zero
6862     if (const auto *II = dyn_cast<IntrinsicInst>(V))
6863       if (II->getIntrinsicID() == Intrinsic::vscale) {
6864         ConstantRange Disallowed = APInt::getZero(BitWidth);
6865         ConservativeResult = ConservativeResult.difference(Disallowed);
6866       }
6867 
6868     return setRange(U, SignHint, std::move(ConservativeResult));
6869   }
6870   case scCouldNotCompute:
6871     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6872   }
6873 
6874   return setRange(S, SignHint, std::move(ConservativeResult));
6875 }
6876 
6877 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6878 // values that the expression can take. Initially, the expression has a value
6879 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6880 // argument defines if we treat Step as signed or unsigned.
6881 static ConstantRange getRangeForAffineARHelper(APInt Step,
6882                                                const ConstantRange &StartRange,
6883                                                const APInt &MaxBECount,
6884                                                bool Signed) {
6885   unsigned BitWidth = Step.getBitWidth();
6886   assert(BitWidth == StartRange.getBitWidth() &&
6887          BitWidth == MaxBECount.getBitWidth() && "mismatched bit widths");
6888   // If either Step or MaxBECount is 0, then the expression won't change, and we
6889   // just need to return the initial range.
6890   if (Step == 0 || MaxBECount == 0)
6891     return StartRange;
6892 
6893   // If we don't know anything about the initial value (i.e. StartRange is
6894   // FullRange), then we don't know anything about the final range either.
6895   // Return FullRange.
6896   if (StartRange.isFullSet())
6897     return ConstantRange::getFull(BitWidth);
6898 
6899   // If Step is signed and negative, then we use its absolute value, but we also
6900   // note that we're moving in the opposite direction.
6901   bool Descending = Signed && Step.isNegative();
6902 
6903   if (Signed)
6904     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6905     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6906     // This equations hold true due to the well-defined wrap-around behavior of
6907     // APInt.
6908     Step = Step.abs();
6909 
6910   // Check if Offset is more than full span of BitWidth. If it is, the
6911   // expression is guaranteed to overflow.
6912   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6913     return ConstantRange::getFull(BitWidth);
6914 
6915   // Offset is by how much the expression can change. Checks above guarantee no
6916   // overflow here.
6917   APInt Offset = Step * MaxBECount;
6918 
6919   // Minimum value of the final range will match the minimal value of StartRange
6920   // if the expression is increasing and will be decreased by Offset otherwise.
6921   // Maximum value of the final range will match the maximal value of StartRange
6922   // if the expression is decreasing and will be increased by Offset otherwise.
6923   APInt StartLower = StartRange.getLower();
6924   APInt StartUpper = StartRange.getUpper() - 1;
6925   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6926                                    : (StartUpper + std::move(Offset));
6927 
6928   // It's possible that the new minimum/maximum value will fall into the initial
6929   // range (due to wrap around). This means that the expression can take any
6930   // value in this bitwidth, and we have to return full range.
6931   if (StartRange.contains(MovedBoundary))
6932     return ConstantRange::getFull(BitWidth);
6933 
6934   APInt NewLower =
6935       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6936   APInt NewUpper =
6937       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6938   NewUpper += 1;
6939 
6940   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6941   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6942 }
6943 
6944 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6945                                                    const SCEV *Step,
6946                                                    const APInt &MaxBECount) {
6947   assert(getTypeSizeInBits(Start->getType()) ==
6948              getTypeSizeInBits(Step->getType()) &&
6949          getTypeSizeInBits(Start->getType()) == MaxBECount.getBitWidth() &&
6950          "mismatched bit widths");
6951 
6952   // First, consider step signed.
6953   ConstantRange StartSRange = getSignedRange(Start);
6954   ConstantRange StepSRange = getSignedRange(Step);
6955 
6956   // If Step can be both positive and negative, we need to find ranges for the
6957   // maximum absolute step values in both directions and union them.
6958   ConstantRange SR = getRangeForAffineARHelper(
6959       StepSRange.getSignedMin(), StartSRange, MaxBECount, /* Signed = */ true);
6960   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6961                                               StartSRange, MaxBECount,
6962                                               /* Signed = */ true));
6963 
6964   // Next, consider step unsigned.
6965   ConstantRange UR = getRangeForAffineARHelper(
6966       getUnsignedRangeMax(Step), getUnsignedRange(Start), MaxBECount,
6967       /* Signed = */ false);
6968 
6969   // Finally, intersect signed and unsigned ranges.
6970   return SR.intersectWith(UR, ConstantRange::Smallest);
6971 }
6972 
6973 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6974     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6975     ScalarEvolution::RangeSignHint SignHint) {
6976   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6977   assert(AddRec->hasNoSelfWrap() &&
6978          "This only works for non-self-wrapping AddRecs!");
6979   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6980   const SCEV *Step = AddRec->getStepRecurrence(*this);
6981   // Only deal with constant step to save compile time.
6982   if (!isa<SCEVConstant>(Step))
6983     return ConstantRange::getFull(BitWidth);
6984   // Let's make sure that we can prove that we do not self-wrap during
6985   // MaxBECount iterations. We need this because MaxBECount is a maximum
6986   // iteration count estimate, and we might infer nw from some exit for which we
6987   // do not know max exit count (or any other side reasoning).
6988   // TODO: Turn into assert at some point.
6989   if (getTypeSizeInBits(MaxBECount->getType()) >
6990       getTypeSizeInBits(AddRec->getType()))
6991     return ConstantRange::getFull(BitWidth);
6992   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6993   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6994   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6995   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6996   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6997                                          MaxItersWithoutWrap))
6998     return ConstantRange::getFull(BitWidth);
6999 
7000   ICmpInst::Predicate LEPred =
7001       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
7002   ICmpInst::Predicate GEPred =
7003       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
7004   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
7005 
7006   // We know that there is no self-wrap. Let's take Start and End values and
7007   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7008   // the iteration. They either lie inside the range [Min(Start, End),
7009   // Max(Start, End)] or outside it:
7010   //
7011   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
7012   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
7013   //
7014   // No self wrap flag guarantees that the intermediate values cannot be BOTH
7015   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7016   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7017   // Start <= End and step is positive, or Start >= End and step is negative.
7018   const SCEV *Start = applyLoopGuards(AddRec->getStart(), AddRec->getLoop());
7019   ConstantRange StartRange = getRangeRef(Start, SignHint);
7020   ConstantRange EndRange = getRangeRef(End, SignHint);
7021   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
7022   // If they already cover full iteration space, we will know nothing useful
7023   // even if we prove what we want to prove.
7024   if (RangeBetween.isFullSet())
7025     return RangeBetween;
7026   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7027   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
7028                                : RangeBetween.isWrappedSet();
7029   if (IsWrappedSet)
7030     return ConstantRange::getFull(BitWidth);
7031 
7032   if (isKnownPositive(Step) &&
7033       isKnownPredicateViaConstantRanges(LEPred, Start, End))
7034     return RangeBetween;
7035   if (isKnownNegative(Step) &&
7036            isKnownPredicateViaConstantRanges(GEPred, Start, End))
7037     return RangeBetween;
7038   return ConstantRange::getFull(BitWidth);
7039 }
7040 
7041 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
7042                                                     const SCEV *Step,
7043                                                     const APInt &MaxBECount) {
7044   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7045   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7046 
7047   unsigned BitWidth = MaxBECount.getBitWidth();
7048   assert(getTypeSizeInBits(Start->getType()) == BitWidth &&
7049          getTypeSizeInBits(Step->getType()) == BitWidth &&
7050          "mismatched bit widths");
7051 
7052   struct SelectPattern {
7053     Value *Condition = nullptr;
7054     APInt TrueValue;
7055     APInt FalseValue;
7056 
7057     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
7058                            const SCEV *S) {
7059       std::optional<unsigned> CastOp;
7060       APInt Offset(BitWidth, 0);
7061 
7062       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
7063              "Should be!");
7064 
7065       // Peel off a constant offset:
7066       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
7067         // In the future we could consider being smarter here and handle
7068         // {Start+Step,+,Step} too.
7069         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
7070           return;
7071 
7072         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
7073         S = SA->getOperand(1);
7074       }
7075 
7076       // Peel off a cast operation
7077       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
7078         CastOp = SCast->getSCEVType();
7079         S = SCast->getOperand();
7080       }
7081 
7082       using namespace llvm::PatternMatch;
7083 
7084       auto *SU = dyn_cast<SCEVUnknown>(S);
7085       const APInt *TrueVal, *FalseVal;
7086       if (!SU ||
7087           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
7088                                           m_APInt(FalseVal)))) {
7089         Condition = nullptr;
7090         return;
7091       }
7092 
7093       TrueValue = *TrueVal;
7094       FalseValue = *FalseVal;
7095 
7096       // Re-apply the cast we peeled off earlier
7097       if (CastOp)
7098         switch (*CastOp) {
7099         default:
7100           llvm_unreachable("Unknown SCEV cast type!");
7101 
7102         case scTruncate:
7103           TrueValue = TrueValue.trunc(BitWidth);
7104           FalseValue = FalseValue.trunc(BitWidth);
7105           break;
7106         case scZeroExtend:
7107           TrueValue = TrueValue.zext(BitWidth);
7108           FalseValue = FalseValue.zext(BitWidth);
7109           break;
7110         case scSignExtend:
7111           TrueValue = TrueValue.sext(BitWidth);
7112           FalseValue = FalseValue.sext(BitWidth);
7113           break;
7114         }
7115 
7116       // Re-apply the constant offset we peeled off earlier
7117       TrueValue += Offset;
7118       FalseValue += Offset;
7119     }
7120 
7121     bool isRecognized() { return Condition != nullptr; }
7122   };
7123 
7124   SelectPattern StartPattern(*this, BitWidth, Start);
7125   if (!StartPattern.isRecognized())
7126     return ConstantRange::getFull(BitWidth);
7127 
7128   SelectPattern StepPattern(*this, BitWidth, Step);
7129   if (!StepPattern.isRecognized())
7130     return ConstantRange::getFull(BitWidth);
7131 
7132   if (StartPattern.Condition != StepPattern.Condition) {
7133     // We don't handle this case today; but we could, by considering four
7134     // possibilities below instead of two. I'm not sure if there are cases where
7135     // that will help over what getRange already does, though.
7136     return ConstantRange::getFull(BitWidth);
7137   }
7138 
7139   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7140   // construct arbitrary general SCEV expressions here.  This function is called
7141   // from deep in the call stack, and calling getSCEV (on a sext instruction,
7142   // say) can end up caching a suboptimal value.
7143 
7144   // FIXME: without the explicit `this` receiver below, MSVC errors out with
7145   // C2352 and C2512 (otherwise it isn't needed).
7146 
7147   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
7148   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
7149   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
7150   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
7151 
7152   ConstantRange TrueRange =
7153       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount);
7154   ConstantRange FalseRange =
7155       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount);
7156 
7157   return TrueRange.unionWith(FalseRange);
7158 }
7159 
7160 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
7161   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
7162   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
7163 
7164   // Return early if there are no flags to propagate to the SCEV.
7165   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7166   if (BinOp->hasNoUnsignedWrap())
7167     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
7168   if (BinOp->hasNoSignedWrap())
7169     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
7170   if (Flags == SCEV::FlagAnyWrap)
7171     return SCEV::FlagAnyWrap;
7172 
7173   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
7174 }
7175 
7176 const Instruction *
7177 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7178   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7179     return &*AddRec->getLoop()->getHeader()->begin();
7180   if (auto *U = dyn_cast<SCEVUnknown>(S))
7181     if (auto *I = dyn_cast<Instruction>(U->getValue()))
7182       return I;
7183   return nullptr;
7184 }
7185 
7186 const Instruction *
7187 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7188                                        bool &Precise) {
7189   Precise = true;
7190   // Do a bounded search of the def relation of the requested SCEVs.
7191   SmallSet<const SCEV *, 16> Visited;
7192   SmallVector<const SCEV *> Worklist;
7193   auto pushOp = [&](const SCEV *S) {
7194     if (!Visited.insert(S).second)
7195       return;
7196     // Threshold of 30 here is arbitrary.
7197     if (Visited.size() > 30) {
7198       Precise = false;
7199       return;
7200     }
7201     Worklist.push_back(S);
7202   };
7203 
7204   for (const auto *S : Ops)
7205     pushOp(S);
7206 
7207   const Instruction *Bound = nullptr;
7208   while (!Worklist.empty()) {
7209     auto *S = Worklist.pop_back_val();
7210     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7211       if (!Bound || DT.dominates(Bound, DefI))
7212         Bound = DefI;
7213     } else {
7214       for (const auto *Op : S->operands())
7215         pushOp(Op);
7216     }
7217   }
7218   return Bound ? Bound : &*F.getEntryBlock().begin();
7219 }
7220 
7221 const Instruction *
7222 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7223   bool Discard;
7224   return getDefiningScopeBound(Ops, Discard);
7225 }
7226 
7227 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7228                                                         const Instruction *B) {
7229   if (A->getParent() == B->getParent() &&
7230       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7231                                                  B->getIterator()))
7232     return true;
7233 
7234   auto *BLoop = LI.getLoopFor(B->getParent());
7235   if (BLoop && BLoop->getHeader() == B->getParent() &&
7236       BLoop->getLoopPreheader() == A->getParent() &&
7237       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7238                                                  A->getParent()->end()) &&
7239       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7240                                                  B->getIterator()))
7241     return true;
7242   return false;
7243 }
7244 
7245 
7246 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7247   // Only proceed if we can prove that I does not yield poison.
7248   if (!programUndefinedIfPoison(I))
7249     return false;
7250 
7251   // At this point we know that if I is executed, then it does not wrap
7252   // according to at least one of NSW or NUW. If I is not executed, then we do
7253   // not know if the calculation that I represents would wrap. Multiple
7254   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7255   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7256   // derived from other instructions that map to the same SCEV. We cannot make
7257   // that guarantee for cases where I is not executed. So we need to find a
7258   // upper bound on the defining scope for the SCEV, and prove that I is
7259   // executed every time we enter that scope.  When the bounding scope is a
7260   // loop (the common case), this is equivalent to proving I executes on every
7261   // iteration of that loop.
7262   SmallVector<const SCEV *> SCEVOps;
7263   for (const Use &Op : I->operands()) {
7264     // I could be an extractvalue from a call to an overflow intrinsic.
7265     // TODO: We can do better here in some cases.
7266     if (isSCEVable(Op->getType()))
7267       SCEVOps.push_back(getSCEV(Op));
7268   }
7269   auto *DefI = getDefiningScopeBound(SCEVOps);
7270   return isGuaranteedToTransferExecutionTo(DefI, I);
7271 }
7272 
7273 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7274   // If we know that \c I can never be poison period, then that's enough.
7275   if (isSCEVExprNeverPoison(I))
7276     return true;
7277 
7278   // If the loop only has one exit, then we know that, if the loop is entered,
7279   // any instruction dominating that exit will be executed. If any such
7280   // instruction would result in UB, the addrec cannot be poison.
7281   //
7282   // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7283   // also handles uses outside the loop header (they just need to dominate the
7284   // single exit).
7285 
7286   auto *ExitingBB = L->getExitingBlock();
7287   if (!ExitingBB || !loopHasNoAbnormalExits(L))
7288     return false;
7289 
7290   SmallPtrSet<const Value *, 16> KnownPoison;
7291   SmallVector<const Instruction *, 8> Worklist;
7292 
7293   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7294   // things that are known to be poison under that assumption go on the
7295   // Worklist.
7296   KnownPoison.insert(I);
7297   Worklist.push_back(I);
7298 
7299   while (!Worklist.empty()) {
7300     const Instruction *Poison = Worklist.pop_back_val();
7301 
7302     for (const Use &U : Poison->uses()) {
7303       const Instruction *PoisonUser = cast<Instruction>(U.getUser());
7304       if (mustTriggerUB(PoisonUser, KnownPoison) &&
7305           DT.dominates(PoisonUser->getParent(), ExitingBB))
7306         return true;
7307 
7308       if (propagatesPoison(U) && L->contains(PoisonUser))
7309         if (KnownPoison.insert(PoisonUser).second)
7310           Worklist.push_back(PoisonUser);
7311     }
7312   }
7313 
7314   return false;
7315 }
7316 
7317 ScalarEvolution::LoopProperties
7318 ScalarEvolution::getLoopProperties(const Loop *L) {
7319   using LoopProperties = ScalarEvolution::LoopProperties;
7320 
7321   auto Itr = LoopPropertiesCache.find(L);
7322   if (Itr == LoopPropertiesCache.end()) {
7323     auto HasSideEffects = [](Instruction *I) {
7324       if (auto *SI = dyn_cast<StoreInst>(I))
7325         return !SI->isSimple();
7326 
7327       return I->mayThrow() || I->mayWriteToMemory();
7328     };
7329 
7330     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7331                          /*HasNoSideEffects*/ true};
7332 
7333     for (auto *BB : L->getBlocks())
7334       for (auto &I : *BB) {
7335         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7336           LP.HasNoAbnormalExits = false;
7337         if (HasSideEffects(&I))
7338           LP.HasNoSideEffects = false;
7339         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7340           break; // We're already as pessimistic as we can get.
7341       }
7342 
7343     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7344     assert(InsertPair.second && "We just checked!");
7345     Itr = InsertPair.first;
7346   }
7347 
7348   return Itr->second;
7349 }
7350 
7351 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7352   // A mustprogress loop without side effects must be finite.
7353   // TODO: The check used here is very conservative.  It's only *specific*
7354   // side effects which are well defined in infinite loops.
7355   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7356 }
7357 
7358 const SCEV *ScalarEvolution::createSCEVIter(Value *V) {
7359   // Worklist item with a Value and a bool indicating whether all operands have
7360   // been visited already.
7361   using PointerTy = PointerIntPair<Value *, 1, bool>;
7362   SmallVector<PointerTy> Stack;
7363 
7364   Stack.emplace_back(V, true);
7365   Stack.emplace_back(V, false);
7366   while (!Stack.empty()) {
7367     auto E = Stack.pop_back_val();
7368     Value *CurV = E.getPointer();
7369 
7370     if (getExistingSCEV(CurV))
7371       continue;
7372 
7373     SmallVector<Value *> Ops;
7374     const SCEV *CreatedSCEV = nullptr;
7375     // If all operands have been visited already, create the SCEV.
7376     if (E.getInt()) {
7377       CreatedSCEV = createSCEV(CurV);
7378     } else {
7379       // Otherwise get the operands we need to create SCEV's for before creating
7380       // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7381       // just use it.
7382       CreatedSCEV = getOperandsToCreate(CurV, Ops);
7383     }
7384 
7385     if (CreatedSCEV) {
7386       insertValueToMap(CurV, CreatedSCEV);
7387     } else {
7388       // Queue CurV for SCEV creation, followed by its's operands which need to
7389       // be constructed first.
7390       Stack.emplace_back(CurV, true);
7391       for (Value *Op : Ops)
7392         Stack.emplace_back(Op, false);
7393     }
7394   }
7395 
7396   return getExistingSCEV(V);
7397 }
7398 
7399 const SCEV *
7400 ScalarEvolution::getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops) {
7401   if (!isSCEVable(V->getType()))
7402     return getUnknown(V);
7403 
7404   if (Instruction *I = dyn_cast<Instruction>(V)) {
7405     // Don't attempt to analyze instructions in blocks that aren't
7406     // reachable. Such instructions don't matter, and they aren't required
7407     // to obey basic rules for definitions dominating uses which this
7408     // analysis depends on.
7409     if (!DT.isReachableFromEntry(I->getParent()))
7410       return getUnknown(PoisonValue::get(V->getType()));
7411   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7412     return getConstant(CI);
7413   else if (isa<GlobalAlias>(V))
7414     return getUnknown(V);
7415   else if (!isa<ConstantExpr>(V))
7416     return getUnknown(V);
7417 
7418   Operator *U = cast<Operator>(V);
7419   if (auto BO =
7420           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7421     bool IsConstArg = isa<ConstantInt>(BO->RHS);
7422     switch (BO->Opcode) {
7423     case Instruction::Add:
7424     case Instruction::Mul: {
7425       // For additions and multiplications, traverse add/mul chains for which we
7426       // can potentially create a single SCEV, to reduce the number of
7427       // get{Add,Mul}Expr calls.
7428       do {
7429         if (BO->Op) {
7430           if (BO->Op != V && getExistingSCEV(BO->Op)) {
7431             Ops.push_back(BO->Op);
7432             break;
7433           }
7434         }
7435         Ops.push_back(BO->RHS);
7436         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7437                                    dyn_cast<Instruction>(V));
7438         if (!NewBO ||
7439             (BO->Opcode == Instruction::Add &&
7440              (NewBO->Opcode != Instruction::Add &&
7441               NewBO->Opcode != Instruction::Sub)) ||
7442             (BO->Opcode == Instruction::Mul &&
7443              NewBO->Opcode != Instruction::Mul)) {
7444           Ops.push_back(BO->LHS);
7445           break;
7446         }
7447         // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7448         // requires a SCEV for the LHS.
7449         if (BO->Op && (BO->IsNSW || BO->IsNUW)) {
7450           auto *I = dyn_cast<Instruction>(BO->Op);
7451           if (I && programUndefinedIfPoison(I)) {
7452             Ops.push_back(BO->LHS);
7453             break;
7454           }
7455         }
7456         BO = NewBO;
7457       } while (true);
7458       return nullptr;
7459     }
7460     case Instruction::Sub:
7461     case Instruction::UDiv:
7462     case Instruction::URem:
7463       break;
7464     case Instruction::AShr:
7465     case Instruction::Shl:
7466     case Instruction::Xor:
7467       if (!IsConstArg)
7468         return nullptr;
7469       break;
7470     case Instruction::And:
7471     case Instruction::Or:
7472       if (!IsConstArg && !BO->LHS->getType()->isIntegerTy(1))
7473         return nullptr;
7474       break;
7475     case Instruction::LShr:
7476       return getUnknown(V);
7477     default:
7478       llvm_unreachable("Unhandled binop");
7479       break;
7480     }
7481 
7482     Ops.push_back(BO->LHS);
7483     Ops.push_back(BO->RHS);
7484     return nullptr;
7485   }
7486 
7487   switch (U->getOpcode()) {
7488   case Instruction::Trunc:
7489   case Instruction::ZExt:
7490   case Instruction::SExt:
7491   case Instruction::PtrToInt:
7492     Ops.push_back(U->getOperand(0));
7493     return nullptr;
7494 
7495   case Instruction::BitCast:
7496     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) {
7497       Ops.push_back(U->getOperand(0));
7498       return nullptr;
7499     }
7500     return getUnknown(V);
7501 
7502   case Instruction::SDiv:
7503   case Instruction::SRem:
7504     Ops.push_back(U->getOperand(0));
7505     Ops.push_back(U->getOperand(1));
7506     return nullptr;
7507 
7508   case Instruction::GetElementPtr:
7509     assert(cast<GEPOperator>(U)->getSourceElementType()->isSized() &&
7510            "GEP source element type must be sized");
7511     for (Value *Index : U->operands())
7512       Ops.push_back(Index);
7513     return nullptr;
7514 
7515   case Instruction::IntToPtr:
7516     return getUnknown(V);
7517 
7518   case Instruction::PHI:
7519     // Keep constructing SCEVs' for phis recursively for now.
7520     return nullptr;
7521 
7522   case Instruction::Select: {
7523     // Check if U is a select that can be simplified to a SCEVUnknown.
7524     auto CanSimplifyToUnknown = [this, U]() {
7525       if (U->getType()->isIntegerTy(1) || isa<ConstantInt>(U->getOperand(0)))
7526         return false;
7527 
7528       auto *ICI = dyn_cast<ICmpInst>(U->getOperand(0));
7529       if (!ICI)
7530         return false;
7531       Value *LHS = ICI->getOperand(0);
7532       Value *RHS = ICI->getOperand(1);
7533       if (ICI->getPredicate() == CmpInst::ICMP_EQ ||
7534           ICI->getPredicate() == CmpInst::ICMP_NE) {
7535         if (!(isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()))
7536           return true;
7537       } else if (getTypeSizeInBits(LHS->getType()) >
7538                  getTypeSizeInBits(U->getType()))
7539         return true;
7540       return false;
7541     };
7542     if (CanSimplifyToUnknown())
7543       return getUnknown(U);
7544 
7545     for (Value *Inc : U->operands())
7546       Ops.push_back(Inc);
7547     return nullptr;
7548     break;
7549   }
7550   case Instruction::Call:
7551   case Instruction::Invoke:
7552     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) {
7553       Ops.push_back(RV);
7554       return nullptr;
7555     }
7556 
7557     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7558       switch (II->getIntrinsicID()) {
7559       case Intrinsic::abs:
7560         Ops.push_back(II->getArgOperand(0));
7561         return nullptr;
7562       case Intrinsic::umax:
7563       case Intrinsic::umin:
7564       case Intrinsic::smax:
7565       case Intrinsic::smin:
7566       case Intrinsic::usub_sat:
7567       case Intrinsic::uadd_sat:
7568         Ops.push_back(II->getArgOperand(0));
7569         Ops.push_back(II->getArgOperand(1));
7570         return nullptr;
7571       case Intrinsic::start_loop_iterations:
7572       case Intrinsic::annotation:
7573       case Intrinsic::ptr_annotation:
7574         Ops.push_back(II->getArgOperand(0));
7575         return nullptr;
7576       default:
7577         break;
7578       }
7579     }
7580     break;
7581   }
7582 
7583   return nullptr;
7584 }
7585 
7586 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7587   if (!isSCEVable(V->getType()))
7588     return getUnknown(V);
7589 
7590   if (Instruction *I = dyn_cast<Instruction>(V)) {
7591     // Don't attempt to analyze instructions in blocks that aren't
7592     // reachable. Such instructions don't matter, and they aren't required
7593     // to obey basic rules for definitions dominating uses which this
7594     // analysis depends on.
7595     if (!DT.isReachableFromEntry(I->getParent()))
7596       return getUnknown(PoisonValue::get(V->getType()));
7597   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7598     return getConstant(CI);
7599   else if (isa<GlobalAlias>(V))
7600     return getUnknown(V);
7601   else if (!isa<ConstantExpr>(V))
7602     return getUnknown(V);
7603 
7604   const SCEV *LHS;
7605   const SCEV *RHS;
7606 
7607   Operator *U = cast<Operator>(V);
7608   if (auto BO =
7609           MatchBinaryOp(U, getDataLayout(), AC, DT, dyn_cast<Instruction>(V))) {
7610     switch (BO->Opcode) {
7611     case Instruction::Add: {
7612       // The simple thing to do would be to just call getSCEV on both operands
7613       // and call getAddExpr with the result. However if we're looking at a
7614       // bunch of things all added together, this can be quite inefficient,
7615       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7616       // Instead, gather up all the operands and make a single getAddExpr call.
7617       // LLVM IR canonical form means we need only traverse the left operands.
7618       SmallVector<const SCEV *, 4> AddOps;
7619       do {
7620         if (BO->Op) {
7621           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7622             AddOps.push_back(OpSCEV);
7623             break;
7624           }
7625 
7626           // If a NUW or NSW flag can be applied to the SCEV for this
7627           // addition, then compute the SCEV for this addition by itself
7628           // with a separate call to getAddExpr. We need to do that
7629           // instead of pushing the operands of the addition onto AddOps,
7630           // since the flags are only known to apply to this particular
7631           // addition - they may not apply to other additions that can be
7632           // formed with operands from AddOps.
7633           const SCEV *RHS = getSCEV(BO->RHS);
7634           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7635           if (Flags != SCEV::FlagAnyWrap) {
7636             const SCEV *LHS = getSCEV(BO->LHS);
7637             if (BO->Opcode == Instruction::Sub)
7638               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7639             else
7640               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7641             break;
7642           }
7643         }
7644 
7645         if (BO->Opcode == Instruction::Sub)
7646           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7647         else
7648           AddOps.push_back(getSCEV(BO->RHS));
7649 
7650         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7651                                    dyn_cast<Instruction>(V));
7652         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7653                        NewBO->Opcode != Instruction::Sub)) {
7654           AddOps.push_back(getSCEV(BO->LHS));
7655           break;
7656         }
7657         BO = NewBO;
7658       } while (true);
7659 
7660       return getAddExpr(AddOps);
7661     }
7662 
7663     case Instruction::Mul: {
7664       SmallVector<const SCEV *, 4> MulOps;
7665       do {
7666         if (BO->Op) {
7667           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7668             MulOps.push_back(OpSCEV);
7669             break;
7670           }
7671 
7672           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7673           if (Flags != SCEV::FlagAnyWrap) {
7674             LHS = getSCEV(BO->LHS);
7675             RHS = getSCEV(BO->RHS);
7676             MulOps.push_back(getMulExpr(LHS, RHS, Flags));
7677             break;
7678           }
7679         }
7680 
7681         MulOps.push_back(getSCEV(BO->RHS));
7682         auto NewBO = MatchBinaryOp(BO->LHS, getDataLayout(), AC, DT,
7683                                    dyn_cast<Instruction>(V));
7684         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7685           MulOps.push_back(getSCEV(BO->LHS));
7686           break;
7687         }
7688         BO = NewBO;
7689       } while (true);
7690 
7691       return getMulExpr(MulOps);
7692     }
7693     case Instruction::UDiv:
7694       LHS = getSCEV(BO->LHS);
7695       RHS = getSCEV(BO->RHS);
7696       return getUDivExpr(LHS, RHS);
7697     case Instruction::URem:
7698       LHS = getSCEV(BO->LHS);
7699       RHS = getSCEV(BO->RHS);
7700       return getURemExpr(LHS, RHS);
7701     case Instruction::Sub: {
7702       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7703       if (BO->Op)
7704         Flags = getNoWrapFlagsFromUB(BO->Op);
7705       LHS = getSCEV(BO->LHS);
7706       RHS = getSCEV(BO->RHS);
7707       return getMinusSCEV(LHS, RHS, Flags);
7708     }
7709     case Instruction::And:
7710       // For an expression like x&255 that merely masks off the high bits,
7711       // use zext(trunc(x)) as the SCEV expression.
7712       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7713         if (CI->isZero())
7714           return getSCEV(BO->RHS);
7715         if (CI->isMinusOne())
7716           return getSCEV(BO->LHS);
7717         const APInt &A = CI->getValue();
7718 
7719         // Instcombine's ShrinkDemandedConstant may strip bits out of
7720         // constants, obscuring what would otherwise be a low-bits mask.
7721         // Use computeKnownBits to compute what ShrinkDemandedConstant
7722         // knew about to reconstruct a low-bits mask value.
7723         unsigned LZ = A.countl_zero();
7724         unsigned TZ = A.countr_zero();
7725         unsigned BitWidth = A.getBitWidth();
7726         KnownBits Known(BitWidth);
7727         computeKnownBits(BO->LHS, Known, getDataLayout(),
7728                          0, &AC, nullptr, &DT);
7729 
7730         APInt EffectiveMask =
7731             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7732         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7733           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7734           const SCEV *LHS = getSCEV(BO->LHS);
7735           const SCEV *ShiftedLHS = nullptr;
7736           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7737             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7738               // For an expression like (x * 8) & 8, simplify the multiply.
7739               unsigned MulZeros = OpC->getAPInt().countr_zero();
7740               unsigned GCD = std::min(MulZeros, TZ);
7741               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7742               SmallVector<const SCEV*, 4> MulOps;
7743               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7744               append_range(MulOps, LHSMul->operands().drop_front());
7745               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7746               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7747             }
7748           }
7749           if (!ShiftedLHS)
7750             ShiftedLHS = getUDivExpr(LHS, MulCount);
7751           return getMulExpr(
7752               getZeroExtendExpr(
7753                   getTruncateExpr(ShiftedLHS,
7754                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7755                   BO->LHS->getType()),
7756               MulCount);
7757         }
7758       }
7759       // Binary `and` is a bit-wise `umin`.
7760       if (BO->LHS->getType()->isIntegerTy(1)) {
7761         LHS = getSCEV(BO->LHS);
7762         RHS = getSCEV(BO->RHS);
7763         return getUMinExpr(LHS, RHS);
7764       }
7765       break;
7766 
7767     case Instruction::Or:
7768       // Binary `or` is a bit-wise `umax`.
7769       if (BO->LHS->getType()->isIntegerTy(1)) {
7770         LHS = getSCEV(BO->LHS);
7771         RHS = getSCEV(BO->RHS);
7772         return getUMaxExpr(LHS, RHS);
7773       }
7774       break;
7775 
7776     case Instruction::Xor:
7777       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7778         // If the RHS of xor is -1, then this is a not operation.
7779         if (CI->isMinusOne())
7780           return getNotSCEV(getSCEV(BO->LHS));
7781 
7782         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7783         // This is a variant of the check for xor with -1, and it handles
7784         // the case where instcombine has trimmed non-demanded bits out
7785         // of an xor with -1.
7786         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7787           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7788             if (LBO->getOpcode() == Instruction::And &&
7789                 LCI->getValue() == CI->getValue())
7790               if (const SCEVZeroExtendExpr *Z =
7791                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7792                 Type *UTy = BO->LHS->getType();
7793                 const SCEV *Z0 = Z->getOperand();
7794                 Type *Z0Ty = Z0->getType();
7795                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7796 
7797                 // If C is a low-bits mask, the zero extend is serving to
7798                 // mask off the high bits. Complement the operand and
7799                 // re-apply the zext.
7800                 if (CI->getValue().isMask(Z0TySize))
7801                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7802 
7803                 // If C is a single bit, it may be in the sign-bit position
7804                 // before the zero-extend. In this case, represent the xor
7805                 // using an add, which is equivalent, and re-apply the zext.
7806                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7807                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7808                     Trunc.isSignMask())
7809                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7810                                            UTy);
7811               }
7812       }
7813       break;
7814 
7815     case Instruction::Shl:
7816       // Turn shift left of a constant amount into a multiply.
7817       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7818         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7819 
7820         // If the shift count is not less than the bitwidth, the result of
7821         // the shift is undefined. Don't try to analyze it, because the
7822         // resolution chosen here may differ from the resolution chosen in
7823         // other parts of the compiler.
7824         if (SA->getValue().uge(BitWidth))
7825           break;
7826 
7827         // We can safely preserve the nuw flag in all cases. It's also safe to
7828         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7829         // requires special handling. It can be preserved as long as we're not
7830         // left shifting by bitwidth - 1.
7831         auto Flags = SCEV::FlagAnyWrap;
7832         if (BO->Op) {
7833           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7834           if ((MulFlags & SCEV::FlagNSW) &&
7835               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7836             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7837           if (MulFlags & SCEV::FlagNUW)
7838             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7839         }
7840 
7841         ConstantInt *X = ConstantInt::get(
7842             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7843         return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags);
7844       }
7845       break;
7846 
7847     case Instruction::AShr: {
7848       // AShr X, C, where C is a constant.
7849       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7850       if (!CI)
7851         break;
7852 
7853       Type *OuterTy = BO->LHS->getType();
7854       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7855       // If the shift count is not less than the bitwidth, the result of
7856       // the shift is undefined. Don't try to analyze it, because the
7857       // resolution chosen here may differ from the resolution chosen in
7858       // other parts of the compiler.
7859       if (CI->getValue().uge(BitWidth))
7860         break;
7861 
7862       if (CI->isZero())
7863         return getSCEV(BO->LHS); // shift by zero --> noop
7864 
7865       uint64_t AShrAmt = CI->getZExtValue();
7866       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7867 
7868       Operator *L = dyn_cast<Operator>(BO->LHS);
7869       if (L && L->getOpcode() == Instruction::Shl) {
7870         // X = Shl A, n
7871         // Y = AShr X, m
7872         // Both n and m are constant.
7873 
7874         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7875         if (L->getOperand(1) == BO->RHS)
7876           // For a two-shift sext-inreg, i.e. n = m,
7877           // use sext(trunc(x)) as the SCEV expression.
7878           return getSignExtendExpr(
7879               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7880 
7881         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7882         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7883           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7884           if (ShlAmt > AShrAmt) {
7885             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7886             // expression. We already checked that ShlAmt < BitWidth, so
7887             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7888             // ShlAmt - AShrAmt < Amt.
7889             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7890                                             ShlAmt - AShrAmt);
7891             return getSignExtendExpr(
7892                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7893                 getConstant(Mul)), OuterTy);
7894           }
7895         }
7896       }
7897       break;
7898     }
7899     }
7900   }
7901 
7902   switch (U->getOpcode()) {
7903   case Instruction::Trunc:
7904     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7905 
7906   case Instruction::ZExt:
7907     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7908 
7909   case Instruction::SExt:
7910     if (auto BO = MatchBinaryOp(U->getOperand(0), getDataLayout(), AC, DT,
7911                                 dyn_cast<Instruction>(V))) {
7912       // The NSW flag of a subtract does not always survive the conversion to
7913       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7914       // more likely to preserve NSW and allow later AddRec optimisations.
7915       //
7916       // NOTE: This is effectively duplicating this logic from getSignExtend:
7917       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7918       // but by that point the NSW information has potentially been lost.
7919       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7920         Type *Ty = U->getType();
7921         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7922         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7923         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7924       }
7925     }
7926     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7927 
7928   case Instruction::BitCast:
7929     // BitCasts are no-op casts so we just eliminate the cast.
7930     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7931       return getSCEV(U->getOperand(0));
7932     break;
7933 
7934   case Instruction::PtrToInt: {
7935     // Pointer to integer cast is straight-forward, so do model it.
7936     const SCEV *Op = getSCEV(U->getOperand(0));
7937     Type *DstIntTy = U->getType();
7938     // But only if effective SCEV (integer) type is wide enough to represent
7939     // all possible pointer values.
7940     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7941     if (isa<SCEVCouldNotCompute>(IntOp))
7942       return getUnknown(V);
7943     return IntOp;
7944   }
7945   case Instruction::IntToPtr:
7946     // Just don't deal with inttoptr casts.
7947     return getUnknown(V);
7948 
7949   case Instruction::SDiv:
7950     // If both operands are non-negative, this is just an udiv.
7951     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7952         isKnownNonNegative(getSCEV(U->getOperand(1))))
7953       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7954     break;
7955 
7956   case Instruction::SRem:
7957     // If both operands are non-negative, this is just an urem.
7958     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7959         isKnownNonNegative(getSCEV(U->getOperand(1))))
7960       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7961     break;
7962 
7963   case Instruction::GetElementPtr:
7964     return createNodeForGEP(cast<GEPOperator>(U));
7965 
7966   case Instruction::PHI:
7967     return createNodeForPHI(cast<PHINode>(U));
7968 
7969   case Instruction::Select:
7970     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
7971                                     U->getOperand(2));
7972 
7973   case Instruction::Call:
7974   case Instruction::Invoke:
7975     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7976       return getSCEV(RV);
7977 
7978     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7979       switch (II->getIntrinsicID()) {
7980       case Intrinsic::abs:
7981         return getAbsExpr(
7982             getSCEV(II->getArgOperand(0)),
7983             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7984       case Intrinsic::umax:
7985         LHS = getSCEV(II->getArgOperand(0));
7986         RHS = getSCEV(II->getArgOperand(1));
7987         return getUMaxExpr(LHS, RHS);
7988       case Intrinsic::umin:
7989         LHS = getSCEV(II->getArgOperand(0));
7990         RHS = getSCEV(II->getArgOperand(1));
7991         return getUMinExpr(LHS, RHS);
7992       case Intrinsic::smax:
7993         LHS = getSCEV(II->getArgOperand(0));
7994         RHS = getSCEV(II->getArgOperand(1));
7995         return getSMaxExpr(LHS, RHS);
7996       case Intrinsic::smin:
7997         LHS = getSCEV(II->getArgOperand(0));
7998         RHS = getSCEV(II->getArgOperand(1));
7999         return getSMinExpr(LHS, RHS);
8000       case Intrinsic::usub_sat: {
8001         const SCEV *X = getSCEV(II->getArgOperand(0));
8002         const SCEV *Y = getSCEV(II->getArgOperand(1));
8003         const SCEV *ClampedY = getUMinExpr(X, Y);
8004         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
8005       }
8006       case Intrinsic::uadd_sat: {
8007         const SCEV *X = getSCEV(II->getArgOperand(0));
8008         const SCEV *Y = getSCEV(II->getArgOperand(1));
8009         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
8010         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
8011       }
8012       case Intrinsic::start_loop_iterations:
8013       case Intrinsic::annotation:
8014       case Intrinsic::ptr_annotation:
8015         // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8016         // just eqivalent to the first operand for SCEV purposes.
8017         return getSCEV(II->getArgOperand(0));
8018       case Intrinsic::vscale:
8019         return getVScale(II->getType());
8020       default:
8021         break;
8022       }
8023     }
8024     break;
8025   }
8026 
8027   return getUnknown(V);
8028 }
8029 
8030 //===----------------------------------------------------------------------===//
8031 //                   Iteration Count Computation Code
8032 //
8033 
8034 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
8035   if (isa<SCEVCouldNotCompute>(ExitCount))
8036     return getCouldNotCompute();
8037 
8038   auto *ExitCountType = ExitCount->getType();
8039   assert(ExitCountType->isIntegerTy());
8040   auto *EvalTy = Type::getIntNTy(ExitCountType->getContext(),
8041                                  1 + ExitCountType->getScalarSizeInBits());
8042   return getTripCountFromExitCount(ExitCount, EvalTy, nullptr);
8043 }
8044 
8045 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
8046                                                        Type *EvalTy,
8047                                                        const Loop *L) {
8048   if (isa<SCEVCouldNotCompute>(ExitCount))
8049     return getCouldNotCompute();
8050 
8051   unsigned ExitCountSize = getTypeSizeInBits(ExitCount->getType());
8052   unsigned EvalSize = EvalTy->getPrimitiveSizeInBits();
8053 
8054   auto CanAddOneWithoutOverflow = [&]() {
8055     ConstantRange ExitCountRange =
8056       getRangeRef(ExitCount, RangeSignHint::HINT_RANGE_UNSIGNED);
8057     if (!ExitCountRange.contains(APInt::getMaxValue(ExitCountSize)))
8058       return true;
8059 
8060     return L && isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, ExitCount,
8061                                          getMinusOne(ExitCount->getType()));
8062   };
8063 
8064   // If we need to zero extend the backedge count, check if we can add one to
8065   // it prior to zero extending without overflow. Provided this is safe, it
8066   // allows better simplification of the +1.
8067   if (EvalSize > ExitCountSize && CanAddOneWithoutOverflow())
8068     return getZeroExtendExpr(
8069         getAddExpr(ExitCount, getOne(ExitCount->getType())), EvalTy);
8070 
8071   // Get the total trip count from the count by adding 1.  This may wrap.
8072   return getAddExpr(getTruncateOrZeroExtend(ExitCount, EvalTy), getOne(EvalTy));
8073 }
8074 
8075 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
8076   if (!ExitCount)
8077     return 0;
8078 
8079   ConstantInt *ExitConst = ExitCount->getValue();
8080 
8081   // Guard against huge trip counts.
8082   if (ExitConst->getValue().getActiveBits() > 32)
8083     return 0;
8084 
8085   // In case of integer overflow, this returns 0, which is correct.
8086   return ((unsigned)ExitConst->getZExtValue()) + 1;
8087 }
8088 
8089 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
8090   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
8091   return getConstantTripCount(ExitCount);
8092 }
8093 
8094 unsigned
8095 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
8096                                            const BasicBlock *ExitingBlock) {
8097   assert(ExitingBlock && "Must pass a non-null exiting block!");
8098   assert(L->isLoopExiting(ExitingBlock) &&
8099          "Exiting block must actually branch out of the loop!");
8100   const SCEVConstant *ExitCount =
8101       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
8102   return getConstantTripCount(ExitCount);
8103 }
8104 
8105 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
8106   const auto *MaxExitCount =
8107       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
8108   return getConstantTripCount(MaxExitCount);
8109 }
8110 
8111 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
8112   SmallVector<BasicBlock *, 8> ExitingBlocks;
8113   L->getExitingBlocks(ExitingBlocks);
8114 
8115   std::optional<unsigned> Res;
8116   for (auto *ExitingBB : ExitingBlocks) {
8117     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
8118     if (!Res)
8119       Res = Multiple;
8120     Res = (unsigned)std::gcd(*Res, Multiple);
8121   }
8122   return Res.value_or(1);
8123 }
8124 
8125 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8126                                                        const SCEV *ExitCount) {
8127   if (ExitCount == getCouldNotCompute())
8128     return 1;
8129 
8130   // Get the trip count
8131   const SCEV *TCExpr = getTripCountFromExitCount(applyLoopGuards(ExitCount, L));
8132 
8133   APInt Multiple = getNonZeroConstantMultiple(TCExpr);
8134   // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8135   // the greatest power of 2 divisor less than 2^32.
8136   return Multiple.getActiveBits() > 32
8137              ? 1U << std::min((unsigned)31, Multiple.countTrailingZeros())
8138              : (unsigned)Multiple.zextOrTrunc(32).getZExtValue();
8139 }
8140 
8141 /// Returns the largest constant divisor of the trip count of this loop as a
8142 /// normal unsigned value, if possible. This means that the actual trip count is
8143 /// always a multiple of the returned value (don't forget the trip count could
8144 /// very well be zero as well!).
8145 ///
8146 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8147 /// multiple of a constant (which is also the case if the trip count is simply
8148 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8149 /// if the trip count is very large (>= 2^32).
8150 ///
8151 /// As explained in the comments for getSmallConstantTripCount, this assumes
8152 /// that control exits the loop via ExitingBlock.
8153 unsigned
8154 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
8155                                               const BasicBlock *ExitingBlock) {
8156   assert(ExitingBlock && "Must pass a non-null exiting block!");
8157   assert(L->isLoopExiting(ExitingBlock) &&
8158          "Exiting block must actually branch out of the loop!");
8159   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
8160   return getSmallConstantTripMultiple(L, ExitCount);
8161 }
8162 
8163 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
8164                                           const BasicBlock *ExitingBlock,
8165                                           ExitCountKind Kind) {
8166   switch (Kind) {
8167   case Exact:
8168     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
8169   case SymbolicMaximum:
8170     return getBackedgeTakenInfo(L).getSymbolicMax(ExitingBlock, this);
8171   case ConstantMaximum:
8172     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
8173   };
8174   llvm_unreachable("Invalid ExitCountKind!");
8175 }
8176 
8177 const SCEV *
8178 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
8179                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
8180   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
8181 }
8182 
8183 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
8184                                                    ExitCountKind Kind) {
8185   switch (Kind) {
8186   case Exact:
8187     return getBackedgeTakenInfo(L).getExact(L, this);
8188   case ConstantMaximum:
8189     return getBackedgeTakenInfo(L).getConstantMax(this);
8190   case SymbolicMaximum:
8191     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
8192   };
8193   llvm_unreachable("Invalid ExitCountKind!");
8194 }
8195 
8196 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
8197   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
8198 }
8199 
8200 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8201 static void PushLoopPHIs(const Loop *L,
8202                          SmallVectorImpl<Instruction *> &Worklist,
8203                          SmallPtrSetImpl<Instruction *> &Visited) {
8204   BasicBlock *Header = L->getHeader();
8205 
8206   // Push all Loop-header PHIs onto the Worklist stack.
8207   for (PHINode &PN : Header->phis())
8208     if (Visited.insert(&PN).second)
8209       Worklist.push_back(&PN);
8210 }
8211 
8212 const ScalarEvolution::BackedgeTakenInfo &
8213 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
8214   auto &BTI = getBackedgeTakenInfo(L);
8215   if (BTI.hasFullInfo())
8216     return BTI;
8217 
8218   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8219 
8220   if (!Pair.second)
8221     return Pair.first->second;
8222 
8223   BackedgeTakenInfo Result =
8224       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
8225 
8226   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
8227 }
8228 
8229 ScalarEvolution::BackedgeTakenInfo &
8230 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
8231   // Initially insert an invalid entry for this loop. If the insertion
8232   // succeeds, proceed to actually compute a backedge-taken count and
8233   // update the value. The temporary CouldNotCompute value tells SCEV
8234   // code elsewhere that it shouldn't attempt to request a new
8235   // backedge-taken count, which could result in infinite recursion.
8236   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
8237       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
8238   if (!Pair.second)
8239     return Pair.first->second;
8240 
8241   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8242   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8243   // must be cleared in this scope.
8244   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
8245 
8246   // Now that we know more about the trip count for this loop, forget any
8247   // existing SCEV values for PHI nodes in this loop since they are only
8248   // conservative estimates made without the benefit of trip count
8249   // information. This invalidation is not necessary for correctness, and is
8250   // only done to produce more precise results.
8251   if (Result.hasAnyInfo()) {
8252     // Invalidate any expression using an addrec in this loop.
8253     SmallVector<const SCEV *, 8> ToForget;
8254     auto LoopUsersIt = LoopUsers.find(L);
8255     if (LoopUsersIt != LoopUsers.end())
8256       append_range(ToForget, LoopUsersIt->second);
8257     forgetMemoizedResults(ToForget);
8258 
8259     // Invalidate constant-evolved loop header phis.
8260     for (PHINode &PN : L->getHeader()->phis())
8261       ConstantEvolutionLoopExitValue.erase(&PN);
8262   }
8263 
8264   // Re-lookup the insert position, since the call to
8265   // computeBackedgeTakenCount above could result in a
8266   // recusive call to getBackedgeTakenInfo (on a different
8267   // loop), which would invalidate the iterator computed
8268   // earlier.
8269   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8270 }
8271 
8272 void ScalarEvolution::forgetAllLoops() {
8273   // This method is intended to forget all info about loops. It should
8274   // invalidate caches as if the following happened:
8275   // - The trip counts of all loops have changed arbitrarily
8276   // - Every llvm::Value has been updated in place to produce a different
8277   // result.
8278   BackedgeTakenCounts.clear();
8279   PredicatedBackedgeTakenCounts.clear();
8280   BECountUsers.clear();
8281   LoopPropertiesCache.clear();
8282   ConstantEvolutionLoopExitValue.clear();
8283   ValueExprMap.clear();
8284   ValuesAtScopes.clear();
8285   ValuesAtScopesUsers.clear();
8286   LoopDispositions.clear();
8287   BlockDispositions.clear();
8288   UnsignedRanges.clear();
8289   SignedRanges.clear();
8290   ExprValueMap.clear();
8291   HasRecMap.clear();
8292   ConstantMultipleCache.clear();
8293   PredicatedSCEVRewrites.clear();
8294   FoldCache.clear();
8295   FoldCacheUser.clear();
8296 }
8297 void ScalarEvolution::visitAndClearUsers(
8298     SmallVectorImpl<Instruction *> &Worklist,
8299     SmallPtrSetImpl<Instruction *> &Visited,
8300     SmallVectorImpl<const SCEV *> &ToForget) {
8301   while (!Worklist.empty()) {
8302     Instruction *I = Worklist.pop_back_val();
8303     if (!isSCEVable(I->getType()))
8304       continue;
8305 
8306     ValueExprMapType::iterator It =
8307         ValueExprMap.find_as(static_cast<Value *>(I));
8308     if (It != ValueExprMap.end()) {
8309       eraseValueFromMap(It->first);
8310       ToForget.push_back(It->second);
8311       if (PHINode *PN = dyn_cast<PHINode>(I))
8312         ConstantEvolutionLoopExitValue.erase(PN);
8313     }
8314 
8315     PushDefUseChildren(I, Worklist, Visited);
8316   }
8317 }
8318 
8319 void ScalarEvolution::forgetLoop(const Loop *L) {
8320   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8321   SmallVector<Instruction *, 32> Worklist;
8322   SmallPtrSet<Instruction *, 16> Visited;
8323   SmallVector<const SCEV *, 16> ToForget;
8324 
8325   // Iterate over all the loops and sub-loops to drop SCEV information.
8326   while (!LoopWorklist.empty()) {
8327     auto *CurrL = LoopWorklist.pop_back_val();
8328 
8329     // Drop any stored trip count value.
8330     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8331     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8332 
8333     // Drop information about predicated SCEV rewrites for this loop.
8334     for (auto I = PredicatedSCEVRewrites.begin();
8335          I != PredicatedSCEVRewrites.end();) {
8336       std::pair<const SCEV *, const Loop *> Entry = I->first;
8337       if (Entry.second == CurrL)
8338         PredicatedSCEVRewrites.erase(I++);
8339       else
8340         ++I;
8341     }
8342 
8343     auto LoopUsersItr = LoopUsers.find(CurrL);
8344     if (LoopUsersItr != LoopUsers.end()) {
8345       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8346                 LoopUsersItr->second.end());
8347     }
8348 
8349     // Drop information about expressions based on loop-header PHIs.
8350     PushLoopPHIs(CurrL, Worklist, Visited);
8351     visitAndClearUsers(Worklist, Visited, ToForget);
8352 
8353     LoopPropertiesCache.erase(CurrL);
8354     // Forget all contained loops too, to avoid dangling entries in the
8355     // ValuesAtScopes map.
8356     LoopWorklist.append(CurrL->begin(), CurrL->end());
8357   }
8358   forgetMemoizedResults(ToForget);
8359 }
8360 
8361 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8362   forgetLoop(L->getOutermostLoop());
8363 }
8364 
8365 void ScalarEvolution::forgetValue(Value *V) {
8366   Instruction *I = dyn_cast<Instruction>(V);
8367   if (!I) return;
8368 
8369   // Drop information about expressions based on loop-header PHIs.
8370   SmallVector<Instruction *, 16> Worklist;
8371   SmallPtrSet<Instruction *, 8> Visited;
8372   SmallVector<const SCEV *, 8> ToForget;
8373   Worklist.push_back(I);
8374   Visited.insert(I);
8375   visitAndClearUsers(Worklist, Visited, ToForget);
8376 
8377   forgetMemoizedResults(ToForget);
8378 }
8379 
8380 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions.clear(); }
8381 
8382 void ScalarEvolution::forgetBlockAndLoopDispositions(Value *V) {
8383   // Unless a specific value is passed to invalidation, completely clear both
8384   // caches.
8385   if (!V) {
8386     BlockDispositions.clear();
8387     LoopDispositions.clear();
8388     return;
8389   }
8390 
8391   if (!isSCEVable(V->getType()))
8392     return;
8393 
8394   const SCEV *S = getExistingSCEV(V);
8395   if (!S)
8396     return;
8397 
8398   // Invalidate the block and loop dispositions cached for S. Dispositions of
8399   // S's users may change if S's disposition changes (i.e. a user may change to
8400   // loop-invariant, if S changes to loop invariant), so also invalidate
8401   // dispositions of S's users recursively.
8402   SmallVector<const SCEV *, 8> Worklist = {S};
8403   SmallPtrSet<const SCEV *, 8> Seen = {S};
8404   while (!Worklist.empty()) {
8405     const SCEV *Curr = Worklist.pop_back_val();
8406     bool LoopDispoRemoved = LoopDispositions.erase(Curr);
8407     bool BlockDispoRemoved = BlockDispositions.erase(Curr);
8408     if (!LoopDispoRemoved && !BlockDispoRemoved)
8409       continue;
8410     auto Users = SCEVUsers.find(Curr);
8411     if (Users != SCEVUsers.end())
8412       for (const auto *User : Users->second)
8413         if (Seen.insert(User).second)
8414           Worklist.push_back(User);
8415   }
8416 }
8417 
8418 /// Get the exact loop backedge taken count considering all loop exits. A
8419 /// computable result can only be returned for loops with all exiting blocks
8420 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8421 /// is never skipped. This is a valid assumption as long as the loop exits via
8422 /// that test. For precise results, it is the caller's responsibility to specify
8423 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8424 const SCEV *
8425 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8426                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8427   // If any exits were not computable, the loop is not computable.
8428   if (!isComplete() || ExitNotTaken.empty())
8429     return SE->getCouldNotCompute();
8430 
8431   const BasicBlock *Latch = L->getLoopLatch();
8432   // All exiting blocks we have collected must dominate the only backedge.
8433   if (!Latch)
8434     return SE->getCouldNotCompute();
8435 
8436   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8437   // count is simply a minimum out of all these calculated exit counts.
8438   SmallVector<const SCEV *, 2> Ops;
8439   for (const auto &ENT : ExitNotTaken) {
8440     const SCEV *BECount = ENT.ExactNotTaken;
8441     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8442     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8443            "We should only have known counts for exiting blocks that dominate "
8444            "latch!");
8445 
8446     Ops.push_back(BECount);
8447 
8448     if (Preds)
8449       for (const auto *P : ENT.Predicates)
8450         Preds->push_back(P);
8451 
8452     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8453            "Predicate should be always true!");
8454   }
8455 
8456   // If an earlier exit exits on the first iteration (exit count zero), then
8457   // a later poison exit count should not propagate into the result. This are
8458   // exactly the semantics provided by umin_seq.
8459   return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true);
8460 }
8461 
8462 /// Get the exact not taken count for this loop exit.
8463 const SCEV *
8464 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8465                                              ScalarEvolution *SE) const {
8466   for (const auto &ENT : ExitNotTaken)
8467     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8468       return ENT.ExactNotTaken;
8469 
8470   return SE->getCouldNotCompute();
8471 }
8472 
8473 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8474     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8475   for (const auto &ENT : ExitNotTaken)
8476     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8477       return ENT.ConstantMaxNotTaken;
8478 
8479   return SE->getCouldNotCompute();
8480 }
8481 
8482 const SCEV *ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8483     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8484   for (const auto &ENT : ExitNotTaken)
8485     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8486       return ENT.SymbolicMaxNotTaken;
8487 
8488   return SE->getCouldNotCompute();
8489 }
8490 
8491 /// getConstantMax - Get the constant max backedge taken count for the loop.
8492 const SCEV *
8493 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8494   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8495     return !ENT.hasAlwaysTruePredicate();
8496   };
8497 
8498   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8499     return SE->getCouldNotCompute();
8500 
8501   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8502           isa<SCEVConstant>(getConstantMax())) &&
8503          "No point in having a non-constant max backedge taken count!");
8504   return getConstantMax();
8505 }
8506 
8507 const SCEV *
8508 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8509                                                    ScalarEvolution *SE) {
8510   if (!SymbolicMax)
8511     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8512   return SymbolicMax;
8513 }
8514 
8515 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8516     ScalarEvolution *SE) const {
8517   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8518     return !ENT.hasAlwaysTruePredicate();
8519   };
8520   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8521 }
8522 
8523 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8524     : ExitLimit(E, E, E, false, std::nullopt) {}
8525 
8526 ScalarEvolution::ExitLimit::ExitLimit(
8527     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8528     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8529     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8530     : ExactNotTaken(E), ConstantMaxNotTaken(ConstantMaxNotTaken),
8531       SymbolicMaxNotTaken(SymbolicMaxNotTaken), MaxOrZero(MaxOrZero) {
8532   // If we prove the max count is zero, so is the symbolic bound.  This happens
8533   // in practice due to differences in a) how context sensitive we've chosen
8534   // to be and b) how we reason about bounds implied by UB.
8535   if (ConstantMaxNotTaken->isZero()) {
8536     this->ExactNotTaken = E = ConstantMaxNotTaken;
8537     this->SymbolicMaxNotTaken = SymbolicMaxNotTaken = ConstantMaxNotTaken;
8538   }
8539 
8540   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8541           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8542          "Exact is not allowed to be less precise than Constant Max");
8543   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8544           !isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken)) &&
8545          "Exact is not allowed to be less precise than Symbolic Max");
8546   assert((isa<SCEVCouldNotCompute>(SymbolicMaxNotTaken) ||
8547           !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken)) &&
8548          "Symbolic Max is not allowed to be less precise than Constant Max");
8549   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8550           isa<SCEVConstant>(ConstantMaxNotTaken)) &&
8551          "No point in having a non-constant max backedge taken count!");
8552   for (const auto *PredSet : PredSetList)
8553     for (const auto *P : *PredSet)
8554       addPredicate(P);
8555   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8556          "Backedge count should be int");
8557   assert((isa<SCEVCouldNotCompute>(ConstantMaxNotTaken) ||
8558           !ConstantMaxNotTaken->getType()->isPointerTy()) &&
8559          "Max backedge count should be int");
8560 }
8561 
8562 ScalarEvolution::ExitLimit::ExitLimit(
8563     const SCEV *E, const SCEV *ConstantMaxNotTaken,
8564     const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
8565     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8566     : ExitLimit(E, ConstantMaxNotTaken, SymbolicMaxNotTaken, MaxOrZero,
8567                 { &PredSet }) {}
8568 
8569 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8570 /// computable exit into a persistent ExitNotTakenInfo array.
8571 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8572     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8573     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8574     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8575   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8576 
8577   ExitNotTaken.reserve(ExitCounts.size());
8578   std::transform(ExitCounts.begin(), ExitCounts.end(),
8579                  std::back_inserter(ExitNotTaken),
8580                  [&](const EdgeExitInfo &EEI) {
8581         BasicBlock *ExitBB = EEI.first;
8582         const ExitLimit &EL = EEI.second;
8583         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken,
8584                                 EL.ConstantMaxNotTaken, EL.SymbolicMaxNotTaken,
8585                                 EL.Predicates);
8586   });
8587   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8588           isa<SCEVConstant>(ConstantMax)) &&
8589          "No point in having a non-constant max backedge taken count!");
8590 }
8591 
8592 /// Compute the number of times the backedge of the specified loop will execute.
8593 ScalarEvolution::BackedgeTakenInfo
8594 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8595                                            bool AllowPredicates) {
8596   SmallVector<BasicBlock *, 8> ExitingBlocks;
8597   L->getExitingBlocks(ExitingBlocks);
8598 
8599   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8600 
8601   SmallVector<EdgeExitInfo, 4> ExitCounts;
8602   bool CouldComputeBECount = true;
8603   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8604   const SCEV *MustExitMaxBECount = nullptr;
8605   const SCEV *MayExitMaxBECount = nullptr;
8606   bool MustExitMaxOrZero = false;
8607 
8608   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8609   // and compute maxBECount.
8610   // Do a union of all the predicates here.
8611   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8612     BasicBlock *ExitBB = ExitingBlocks[i];
8613 
8614     // We canonicalize untaken exits to br (constant), ignore them so that
8615     // proving an exit untaken doesn't negatively impact our ability to reason
8616     // about the loop as whole.
8617     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8618       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8619         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8620         if (ExitIfTrue == CI->isZero())
8621           continue;
8622       }
8623 
8624     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8625 
8626     assert((AllowPredicates || EL.Predicates.empty()) &&
8627            "Predicated exit limit when predicates are not allowed!");
8628 
8629     // 1. For each exit that can be computed, add an entry to ExitCounts.
8630     // CouldComputeBECount is true only if all exits can be computed.
8631     if (EL.ExactNotTaken != getCouldNotCompute())
8632       ++NumExitCountsComputed;
8633     else
8634       // We couldn't compute an exact value for this exit, so
8635       // we won't be able to compute an exact value for the loop.
8636       CouldComputeBECount = false;
8637     // Remember exit count if either exact or symbolic is known. Because
8638     // Exact always implies symbolic, only check symbolic.
8639     if (EL.SymbolicMaxNotTaken != getCouldNotCompute())
8640       ExitCounts.emplace_back(ExitBB, EL);
8641     else {
8642       assert(EL.ExactNotTaken == getCouldNotCompute() &&
8643              "Exact is known but symbolic isn't?");
8644       ++NumExitCountsNotComputed;
8645     }
8646 
8647     // 2. Derive the loop's MaxBECount from each exit's max number of
8648     // non-exiting iterations. Partition the loop exits into two kinds:
8649     // LoopMustExits and LoopMayExits.
8650     //
8651     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8652     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8653     // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8654     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8655     // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8656     // any
8657     // computable EL.ConstantMaxNotTaken.
8658     if (EL.ConstantMaxNotTaken != getCouldNotCompute() && Latch &&
8659         DT.dominates(ExitBB, Latch)) {
8660       if (!MustExitMaxBECount) {
8661         MustExitMaxBECount = EL.ConstantMaxNotTaken;
8662         MustExitMaxOrZero = EL.MaxOrZero;
8663       } else {
8664         MustExitMaxBECount = getUMinFromMismatchedTypes(MustExitMaxBECount,
8665                                                         EL.ConstantMaxNotTaken);
8666       }
8667     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8668       if (!MayExitMaxBECount || EL.ConstantMaxNotTaken == getCouldNotCompute())
8669         MayExitMaxBECount = EL.ConstantMaxNotTaken;
8670       else {
8671         MayExitMaxBECount = getUMaxFromMismatchedTypes(MayExitMaxBECount,
8672                                                        EL.ConstantMaxNotTaken);
8673       }
8674     }
8675   }
8676   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8677     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8678   // The loop backedge will be taken the maximum or zero times if there's
8679   // a single exit that must be taken the maximum or zero times.
8680   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8681 
8682   // Remember which SCEVs are used in exit limits for invalidation purposes.
8683   // We only care about non-constant SCEVs here, so we can ignore
8684   // EL.ConstantMaxNotTaken
8685   // and MaxBECount, which must be SCEVConstant.
8686   for (const auto &Pair : ExitCounts) {
8687     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8688       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8689     if (!isa<SCEVConstant>(Pair.second.SymbolicMaxNotTaken))
8690       BECountUsers[Pair.second.SymbolicMaxNotTaken].insert(
8691           {L, AllowPredicates});
8692   }
8693   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8694                            MaxBECount, MaxOrZero);
8695 }
8696 
8697 ScalarEvolution::ExitLimit
8698 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8699                                       bool AllowPredicates) {
8700   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8701   // If our exiting block does not dominate the latch, then its connection with
8702   // loop's exit limit may be far from trivial.
8703   const BasicBlock *Latch = L->getLoopLatch();
8704   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8705     return getCouldNotCompute();
8706 
8707   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8708   Instruction *Term = ExitingBlock->getTerminator();
8709   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8710     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8711     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8712     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8713            "It should have one successor in loop and one exit block!");
8714     // Proceed to the next level to examine the exit condition expression.
8715     return computeExitLimitFromCond(L, BI->getCondition(), ExitIfTrue,
8716                                     /*ControlsOnlyExit=*/IsOnlyExit,
8717                                     AllowPredicates);
8718   }
8719 
8720   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8721     // For switch, make sure that there is a single exit from the loop.
8722     BasicBlock *Exit = nullptr;
8723     for (auto *SBB : successors(ExitingBlock))
8724       if (!L->contains(SBB)) {
8725         if (Exit) // Multiple exit successors.
8726           return getCouldNotCompute();
8727         Exit = SBB;
8728       }
8729     assert(Exit && "Exiting block must have at least one exit");
8730     return computeExitLimitFromSingleExitSwitch(
8731         L, SI, Exit,
8732         /*ControlsOnlyExit=*/IsOnlyExit);
8733   }
8734 
8735   return getCouldNotCompute();
8736 }
8737 
8738 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8739     const Loop *L, Value *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8740     bool AllowPredicates) {
8741   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8742   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8743                                         ControlsOnlyExit, AllowPredicates);
8744 }
8745 
8746 std::optional<ScalarEvolution::ExitLimit>
8747 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8748                                       bool ExitIfTrue, bool ControlsOnlyExit,
8749                                       bool AllowPredicates) {
8750   (void)this->L;
8751   (void)this->ExitIfTrue;
8752   (void)this->AllowPredicates;
8753 
8754   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8755          this->AllowPredicates == AllowPredicates &&
8756          "Variance in assumed invariant key components!");
8757   auto Itr = TripCountMap.find({ExitCond, ControlsOnlyExit});
8758   if (Itr == TripCountMap.end())
8759     return std::nullopt;
8760   return Itr->second;
8761 }
8762 
8763 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8764                                              bool ExitIfTrue,
8765                                              bool ControlsOnlyExit,
8766                                              bool AllowPredicates,
8767                                              const ExitLimit &EL) {
8768   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8769          this->AllowPredicates == AllowPredicates &&
8770          "Variance in assumed invariant key components!");
8771 
8772   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsOnlyExit}, EL});
8773   assert(InsertResult.second && "Expected successful insertion!");
8774   (void)InsertResult;
8775   (void)ExitIfTrue;
8776 }
8777 
8778 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8779     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8780     bool ControlsOnlyExit, bool AllowPredicates) {
8781 
8782   if (auto MaybeEL = Cache.find(L, ExitCond, ExitIfTrue, ControlsOnlyExit,
8783                                 AllowPredicates))
8784     return *MaybeEL;
8785 
8786   ExitLimit EL = computeExitLimitFromCondImpl(
8787       Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates);
8788   Cache.insert(L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates, EL);
8789   return EL;
8790 }
8791 
8792 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8793     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8794     bool ControlsOnlyExit, bool AllowPredicates) {
8795   // Handle BinOp conditions (And, Or).
8796   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8797           Cache, L, ExitCond, ExitIfTrue, ControlsOnlyExit, AllowPredicates))
8798     return *LimitFromBinOp;
8799 
8800   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8801   // Proceed to the next level to examine the icmp.
8802   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8803     ExitLimit EL =
8804         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsOnlyExit);
8805     if (EL.hasFullInfo() || !AllowPredicates)
8806       return EL;
8807 
8808     // Try again, but use SCEV predicates this time.
8809     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue,
8810                                     ControlsOnlyExit,
8811                                     /*AllowPredicates=*/true);
8812   }
8813 
8814   // Check for a constant condition. These are normally stripped out by
8815   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8816   // preserve the CFG and is temporarily leaving constant conditions
8817   // in place.
8818   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8819     if (ExitIfTrue == !CI->getZExtValue())
8820       // The backedge is always taken.
8821       return getCouldNotCompute();
8822     // The backedge is never taken.
8823     return getZero(CI->getType());
8824   }
8825 
8826   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8827   // with a constant step, we can form an equivalent icmp predicate and figure
8828   // out how many iterations will be taken before we exit.
8829   const WithOverflowInst *WO;
8830   const APInt *C;
8831   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8832       match(WO->getRHS(), m_APInt(C))) {
8833     ConstantRange NWR =
8834       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8835                                            WO->getNoWrapKind());
8836     CmpInst::Predicate Pred;
8837     APInt NewRHSC, Offset;
8838     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8839     if (!ExitIfTrue)
8840       Pred = ICmpInst::getInversePredicate(Pred);
8841     auto *LHS = getSCEV(WO->getLHS());
8842     if (Offset != 0)
8843       LHS = getAddExpr(LHS, getConstant(Offset));
8844     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8845                                        ControlsOnlyExit, AllowPredicates);
8846     if (EL.hasAnyInfo())
8847       return EL;
8848   }
8849 
8850   // If it's not an integer or pointer comparison then compute it the hard way.
8851   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8852 }
8853 
8854 std::optional<ScalarEvolution::ExitLimit>
8855 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8856     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8857     bool ControlsOnlyExit, bool AllowPredicates) {
8858   // Check if the controlling expression for this loop is an And or Or.
8859   Value *Op0, *Op1;
8860   bool IsAnd = false;
8861   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8862     IsAnd = true;
8863   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8864     IsAnd = false;
8865   else
8866     return std::nullopt;
8867 
8868   // EitherMayExit is true in these two cases:
8869   //   br (and Op0 Op1), loop, exit
8870   //   br (or  Op0 Op1), exit, loop
8871   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8872   ExitLimit EL0 = computeExitLimitFromCondCached(
8873       Cache, L, Op0, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
8874       AllowPredicates);
8875   ExitLimit EL1 = computeExitLimitFromCondCached(
8876       Cache, L, Op1, ExitIfTrue, ControlsOnlyExit && !EitherMayExit,
8877       AllowPredicates);
8878 
8879   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8880   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8881   if (isa<ConstantInt>(Op1))
8882     return Op1 == NeutralElement ? EL0 : EL1;
8883   if (isa<ConstantInt>(Op0))
8884     return Op0 == NeutralElement ? EL1 : EL0;
8885 
8886   const SCEV *BECount = getCouldNotCompute();
8887   const SCEV *ConstantMaxBECount = getCouldNotCompute();
8888   const SCEV *SymbolicMaxBECount = getCouldNotCompute();
8889   if (EitherMayExit) {
8890     bool UseSequentialUMin = !isa<BinaryOperator>(ExitCond);
8891     // Both conditions must be same for the loop to continue executing.
8892     // Choose the less conservative count.
8893     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8894         EL1.ExactNotTaken != getCouldNotCompute()) {
8895       BECount = getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken,
8896                                            UseSequentialUMin);
8897     }
8898     if (EL0.ConstantMaxNotTaken == getCouldNotCompute())
8899       ConstantMaxBECount = EL1.ConstantMaxNotTaken;
8900     else if (EL1.ConstantMaxNotTaken == getCouldNotCompute())
8901       ConstantMaxBECount = EL0.ConstantMaxNotTaken;
8902     else
8903       ConstantMaxBECount = getUMinFromMismatchedTypes(EL0.ConstantMaxNotTaken,
8904                                                       EL1.ConstantMaxNotTaken);
8905     if (EL0.SymbolicMaxNotTaken == getCouldNotCompute())
8906       SymbolicMaxBECount = EL1.SymbolicMaxNotTaken;
8907     else if (EL1.SymbolicMaxNotTaken == getCouldNotCompute())
8908       SymbolicMaxBECount = EL0.SymbolicMaxNotTaken;
8909     else
8910       SymbolicMaxBECount = getUMinFromMismatchedTypes(
8911           EL0.SymbolicMaxNotTaken, EL1.SymbolicMaxNotTaken, UseSequentialUMin);
8912   } else {
8913     // Both conditions must be same at the same time for the loop to exit.
8914     // For now, be conservative.
8915     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8916       BECount = EL0.ExactNotTaken;
8917   }
8918 
8919   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8920   // to be more aggressive when computing BECount than when computing
8921   // ConstantMaxBECount.  In these cases it is possible for EL0.ExactNotTaken
8922   // and
8923   // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
8924   // EL1.ConstantMaxNotTaken to not.
8925   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
8926       !isa<SCEVCouldNotCompute>(BECount))
8927     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
8928   if (isa<SCEVCouldNotCompute>(SymbolicMaxBECount))
8929     SymbolicMaxBECount =
8930         isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
8931   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
8932                    { &EL0.Predicates, &EL1.Predicates });
8933 }
8934 
8935 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
8936     const Loop *L, ICmpInst *ExitCond, bool ExitIfTrue, bool ControlsOnlyExit,
8937     bool AllowPredicates) {
8938   // If the condition was exit on true, convert the condition to exit on false
8939   ICmpInst::Predicate Pred;
8940   if (!ExitIfTrue)
8941     Pred = ExitCond->getPredicate();
8942   else
8943     Pred = ExitCond->getInversePredicate();
8944   const ICmpInst::Predicate OriginalPred = Pred;
8945 
8946   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8947   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8948 
8949   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsOnlyExit,
8950                                           AllowPredicates);
8951   if (EL.hasAnyInfo())
8952     return EL;
8953 
8954   auto *ExhaustiveCount =
8955       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8956 
8957   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8958     return ExhaustiveCount;
8959 
8960   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8961                                       ExitCond->getOperand(1), L, OriginalPred);
8962 }
8963 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromICmp(
8964     const Loop *L, ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8965     bool ControlsOnlyExit, bool AllowPredicates) {
8966 
8967   // Try to evaluate any dependencies out of the loop.
8968   LHS = getSCEVAtScope(LHS, L);
8969   RHS = getSCEVAtScope(RHS, L);
8970 
8971   // At this point, we would like to compute how many iterations of the
8972   // loop the predicate will return true for these inputs.
8973   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8974     // If there is a loop-invariant, force it into the RHS.
8975     std::swap(LHS, RHS);
8976     Pred = ICmpInst::getSwappedPredicate(Pred);
8977   }
8978 
8979   bool ControllingFiniteLoop = ControlsOnlyExit && loopHasNoAbnormalExits(L) &&
8980                                loopIsFiniteByAssumption(L);
8981   // Simplify the operands before analyzing them.
8982   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0);
8983 
8984   // If we have a comparison of a chrec against a constant, try to use value
8985   // ranges to answer this query.
8986   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8987     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8988       if (AddRec->getLoop() == L) {
8989         // Form the constant range.
8990         ConstantRange CompRange =
8991             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8992 
8993         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8994         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8995       }
8996 
8997   // If this loop must exit based on this condition (or execute undefined
8998   // behaviour), and we can prove the test sequence produced must repeat
8999   // the same values on self-wrap of the IV, then we can infer that IV
9000   // doesn't self wrap because if it did, we'd have an infinite (undefined)
9001   // loop.
9002   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
9003     // TODO: We can peel off any functions which are invertible *in L*.  Loop
9004     // invariant terms are effectively constants for our purposes here.
9005     auto *InnerLHS = LHS;
9006     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
9007       InnerLHS = ZExt->getOperand();
9008     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
9009       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
9010       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
9011           StrideC && StrideC->getAPInt().isPowerOf2()) {
9012         auto Flags = AR->getNoWrapFlags();
9013         Flags = setFlags(Flags, SCEV::FlagNW);
9014         SmallVector<const SCEV*> Operands{AR->operands()};
9015         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
9016         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
9017       }
9018     }
9019   }
9020 
9021   switch (Pred) {
9022   case ICmpInst::ICMP_NE: {                     // while (X != Y)
9023     // Convert to: while (X-Y != 0)
9024     if (LHS->getType()->isPointerTy()) {
9025       LHS = getLosslessPtrToIntExpr(LHS);
9026       if (isa<SCEVCouldNotCompute>(LHS))
9027         return LHS;
9028     }
9029     if (RHS->getType()->isPointerTy()) {
9030       RHS = getLosslessPtrToIntExpr(RHS);
9031       if (isa<SCEVCouldNotCompute>(RHS))
9032         return RHS;
9033     }
9034     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit,
9035                                 AllowPredicates);
9036     if (EL.hasAnyInfo())
9037       return EL;
9038     break;
9039   }
9040   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
9041     // Convert to: while (X-Y == 0)
9042     if (LHS->getType()->isPointerTy()) {
9043       LHS = getLosslessPtrToIntExpr(LHS);
9044       if (isa<SCEVCouldNotCompute>(LHS))
9045         return LHS;
9046     }
9047     if (RHS->getType()->isPointerTy()) {
9048       RHS = getLosslessPtrToIntExpr(RHS);
9049       if (isa<SCEVCouldNotCompute>(RHS))
9050         return RHS;
9051     }
9052     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
9053     if (EL.hasAnyInfo()) return EL;
9054     break;
9055   }
9056   case ICmpInst::ICMP_SLE:
9057   case ICmpInst::ICMP_ULE:
9058     // Since the loop is finite, an invariant RHS cannot include the boundary
9059     // value, otherwise it would loop forever.
9060     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9061         !isLoopInvariant(RHS, L))
9062       break;
9063     RHS = getAddExpr(getOne(RHS->getType()), RHS);
9064     [[fallthrough]];
9065   case ICmpInst::ICMP_SLT:
9066   case ICmpInst::ICMP_ULT: { // while (X < Y)
9067     bool IsSigned = ICmpInst::isSigned(Pred);
9068     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9069                                     AllowPredicates);
9070     if (EL.hasAnyInfo())
9071       return EL;
9072     break;
9073   }
9074   case ICmpInst::ICMP_SGE:
9075   case ICmpInst::ICMP_UGE:
9076     // Since the loop is finite, an invariant RHS cannot include the boundary
9077     // value, otherwise it would loop forever.
9078     if (!EnableFiniteLoopControl || !ControllingFiniteLoop ||
9079         !isLoopInvariant(RHS, L))
9080       break;
9081     RHS = getAddExpr(getMinusOne(RHS->getType()), RHS);
9082     [[fallthrough]];
9083   case ICmpInst::ICMP_SGT:
9084   case ICmpInst::ICMP_UGT: { // while (X > Y)
9085     bool IsSigned = ICmpInst::isSigned(Pred);
9086     ExitLimit EL = howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsOnlyExit,
9087                                        AllowPredicates);
9088     if (EL.hasAnyInfo())
9089       return EL;
9090     break;
9091   }
9092   default:
9093     break;
9094   }
9095 
9096   return getCouldNotCompute();
9097 }
9098 
9099 ScalarEvolution::ExitLimit
9100 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
9101                                                       SwitchInst *Switch,
9102                                                       BasicBlock *ExitingBlock,
9103                                                       bool ControlsOnlyExit) {
9104   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
9105 
9106   // Give up if the exit is the default dest of a switch.
9107   if (Switch->getDefaultDest() == ExitingBlock)
9108     return getCouldNotCompute();
9109 
9110   assert(L->contains(Switch->getDefaultDest()) &&
9111          "Default case must not exit the loop!");
9112   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
9113   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
9114 
9115   // while (X != Y) --> while (X-Y != 0)
9116   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsOnlyExit);
9117   if (EL.hasAnyInfo())
9118     return EL;
9119 
9120   return getCouldNotCompute();
9121 }
9122 
9123 static ConstantInt *
9124 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
9125                                 ScalarEvolution &SE) {
9126   const SCEV *InVal = SE.getConstant(C);
9127   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
9128   assert(isa<SCEVConstant>(Val) &&
9129          "Evaluation of SCEV at constant didn't fold correctly?");
9130   return cast<SCEVConstant>(Val)->getValue();
9131 }
9132 
9133 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
9134     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
9135   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
9136   if (!RHS)
9137     return getCouldNotCompute();
9138 
9139   const BasicBlock *Latch = L->getLoopLatch();
9140   if (!Latch)
9141     return getCouldNotCompute();
9142 
9143   const BasicBlock *Predecessor = L->getLoopPredecessor();
9144   if (!Predecessor)
9145     return getCouldNotCompute();
9146 
9147   // Return true if V is of the form "LHS `shift_op` <positive constant>".
9148   // Return LHS in OutLHS and shift_opt in OutOpCode.
9149   auto MatchPositiveShift =
9150       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
9151 
9152     using namespace PatternMatch;
9153 
9154     ConstantInt *ShiftAmt;
9155     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9156       OutOpCode = Instruction::LShr;
9157     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9158       OutOpCode = Instruction::AShr;
9159     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
9160       OutOpCode = Instruction::Shl;
9161     else
9162       return false;
9163 
9164     return ShiftAmt->getValue().isStrictlyPositive();
9165   };
9166 
9167   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9168   //
9169   // loop:
9170   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9171   //   %iv.shifted = lshr i32 %iv, <positive constant>
9172   //
9173   // Return true on a successful match.  Return the corresponding PHI node (%iv
9174   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9175   auto MatchShiftRecurrence =
9176       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
9177     std::optional<Instruction::BinaryOps> PostShiftOpCode;
9178 
9179     {
9180       Instruction::BinaryOps OpC;
9181       Value *V;
9182 
9183       // If we encounter a shift instruction, "peel off" the shift operation,
9184       // and remember that we did so.  Later when we inspect %iv's backedge
9185       // value, we will make sure that the backedge value uses the same
9186       // operation.
9187       //
9188       // Note: the peeled shift operation does not have to be the same
9189       // instruction as the one feeding into the PHI's backedge value.  We only
9190       // really care about it being the same *kind* of shift instruction --
9191       // that's all that is required for our later inferences to hold.
9192       if (MatchPositiveShift(LHS, V, OpC)) {
9193         PostShiftOpCode = OpC;
9194         LHS = V;
9195       }
9196     }
9197 
9198     PNOut = dyn_cast<PHINode>(LHS);
9199     if (!PNOut || PNOut->getParent() != L->getHeader())
9200       return false;
9201 
9202     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
9203     Value *OpLHS;
9204 
9205     return
9206         // The backedge value for the PHI node must be a shift by a positive
9207         // amount
9208         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
9209 
9210         // of the PHI node itself
9211         OpLHS == PNOut &&
9212 
9213         // and the kind of shift should be match the kind of shift we peeled
9214         // off, if any.
9215         (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut);
9216   };
9217 
9218   PHINode *PN;
9219   Instruction::BinaryOps OpCode;
9220   if (!MatchShiftRecurrence(LHS, PN, OpCode))
9221     return getCouldNotCompute();
9222 
9223   const DataLayout &DL = getDataLayout();
9224 
9225   // The key rationale for this optimization is that for some kinds of shift
9226   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9227   // within a finite number of iterations.  If the condition guarding the
9228   // backedge (in the sense that the backedge is taken if the condition is true)
9229   // is false for the value the shift recurrence stabilizes to, then we know
9230   // that the backedge is taken only a finite number of times.
9231 
9232   ConstantInt *StableValue = nullptr;
9233   switch (OpCode) {
9234   default:
9235     llvm_unreachable("Impossible case!");
9236 
9237   case Instruction::AShr: {
9238     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9239     // bitwidth(K) iterations.
9240     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
9241     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
9242                                        Predecessor->getTerminator(), &DT);
9243     auto *Ty = cast<IntegerType>(RHS->getType());
9244     if (Known.isNonNegative())
9245       StableValue = ConstantInt::get(Ty, 0);
9246     else if (Known.isNegative())
9247       StableValue = ConstantInt::get(Ty, -1, true);
9248     else
9249       return getCouldNotCompute();
9250 
9251     break;
9252   }
9253   case Instruction::LShr:
9254   case Instruction::Shl:
9255     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9256     // stabilize to 0 in at most bitwidth(K) iterations.
9257     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
9258     break;
9259   }
9260 
9261   auto *Result =
9262       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
9263   assert(Result->getType()->isIntegerTy(1) &&
9264          "Otherwise cannot be an operand to a branch instruction");
9265 
9266   if (Result->isZeroValue()) {
9267     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
9268     const SCEV *UpperBound =
9269         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
9270     return ExitLimit(getCouldNotCompute(), UpperBound, UpperBound, false);
9271   }
9272 
9273   return getCouldNotCompute();
9274 }
9275 
9276 /// Return true if we can constant fold an instruction of the specified type,
9277 /// assuming that all operands were constants.
9278 static bool CanConstantFold(const Instruction *I) {
9279   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
9280       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
9281       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
9282     return true;
9283 
9284   if (const CallInst *CI = dyn_cast<CallInst>(I))
9285     if (const Function *F = CI->getCalledFunction())
9286       return canConstantFoldCallTo(CI, F);
9287   return false;
9288 }
9289 
9290 /// Determine whether this instruction can constant evolve within this loop
9291 /// assuming its operands can all constant evolve.
9292 static bool canConstantEvolve(Instruction *I, const Loop *L) {
9293   // An instruction outside of the loop can't be derived from a loop PHI.
9294   if (!L->contains(I)) return false;
9295 
9296   if (isa<PHINode>(I)) {
9297     // We don't currently keep track of the control flow needed to evaluate
9298     // PHIs, so we cannot handle PHIs inside of loops.
9299     return L->getHeader() == I->getParent();
9300   }
9301 
9302   // If we won't be able to constant fold this expression even if the operands
9303   // are constants, bail early.
9304   return CanConstantFold(I);
9305 }
9306 
9307 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9308 /// recursing through each instruction operand until reaching a loop header phi.
9309 static PHINode *
9310 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
9311                                DenseMap<Instruction *, PHINode *> &PHIMap,
9312                                unsigned Depth) {
9313   if (Depth > MaxConstantEvolvingDepth)
9314     return nullptr;
9315 
9316   // Otherwise, we can evaluate this instruction if all of its operands are
9317   // constant or derived from a PHI node themselves.
9318   PHINode *PHI = nullptr;
9319   for (Value *Op : UseInst->operands()) {
9320     if (isa<Constant>(Op)) continue;
9321 
9322     Instruction *OpInst = dyn_cast<Instruction>(Op);
9323     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
9324 
9325     PHINode *P = dyn_cast<PHINode>(OpInst);
9326     if (!P)
9327       // If this operand is already visited, reuse the prior result.
9328       // We may have P != PHI if this is the deepest point at which the
9329       // inconsistent paths meet.
9330       P = PHIMap.lookup(OpInst);
9331     if (!P) {
9332       // Recurse and memoize the results, whether a phi is found or not.
9333       // This recursive call invalidates pointers into PHIMap.
9334       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
9335       PHIMap[OpInst] = P;
9336     }
9337     if (!P)
9338       return nullptr;  // Not evolving from PHI
9339     if (PHI && PHI != P)
9340       return nullptr;  // Evolving from multiple different PHIs.
9341     PHI = P;
9342   }
9343   // This is a expression evolving from a constant PHI!
9344   return PHI;
9345 }
9346 
9347 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9348 /// in the loop that V is derived from.  We allow arbitrary operations along the
9349 /// way, but the operands of an operation must either be constants or a value
9350 /// derived from a constant PHI.  If this expression does not fit with these
9351 /// constraints, return null.
9352 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9353   Instruction *I = dyn_cast<Instruction>(V);
9354   if (!I || !canConstantEvolve(I, L)) return nullptr;
9355 
9356   if (PHINode *PN = dyn_cast<PHINode>(I))
9357     return PN;
9358 
9359   // Record non-constant instructions contained by the loop.
9360   DenseMap<Instruction *, PHINode *> PHIMap;
9361   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9362 }
9363 
9364 /// EvaluateExpression - Given an expression that passes the
9365 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9366 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9367 /// reason, return null.
9368 static Constant *EvaluateExpression(Value *V, const Loop *L,
9369                                     DenseMap<Instruction *, Constant *> &Vals,
9370                                     const DataLayout &DL,
9371                                     const TargetLibraryInfo *TLI) {
9372   // Convenient constant check, but redundant for recursive calls.
9373   if (Constant *C = dyn_cast<Constant>(V)) return C;
9374   Instruction *I = dyn_cast<Instruction>(V);
9375   if (!I) return nullptr;
9376 
9377   if (Constant *C = Vals.lookup(I)) return C;
9378 
9379   // An instruction inside the loop depends on a value outside the loop that we
9380   // weren't given a mapping for, or a value such as a call inside the loop.
9381   if (!canConstantEvolve(I, L)) return nullptr;
9382 
9383   // An unmapped PHI can be due to a branch or another loop inside this loop,
9384   // or due to this not being the initial iteration through a loop where we
9385   // couldn't compute the evolution of this particular PHI last time.
9386   if (isa<PHINode>(I)) return nullptr;
9387 
9388   std::vector<Constant*> Operands(I->getNumOperands());
9389 
9390   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9391     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9392     if (!Operand) {
9393       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9394       if (!Operands[i]) return nullptr;
9395       continue;
9396     }
9397     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9398     Vals[Operand] = C;
9399     if (!C) return nullptr;
9400     Operands[i] = C;
9401   }
9402 
9403   return ConstantFoldInstOperands(I, Operands, DL, TLI);
9404 }
9405 
9406 
9407 // If every incoming value to PN except the one for BB is a specific Constant,
9408 // return that, else return nullptr.
9409 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9410   Constant *IncomingVal = nullptr;
9411 
9412   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9413     if (PN->getIncomingBlock(i) == BB)
9414       continue;
9415 
9416     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9417     if (!CurrentVal)
9418       return nullptr;
9419 
9420     if (IncomingVal != CurrentVal) {
9421       if (IncomingVal)
9422         return nullptr;
9423       IncomingVal = CurrentVal;
9424     }
9425   }
9426 
9427   return IncomingVal;
9428 }
9429 
9430 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9431 /// in the header of its containing loop, we know the loop executes a
9432 /// constant number of times, and the PHI node is just a recurrence
9433 /// involving constants, fold it.
9434 Constant *
9435 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9436                                                    const APInt &BEs,
9437                                                    const Loop *L) {
9438   auto I = ConstantEvolutionLoopExitValue.find(PN);
9439   if (I != ConstantEvolutionLoopExitValue.end())
9440     return I->second;
9441 
9442   if (BEs.ugt(MaxBruteForceIterations))
9443     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9444 
9445   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9446 
9447   DenseMap<Instruction *, Constant *> CurrentIterVals;
9448   BasicBlock *Header = L->getHeader();
9449   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9450 
9451   BasicBlock *Latch = L->getLoopLatch();
9452   if (!Latch)
9453     return nullptr;
9454 
9455   for (PHINode &PHI : Header->phis()) {
9456     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9457       CurrentIterVals[&PHI] = StartCST;
9458   }
9459   if (!CurrentIterVals.count(PN))
9460     return RetVal = nullptr;
9461 
9462   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9463 
9464   // Execute the loop symbolically to determine the exit value.
9465   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9466          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9467 
9468   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9469   unsigned IterationNum = 0;
9470   const DataLayout &DL = getDataLayout();
9471   for (; ; ++IterationNum) {
9472     if (IterationNum == NumIterations)
9473       return RetVal = CurrentIterVals[PN];  // Got exit value!
9474 
9475     // Compute the value of the PHIs for the next iteration.
9476     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9477     DenseMap<Instruction *, Constant *> NextIterVals;
9478     Constant *NextPHI =
9479         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9480     if (!NextPHI)
9481       return nullptr;        // Couldn't evaluate!
9482     NextIterVals[PN] = NextPHI;
9483 
9484     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9485 
9486     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9487     // cease to be able to evaluate one of them or if they stop evolving,
9488     // because that doesn't necessarily prevent us from computing PN.
9489     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9490     for (const auto &I : CurrentIterVals) {
9491       PHINode *PHI = dyn_cast<PHINode>(I.first);
9492       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9493       PHIsToCompute.emplace_back(PHI, I.second);
9494     }
9495     // We use two distinct loops because EvaluateExpression may invalidate any
9496     // iterators into CurrentIterVals.
9497     for (const auto &I : PHIsToCompute) {
9498       PHINode *PHI = I.first;
9499       Constant *&NextPHI = NextIterVals[PHI];
9500       if (!NextPHI) {   // Not already computed.
9501         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9502         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9503       }
9504       if (NextPHI != I.second)
9505         StoppedEvolving = false;
9506     }
9507 
9508     // If all entries in CurrentIterVals == NextIterVals then we can stop
9509     // iterating, the loop can't continue to change.
9510     if (StoppedEvolving)
9511       return RetVal = CurrentIterVals[PN];
9512 
9513     CurrentIterVals.swap(NextIterVals);
9514   }
9515 }
9516 
9517 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9518                                                           Value *Cond,
9519                                                           bool ExitWhen) {
9520   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9521   if (!PN) return getCouldNotCompute();
9522 
9523   // If the loop is canonicalized, the PHI will have exactly two entries.
9524   // That's the only form we support here.
9525   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9526 
9527   DenseMap<Instruction *, Constant *> CurrentIterVals;
9528   BasicBlock *Header = L->getHeader();
9529   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9530 
9531   BasicBlock *Latch = L->getLoopLatch();
9532   assert(Latch && "Should follow from NumIncomingValues == 2!");
9533 
9534   for (PHINode &PHI : Header->phis()) {
9535     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9536       CurrentIterVals[&PHI] = StartCST;
9537   }
9538   if (!CurrentIterVals.count(PN))
9539     return getCouldNotCompute();
9540 
9541   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9542   // the loop symbolically to determine when the condition gets a value of
9543   // "ExitWhen".
9544   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9545   const DataLayout &DL = getDataLayout();
9546   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9547     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9548         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9549 
9550     // Couldn't symbolically evaluate.
9551     if (!CondVal) return getCouldNotCompute();
9552 
9553     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9554       ++NumBruteForceTripCountsComputed;
9555       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9556     }
9557 
9558     // Update all the PHI nodes for the next iteration.
9559     DenseMap<Instruction *, Constant *> NextIterVals;
9560 
9561     // Create a list of which PHIs we need to compute. We want to do this before
9562     // calling EvaluateExpression on them because that may invalidate iterators
9563     // into CurrentIterVals.
9564     SmallVector<PHINode *, 8> PHIsToCompute;
9565     for (const auto &I : CurrentIterVals) {
9566       PHINode *PHI = dyn_cast<PHINode>(I.first);
9567       if (!PHI || PHI->getParent() != Header) continue;
9568       PHIsToCompute.push_back(PHI);
9569     }
9570     for (PHINode *PHI : PHIsToCompute) {
9571       Constant *&NextPHI = NextIterVals[PHI];
9572       if (NextPHI) continue;    // Already computed!
9573 
9574       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9575       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9576     }
9577     CurrentIterVals.swap(NextIterVals);
9578   }
9579 
9580   // Too many iterations were needed to evaluate.
9581   return getCouldNotCompute();
9582 }
9583 
9584 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9585   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9586       ValuesAtScopes[V];
9587   // Check to see if we've folded this expression at this loop before.
9588   for (auto &LS : Values)
9589     if (LS.first == L)
9590       return LS.second ? LS.second : V;
9591 
9592   Values.emplace_back(L, nullptr);
9593 
9594   // Otherwise compute it.
9595   const SCEV *C = computeSCEVAtScope(V, L);
9596   for (auto &LS : reverse(ValuesAtScopes[V]))
9597     if (LS.first == L) {
9598       LS.second = C;
9599       if (!isa<SCEVConstant>(C))
9600         ValuesAtScopesUsers[C].push_back({L, V});
9601       break;
9602     }
9603   return C;
9604 }
9605 
9606 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9607 /// will return Constants for objects which aren't represented by a
9608 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9609 /// Returns NULL if the SCEV isn't representable as a Constant.
9610 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9611   switch (V->getSCEVType()) {
9612   case scCouldNotCompute:
9613   case scAddRecExpr:
9614   case scVScale:
9615     return nullptr;
9616   case scConstant:
9617     return cast<SCEVConstant>(V)->getValue();
9618   case scUnknown:
9619     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9620   case scSignExtend: {
9621     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
9622     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
9623       return ConstantExpr::getSExt(CastOp, SS->getType());
9624     return nullptr;
9625   }
9626   case scZeroExtend: {
9627     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
9628     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
9629       return ConstantExpr::getZExt(CastOp, SZ->getType());
9630     return nullptr;
9631   }
9632   case scPtrToInt: {
9633     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9634     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9635       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9636 
9637     return nullptr;
9638   }
9639   case scTruncate: {
9640     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9641     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9642       return ConstantExpr::getTrunc(CastOp, ST->getType());
9643     return nullptr;
9644   }
9645   case scAddExpr: {
9646     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9647     Constant *C = nullptr;
9648     for (const SCEV *Op : SA->operands()) {
9649       Constant *OpC = BuildConstantFromSCEV(Op);
9650       if (!OpC)
9651         return nullptr;
9652       if (!C) {
9653         C = OpC;
9654         continue;
9655       }
9656       assert(!C->getType()->isPointerTy() &&
9657              "Can only have one pointer, and it must be last");
9658       if (auto *PT = dyn_cast<PointerType>(OpC->getType())) {
9659         // The offsets have been converted to bytes.  We can add bytes to an
9660         // i8* by GEP with the byte count in the first index.
9661         Type *DestPtrTy =
9662             Type::getInt8PtrTy(PT->getContext(), PT->getAddressSpace());
9663         OpC = ConstantExpr::getBitCast(OpC, DestPtrTy);
9664         C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9665                                            OpC, C);
9666       } else {
9667         C = ConstantExpr::getAdd(C, OpC);
9668       }
9669     }
9670     return C;
9671   }
9672   case scMulExpr: {
9673     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
9674     Constant *C = nullptr;
9675     for (const SCEV *Op : SM->operands()) {
9676       assert(!Op->getType()->isPointerTy() && "Can't multiply pointers");
9677       Constant *OpC = BuildConstantFromSCEV(Op);
9678       if (!OpC)
9679         return nullptr;
9680       C = C ? ConstantExpr::getMul(C, OpC) : OpC;
9681     }
9682     return C;
9683   }
9684   case scUDivExpr:
9685   case scSMaxExpr:
9686   case scUMaxExpr:
9687   case scSMinExpr:
9688   case scUMinExpr:
9689   case scSequentialUMinExpr:
9690     return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
9691   }
9692   llvm_unreachable("Unknown SCEV kind!");
9693 }
9694 
9695 const SCEV *
9696 ScalarEvolution::getWithOperands(const SCEV *S,
9697                                  SmallVectorImpl<const SCEV *> &NewOps) {
9698   switch (S->getSCEVType()) {
9699   case scTruncate:
9700   case scZeroExtend:
9701   case scSignExtend:
9702   case scPtrToInt:
9703     return getCastExpr(S->getSCEVType(), NewOps[0], S->getType());
9704   case scAddRecExpr: {
9705     auto *AddRec = cast<SCEVAddRecExpr>(S);
9706     return getAddRecExpr(NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags());
9707   }
9708   case scAddExpr:
9709     return getAddExpr(NewOps, cast<SCEVAddExpr>(S)->getNoWrapFlags());
9710   case scMulExpr:
9711     return getMulExpr(NewOps, cast<SCEVMulExpr>(S)->getNoWrapFlags());
9712   case scUDivExpr:
9713     return getUDivExpr(NewOps[0], NewOps[1]);
9714   case scUMaxExpr:
9715   case scSMaxExpr:
9716   case scUMinExpr:
9717   case scSMinExpr:
9718     return getMinMaxExpr(S->getSCEVType(), NewOps);
9719   case scSequentialUMinExpr:
9720     return getSequentialMinMaxExpr(S->getSCEVType(), NewOps);
9721   case scConstant:
9722   case scVScale:
9723   case scUnknown:
9724     return S;
9725   case scCouldNotCompute:
9726     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9727   }
9728   llvm_unreachable("Unknown SCEV kind!");
9729 }
9730 
9731 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9732   switch (V->getSCEVType()) {
9733   case scConstant:
9734   case scVScale:
9735     return V;
9736   case scAddRecExpr: {
9737     // If this is a loop recurrence for a loop that does not contain L, then we
9738     // are dealing with the final value computed by the loop.
9739     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(V);
9740     // First, attempt to evaluate each operand.
9741     // Avoid performing the look-up in the common case where the specified
9742     // expression has no loop-variant portions.
9743     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9744       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9745       if (OpAtScope == AddRec->getOperand(i))
9746         continue;
9747 
9748       // Okay, at least one of these operands is loop variant but might be
9749       // foldable.  Build a new instance of the folded commutative expression.
9750       SmallVector<const SCEV *, 8> NewOps;
9751       NewOps.reserve(AddRec->getNumOperands());
9752       append_range(NewOps, AddRec->operands().take_front(i));
9753       NewOps.push_back(OpAtScope);
9754       for (++i; i != e; ++i)
9755         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9756 
9757       const SCEV *FoldedRec = getAddRecExpr(
9758           NewOps, AddRec->getLoop(), AddRec->getNoWrapFlags(SCEV::FlagNW));
9759       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9760       // The addrec may be folded to a nonrecurrence, for example, if the
9761       // induction variable is multiplied by zero after constant folding. Go
9762       // ahead and return the folded value.
9763       if (!AddRec)
9764         return FoldedRec;
9765       break;
9766     }
9767 
9768     // If the scope is outside the addrec's loop, evaluate it by using the
9769     // loop exit value of the addrec.
9770     if (!AddRec->getLoop()->contains(L)) {
9771       // To evaluate this recurrence, we need to know how many times the AddRec
9772       // loop iterates.  Compute this now.
9773       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9774       if (BackedgeTakenCount == getCouldNotCompute())
9775         return AddRec;
9776 
9777       // Then, evaluate the AddRec.
9778       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9779     }
9780 
9781     return AddRec;
9782   }
9783   case scTruncate:
9784   case scZeroExtend:
9785   case scSignExtend:
9786   case scPtrToInt:
9787   case scAddExpr:
9788   case scMulExpr:
9789   case scUDivExpr:
9790   case scUMaxExpr:
9791   case scSMaxExpr:
9792   case scUMinExpr:
9793   case scSMinExpr:
9794   case scSequentialUMinExpr: {
9795     ArrayRef<const SCEV *> Ops = V->operands();
9796     // Avoid performing the look-up in the common case where the specified
9797     // expression has no loop-variant portions.
9798     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
9799       const SCEV *OpAtScope = getSCEVAtScope(Ops[i], L);
9800       if (OpAtScope != Ops[i]) {
9801         // Okay, at least one of these operands is loop variant but might be
9802         // foldable.  Build a new instance of the folded commutative expression.
9803         SmallVector<const SCEV *, 8> NewOps;
9804         NewOps.reserve(Ops.size());
9805         append_range(NewOps, Ops.take_front(i));
9806         NewOps.push_back(OpAtScope);
9807 
9808         for (++i; i != e; ++i) {
9809           OpAtScope = getSCEVAtScope(Ops[i], L);
9810           NewOps.push_back(OpAtScope);
9811         }
9812 
9813         return getWithOperands(V, NewOps);
9814       }
9815     }
9816     // If we got here, all operands are loop invariant.
9817     return V;
9818   }
9819   case scUnknown: {
9820     // If this instruction is evolved from a constant-evolving PHI, compute the
9821     // exit value from the loop without using SCEVs.
9822     const SCEVUnknown *SU = cast<SCEVUnknown>(V);
9823     Instruction *I = dyn_cast<Instruction>(SU->getValue());
9824     if (!I)
9825       return V; // This is some other type of SCEVUnknown, just return it.
9826 
9827     if (PHINode *PN = dyn_cast<PHINode>(I)) {
9828       const Loop *CurrLoop = this->LI[I->getParent()];
9829       // Looking for loop exit value.
9830       if (CurrLoop && CurrLoop->getParentLoop() == L &&
9831           PN->getParent() == CurrLoop->getHeader()) {
9832         // Okay, there is no closed form solution for the PHI node.  Check
9833         // to see if the loop that contains it has a known backedge-taken
9834         // count.  If so, we may be able to force computation of the exit
9835         // value.
9836         const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9837         // This trivial case can show up in some degenerate cases where
9838         // the incoming IR has not yet been fully simplified.
9839         if (BackedgeTakenCount->isZero()) {
9840           Value *InitValue = nullptr;
9841           bool MultipleInitValues = false;
9842           for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9843             if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9844               if (!InitValue)
9845                 InitValue = PN->getIncomingValue(i);
9846               else if (InitValue != PN->getIncomingValue(i)) {
9847                 MultipleInitValues = true;
9848                 break;
9849               }
9850             }
9851           }
9852           if (!MultipleInitValues && InitValue)
9853             return getSCEV(InitValue);
9854         }
9855         // Do we have a loop invariant value flowing around the backedge
9856         // for a loop which must execute the backedge?
9857         if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9858             isKnownPositive(BackedgeTakenCount) &&
9859             PN->getNumIncomingValues() == 2) {
9860 
9861           unsigned InLoopPred =
9862               CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9863           Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9864           if (CurrLoop->isLoopInvariant(BackedgeVal))
9865             return getSCEV(BackedgeVal);
9866         }
9867         if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9868           // Okay, we know how many times the containing loop executes.  If
9869           // this is a constant evolving PHI node, get the final value at
9870           // the specified iteration number.
9871           Constant *RV =
9872               getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), CurrLoop);
9873           if (RV)
9874             return getSCEV(RV);
9875         }
9876       }
9877     }
9878 
9879     // Okay, this is an expression that we cannot symbolically evaluate
9880     // into a SCEV.  Check to see if it's possible to symbolically evaluate
9881     // the arguments into constants, and if so, try to constant propagate the
9882     // result.  This is particularly useful for computing loop exit values.
9883     if (!CanConstantFold(I))
9884       return V; // This is some other type of SCEVUnknown, just return it.
9885 
9886     SmallVector<Constant *, 4> Operands;
9887     Operands.reserve(I->getNumOperands());
9888     bool MadeImprovement = false;
9889     for (Value *Op : I->operands()) {
9890       if (Constant *C = dyn_cast<Constant>(Op)) {
9891         Operands.push_back(C);
9892         continue;
9893       }
9894 
9895       // If any of the operands is non-constant and if they are
9896       // non-integer and non-pointer, don't even try to analyze them
9897       // with scev techniques.
9898       if (!isSCEVable(Op->getType()))
9899         return V;
9900 
9901       const SCEV *OrigV = getSCEV(Op);
9902       const SCEV *OpV = getSCEVAtScope(OrigV, L);
9903       MadeImprovement |= OrigV != OpV;
9904 
9905       Constant *C = BuildConstantFromSCEV(OpV);
9906       if (!C)
9907         return V;
9908       if (C->getType() != Op->getType())
9909         C = ConstantExpr::getCast(
9910             CastInst::getCastOpcode(C, false, Op->getType(), false), C,
9911             Op->getType());
9912       Operands.push_back(C);
9913     }
9914 
9915     // Check to see if getSCEVAtScope actually made an improvement.
9916     if (!MadeImprovement)
9917       return V; // This is some other type of SCEVUnknown, just return it.
9918 
9919     Constant *C = nullptr;
9920     const DataLayout &DL = getDataLayout();
9921     C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9922     if (!C)
9923       return V;
9924     return getSCEV(C);
9925   }
9926   case scCouldNotCompute:
9927     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9928   }
9929   llvm_unreachable("Unknown SCEV type!");
9930 }
9931 
9932 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9933   return getSCEVAtScope(getSCEV(V), L);
9934 }
9935 
9936 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9937   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9938     return stripInjectiveFunctions(ZExt->getOperand());
9939   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9940     return stripInjectiveFunctions(SExt->getOperand());
9941   return S;
9942 }
9943 
9944 /// Finds the minimum unsigned root of the following equation:
9945 ///
9946 ///     A * X = B (mod N)
9947 ///
9948 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9949 /// A and B isn't important.
9950 ///
9951 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9952 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9953                                                ScalarEvolution &SE) {
9954   uint32_t BW = A.getBitWidth();
9955   assert(BW == SE.getTypeSizeInBits(B->getType()));
9956   assert(A != 0 && "A must be non-zero.");
9957 
9958   // 1. D = gcd(A, N)
9959   //
9960   // The gcd of A and N may have only one prime factor: 2. The number of
9961   // trailing zeros in A is its multiplicity
9962   uint32_t Mult2 = A.countr_zero();
9963   // D = 2^Mult2
9964 
9965   // 2. Check if B is divisible by D.
9966   //
9967   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9968   // is not less than multiplicity of this prime factor for D.
9969   if (SE.getMinTrailingZeros(B) < Mult2)
9970     return SE.getCouldNotCompute();
9971 
9972   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9973   // modulo (N / D).
9974   //
9975   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9976   // (N / D) in general. The inverse itself always fits into BW bits, though,
9977   // so we immediately truncate it.
9978   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9979   APInt Mod(BW + 1, 0);
9980   Mod.setBit(BW - Mult2);  // Mod = N / D
9981   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9982 
9983   // 4. Compute the minimum unsigned root of the equation:
9984   // I * (B / D) mod (N / D)
9985   // To simplify the computation, we factor out the divide by D:
9986   // (I * B mod N) / D
9987   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9988   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9989 }
9990 
9991 /// For a given quadratic addrec, generate coefficients of the corresponding
9992 /// quadratic equation, multiplied by a common value to ensure that they are
9993 /// integers.
9994 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9995 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9996 /// were multiplied by, and BitWidth is the bit width of the original addrec
9997 /// coefficients.
9998 /// This function returns std::nullopt if the addrec coefficients are not
9999 /// compile- time constants.
10000 static std::optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
10001 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
10002   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
10003   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
10004   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
10005   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
10006   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
10007                     << *AddRec << '\n');
10008 
10009   // We currently can only solve this if the coefficients are constants.
10010   if (!LC || !MC || !NC) {
10011     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
10012     return std::nullopt;
10013   }
10014 
10015   APInt L = LC->getAPInt();
10016   APInt M = MC->getAPInt();
10017   APInt N = NC->getAPInt();
10018   assert(!N.isZero() && "This is not a quadratic addrec");
10019 
10020   unsigned BitWidth = LC->getAPInt().getBitWidth();
10021   unsigned NewWidth = BitWidth + 1;
10022   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
10023                     << BitWidth << '\n');
10024   // The sign-extension (as opposed to a zero-extension) here matches the
10025   // extension used in SolveQuadraticEquationWrap (with the same motivation).
10026   N = N.sext(NewWidth);
10027   M = M.sext(NewWidth);
10028   L = L.sext(NewWidth);
10029 
10030   // The increments are M, M+N, M+2N, ..., so the accumulated values are
10031   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10032   //   L+M, L+2M+N, L+3M+3N, ...
10033   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10034   //
10035   // The equation Acc = 0 is then
10036   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
10037   // In a quadratic form it becomes:
10038   //   N n^2 + (2M-N) n + 2L = 0.
10039 
10040   APInt A = N;
10041   APInt B = 2 * M - A;
10042   APInt C = 2 * L;
10043   APInt T = APInt(NewWidth, 2);
10044   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
10045                     << "x + " << C << ", coeff bw: " << NewWidth
10046                     << ", multiplied by " << T << '\n');
10047   return std::make_tuple(A, B, C, T, BitWidth);
10048 }
10049 
10050 /// Helper function to compare optional APInts:
10051 /// (a) if X and Y both exist, return min(X, Y),
10052 /// (b) if neither X nor Y exist, return std::nullopt,
10053 /// (c) if exactly one of X and Y exists, return that value.
10054 static std::optional<APInt> MinOptional(std::optional<APInt> X,
10055                                         std::optional<APInt> Y) {
10056   if (X && Y) {
10057     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
10058     APInt XW = X->sext(W);
10059     APInt YW = Y->sext(W);
10060     return XW.slt(YW) ? *X : *Y;
10061   }
10062   if (!X && !Y)
10063     return std::nullopt;
10064   return X ? *X : *Y;
10065 }
10066 
10067 /// Helper function to truncate an optional APInt to a given BitWidth.
10068 /// When solving addrec-related equations, it is preferable to return a value
10069 /// that has the same bit width as the original addrec's coefficients. If the
10070 /// solution fits in the original bit width, truncate it (except for i1).
10071 /// Returning a value of a different bit width may inhibit some optimizations.
10072 ///
10073 /// In general, a solution to a quadratic equation generated from an addrec
10074 /// may require BW+1 bits, where BW is the bit width of the addrec's
10075 /// coefficients. The reason is that the coefficients of the quadratic
10076 /// equation are BW+1 bits wide (to avoid truncation when converting from
10077 /// the addrec to the equation).
10078 static std::optional<APInt> TruncIfPossible(std::optional<APInt> X,
10079                                             unsigned BitWidth) {
10080   if (!X)
10081     return std::nullopt;
10082   unsigned W = X->getBitWidth();
10083   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
10084     return X->trunc(BitWidth);
10085   return X;
10086 }
10087 
10088 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10089 /// iterations. The values L, M, N are assumed to be signed, and they
10090 /// should all have the same bit widths.
10091 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10092 /// where BW is the bit width of the addrec's coefficients.
10093 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10094 /// returned as such, otherwise the bit width of the returned value may
10095 /// be greater than BW.
10096 ///
10097 /// This function returns std::nullopt if
10098 /// (a) the addrec coefficients are not constant, or
10099 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10100 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
10101 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10102 static std::optional<APInt>
10103 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
10104   APInt A, B, C, M;
10105   unsigned BitWidth;
10106   auto T = GetQuadraticEquation(AddRec);
10107   if (!T)
10108     return std::nullopt;
10109 
10110   std::tie(A, B, C, M, BitWidth) = *T;
10111   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
10112   std::optional<APInt> X =
10113       APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth + 1);
10114   if (!X)
10115     return std::nullopt;
10116 
10117   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
10118   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
10119   if (!V->isZero())
10120     return std::nullopt;
10121 
10122   return TruncIfPossible(X, BitWidth);
10123 }
10124 
10125 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10126 /// iterations. The values M, N are assumed to be signed, and they
10127 /// should all have the same bit widths.
10128 /// Find the least n such that c(n) does not belong to the given range,
10129 /// while c(n-1) does.
10130 ///
10131 /// This function returns std::nullopt if
10132 /// (a) the addrec coefficients are not constant, or
10133 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10134 ///     bounds of the range.
10135 static std::optional<APInt>
10136 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
10137                           const ConstantRange &Range, ScalarEvolution &SE) {
10138   assert(AddRec->getOperand(0)->isZero() &&
10139          "Starting value of addrec should be 0");
10140   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
10141                     << Range << ", addrec " << *AddRec << '\n');
10142   // This case is handled in getNumIterationsInRange. Here we can assume that
10143   // we start in the range.
10144   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
10145          "Addrec's initial value should be in range");
10146 
10147   APInt A, B, C, M;
10148   unsigned BitWidth;
10149   auto T = GetQuadraticEquation(AddRec);
10150   if (!T)
10151     return std::nullopt;
10152 
10153   // Be careful about the return value: there can be two reasons for not
10154   // returning an actual number. First, if no solutions to the equations
10155   // were found, and second, if the solutions don't leave the given range.
10156   // The first case means that the actual solution is "unknown", the second
10157   // means that it's known, but not valid. If the solution is unknown, we
10158   // cannot make any conclusions.
10159   // Return a pair: the optional solution and a flag indicating if the
10160   // solution was found.
10161   auto SolveForBoundary =
10162       [&](APInt Bound) -> std::pair<std::optional<APInt>, bool> {
10163     // Solve for signed overflow and unsigned overflow, pick the lower
10164     // solution.
10165     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10166                       << Bound << " (before multiplying by " << M << ")\n");
10167     Bound *= M; // The quadratic equation multiplier.
10168 
10169     std::optional<APInt> SO;
10170     if (BitWidth > 1) {
10171       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10172                            "signed overflow\n");
10173       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
10174     }
10175     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10176                          "unsigned overflow\n");
10177     std::optional<APInt> UO =
10178         APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth + 1);
10179 
10180     auto LeavesRange = [&] (const APInt &X) {
10181       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
10182       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
10183       if (Range.contains(V0->getValue()))
10184         return false;
10185       // X should be at least 1, so X-1 is non-negative.
10186       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
10187       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
10188       if (Range.contains(V1->getValue()))
10189         return true;
10190       return false;
10191     };
10192 
10193     // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10194     // can be a solution, but the function failed to find it. We cannot treat it
10195     // as "no solution".
10196     if (!SO || !UO)
10197       return {std::nullopt, false};
10198 
10199     // Check the smaller value first to see if it leaves the range.
10200     // At this point, both SO and UO must have values.
10201     std::optional<APInt> Min = MinOptional(SO, UO);
10202     if (LeavesRange(*Min))
10203       return { Min, true };
10204     std::optional<APInt> Max = Min == SO ? UO : SO;
10205     if (LeavesRange(*Max))
10206       return { Max, true };
10207 
10208     // Solutions were found, but were eliminated, hence the "true".
10209     return {std::nullopt, true};
10210   };
10211 
10212   std::tie(A, B, C, M, BitWidth) = *T;
10213   // Lower bound is inclusive, subtract 1 to represent the exiting value.
10214   APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1;
10215   APInt Upper = Range.getUpper().sext(A.getBitWidth());
10216   auto SL = SolveForBoundary(Lower);
10217   auto SU = SolveForBoundary(Upper);
10218   // If any of the solutions was unknown, no meaninigful conclusions can
10219   // be made.
10220   if (!SL.second || !SU.second)
10221     return std::nullopt;
10222 
10223   // Claim: The correct solution is not some value between Min and Max.
10224   //
10225   // Justification: Assuming that Min and Max are different values, one of
10226   // them is when the first signed overflow happens, the other is when the
10227   // first unsigned overflow happens. Crossing the range boundary is only
10228   // possible via an overflow (treating 0 as a special case of it, modeling
10229   // an overflow as crossing k*2^W for some k).
10230   //
10231   // The interesting case here is when Min was eliminated as an invalid
10232   // solution, but Max was not. The argument is that if there was another
10233   // overflow between Min and Max, it would also have been eliminated if
10234   // it was considered.
10235   //
10236   // For a given boundary, it is possible to have two overflows of the same
10237   // type (signed/unsigned) without having the other type in between: this
10238   // can happen when the vertex of the parabola is between the iterations
10239   // corresponding to the overflows. This is only possible when the two
10240   // overflows cross k*2^W for the same k. In such case, if the second one
10241   // left the range (and was the first one to do so), the first overflow
10242   // would have to enter the range, which would mean that either we had left
10243   // the range before or that we started outside of it. Both of these cases
10244   // are contradictions.
10245   //
10246   // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10247   // solution is not some value between the Max for this boundary and the
10248   // Min of the other boundary.
10249   //
10250   // Justification: Assume that we had such Max_A and Min_B corresponding
10251   // to range boundaries A and B and such that Max_A < Min_B. If there was
10252   // a solution between Max_A and Min_B, it would have to be caused by an
10253   // overflow corresponding to either A or B. It cannot correspond to B,
10254   // since Min_B is the first occurrence of such an overflow. If it
10255   // corresponded to A, it would have to be either a signed or an unsigned
10256   // overflow that is larger than both eliminated overflows for A. But
10257   // between the eliminated overflows and this overflow, the values would
10258   // cover the entire value space, thus crossing the other boundary, which
10259   // is a contradiction.
10260 
10261   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
10262 }
10263 
10264 ScalarEvolution::ExitLimit ScalarEvolution::howFarToZero(const SCEV *V,
10265                                                          const Loop *L,
10266                                                          bool ControlsOnlyExit,
10267                                                          bool AllowPredicates) {
10268 
10269   // This is only used for loops with a "x != y" exit test. The exit condition
10270   // is now expressed as a single expression, V = x-y. So the exit test is
10271   // effectively V != 0.  We know and take advantage of the fact that this
10272   // expression only being used in a comparison by zero context.
10273 
10274   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10275   // If the value is a constant
10276   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10277     // If the value is already zero, the branch will execute zero times.
10278     if (C->getValue()->isZero()) return C;
10279     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10280   }
10281 
10282   const SCEVAddRecExpr *AddRec =
10283       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
10284 
10285   if (!AddRec && AllowPredicates)
10286     // Try to make this an AddRec using runtime tests, in the first X
10287     // iterations of this loop, where X is the SCEV expression found by the
10288     // algorithm below.
10289     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
10290 
10291   if (!AddRec || AddRec->getLoop() != L)
10292     return getCouldNotCompute();
10293 
10294   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10295   // the quadratic equation to solve it.
10296   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
10297     // We can only use this value if the chrec ends up with an exact zero
10298     // value at this index.  When solving for "X*X != 5", for example, we
10299     // should not accept a root of 2.
10300     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
10301       const auto *R = cast<SCEVConstant>(getConstant(*S));
10302       return ExitLimit(R, R, R, false, Predicates);
10303     }
10304     return getCouldNotCompute();
10305   }
10306 
10307   // Otherwise we can only handle this if it is affine.
10308   if (!AddRec->isAffine())
10309     return getCouldNotCompute();
10310 
10311   // If this is an affine expression, the execution count of this branch is
10312   // the minimum unsigned root of the following equation:
10313   //
10314   //     Start + Step*N = 0 (mod 2^BW)
10315   //
10316   // equivalent to:
10317   //
10318   //             Step*N = -Start (mod 2^BW)
10319   //
10320   // where BW is the common bit width of Start and Step.
10321 
10322   // Get the initial value for the loop.
10323   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
10324   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
10325 
10326   // For now we handle only constant steps.
10327   //
10328   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
10329   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
10330   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10331   // We have not yet seen any such cases.
10332   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10333   if (!StepC || StepC->getValue()->isZero())
10334     return getCouldNotCompute();
10335 
10336   // For positive steps (counting up until unsigned overflow):
10337   //   N = -Start/Step (as unsigned)
10338   // For negative steps (counting down to zero):
10339   //   N = Start/-Step
10340   // First compute the unsigned distance from zero in the direction of Step.
10341   bool CountDown = StepC->getAPInt().isNegative();
10342   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10343 
10344   // Handle unitary steps, which cannot wraparound.
10345   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10346   //   N = Distance (as unsigned)
10347   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
10348     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
10349     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10350 
10351     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10352     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10353     // case, and see if we can improve the bound.
10354     //
10355     // Explicitly handling this here is necessary because getUnsignedRange
10356     // isn't context-sensitive; it doesn't know that we only care about the
10357     // range inside the loop.
10358     const SCEV *Zero = getZero(Distance->getType());
10359     const SCEV *One = getOne(Distance->getType());
10360     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10361     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10362       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10363       // as "unsigned_max(Distance + 1) - 1".
10364       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10365       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10366     }
10367     return ExitLimit(Distance, getConstant(MaxBECount), Distance, false,
10368                      Predicates);
10369   }
10370 
10371   // If the condition controls loop exit (the loop exits only if the expression
10372   // is true) and the addition is no-wrap we can use unsigned divide to
10373   // compute the backedge count.  In this case, the step may not divide the
10374   // distance, but we don't care because if the condition is "missed" the loop
10375   // will have undefined behavior due to wrapping.
10376   if (ControlsOnlyExit && AddRec->hasNoSelfWrap() &&
10377       loopHasNoAbnormalExits(AddRec->getLoop())) {
10378     const SCEV *Exact =
10379         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10380     const SCEV *ConstantMax = getCouldNotCompute();
10381     if (Exact != getCouldNotCompute()) {
10382       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
10383       ConstantMax =
10384           getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10385     }
10386     const SCEV *SymbolicMax =
10387         isa<SCEVCouldNotCompute>(Exact) ? ConstantMax : Exact;
10388     return ExitLimit(Exact, ConstantMax, SymbolicMax, false, Predicates);
10389   }
10390 
10391   // Solve the general equation.
10392   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10393                                                getNegativeSCEV(Start), *this);
10394 
10395   const SCEV *M = E;
10396   if (E != getCouldNotCompute()) {
10397     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
10398     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10399   }
10400   auto *S = isa<SCEVCouldNotCompute>(E) ? M : E;
10401   return ExitLimit(E, M, S, false, Predicates);
10402 }
10403 
10404 ScalarEvolution::ExitLimit
10405 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10406   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10407   // handle them yet except for the trivial case.  This could be expanded in the
10408   // future as needed.
10409 
10410   // If the value is a constant, check to see if it is known to be non-zero
10411   // already.  If so, the backedge will execute zero times.
10412   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10413     if (!C->getValue()->isZero())
10414       return getZero(C->getType());
10415     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10416   }
10417 
10418   // We could implement others, but I really doubt anyone writes loops like
10419   // this, and if they did, they would already be constant folded.
10420   return getCouldNotCompute();
10421 }
10422 
10423 std::pair<const BasicBlock *, const BasicBlock *>
10424 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10425     const {
10426   // If the block has a unique predecessor, then there is no path from the
10427   // predecessor to the block that does not go through the direct edge
10428   // from the predecessor to the block.
10429   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10430     return {Pred, BB};
10431 
10432   // A loop's header is defined to be a block that dominates the loop.
10433   // If the header has a unique predecessor outside the loop, it must be
10434   // a block that has exactly one successor that can reach the loop.
10435   if (const Loop *L = LI.getLoopFor(BB))
10436     return {L->getLoopPredecessor(), L->getHeader()};
10437 
10438   return {nullptr, nullptr};
10439 }
10440 
10441 /// SCEV structural equivalence is usually sufficient for testing whether two
10442 /// expressions are equal, however for the purposes of looking for a condition
10443 /// guarding a loop, it can be useful to be a little more general, since a
10444 /// front-end may have replicated the controlling expression.
10445 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10446   // Quick check to see if they are the same SCEV.
10447   if (A == B) return true;
10448 
10449   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10450     // Not all instructions that are "identical" compute the same value.  For
10451     // instance, two distinct alloca instructions allocating the same type are
10452     // identical and do not read memory; but compute distinct values.
10453     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10454   };
10455 
10456   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10457   // two different instructions with the same value. Check for this case.
10458   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10459     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10460       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10461         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10462           if (ComputesEqualValues(AI, BI))
10463             return true;
10464 
10465   // Otherwise assume they may have a different value.
10466   return false;
10467 }
10468 
10469 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10470                                            const SCEV *&LHS, const SCEV *&RHS,
10471                                            unsigned Depth) {
10472   bool Changed = false;
10473   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10474   // '0 != 0'.
10475   auto TrivialCase = [&](bool TriviallyTrue) {
10476     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10477     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10478     return true;
10479   };
10480   // If we hit the max recursion limit bail out.
10481   if (Depth >= 3)
10482     return false;
10483 
10484   // Canonicalize a constant to the right side.
10485   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10486     // Check for both operands constant.
10487     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10488       if (ConstantExpr::getICmp(Pred,
10489                                 LHSC->getValue(),
10490                                 RHSC->getValue())->isNullValue())
10491         return TrivialCase(false);
10492       return TrivialCase(true);
10493     }
10494     // Otherwise swap the operands to put the constant on the right.
10495     std::swap(LHS, RHS);
10496     Pred = ICmpInst::getSwappedPredicate(Pred);
10497     Changed = true;
10498   }
10499 
10500   // If we're comparing an addrec with a value which is loop-invariant in the
10501   // addrec's loop, put the addrec on the left. Also make a dominance check,
10502   // as both operands could be addrecs loop-invariant in each other's loop.
10503   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10504     const Loop *L = AR->getLoop();
10505     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10506       std::swap(LHS, RHS);
10507       Pred = ICmpInst::getSwappedPredicate(Pred);
10508       Changed = true;
10509     }
10510   }
10511 
10512   // If there's a constant operand, canonicalize comparisons with boundary
10513   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10514   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10515     const APInt &RA = RC->getAPInt();
10516 
10517     bool SimplifiedByConstantRange = false;
10518 
10519     if (!ICmpInst::isEquality(Pred)) {
10520       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10521       if (ExactCR.isFullSet())
10522         return TrivialCase(true);
10523       if (ExactCR.isEmptySet())
10524         return TrivialCase(false);
10525 
10526       APInt NewRHS;
10527       CmpInst::Predicate NewPred;
10528       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10529           ICmpInst::isEquality(NewPred)) {
10530         // We were able to convert an inequality to an equality.
10531         Pred = NewPred;
10532         RHS = getConstant(NewRHS);
10533         Changed = SimplifiedByConstantRange = true;
10534       }
10535     }
10536 
10537     if (!SimplifiedByConstantRange) {
10538       switch (Pred) {
10539       default:
10540         break;
10541       case ICmpInst::ICMP_EQ:
10542       case ICmpInst::ICMP_NE:
10543         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10544         if (!RA)
10545           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10546             if (const SCEVMulExpr *ME =
10547                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10548               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10549                   ME->getOperand(0)->isAllOnesValue()) {
10550                 RHS = AE->getOperand(1);
10551                 LHS = ME->getOperand(1);
10552                 Changed = true;
10553               }
10554         break;
10555 
10556 
10557         // The "Should have been caught earlier!" messages refer to the fact
10558         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10559         // should have fired on the corresponding cases, and canonicalized the
10560         // check to trivial case.
10561 
10562       case ICmpInst::ICMP_UGE:
10563         assert(!RA.isMinValue() && "Should have been caught earlier!");
10564         Pred = ICmpInst::ICMP_UGT;
10565         RHS = getConstant(RA - 1);
10566         Changed = true;
10567         break;
10568       case ICmpInst::ICMP_ULE:
10569         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10570         Pred = ICmpInst::ICMP_ULT;
10571         RHS = getConstant(RA + 1);
10572         Changed = true;
10573         break;
10574       case ICmpInst::ICMP_SGE:
10575         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10576         Pred = ICmpInst::ICMP_SGT;
10577         RHS = getConstant(RA - 1);
10578         Changed = true;
10579         break;
10580       case ICmpInst::ICMP_SLE:
10581         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10582         Pred = ICmpInst::ICMP_SLT;
10583         RHS = getConstant(RA + 1);
10584         Changed = true;
10585         break;
10586       }
10587     }
10588   }
10589 
10590   // Check for obvious equality.
10591   if (HasSameValue(LHS, RHS)) {
10592     if (ICmpInst::isTrueWhenEqual(Pred))
10593       return TrivialCase(true);
10594     if (ICmpInst::isFalseWhenEqual(Pred))
10595       return TrivialCase(false);
10596   }
10597 
10598   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10599   // adding or subtracting 1 from one of the operands.
10600   switch (Pred) {
10601   case ICmpInst::ICMP_SLE:
10602     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
10603       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10604                        SCEV::FlagNSW);
10605       Pred = ICmpInst::ICMP_SLT;
10606       Changed = true;
10607     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10608       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10609                        SCEV::FlagNSW);
10610       Pred = ICmpInst::ICMP_SLT;
10611       Changed = true;
10612     }
10613     break;
10614   case ICmpInst::ICMP_SGE:
10615     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
10616       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10617                        SCEV::FlagNSW);
10618       Pred = ICmpInst::ICMP_SGT;
10619       Changed = true;
10620     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10621       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10622                        SCEV::FlagNSW);
10623       Pred = ICmpInst::ICMP_SGT;
10624       Changed = true;
10625     }
10626     break;
10627   case ICmpInst::ICMP_ULE:
10628     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
10629       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10630                        SCEV::FlagNUW);
10631       Pred = ICmpInst::ICMP_ULT;
10632       Changed = true;
10633     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10634       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10635       Pred = ICmpInst::ICMP_ULT;
10636       Changed = true;
10637     }
10638     break;
10639   case ICmpInst::ICMP_UGE:
10640     if (!getUnsignedRangeMin(RHS).isMinValue()) {
10641       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10642       Pred = ICmpInst::ICMP_UGT;
10643       Changed = true;
10644     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10645       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10646                        SCEV::FlagNUW);
10647       Pred = ICmpInst::ICMP_UGT;
10648       Changed = true;
10649     }
10650     break;
10651   default:
10652     break;
10653   }
10654 
10655   // TODO: More simplifications are possible here.
10656 
10657   // Recursively simplify until we either hit a recursion limit or nothing
10658   // changes.
10659   if (Changed)
10660     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1);
10661 
10662   return Changed;
10663 }
10664 
10665 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10666   return getSignedRangeMax(S).isNegative();
10667 }
10668 
10669 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10670   return getSignedRangeMin(S).isStrictlyPositive();
10671 }
10672 
10673 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10674   return !getSignedRangeMin(S).isNegative();
10675 }
10676 
10677 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10678   return !getSignedRangeMax(S).isStrictlyPositive();
10679 }
10680 
10681 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10682   return getUnsignedRangeMin(S) != 0;
10683 }
10684 
10685 std::pair<const SCEV *, const SCEV *>
10686 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10687   // Compute SCEV on entry of loop L.
10688   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10689   if (Start == getCouldNotCompute())
10690     return { Start, Start };
10691   // Compute post increment SCEV for loop L.
10692   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10693   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10694   return { Start, PostInc };
10695 }
10696 
10697 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10698                                           const SCEV *LHS, const SCEV *RHS) {
10699   // First collect all loops.
10700   SmallPtrSet<const Loop *, 8> LoopsUsed;
10701   getUsedLoops(LHS, LoopsUsed);
10702   getUsedLoops(RHS, LoopsUsed);
10703 
10704   if (LoopsUsed.empty())
10705     return false;
10706 
10707   // Domination relationship must be a linear order on collected loops.
10708 #ifndef NDEBUG
10709   for (const auto *L1 : LoopsUsed)
10710     for (const auto *L2 : LoopsUsed)
10711       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10712               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10713              "Domination relationship is not a linear order");
10714 #endif
10715 
10716   const Loop *MDL =
10717       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10718                         [&](const Loop *L1, const Loop *L2) {
10719          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10720        });
10721 
10722   // Get init and post increment value for LHS.
10723   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10724   // if LHS contains unknown non-invariant SCEV then bail out.
10725   if (SplitLHS.first == getCouldNotCompute())
10726     return false;
10727   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10728   // Get init and post increment value for RHS.
10729   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10730   // if RHS contains unknown non-invariant SCEV then bail out.
10731   if (SplitRHS.first == getCouldNotCompute())
10732     return false;
10733   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10734   // It is possible that init SCEV contains an invariant load but it does
10735   // not dominate MDL and is not available at MDL loop entry, so we should
10736   // check it here.
10737   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10738       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10739     return false;
10740 
10741   // It seems backedge guard check is faster than entry one so in some cases
10742   // it can speed up whole estimation by short circuit
10743   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10744                                      SplitRHS.second) &&
10745          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10746 }
10747 
10748 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10749                                        const SCEV *LHS, const SCEV *RHS) {
10750   // Canonicalize the inputs first.
10751   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10752 
10753   if (isKnownViaInduction(Pred, LHS, RHS))
10754     return true;
10755 
10756   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10757     return true;
10758 
10759   // Otherwise see what can be done with some simple reasoning.
10760   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10761 }
10762 
10763 std::optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10764                                                        const SCEV *LHS,
10765                                                        const SCEV *RHS) {
10766   if (isKnownPredicate(Pred, LHS, RHS))
10767     return true;
10768   if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10769     return false;
10770   return std::nullopt;
10771 }
10772 
10773 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10774                                          const SCEV *LHS, const SCEV *RHS,
10775                                          const Instruction *CtxI) {
10776   // TODO: Analyze guards and assumes from Context's block.
10777   return isKnownPredicate(Pred, LHS, RHS) ||
10778          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10779 }
10780 
10781 std::optional<bool>
10782 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
10783                                      const SCEV *RHS, const Instruction *CtxI) {
10784   std::optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10785   if (KnownWithoutContext)
10786     return KnownWithoutContext;
10787 
10788   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10789     return true;
10790   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10791                                           ICmpInst::getInversePredicate(Pred),
10792                                           LHS, RHS))
10793     return false;
10794   return std::nullopt;
10795 }
10796 
10797 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10798                                               const SCEVAddRecExpr *LHS,
10799                                               const SCEV *RHS) {
10800   const Loop *L = LHS->getLoop();
10801   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10802          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10803 }
10804 
10805 std::optional<ScalarEvolution::MonotonicPredicateType>
10806 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10807                                            ICmpInst::Predicate Pred) {
10808   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10809 
10810 #ifndef NDEBUG
10811   // Verify an invariant: inverting the predicate should turn a monotonically
10812   // increasing change to a monotonically decreasing one, and vice versa.
10813   if (Result) {
10814     auto ResultSwapped =
10815         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10816 
10817     assert(*ResultSwapped != *Result &&
10818            "monotonicity should flip as we flip the predicate");
10819   }
10820 #endif
10821 
10822   return Result;
10823 }
10824 
10825 std::optional<ScalarEvolution::MonotonicPredicateType>
10826 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10827                                                ICmpInst::Predicate Pred) {
10828   // A zero step value for LHS means the induction variable is essentially a
10829   // loop invariant value. We don't really depend on the predicate actually
10830   // flipping from false to true (for increasing predicates, and the other way
10831   // around for decreasing predicates), all we care about is that *if* the
10832   // predicate changes then it only changes from false to true.
10833   //
10834   // A zero step value in itself is not very useful, but there may be places
10835   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10836   // as general as possible.
10837 
10838   // Only handle LE/LT/GE/GT predicates.
10839   if (!ICmpInst::isRelational(Pred))
10840     return std::nullopt;
10841 
10842   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10843   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10844          "Should be greater or less!");
10845 
10846   // Check that AR does not wrap.
10847   if (ICmpInst::isUnsigned(Pred)) {
10848     if (!LHS->hasNoUnsignedWrap())
10849       return std::nullopt;
10850     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10851   }
10852   assert(ICmpInst::isSigned(Pred) &&
10853          "Relational predicate is either signed or unsigned!");
10854   if (!LHS->hasNoSignedWrap())
10855     return std::nullopt;
10856 
10857   const SCEV *Step = LHS->getStepRecurrence(*this);
10858 
10859   if (isKnownNonNegative(Step))
10860     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10861 
10862   if (isKnownNonPositive(Step))
10863     return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10864 
10865   return std::nullopt;
10866 }
10867 
10868 std::optional<ScalarEvolution::LoopInvariantPredicate>
10869 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10870                                            const SCEV *LHS, const SCEV *RHS,
10871                                            const Loop *L,
10872                                            const Instruction *CtxI) {
10873   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10874   if (!isLoopInvariant(RHS, L)) {
10875     if (!isLoopInvariant(LHS, L))
10876       return std::nullopt;
10877 
10878     std::swap(LHS, RHS);
10879     Pred = ICmpInst::getSwappedPredicate(Pred);
10880   }
10881 
10882   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10883   if (!ArLHS || ArLHS->getLoop() != L)
10884     return std::nullopt;
10885 
10886   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10887   if (!MonotonicType)
10888     return std::nullopt;
10889   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10890   // true as the loop iterates, and the backedge is control dependent on
10891   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10892   //
10893   //   * if the predicate was false in the first iteration then the predicate
10894   //     is never evaluated again, since the loop exits without taking the
10895   //     backedge.
10896   //   * if the predicate was true in the first iteration then it will
10897   //     continue to be true for all future iterations since it is
10898   //     monotonically increasing.
10899   //
10900   // For both the above possibilities, we can replace the loop varying
10901   // predicate with its value on the first iteration of the loop (which is
10902   // loop invariant).
10903   //
10904   // A similar reasoning applies for a monotonically decreasing predicate, by
10905   // replacing true with false and false with true in the above two bullets.
10906   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10907   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10908 
10909   if (isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10910     return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
10911                                                    RHS);
10912 
10913   if (!CtxI)
10914     return std::nullopt;
10915   // Try to prove via context.
10916   // TODO: Support other cases.
10917   switch (Pred) {
10918   default:
10919     break;
10920   case ICmpInst::ICMP_ULE:
10921   case ICmpInst::ICMP_ULT: {
10922     assert(ArLHS->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
10923     // Given preconditions
10924     // (1) ArLHS does not cross the border of positive and negative parts of
10925     //     range because of:
10926     //     - Positive step; (TODO: lift this limitation)
10927     //     - nuw - does not cross zero boundary;
10928     //     - nsw - does not cross SINT_MAX boundary;
10929     // (2) ArLHS <s RHS
10930     // (3) RHS >=s 0
10931     // we can replace the loop variant ArLHS <u RHS condition with loop
10932     // invariant Start(ArLHS) <u RHS.
10933     //
10934     // Because of (1) there are two options:
10935     // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
10936     // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
10937     //   It means that ArLHS <s RHS <=> ArLHS <u RHS.
10938     //   Because of (2) ArLHS <u RHS is trivially true.
10939     // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
10940     // We can strengthen this to Start(ArLHS) <u RHS.
10941     auto SignFlippedPred = ICmpInst::getFlippedSignednessPredicate(Pred);
10942     if (ArLHS->hasNoSignedWrap() && ArLHS->isAffine() &&
10943         isKnownPositive(ArLHS->getStepRecurrence(*this)) &&
10944         isKnownNonNegative(RHS) &&
10945         isKnownPredicateAt(SignFlippedPred, ArLHS, RHS, CtxI))
10946       return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(),
10947                                                      RHS);
10948   }
10949   }
10950 
10951   return std::nullopt;
10952 }
10953 
10954 std::optional<ScalarEvolution::LoopInvariantPredicate>
10955 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10956     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10957     const Instruction *CtxI, const SCEV *MaxIter) {
10958   if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
10959           Pred, LHS, RHS, L, CtxI, MaxIter))
10960     return LIP;
10961   if (auto *UMin = dyn_cast<SCEVUMinExpr>(MaxIter))
10962     // Number of iterations expressed as UMIN isn't always great for expressing
10963     // the value on the last iteration. If the straightforward approach didn't
10964     // work, try the following trick: if the a predicate is invariant for X, it
10965     // is also invariant for umin(X, ...). So try to find something that works
10966     // among subexpressions of MaxIter expressed as umin.
10967     for (auto *Op : UMin->operands())
10968       if (auto LIP = getLoopInvariantExitCondDuringFirstIterationsImpl(
10969               Pred, LHS, RHS, L, CtxI, Op))
10970         return LIP;
10971   return std::nullopt;
10972 }
10973 
10974 std::optional<ScalarEvolution::LoopInvariantPredicate>
10975 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
10976     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10977     const Instruction *CtxI, const SCEV *MaxIter) {
10978   // Try to prove the following set of facts:
10979   // - The predicate is monotonic in the iteration space.
10980   // - If the check does not fail on the 1st iteration:
10981   //   - No overflow will happen during first MaxIter iterations;
10982   //   - It will not fail on the MaxIter'th iteration.
10983   // If the check does fail on the 1st iteration, we leave the loop and no
10984   // other checks matter.
10985 
10986   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10987   if (!isLoopInvariant(RHS, L)) {
10988     if (!isLoopInvariant(LHS, L))
10989       return std::nullopt;
10990 
10991     std::swap(LHS, RHS);
10992     Pred = ICmpInst::getSwappedPredicate(Pred);
10993   }
10994 
10995   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10996   if (!AR || AR->getLoop() != L)
10997     return std::nullopt;
10998 
10999   // The predicate must be relational (i.e. <, <=, >=, >).
11000   if (!ICmpInst::isRelational(Pred))
11001     return std::nullopt;
11002 
11003   // TODO: Support steps other than +/- 1.
11004   const SCEV *Step = AR->getStepRecurrence(*this);
11005   auto *One = getOne(Step->getType());
11006   auto *MinusOne = getNegativeSCEV(One);
11007   if (Step != One && Step != MinusOne)
11008     return std::nullopt;
11009 
11010   // Type mismatch here means that MaxIter is potentially larger than max
11011   // unsigned value in start type, which mean we cannot prove no wrap for the
11012   // indvar.
11013   if (AR->getType() != MaxIter->getType())
11014     return std::nullopt;
11015 
11016   // Value of IV on suggested last iteration.
11017   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
11018   // Does it still meet the requirement?
11019   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
11020     return std::nullopt;
11021   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11022   // not exceed max unsigned value of this type), this effectively proves
11023   // that there is no wrap during the iteration. To prove that there is no
11024   // signed/unsigned wrap, we need to check that
11025   // Start <= Last for step = 1 or Start >= Last for step = -1.
11026   ICmpInst::Predicate NoOverflowPred =
11027       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11028   if (Step == MinusOne)
11029     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
11030   const SCEV *Start = AR->getStart();
11031   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
11032     return std::nullopt;
11033 
11034   // Everything is fine.
11035   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
11036 }
11037 
11038 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11039     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
11040   if (HasSameValue(LHS, RHS))
11041     return ICmpInst::isTrueWhenEqual(Pred);
11042 
11043   // This code is split out from isKnownPredicate because it is called from
11044   // within isLoopEntryGuardedByCond.
11045 
11046   auto CheckRanges = [&](const ConstantRange &RangeLHS,
11047                          const ConstantRange &RangeRHS) {
11048     return RangeLHS.icmp(Pred, RangeRHS);
11049   };
11050 
11051   // The check at the top of the function catches the case where the values are
11052   // known to be equal.
11053   if (Pred == CmpInst::ICMP_EQ)
11054     return false;
11055 
11056   if (Pred == CmpInst::ICMP_NE) {
11057     auto SL = getSignedRange(LHS);
11058     auto SR = getSignedRange(RHS);
11059     if (CheckRanges(SL, SR))
11060       return true;
11061     auto UL = getUnsignedRange(LHS);
11062     auto UR = getUnsignedRange(RHS);
11063     if (CheckRanges(UL, UR))
11064       return true;
11065     auto *Diff = getMinusSCEV(LHS, RHS);
11066     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
11067   }
11068 
11069   if (CmpInst::isSigned(Pred)) {
11070     auto SL = getSignedRange(LHS);
11071     auto SR = getSignedRange(RHS);
11072     return CheckRanges(SL, SR);
11073   }
11074 
11075   auto UL = getUnsignedRange(LHS);
11076   auto UR = getUnsignedRange(RHS);
11077   return CheckRanges(UL, UR);
11078 }
11079 
11080 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
11081                                                     const SCEV *LHS,
11082                                                     const SCEV *RHS) {
11083   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11084   // C1 and C2 are constant integers. If either X or Y are not add expressions,
11085   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11086   // OutC1 and OutC2.
11087   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
11088                                       APInt &OutC1, APInt &OutC2,
11089                                       SCEV::NoWrapFlags ExpectedFlags) {
11090     const SCEV *XNonConstOp, *XConstOp;
11091     const SCEV *YNonConstOp, *YConstOp;
11092     SCEV::NoWrapFlags XFlagsPresent;
11093     SCEV::NoWrapFlags YFlagsPresent;
11094 
11095     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
11096       XConstOp = getZero(X->getType());
11097       XNonConstOp = X;
11098       XFlagsPresent = ExpectedFlags;
11099     }
11100     if (!isa<SCEVConstant>(XConstOp) ||
11101         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
11102       return false;
11103 
11104     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
11105       YConstOp = getZero(Y->getType());
11106       YNonConstOp = Y;
11107       YFlagsPresent = ExpectedFlags;
11108     }
11109 
11110     if (!isa<SCEVConstant>(YConstOp) ||
11111         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
11112       return false;
11113 
11114     if (YNonConstOp != XNonConstOp)
11115       return false;
11116 
11117     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
11118     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
11119 
11120     return true;
11121   };
11122 
11123   APInt C1;
11124   APInt C2;
11125 
11126   switch (Pred) {
11127   default:
11128     break;
11129 
11130   case ICmpInst::ICMP_SGE:
11131     std::swap(LHS, RHS);
11132     [[fallthrough]];
11133   case ICmpInst::ICMP_SLE:
11134     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11135     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
11136       return true;
11137 
11138     break;
11139 
11140   case ICmpInst::ICMP_SGT:
11141     std::swap(LHS, RHS);
11142     [[fallthrough]];
11143   case ICmpInst::ICMP_SLT:
11144     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11145     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
11146       return true;
11147 
11148     break;
11149 
11150   case ICmpInst::ICMP_UGE:
11151     std::swap(LHS, RHS);
11152     [[fallthrough]];
11153   case ICmpInst::ICMP_ULE:
11154     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11155     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
11156       return true;
11157 
11158     break;
11159 
11160   case ICmpInst::ICMP_UGT:
11161     std::swap(LHS, RHS);
11162     [[fallthrough]];
11163   case ICmpInst::ICMP_ULT:
11164     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11165     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
11166       return true;
11167     break;
11168   }
11169 
11170   return false;
11171 }
11172 
11173 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
11174                                                    const SCEV *LHS,
11175                                                    const SCEV *RHS) {
11176   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
11177     return false;
11178 
11179   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11180   // the stack can result in exponential time complexity.
11181   SaveAndRestore Restore(ProvingSplitPredicate, true);
11182 
11183   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11184   //
11185   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11186   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
11187   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11188   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
11189   // use isKnownPredicate later if needed.
11190   return isKnownNonNegative(RHS) &&
11191          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
11192          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
11193 }
11194 
11195 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
11196                                         ICmpInst::Predicate Pred,
11197                                         const SCEV *LHS, const SCEV *RHS) {
11198   // No need to even try if we know the module has no guards.
11199   if (!HasGuards)
11200     return false;
11201 
11202   return any_of(*BB, [&](const Instruction &I) {
11203     using namespace llvm::PatternMatch;
11204 
11205     Value *Condition;
11206     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
11207                          m_Value(Condition))) &&
11208            isImpliedCond(Pred, LHS, RHS, Condition, false);
11209   });
11210 }
11211 
11212 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11213 /// protected by a conditional between LHS and RHS.  This is used to
11214 /// to eliminate casts.
11215 bool
11216 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
11217                                              ICmpInst::Predicate Pred,
11218                                              const SCEV *LHS, const SCEV *RHS) {
11219   // Interpret a null as meaning no loop, where there is obviously no guard
11220   // (interprocedural conditions notwithstanding). Do not bother about
11221   // unreachable loops.
11222   if (!L || !DT.isReachableFromEntry(L->getHeader()))
11223     return true;
11224 
11225   if (VerifyIR)
11226     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
11227            "This cannot be done on broken IR!");
11228 
11229 
11230   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11231     return true;
11232 
11233   BasicBlock *Latch = L->getLoopLatch();
11234   if (!Latch)
11235     return false;
11236 
11237   BranchInst *LoopContinuePredicate =
11238     dyn_cast<BranchInst>(Latch->getTerminator());
11239   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
11240       isImpliedCond(Pred, LHS, RHS,
11241                     LoopContinuePredicate->getCondition(),
11242                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
11243     return true;
11244 
11245   // We don't want more than one activation of the following loops on the stack
11246   // -- that can lead to O(n!) time complexity.
11247   if (WalkingBEDominatingConds)
11248     return false;
11249 
11250   SaveAndRestore ClearOnExit(WalkingBEDominatingConds, true);
11251 
11252   // See if we can exploit a trip count to prove the predicate.
11253   const auto &BETakenInfo = getBackedgeTakenInfo(L);
11254   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
11255   if (LatchBECount != getCouldNotCompute()) {
11256     // We know that Latch branches back to the loop header exactly
11257     // LatchBECount times.  This means the backdege condition at Latch is
11258     // equivalent to  "{0,+,1} u< LatchBECount".
11259     Type *Ty = LatchBECount->getType();
11260     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
11261     const SCEV *LoopCounter =
11262       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
11263     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
11264                       LatchBECount))
11265       return true;
11266   }
11267 
11268   // Check conditions due to any @llvm.assume intrinsics.
11269   for (auto &AssumeVH : AC.assumptions()) {
11270     if (!AssumeVH)
11271       continue;
11272     auto *CI = cast<CallInst>(AssumeVH);
11273     if (!DT.dominates(CI, Latch->getTerminator()))
11274       continue;
11275 
11276     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
11277       return true;
11278   }
11279 
11280   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
11281     return true;
11282 
11283   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
11284        DTN != HeaderDTN; DTN = DTN->getIDom()) {
11285     assert(DTN && "should reach the loop header before reaching the root!");
11286 
11287     BasicBlock *BB = DTN->getBlock();
11288     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
11289       return true;
11290 
11291     BasicBlock *PBB = BB->getSinglePredecessor();
11292     if (!PBB)
11293       continue;
11294 
11295     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
11296     if (!ContinuePredicate || !ContinuePredicate->isConditional())
11297       continue;
11298 
11299     Value *Condition = ContinuePredicate->getCondition();
11300 
11301     // If we have an edge `E` within the loop body that dominates the only
11302     // latch, the condition guarding `E` also guards the backedge.  This
11303     // reasoning works only for loops with a single latch.
11304 
11305     BasicBlockEdge DominatingEdge(PBB, BB);
11306     if (DominatingEdge.isSingleEdge()) {
11307       // We're constructively (and conservatively) enumerating edges within the
11308       // loop body that dominate the latch.  The dominator tree better agree
11309       // with us on this:
11310       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
11311 
11312       if (isImpliedCond(Pred, LHS, RHS, Condition,
11313                         BB != ContinuePredicate->getSuccessor(0)))
11314         return true;
11315     }
11316   }
11317 
11318   return false;
11319 }
11320 
11321 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
11322                                                      ICmpInst::Predicate Pred,
11323                                                      const SCEV *LHS,
11324                                                      const SCEV *RHS) {
11325   // Do not bother proving facts for unreachable code.
11326   if (!DT.isReachableFromEntry(BB))
11327     return true;
11328   if (VerifyIR)
11329     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
11330            "This cannot be done on broken IR!");
11331 
11332   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11333   // the facts (a >= b && a != b) separately. A typical situation is when the
11334   // non-strict comparison is known from ranges and non-equality is known from
11335   // dominating predicates. If we are proving strict comparison, we always try
11336   // to prove non-equality and non-strict comparison separately.
11337   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
11338   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
11339   bool ProvedNonStrictComparison = false;
11340   bool ProvedNonEquality = false;
11341 
11342   auto SplitAndProve =
11343     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
11344     if (!ProvedNonStrictComparison)
11345       ProvedNonStrictComparison = Fn(NonStrictPredicate);
11346     if (!ProvedNonEquality)
11347       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
11348     if (ProvedNonStrictComparison && ProvedNonEquality)
11349       return true;
11350     return false;
11351   };
11352 
11353   if (ProvingStrictComparison) {
11354     auto ProofFn = [&](ICmpInst::Predicate P) {
11355       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
11356     };
11357     if (SplitAndProve(ProofFn))
11358       return true;
11359   }
11360 
11361   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11362   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
11363     const Instruction *CtxI = &BB->front();
11364     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
11365       return true;
11366     if (ProvingStrictComparison) {
11367       auto ProofFn = [&](ICmpInst::Predicate P) {
11368         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
11369       };
11370       if (SplitAndProve(ProofFn))
11371         return true;
11372     }
11373     return false;
11374   };
11375 
11376   // Starting at the block's predecessor, climb up the predecessor chain, as long
11377   // as there are predecessors that can be found that have unique successors
11378   // leading to the original block.
11379   const Loop *ContainingLoop = LI.getLoopFor(BB);
11380   const BasicBlock *PredBB;
11381   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11382     PredBB = ContainingLoop->getLoopPredecessor();
11383   else
11384     PredBB = BB->getSinglePredecessor();
11385   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11386        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11387     const BranchInst *BlockEntryPredicate =
11388         dyn_cast<BranchInst>(Pair.first->getTerminator());
11389     if (!BlockEntryPredicate || BlockEntryPredicate->isUnconditional())
11390       continue;
11391 
11392     if (ProveViaCond(BlockEntryPredicate->getCondition(),
11393                      BlockEntryPredicate->getSuccessor(0) != Pair.second))
11394       return true;
11395   }
11396 
11397   // Check conditions due to any @llvm.assume intrinsics.
11398   for (auto &AssumeVH : AC.assumptions()) {
11399     if (!AssumeVH)
11400       continue;
11401     auto *CI = cast<CallInst>(AssumeVH);
11402     if (!DT.dominates(CI, BB))
11403       continue;
11404 
11405     if (ProveViaCond(CI->getArgOperand(0), false))
11406       return true;
11407   }
11408 
11409   // Check conditions due to any @llvm.experimental.guard intrinsics.
11410   auto *GuardDecl = F.getParent()->getFunction(
11411       Intrinsic::getName(Intrinsic::experimental_guard));
11412   if (GuardDecl)
11413     for (const auto *GU : GuardDecl->users())
11414       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
11415         if (Guard->getFunction() == BB->getParent() && DT.dominates(Guard, BB))
11416           if (ProveViaCond(Guard->getArgOperand(0), false))
11417             return true;
11418   return false;
11419 }
11420 
11421 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11422                                                ICmpInst::Predicate Pred,
11423                                                const SCEV *LHS,
11424                                                const SCEV *RHS) {
11425   // Interpret a null as meaning no loop, where there is obviously no guard
11426   // (interprocedural conditions notwithstanding).
11427   if (!L)
11428     return false;
11429 
11430   // Both LHS and RHS must be available at loop entry.
11431   assert(isAvailableAtLoopEntry(LHS, L) &&
11432          "LHS is not available at Loop Entry");
11433   assert(isAvailableAtLoopEntry(RHS, L) &&
11434          "RHS is not available at Loop Entry");
11435 
11436   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11437     return true;
11438 
11439   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11440 }
11441 
11442 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11443                                     const SCEV *RHS,
11444                                     const Value *FoundCondValue, bool Inverse,
11445                                     const Instruction *CtxI) {
11446   // False conditions implies anything. Do not bother analyzing it further.
11447   if (FoundCondValue ==
11448       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11449     return true;
11450 
11451   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11452     return false;
11453 
11454   auto ClearOnExit =
11455       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11456 
11457   // Recursively handle And and Or conditions.
11458   const Value *Op0, *Op1;
11459   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11460     if (!Inverse)
11461       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11462              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11463   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11464     if (Inverse)
11465       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11466              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11467   }
11468 
11469   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11470   if (!ICI) return false;
11471 
11472   // Now that we found a conditional branch that dominates the loop or controls
11473   // the loop latch. Check to see if it is the comparison we are looking for.
11474   ICmpInst::Predicate FoundPred;
11475   if (Inverse)
11476     FoundPred = ICI->getInversePredicate();
11477   else
11478     FoundPred = ICI->getPredicate();
11479 
11480   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11481   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11482 
11483   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11484 }
11485 
11486 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11487                                     const SCEV *RHS,
11488                                     ICmpInst::Predicate FoundPred,
11489                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11490                                     const Instruction *CtxI) {
11491   // Balance the types.
11492   if (getTypeSizeInBits(LHS->getType()) <
11493       getTypeSizeInBits(FoundLHS->getType())) {
11494     // For unsigned and equality predicates, try to prove that both found
11495     // operands fit into narrow unsigned range. If so, try to prove facts in
11496     // narrow types.
11497     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11498         !FoundRHS->getType()->isPointerTy()) {
11499       auto *NarrowType = LHS->getType();
11500       auto *WideType = FoundLHS->getType();
11501       auto BitWidth = getTypeSizeInBits(NarrowType);
11502       const SCEV *MaxValue = getZeroExtendExpr(
11503           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11504       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11505                                           MaxValue) &&
11506           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11507                                           MaxValue)) {
11508         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11509         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11510         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11511                                        TruncFoundRHS, CtxI))
11512           return true;
11513       }
11514     }
11515 
11516     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11517       return false;
11518     if (CmpInst::isSigned(Pred)) {
11519       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11520       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11521     } else {
11522       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11523       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11524     }
11525   } else if (getTypeSizeInBits(LHS->getType()) >
11526       getTypeSizeInBits(FoundLHS->getType())) {
11527     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11528       return false;
11529     if (CmpInst::isSigned(FoundPred)) {
11530       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11531       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11532     } else {
11533       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11534       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11535     }
11536   }
11537   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11538                                     FoundRHS, CtxI);
11539 }
11540 
11541 bool ScalarEvolution::isImpliedCondBalancedTypes(
11542     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11543     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11544     const Instruction *CtxI) {
11545   assert(getTypeSizeInBits(LHS->getType()) ==
11546              getTypeSizeInBits(FoundLHS->getType()) &&
11547          "Types should be balanced!");
11548   // Canonicalize the query to match the way instcombine will have
11549   // canonicalized the comparison.
11550   if (SimplifyICmpOperands(Pred, LHS, RHS))
11551     if (LHS == RHS)
11552       return CmpInst::isTrueWhenEqual(Pred);
11553   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11554     if (FoundLHS == FoundRHS)
11555       return CmpInst::isFalseWhenEqual(FoundPred);
11556 
11557   // Check to see if we can make the LHS or RHS match.
11558   if (LHS == FoundRHS || RHS == FoundLHS) {
11559     if (isa<SCEVConstant>(RHS)) {
11560       std::swap(FoundLHS, FoundRHS);
11561       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11562     } else {
11563       std::swap(LHS, RHS);
11564       Pred = ICmpInst::getSwappedPredicate(Pred);
11565     }
11566   }
11567 
11568   // Check whether the found predicate is the same as the desired predicate.
11569   if (FoundPred == Pred)
11570     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11571 
11572   // Check whether swapping the found predicate makes it the same as the
11573   // desired predicate.
11574   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11575     // We can write the implication
11576     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11577     // using one of the following ways:
11578     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11579     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11580     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11581     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11582     // Forms 1. and 2. require swapping the operands of one condition. Don't
11583     // do this if it would break canonical constant/addrec ordering.
11584     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11585       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11586                                    CtxI);
11587     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11588       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11589 
11590     // There's no clear preference between forms 3. and 4., try both.  Avoid
11591     // forming getNotSCEV of pointer values as the resulting subtract is
11592     // not legal.
11593     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11594         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11595                               FoundLHS, FoundRHS, CtxI))
11596       return true;
11597 
11598     if (!FoundLHS->getType()->isPointerTy() &&
11599         !FoundRHS->getType()->isPointerTy() &&
11600         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11601                               getNotSCEV(FoundRHS), CtxI))
11602       return true;
11603 
11604     return false;
11605   }
11606 
11607   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11608                                    CmpInst::Predicate P2) {
11609     assert(P1 != P2 && "Handled earlier!");
11610     return CmpInst::isRelational(P2) &&
11611            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11612   };
11613   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11614     // Unsigned comparison is the same as signed comparison when both the
11615     // operands are non-negative or negative.
11616     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11617         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11618       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11619     // Create local copies that we can freely swap and canonicalize our
11620     // conditions to "le/lt".
11621     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11622     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11623                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11624     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11625       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11626       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11627       std::swap(CanonicalLHS, CanonicalRHS);
11628       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11629     }
11630     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11631            "Must be!");
11632     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11633             ICmpInst::isLE(CanonicalFoundPred)) &&
11634            "Must be!");
11635     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11636       // Use implication:
11637       // x <u y && y >=s 0 --> x <s y.
11638       // If we can prove the left part, the right part is also proven.
11639       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11640                                    CanonicalRHS, CanonicalFoundLHS,
11641                                    CanonicalFoundRHS);
11642     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11643       // Use implication:
11644       // x <s y && y <s 0 --> x <u y.
11645       // If we can prove the left part, the right part is also proven.
11646       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11647                                    CanonicalRHS, CanonicalFoundLHS,
11648                                    CanonicalFoundRHS);
11649   }
11650 
11651   // Check if we can make progress by sharpening ranges.
11652   if (FoundPred == ICmpInst::ICMP_NE &&
11653       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11654 
11655     const SCEVConstant *C = nullptr;
11656     const SCEV *V = nullptr;
11657 
11658     if (isa<SCEVConstant>(FoundLHS)) {
11659       C = cast<SCEVConstant>(FoundLHS);
11660       V = FoundRHS;
11661     } else {
11662       C = cast<SCEVConstant>(FoundRHS);
11663       V = FoundLHS;
11664     }
11665 
11666     // The guarding predicate tells us that C != V. If the known range
11667     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11668     // range we consider has to correspond to same signedness as the
11669     // predicate we're interested in folding.
11670 
11671     APInt Min = ICmpInst::isSigned(Pred) ?
11672         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11673 
11674     if (Min == C->getAPInt()) {
11675       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11676       // This is true even if (Min + 1) wraps around -- in case of
11677       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11678 
11679       APInt SharperMin = Min + 1;
11680 
11681       switch (Pred) {
11682         case ICmpInst::ICMP_SGE:
11683         case ICmpInst::ICMP_UGE:
11684           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11685           // RHS, we're done.
11686           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11687                                     CtxI))
11688             return true;
11689           [[fallthrough]];
11690 
11691         case ICmpInst::ICMP_SGT:
11692         case ICmpInst::ICMP_UGT:
11693           // We know from the range information that (V `Pred` Min ||
11694           // V == Min).  We know from the guarding condition that !(V
11695           // == Min).  This gives us
11696           //
11697           //       V `Pred` Min || V == Min && !(V == Min)
11698           //   =>  V `Pred` Min
11699           //
11700           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11701 
11702           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11703             return true;
11704           break;
11705 
11706         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11707         case ICmpInst::ICMP_SLE:
11708         case ICmpInst::ICMP_ULE:
11709           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11710                                     LHS, V, getConstant(SharperMin), CtxI))
11711             return true;
11712           [[fallthrough]];
11713 
11714         case ICmpInst::ICMP_SLT:
11715         case ICmpInst::ICMP_ULT:
11716           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11717                                     LHS, V, getConstant(Min), CtxI))
11718             return true;
11719           break;
11720 
11721         default:
11722           // No change
11723           break;
11724       }
11725     }
11726   }
11727 
11728   // Check whether the actual condition is beyond sufficient.
11729   if (FoundPred == ICmpInst::ICMP_EQ)
11730     if (ICmpInst::isTrueWhenEqual(Pred))
11731       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11732         return true;
11733   if (Pred == ICmpInst::ICMP_NE)
11734     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11735       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11736         return true;
11737 
11738   // Otherwise assume the worst.
11739   return false;
11740 }
11741 
11742 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11743                                      const SCEV *&L, const SCEV *&R,
11744                                      SCEV::NoWrapFlags &Flags) {
11745   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11746   if (!AE || AE->getNumOperands() != 2)
11747     return false;
11748 
11749   L = AE->getOperand(0);
11750   R = AE->getOperand(1);
11751   Flags = AE->getNoWrapFlags();
11752   return true;
11753 }
11754 
11755 std::optional<APInt>
11756 ScalarEvolution::computeConstantDifference(const SCEV *More, const SCEV *Less) {
11757   // We avoid subtracting expressions here because this function is usually
11758   // fairly deep in the call stack (i.e. is called many times).
11759 
11760   // X - X = 0.
11761   if (More == Less)
11762     return APInt(getTypeSizeInBits(More->getType()), 0);
11763 
11764   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11765     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11766     const auto *MAR = cast<SCEVAddRecExpr>(More);
11767 
11768     if (LAR->getLoop() != MAR->getLoop())
11769       return std::nullopt;
11770 
11771     // We look at affine expressions only; not for correctness but to keep
11772     // getStepRecurrence cheap.
11773     if (!LAR->isAffine() || !MAR->isAffine())
11774       return std::nullopt;
11775 
11776     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11777       return std::nullopt;
11778 
11779     Less = LAR->getStart();
11780     More = MAR->getStart();
11781 
11782     // fall through
11783   }
11784 
11785   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11786     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11787     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11788     return M - L;
11789   }
11790 
11791   SCEV::NoWrapFlags Flags;
11792   const SCEV *LLess = nullptr, *RLess = nullptr;
11793   const SCEV *LMore = nullptr, *RMore = nullptr;
11794   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11795   // Compare (X + C1) vs X.
11796   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11797     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11798       if (RLess == More)
11799         return -(C1->getAPInt());
11800 
11801   // Compare X vs (X + C2).
11802   if (splitBinaryAdd(More, LMore, RMore, Flags))
11803     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11804       if (RMore == Less)
11805         return C2->getAPInt();
11806 
11807   // Compare (X + C1) vs (X + C2).
11808   if (C1 && C2 && RLess == RMore)
11809     return C2->getAPInt() - C1->getAPInt();
11810 
11811   return std::nullopt;
11812 }
11813 
11814 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11815     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11816     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11817   // Try to recognize the following pattern:
11818   //
11819   //   FoundRHS = ...
11820   // ...
11821   // loop:
11822   //   FoundLHS = {Start,+,W}
11823   // context_bb: // Basic block from the same loop
11824   //   known(Pred, FoundLHS, FoundRHS)
11825   //
11826   // If some predicate is known in the context of a loop, it is also known on
11827   // each iteration of this loop, including the first iteration. Therefore, in
11828   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11829   // prove the original pred using this fact.
11830   if (!CtxI)
11831     return false;
11832   const BasicBlock *ContextBB = CtxI->getParent();
11833   // Make sure AR varies in the context block.
11834   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11835     const Loop *L = AR->getLoop();
11836     // Make sure that context belongs to the loop and executes on 1st iteration
11837     // (if it ever executes at all).
11838     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11839       return false;
11840     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11841       return false;
11842     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11843   }
11844 
11845   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11846     const Loop *L = AR->getLoop();
11847     // Make sure that context belongs to the loop and executes on 1st iteration
11848     // (if it ever executes at all).
11849     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11850       return false;
11851     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11852       return false;
11853     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11854   }
11855 
11856   return false;
11857 }
11858 
11859 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11860     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11861     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11862   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11863     return false;
11864 
11865   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11866   if (!AddRecLHS)
11867     return false;
11868 
11869   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11870   if (!AddRecFoundLHS)
11871     return false;
11872 
11873   // We'd like to let SCEV reason about control dependencies, so we constrain
11874   // both the inequalities to be about add recurrences on the same loop.  This
11875   // way we can use isLoopEntryGuardedByCond later.
11876 
11877   const Loop *L = AddRecFoundLHS->getLoop();
11878   if (L != AddRecLHS->getLoop())
11879     return false;
11880 
11881   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11882   //
11883   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11884   //                                                                  ... (2)
11885   //
11886   // Informal proof for (2), assuming (1) [*]:
11887   //
11888   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11889   //
11890   // Then
11891   //
11892   //       FoundLHS s< FoundRHS s< INT_MIN - C
11893   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11894   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11895   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11896   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11897   // <=>  FoundLHS + C s< FoundRHS + C
11898   //
11899   // [*]: (1) can be proved by ruling out overflow.
11900   //
11901   // [**]: This can be proved by analyzing all the four possibilities:
11902   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11903   //    (A s>= 0, B s>= 0).
11904   //
11905   // Note:
11906   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11907   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11908   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11909   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11910   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11911   // C)".
11912 
11913   std::optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11914   std::optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11915   if (!LDiff || !RDiff || *LDiff != *RDiff)
11916     return false;
11917 
11918   if (LDiff->isMinValue())
11919     return true;
11920 
11921   APInt FoundRHSLimit;
11922 
11923   if (Pred == CmpInst::ICMP_ULT) {
11924     FoundRHSLimit = -(*RDiff);
11925   } else {
11926     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11927     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11928   }
11929 
11930   // Try to prove (1) or (2), as needed.
11931   return isAvailableAtLoopEntry(FoundRHS, L) &&
11932          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11933                                   getConstant(FoundRHSLimit));
11934 }
11935 
11936 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11937                                         const SCEV *LHS, const SCEV *RHS,
11938                                         const SCEV *FoundLHS,
11939                                         const SCEV *FoundRHS, unsigned Depth) {
11940   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11941 
11942   auto ClearOnExit = make_scope_exit([&]() {
11943     if (LPhi) {
11944       bool Erased = PendingMerges.erase(LPhi);
11945       assert(Erased && "Failed to erase LPhi!");
11946       (void)Erased;
11947     }
11948     if (RPhi) {
11949       bool Erased = PendingMerges.erase(RPhi);
11950       assert(Erased && "Failed to erase RPhi!");
11951       (void)Erased;
11952     }
11953   });
11954 
11955   // Find respective Phis and check that they are not being pending.
11956   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11957     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11958       if (!PendingMerges.insert(Phi).second)
11959         return false;
11960       LPhi = Phi;
11961     }
11962   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11963     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11964       // If we detect a loop of Phi nodes being processed by this method, for
11965       // example:
11966       //
11967       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11968       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11969       //
11970       // we don't want to deal with a case that complex, so return conservative
11971       // answer false.
11972       if (!PendingMerges.insert(Phi).second)
11973         return false;
11974       RPhi = Phi;
11975     }
11976 
11977   // If none of LHS, RHS is a Phi, nothing to do here.
11978   if (!LPhi && !RPhi)
11979     return false;
11980 
11981   // If there is a SCEVUnknown Phi we are interested in, make it left.
11982   if (!LPhi) {
11983     std::swap(LHS, RHS);
11984     std::swap(FoundLHS, FoundRHS);
11985     std::swap(LPhi, RPhi);
11986     Pred = ICmpInst::getSwappedPredicate(Pred);
11987   }
11988 
11989   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11990   const BasicBlock *LBB = LPhi->getParent();
11991   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11992 
11993   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11994     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11995            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11996            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11997   };
11998 
11999   if (RPhi && RPhi->getParent() == LBB) {
12000     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12001     // If we compare two Phis from the same block, and for each entry block
12002     // the predicate is true for incoming values from this block, then the
12003     // predicate is also true for the Phis.
12004     for (const BasicBlock *IncBB : predecessors(LBB)) {
12005       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12006       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
12007       if (!ProvedEasily(L, R))
12008         return false;
12009     }
12010   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
12011     // Case two: RHS is also a Phi from the same basic block, and it is an
12012     // AddRec. It means that there is a loop which has both AddRec and Unknown
12013     // PHIs, for it we can compare incoming values of AddRec from above the loop
12014     // and latch with their respective incoming values of LPhi.
12015     // TODO: Generalize to handle loops with many inputs in a header.
12016     if (LPhi->getNumIncomingValues() != 2) return false;
12017 
12018     auto *RLoop = RAR->getLoop();
12019     auto *Predecessor = RLoop->getLoopPredecessor();
12020     assert(Predecessor && "Loop with AddRec with no predecessor?");
12021     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
12022     if (!ProvedEasily(L1, RAR->getStart()))
12023       return false;
12024     auto *Latch = RLoop->getLoopLatch();
12025     assert(Latch && "Loop with AddRec with no latch?");
12026     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
12027     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
12028       return false;
12029   } else {
12030     // In all other cases go over inputs of LHS and compare each of them to RHS,
12031     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12032     // At this point RHS is either a non-Phi, or it is a Phi from some block
12033     // different from LBB.
12034     for (const BasicBlock *IncBB : predecessors(LBB)) {
12035       // Check that RHS is available in this block.
12036       if (!dominates(RHS, IncBB))
12037         return false;
12038       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
12039       // Make sure L does not refer to a value from a potentially previous
12040       // iteration of a loop.
12041       if (!properlyDominates(L, LBB))
12042         return false;
12043       if (!ProvedEasily(L, RHS))
12044         return false;
12045     }
12046   }
12047   return true;
12048 }
12049 
12050 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
12051                                                     const SCEV *LHS,
12052                                                     const SCEV *RHS,
12053                                                     const SCEV *FoundLHS,
12054                                                     const SCEV *FoundRHS) {
12055   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
12056   // sure that we are dealing with same LHS.
12057   if (RHS == FoundRHS) {
12058     std::swap(LHS, RHS);
12059     std::swap(FoundLHS, FoundRHS);
12060     Pred = ICmpInst::getSwappedPredicate(Pred);
12061   }
12062   if (LHS != FoundLHS)
12063     return false;
12064 
12065   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
12066   if (!SUFoundRHS)
12067     return false;
12068 
12069   Value *Shiftee, *ShiftValue;
12070 
12071   using namespace PatternMatch;
12072   if (match(SUFoundRHS->getValue(),
12073             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
12074     auto *ShifteeS = getSCEV(Shiftee);
12075     // Prove one of the following:
12076     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12077     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12078     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12079     //   ---> LHS <s RHS
12080     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12081     //   ---> LHS <=s RHS
12082     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
12083       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
12084     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
12085       if (isKnownNonNegative(ShifteeS))
12086         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
12087   }
12088 
12089   return false;
12090 }
12091 
12092 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
12093                                             const SCEV *LHS, const SCEV *RHS,
12094                                             const SCEV *FoundLHS,
12095                                             const SCEV *FoundRHS,
12096                                             const Instruction *CtxI) {
12097   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
12098     return true;
12099 
12100   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
12101     return true;
12102 
12103   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
12104     return true;
12105 
12106   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
12107                                           CtxI))
12108     return true;
12109 
12110   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
12111                                      FoundLHS, FoundRHS);
12112 }
12113 
12114 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12115 template <typename MinMaxExprType>
12116 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
12117                                  const SCEV *Candidate) {
12118   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
12119   if (!MinMaxExpr)
12120     return false;
12121 
12122   return is_contained(MinMaxExpr->operands(), Candidate);
12123 }
12124 
12125 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
12126                                            ICmpInst::Predicate Pred,
12127                                            const SCEV *LHS, const SCEV *RHS) {
12128   // If both sides are affine addrecs for the same loop, with equal
12129   // steps, and we know the recurrences don't wrap, then we only
12130   // need to check the predicate on the starting values.
12131 
12132   if (!ICmpInst::isRelational(Pred))
12133     return false;
12134 
12135   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
12136   if (!LAR)
12137     return false;
12138   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
12139   if (!RAR)
12140     return false;
12141   if (LAR->getLoop() != RAR->getLoop())
12142     return false;
12143   if (!LAR->isAffine() || !RAR->isAffine())
12144     return false;
12145 
12146   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
12147     return false;
12148 
12149   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
12150                          SCEV::FlagNSW : SCEV::FlagNUW;
12151   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
12152     return false;
12153 
12154   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
12155 }
12156 
12157 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12158 /// expression?
12159 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
12160                                         ICmpInst::Predicate Pred,
12161                                         const SCEV *LHS, const SCEV *RHS) {
12162   switch (Pred) {
12163   default:
12164     return false;
12165 
12166   case ICmpInst::ICMP_SGE:
12167     std::swap(LHS, RHS);
12168     [[fallthrough]];
12169   case ICmpInst::ICMP_SLE:
12170     return
12171         // min(A, ...) <= A
12172         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
12173         // A <= max(A, ...)
12174         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
12175 
12176   case ICmpInst::ICMP_UGE:
12177     std::swap(LHS, RHS);
12178     [[fallthrough]];
12179   case ICmpInst::ICMP_ULE:
12180     return
12181         // min(A, ...) <= A
12182         // FIXME: what about umin_seq?
12183         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
12184         // A <= max(A, ...)
12185         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
12186   }
12187 
12188   llvm_unreachable("covered switch fell through?!");
12189 }
12190 
12191 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
12192                                              const SCEV *LHS, const SCEV *RHS,
12193                                              const SCEV *FoundLHS,
12194                                              const SCEV *FoundRHS,
12195                                              unsigned Depth) {
12196   assert(getTypeSizeInBits(LHS->getType()) ==
12197              getTypeSizeInBits(RHS->getType()) &&
12198          "LHS and RHS have different sizes?");
12199   assert(getTypeSizeInBits(FoundLHS->getType()) ==
12200              getTypeSizeInBits(FoundRHS->getType()) &&
12201          "FoundLHS and FoundRHS have different sizes?");
12202   // We want to avoid hurting the compile time with analysis of too big trees.
12203   if (Depth > MaxSCEVOperationsImplicationDepth)
12204     return false;
12205 
12206   // We only want to work with GT comparison so far.
12207   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
12208     Pred = CmpInst::getSwappedPredicate(Pred);
12209     std::swap(LHS, RHS);
12210     std::swap(FoundLHS, FoundRHS);
12211   }
12212 
12213   // For unsigned, try to reduce it to corresponding signed comparison.
12214   if (Pred == ICmpInst::ICMP_UGT)
12215     // We can replace unsigned predicate with its signed counterpart if all
12216     // involved values are non-negative.
12217     // TODO: We could have better support for unsigned.
12218     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
12219       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12220       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12221       // use this fact to prove that LHS and RHS are non-negative.
12222       const SCEV *MinusOne = getMinusOne(LHS->getType());
12223       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
12224                                 FoundRHS) &&
12225           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
12226                                 FoundRHS))
12227         Pred = ICmpInst::ICMP_SGT;
12228     }
12229 
12230   if (Pred != ICmpInst::ICMP_SGT)
12231     return false;
12232 
12233   auto GetOpFromSExt = [&](const SCEV *S) {
12234     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
12235       return Ext->getOperand();
12236     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12237     // the constant in some cases.
12238     return S;
12239   };
12240 
12241   // Acquire values from extensions.
12242   auto *OrigLHS = LHS;
12243   auto *OrigFoundLHS = FoundLHS;
12244   LHS = GetOpFromSExt(LHS);
12245   FoundLHS = GetOpFromSExt(FoundLHS);
12246 
12247   // Is the SGT predicate can be proved trivially or using the found context.
12248   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
12249     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
12250            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
12251                                   FoundRHS, Depth + 1);
12252   };
12253 
12254   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
12255     // We want to avoid creation of any new non-constant SCEV. Since we are
12256     // going to compare the operands to RHS, we should be certain that we don't
12257     // need any size extensions for this. So let's decline all cases when the
12258     // sizes of types of LHS and RHS do not match.
12259     // TODO: Maybe try to get RHS from sext to catch more cases?
12260     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
12261       return false;
12262 
12263     // Should not overflow.
12264     if (!LHSAddExpr->hasNoSignedWrap())
12265       return false;
12266 
12267     auto *LL = LHSAddExpr->getOperand(0);
12268     auto *LR = LHSAddExpr->getOperand(1);
12269     auto *MinusOne = getMinusOne(RHS->getType());
12270 
12271     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12272     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
12273       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
12274     };
12275     // Try to prove the following rule:
12276     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12277     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12278     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
12279       return true;
12280   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
12281     Value *LL, *LR;
12282     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12283 
12284     using namespace llvm::PatternMatch;
12285 
12286     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
12287       // Rules for division.
12288       // We are going to perform some comparisons with Denominator and its
12289       // derivative expressions. In general case, creating a SCEV for it may
12290       // lead to a complex analysis of the entire graph, and in particular it
12291       // can request trip count recalculation for the same loop. This would
12292       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12293       // this, we only want to create SCEVs that are constants in this section.
12294       // So we bail if Denominator is not a constant.
12295       if (!isa<ConstantInt>(LR))
12296         return false;
12297 
12298       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
12299 
12300       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12301       // then a SCEV for the numerator already exists and matches with FoundLHS.
12302       auto *Numerator = getExistingSCEV(LL);
12303       if (!Numerator || Numerator->getType() != FoundLHS->getType())
12304         return false;
12305 
12306       // Make sure that the numerator matches with FoundLHS and the denominator
12307       // is positive.
12308       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
12309         return false;
12310 
12311       auto *DTy = Denominator->getType();
12312       auto *FRHSTy = FoundRHS->getType();
12313       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
12314         // One of types is a pointer and another one is not. We cannot extend
12315         // them properly to a wider type, so let us just reject this case.
12316         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12317         // to avoid this check.
12318         return false;
12319 
12320       // Given that:
12321       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12322       auto *WTy = getWiderType(DTy, FRHSTy);
12323       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
12324       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
12325 
12326       // Try to prove the following rule:
12327       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12328       // For example, given that FoundLHS > 2. It means that FoundLHS is at
12329       // least 3. If we divide it by Denominator < 4, we will have at least 1.
12330       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
12331       if (isKnownNonPositive(RHS) &&
12332           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
12333         return true;
12334 
12335       // Try to prove the following rule:
12336       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12337       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12338       // If we divide it by Denominator > 2, then:
12339       // 1. If FoundLHS is negative, then the result is 0.
12340       // 2. If FoundLHS is non-negative, then the result is non-negative.
12341       // Anyways, the result is non-negative.
12342       auto *MinusOne = getMinusOne(WTy);
12343       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
12344       if (isKnownNegative(RHS) &&
12345           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
12346         return true;
12347     }
12348   }
12349 
12350   // If our expression contained SCEVUnknown Phis, and we split it down and now
12351   // need to prove something for them, try to prove the predicate for every
12352   // possible incoming values of those Phis.
12353   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
12354     return true;
12355 
12356   return false;
12357 }
12358 
12359 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
12360                                         const SCEV *LHS, const SCEV *RHS) {
12361   // zext x u<= sext x, sext x s<= zext x
12362   switch (Pred) {
12363   case ICmpInst::ICMP_SGE:
12364     std::swap(LHS, RHS);
12365     [[fallthrough]];
12366   case ICmpInst::ICMP_SLE: {
12367     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
12368     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
12369     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
12370     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12371       return true;
12372     break;
12373   }
12374   case ICmpInst::ICMP_UGE:
12375     std::swap(LHS, RHS);
12376     [[fallthrough]];
12377   case ICmpInst::ICMP_ULE: {
12378     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
12379     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
12380     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
12381     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
12382       return true;
12383     break;
12384   }
12385   default:
12386     break;
12387   };
12388   return false;
12389 }
12390 
12391 bool
12392 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12393                                            const SCEV *LHS, const SCEV *RHS) {
12394   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12395          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12396          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12397          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12398          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12399 }
12400 
12401 bool
12402 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12403                                              const SCEV *LHS, const SCEV *RHS,
12404                                              const SCEV *FoundLHS,
12405                                              const SCEV *FoundRHS) {
12406   switch (Pred) {
12407   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12408   case ICmpInst::ICMP_EQ:
12409   case ICmpInst::ICMP_NE:
12410     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12411       return true;
12412     break;
12413   case ICmpInst::ICMP_SLT:
12414   case ICmpInst::ICMP_SLE:
12415     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12416         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12417       return true;
12418     break;
12419   case ICmpInst::ICMP_SGT:
12420   case ICmpInst::ICMP_SGE:
12421     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12422         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12423       return true;
12424     break;
12425   case ICmpInst::ICMP_ULT:
12426   case ICmpInst::ICMP_ULE:
12427     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12428         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12429       return true;
12430     break;
12431   case ICmpInst::ICMP_UGT:
12432   case ICmpInst::ICMP_UGE:
12433     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12434         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12435       return true;
12436     break;
12437   }
12438 
12439   // Maybe it can be proved via operations?
12440   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12441     return true;
12442 
12443   return false;
12444 }
12445 
12446 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12447                                                      const SCEV *LHS,
12448                                                      const SCEV *RHS,
12449                                                      const SCEV *FoundLHS,
12450                                                      const SCEV *FoundRHS) {
12451   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12452     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12453     // reduce the compile time impact of this optimization.
12454     return false;
12455 
12456   std::optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12457   if (!Addend)
12458     return false;
12459 
12460   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12461 
12462   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12463   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
12464   ConstantRange FoundLHSRange =
12465       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
12466 
12467   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12468   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12469 
12470   // We can also compute the range of values for `LHS` that satisfy the
12471   // consequent, "`LHS` `Pred` `RHS`":
12472   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12473   // The antecedent implies the consequent if every value of `LHS` that
12474   // satisfies the antecedent also satisfies the consequent.
12475   return LHSRange.icmp(Pred, ConstRHS);
12476 }
12477 
12478 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12479                                         bool IsSigned) {
12480   assert(isKnownPositive(Stride) && "Positive stride expected!");
12481 
12482   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12483   const SCEV *One = getOne(Stride->getType());
12484 
12485   if (IsSigned) {
12486     APInt MaxRHS = getSignedRangeMax(RHS);
12487     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12488     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12489 
12490     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12491     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12492   }
12493 
12494   APInt MaxRHS = getUnsignedRangeMax(RHS);
12495   APInt MaxValue = APInt::getMaxValue(BitWidth);
12496   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12497 
12498   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12499   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12500 }
12501 
12502 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12503                                         bool IsSigned) {
12504 
12505   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12506   const SCEV *One = getOne(Stride->getType());
12507 
12508   if (IsSigned) {
12509     APInt MinRHS = getSignedRangeMin(RHS);
12510     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12511     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12512 
12513     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12514     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12515   }
12516 
12517   APInt MinRHS = getUnsignedRangeMin(RHS);
12518   APInt MinValue = APInt::getMinValue(BitWidth);
12519   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12520 
12521   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12522   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12523 }
12524 
12525 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12526   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12527   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12528   // expression fixes the case of N=0.
12529   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12530   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12531   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12532 }
12533 
12534 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12535                                                     const SCEV *Stride,
12536                                                     const SCEV *End,
12537                                                     unsigned BitWidth,
12538                                                     bool IsSigned) {
12539   // The logic in this function assumes we can represent a positive stride.
12540   // If we can't, the backedge-taken count must be zero.
12541   if (IsSigned && BitWidth == 1)
12542     return getZero(Stride->getType());
12543 
12544   // This code below only been closely audited for negative strides in the
12545   // unsigned comparison case, it may be correct for signed comparison, but
12546   // that needs to be established.
12547   if (IsSigned && isKnownNegative(Stride))
12548     return getCouldNotCompute();
12549 
12550   // Calculate the maximum backedge count based on the range of values
12551   // permitted by Start, End, and Stride.
12552   APInt MinStart =
12553       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12554 
12555   APInt MinStride =
12556       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12557 
12558   // We assume either the stride is positive, or the backedge-taken count
12559   // is zero. So force StrideForMaxBECount to be at least one.
12560   APInt One(BitWidth, 1);
12561   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12562                                        : APIntOps::umax(One, MinStride);
12563 
12564   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12565                             : APInt::getMaxValue(BitWidth);
12566   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12567 
12568   // Although End can be a MAX expression we estimate MaxEnd considering only
12569   // the case End = RHS of the loop termination condition. This is safe because
12570   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12571   // taken count.
12572   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12573                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12574 
12575   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12576   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12577                     : APIntOps::umax(MaxEnd, MinStart);
12578 
12579   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12580                          getConstant(StrideForMaxBECount) /* Step */);
12581 }
12582 
12583 ScalarEvolution::ExitLimit
12584 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12585                                   const Loop *L, bool IsSigned,
12586                                   bool ControlsOnlyExit, bool AllowPredicates) {
12587   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12588 
12589   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12590   bool PredicatedIV = false;
12591 
12592   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12593     // Can we prove this loop *must* be UB if overflow of IV occurs?
12594     // Reasoning goes as follows:
12595     // * Suppose the IV did self wrap.
12596     // * If Stride evenly divides the iteration space, then once wrap
12597     //   occurs, the loop must revisit the same values.
12598     // * We know that RHS is invariant, and that none of those values
12599     //   caused this exit to be taken previously.  Thus, this exit is
12600     //   dynamically dead.
12601     // * If this is the sole exit, then a dead exit implies the loop
12602     //   must be infinite if there are no abnormal exits.
12603     // * If the loop were infinite, then it must either not be mustprogress
12604     //   or have side effects. Otherwise, it must be UB.
12605     // * It can't (by assumption), be UB so we have contradicted our
12606     //   premise and can conclude the IV did not in fact self-wrap.
12607     if (!isLoopInvariant(RHS, L))
12608       return false;
12609 
12610     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12611     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12612       return false;
12613 
12614     if (!ControlsOnlyExit || !loopHasNoAbnormalExits(L))
12615       return false;
12616 
12617     return loopIsFiniteByAssumption(L);
12618   };
12619 
12620   if (!IV) {
12621     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12622       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12623       if (AR && AR->getLoop() == L && AR->isAffine()) {
12624         auto canProveNUW = [&]() {
12625           if (!isLoopInvariant(RHS, L))
12626             return false;
12627 
12628           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12629             // We need the sequence defined by AR to strictly increase in the
12630             // unsigned integer domain for the logic below to hold.
12631             return false;
12632 
12633           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12634           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12635           // If RHS <=u Limit, then there must exist a value V in the sequence
12636           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12637           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12638           // overflow occurs.  This limit also implies that a signed comparison
12639           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12640           // the high bits on both sides must be zero.
12641           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12642           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12643           Limit = Limit.zext(OuterBitWidth);
12644           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12645         };
12646         auto Flags = AR->getNoWrapFlags();
12647         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12648           Flags = setFlags(Flags, SCEV::FlagNUW);
12649 
12650         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12651         if (AR->hasNoUnsignedWrap()) {
12652           // Emulate what getZeroExtendExpr would have done during construction
12653           // if we'd been able to infer the fact just above at that time.
12654           const SCEV *Step = AR->getStepRecurrence(*this);
12655           Type *Ty = ZExt->getType();
12656           auto *S = getAddRecExpr(
12657             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12658             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12659           IV = dyn_cast<SCEVAddRecExpr>(S);
12660         }
12661       }
12662     }
12663   }
12664 
12665 
12666   if (!IV && AllowPredicates) {
12667     // Try to make this an AddRec using runtime tests, in the first X
12668     // iterations of this loop, where X is the SCEV expression found by the
12669     // algorithm below.
12670     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12671     PredicatedIV = true;
12672   }
12673 
12674   // Avoid weird loops
12675   if (!IV || IV->getLoop() != L || !IV->isAffine())
12676     return getCouldNotCompute();
12677 
12678   // A precondition of this method is that the condition being analyzed
12679   // reaches an exiting branch which dominates the latch.  Given that, we can
12680   // assume that an increment which violates the nowrap specification and
12681   // produces poison must cause undefined behavior when the resulting poison
12682   // value is branched upon and thus we can conclude that the backedge is
12683   // taken no more often than would be required to produce that poison value.
12684   // Note that a well defined loop can exit on the iteration which violates
12685   // the nowrap specification if there is another exit (either explicit or
12686   // implicit/exceptional) which causes the loop to execute before the
12687   // exiting instruction we're analyzing would trigger UB.
12688   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12689   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
12690   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12691 
12692   const SCEV *Stride = IV->getStepRecurrence(*this);
12693 
12694   bool PositiveStride = isKnownPositive(Stride);
12695 
12696   // Avoid negative or zero stride values.
12697   if (!PositiveStride) {
12698     // We can compute the correct backedge taken count for loops with unknown
12699     // strides if we can prove that the loop is not an infinite loop with side
12700     // effects. Here's the loop structure we are trying to handle -
12701     //
12702     // i = start
12703     // do {
12704     //   A[i] = i;
12705     //   i += s;
12706     // } while (i < end);
12707     //
12708     // The backedge taken count for such loops is evaluated as -
12709     // (max(end, start + stride) - start - 1) /u stride
12710     //
12711     // The additional preconditions that we need to check to prove correctness
12712     // of the above formula is as follows -
12713     //
12714     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12715     //    NoWrap flag).
12716     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12717     //    no side effects within the loop)
12718     // c) loop has a single static exit (with no abnormal exits)
12719     //
12720     // Precondition a) implies that if the stride is negative, this is a single
12721     // trip loop. The backedge taken count formula reduces to zero in this case.
12722     //
12723     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12724     // then a zero stride means the backedge can't be taken without executing
12725     // undefined behavior.
12726     //
12727     // The positive stride case is the same as isKnownPositive(Stride) returning
12728     // true (original behavior of the function).
12729     //
12730     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12731         !loopHasNoAbnormalExits(L))
12732       return getCouldNotCompute();
12733 
12734     if (!isKnownNonZero(Stride)) {
12735       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12736       // if it might eventually be greater than start and if so, on which
12737       // iteration.  We can't even produce a useful upper bound.
12738       if (!isLoopInvariant(RHS, L))
12739         return getCouldNotCompute();
12740 
12741       // We allow a potentially zero stride, but we need to divide by stride
12742       // below.  Since the loop can't be infinite and this check must control
12743       // the sole exit, we can infer the exit must be taken on the first
12744       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12745       // we know the numerator in the divides below must be zero, so we can
12746       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12747       // and produce the right result.
12748       // FIXME: Handle the case where Stride is poison?
12749       auto wouldZeroStrideBeUB = [&]() {
12750         // Proof by contradiction.  Suppose the stride were zero.  If we can
12751         // prove that the backedge *is* taken on the first iteration, then since
12752         // we know this condition controls the sole exit, we must have an
12753         // infinite loop.  We can't have a (well defined) infinite loop per
12754         // check just above.
12755         // Note: The (Start - Stride) term is used to get the start' term from
12756         // (start' + stride,+,stride). Remember that we only care about the
12757         // result of this expression when stride == 0 at runtime.
12758         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12759         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12760       };
12761       if (!wouldZeroStrideBeUB()) {
12762         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12763       }
12764     }
12765   } else if (!Stride->isOne() && !NoWrap) {
12766     auto isUBOnWrap = [&]() {
12767       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12768       // follows trivially from the fact that every (un)signed-wrapped, but
12769       // not self-wrapped value must be LT than the last value before
12770       // (un)signed wrap.  Since we know that last value didn't exit, nor
12771       // will any smaller one.
12772       return canAssumeNoSelfWrap(IV);
12773     };
12774 
12775     // Avoid proven overflow cases: this will ensure that the backedge taken
12776     // count will not generate any unsigned overflow. Relaxed no-overflow
12777     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12778     // undefined behaviors like the case of C language.
12779     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12780       return getCouldNotCompute();
12781   }
12782 
12783   // On all paths just preceeding, we established the following invariant:
12784   //   IV can be assumed not to overflow up to and including the exiting
12785   //   iteration.  We proved this in one of two ways:
12786   //   1) We can show overflow doesn't occur before the exiting iteration
12787   //      1a) canIVOverflowOnLT, and b) step of one
12788   //   2) We can show that if overflow occurs, the loop must execute UB
12789   //      before any possible exit.
12790   // Note that we have not yet proved RHS invariant (in general).
12791 
12792   const SCEV *Start = IV->getStart();
12793 
12794   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12795   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12796   // Use integer-typed versions for actual computation; we can't subtract
12797   // pointers in general.
12798   const SCEV *OrigStart = Start;
12799   const SCEV *OrigRHS = RHS;
12800   if (Start->getType()->isPointerTy()) {
12801     Start = getLosslessPtrToIntExpr(Start);
12802     if (isa<SCEVCouldNotCompute>(Start))
12803       return Start;
12804   }
12805   if (RHS->getType()->isPointerTy()) {
12806     RHS = getLosslessPtrToIntExpr(RHS);
12807     if (isa<SCEVCouldNotCompute>(RHS))
12808       return RHS;
12809   }
12810 
12811   // When the RHS is not invariant, we do not know the end bound of the loop and
12812   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12813   // calculate the MaxBECount, given the start, stride and max value for the end
12814   // bound of the loop (RHS), and the fact that IV does not overflow (which is
12815   // checked above).
12816   if (!isLoopInvariant(RHS, L)) {
12817     const SCEV *MaxBECount = computeMaxBECountForLT(
12818         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12819     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12820                      MaxBECount, false /*MaxOrZero*/, Predicates);
12821   }
12822 
12823   // We use the expression (max(End,Start)-Start)/Stride to describe the
12824   // backedge count, as if the backedge is taken at least once max(End,Start)
12825   // is End and so the result is as above, and if not max(End,Start) is Start
12826   // so we get a backedge count of zero.
12827   const SCEV *BECount = nullptr;
12828   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12829   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12830   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12831   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12832   // Can we prove (max(RHS,Start) > Start - Stride?
12833   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12834       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12835     // In this case, we can use a refined formula for computing backedge taken
12836     // count.  The general formula remains:
12837     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12838     // We want to use the alternate formula:
12839     //   "((End - 1) - (Start - Stride)) /u Stride"
12840     // Let's do a quick case analysis to show these are equivalent under
12841     // our precondition that max(RHS,Start) > Start - Stride.
12842     // * For RHS <= Start, the backedge-taken count must be zero.
12843     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12844     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12845     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12846     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12847     //     this to the stride of 1 case.
12848     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12849     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12850     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12851     //   "((RHS - (Start - Stride) - 1) /u Stride".
12852     //   Our preconditions trivially imply no overflow in that form.
12853     const SCEV *MinusOne = getMinusOne(Stride->getType());
12854     const SCEV *Numerator =
12855         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12856     BECount = getUDivExpr(Numerator, Stride);
12857   }
12858 
12859   const SCEV *BECountIfBackedgeTaken = nullptr;
12860   if (!BECount) {
12861     auto canProveRHSGreaterThanEqualStart = [&]() {
12862       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12863       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12864         return true;
12865 
12866       // (RHS > Start - 1) implies RHS >= Start.
12867       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12868       //   "Start - 1" doesn't overflow.
12869       // * For signed comparison, if Start - 1 does overflow, it's equal
12870       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12871       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12872       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12873       //
12874       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12875       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12876       auto *StartMinusOne = getAddExpr(OrigStart,
12877                                        getMinusOne(OrigStart->getType()));
12878       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12879     };
12880 
12881     // If we know that RHS >= Start in the context of loop, then we know that
12882     // max(RHS, Start) = RHS at this point.
12883     const SCEV *End;
12884     if (canProveRHSGreaterThanEqualStart()) {
12885       End = RHS;
12886     } else {
12887       // If RHS < Start, the backedge will be taken zero times.  So in
12888       // general, we can write the backedge-taken count as:
12889       //
12890       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
12891       //
12892       // We convert it to the following to make it more convenient for SCEV:
12893       //
12894       //     ceil(max(RHS, Start) - Start) / Stride
12895       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12896 
12897       // See what would happen if we assume the backedge is taken. This is
12898       // used to compute MaxBECount.
12899       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12900     }
12901 
12902     // At this point, we know:
12903     //
12904     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12905     // 2. The index variable doesn't overflow.
12906     //
12907     // Therefore, we know N exists such that
12908     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12909     // doesn't overflow.
12910     //
12911     // Using this information, try to prove whether the addition in
12912     // "(Start - End) + (Stride - 1)" has unsigned overflow.
12913     const SCEV *One = getOne(Stride->getType());
12914     bool MayAddOverflow = [&] {
12915       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12916         if (StrideC->getAPInt().isPowerOf2()) {
12917           // Suppose Stride is a power of two, and Start/End are unsigned
12918           // integers.  Let UMAX be the largest representable unsigned
12919           // integer.
12920           //
12921           // By the preconditions of this function, we know
12922           // "(Start + Stride * N) >= End", and this doesn't overflow.
12923           // As a formula:
12924           //
12925           //   End <= (Start + Stride * N) <= UMAX
12926           //
12927           // Subtracting Start from all the terms:
12928           //
12929           //   End - Start <= Stride * N <= UMAX - Start
12930           //
12931           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12932           //
12933           //   End - Start <= Stride * N <= UMAX
12934           //
12935           // Stride * N is a multiple of Stride. Therefore,
12936           //
12937           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12938           //
12939           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12940           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12941           //
12942           //   End - Start <= Stride * N <= UMAX - Stride - 1
12943           //
12944           // Dropping the middle term:
12945           //
12946           //   End - Start <= UMAX - Stride - 1
12947           //
12948           // Adding Stride - 1 to both sides:
12949           //
12950           //   (End - Start) + (Stride - 1) <= UMAX
12951           //
12952           // In other words, the addition doesn't have unsigned overflow.
12953           //
12954           // A similar proof works if we treat Start/End as signed values.
12955           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12956           // use signed max instead of unsigned max. Note that we're trying
12957           // to prove a lack of unsigned overflow in either case.
12958           return false;
12959         }
12960       }
12961       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12962         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12963         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12964         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12965         //
12966         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12967         return false;
12968       }
12969       return true;
12970     }();
12971 
12972     const SCEV *Delta = getMinusSCEV(End, Start);
12973     if (!MayAddOverflow) {
12974       // floor((D + (S - 1)) / S)
12975       // We prefer this formulation if it's legal because it's fewer operations.
12976       BECount =
12977           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12978     } else {
12979       BECount = getUDivCeilSCEV(Delta, Stride);
12980     }
12981   }
12982 
12983   const SCEV *ConstantMaxBECount;
12984   bool MaxOrZero = false;
12985   if (isa<SCEVConstant>(BECount)) {
12986     ConstantMaxBECount = BECount;
12987   } else if (BECountIfBackedgeTaken &&
12988              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12989     // If we know exactly how many times the backedge will be taken if it's
12990     // taken at least once, then the backedge count will either be that or
12991     // zero.
12992     ConstantMaxBECount = BECountIfBackedgeTaken;
12993     MaxOrZero = true;
12994   } else {
12995     ConstantMaxBECount = computeMaxBECountForLT(
12996         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12997   }
12998 
12999   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount) &&
13000       !isa<SCEVCouldNotCompute>(BECount))
13001     ConstantMaxBECount = getConstant(getUnsignedRangeMax(BECount));
13002 
13003   const SCEV *SymbolicMaxBECount =
13004       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13005   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, MaxOrZero,
13006                    Predicates);
13007 }
13008 
13009 ScalarEvolution::ExitLimit ScalarEvolution::howManyGreaterThans(
13010     const SCEV *LHS, const SCEV *RHS, const Loop *L, bool IsSigned,
13011     bool ControlsOnlyExit, bool AllowPredicates) {
13012   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
13013   // We handle only IV > Invariant
13014   if (!isLoopInvariant(RHS, L))
13015     return getCouldNotCompute();
13016 
13017   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
13018   if (!IV && AllowPredicates)
13019     // Try to make this an AddRec using runtime tests, in the first X
13020     // iterations of this loop, where X is the SCEV expression found by the
13021     // algorithm below.
13022     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
13023 
13024   // Avoid weird loops
13025   if (!IV || IV->getLoop() != L || !IV->isAffine())
13026     return getCouldNotCompute();
13027 
13028   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
13029   bool NoWrap = ControlsOnlyExit && IV->getNoWrapFlags(WrapType);
13030   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
13031 
13032   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
13033 
13034   // Avoid negative or zero stride values
13035   if (!isKnownPositive(Stride))
13036     return getCouldNotCompute();
13037 
13038   // Avoid proven overflow cases: this will ensure that the backedge taken count
13039   // will not generate any unsigned overflow. Relaxed no-overflow conditions
13040   // exploit NoWrapFlags, allowing to optimize in presence of undefined
13041   // behaviors like the case of C language.
13042   if (!Stride->isOne() && !NoWrap)
13043     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
13044       return getCouldNotCompute();
13045 
13046   const SCEV *Start = IV->getStart();
13047   const SCEV *End = RHS;
13048   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
13049     // If we know that Start >= RHS in the context of loop, then we know that
13050     // min(RHS, Start) = RHS at this point.
13051     if (isLoopEntryGuardedByCond(
13052             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
13053       End = RHS;
13054     else
13055       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
13056   }
13057 
13058   if (Start->getType()->isPointerTy()) {
13059     Start = getLosslessPtrToIntExpr(Start);
13060     if (isa<SCEVCouldNotCompute>(Start))
13061       return Start;
13062   }
13063   if (End->getType()->isPointerTy()) {
13064     End = getLosslessPtrToIntExpr(End);
13065     if (isa<SCEVCouldNotCompute>(End))
13066       return End;
13067   }
13068 
13069   // Compute ((Start - End) + (Stride - 1)) / Stride.
13070   // FIXME: This can overflow. Holding off on fixing this for now;
13071   // howManyGreaterThans will hopefully be gone soon.
13072   const SCEV *One = getOne(Stride->getType());
13073   const SCEV *BECount = getUDivExpr(
13074       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
13075 
13076   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
13077                             : getUnsignedRangeMax(Start);
13078 
13079   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
13080                              : getUnsignedRangeMin(Stride);
13081 
13082   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
13083   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
13084                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
13085 
13086   // Although End can be a MIN expression we estimate MinEnd considering only
13087   // the case End = RHS. This is safe because in the other case (Start - End)
13088   // is zero, leading to a zero maximum backedge taken count.
13089   APInt MinEnd =
13090     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
13091              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
13092 
13093   const SCEV *ConstantMaxBECount =
13094       isa<SCEVConstant>(BECount)
13095           ? BECount
13096           : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
13097                             getConstant(MinStride));
13098 
13099   if (isa<SCEVCouldNotCompute>(ConstantMaxBECount))
13100     ConstantMaxBECount = BECount;
13101   const SCEV *SymbolicMaxBECount =
13102       isa<SCEVCouldNotCompute>(BECount) ? ConstantMaxBECount : BECount;
13103 
13104   return ExitLimit(BECount, ConstantMaxBECount, SymbolicMaxBECount, false,
13105                    Predicates);
13106 }
13107 
13108 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
13109                                                     ScalarEvolution &SE) const {
13110   if (Range.isFullSet())  // Infinite loop.
13111     return SE.getCouldNotCompute();
13112 
13113   // If the start is a non-zero constant, shift the range to simplify things.
13114   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
13115     if (!SC->getValue()->isZero()) {
13116       SmallVector<const SCEV *, 4> Operands(operands());
13117       Operands[0] = SE.getZero(SC->getType());
13118       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
13119                                              getNoWrapFlags(FlagNW));
13120       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
13121         return ShiftedAddRec->getNumIterationsInRange(
13122             Range.subtract(SC->getAPInt()), SE);
13123       // This is strange and shouldn't happen.
13124       return SE.getCouldNotCompute();
13125     }
13126 
13127   // The only time we can solve this is when we have all constant indices.
13128   // Otherwise, we cannot determine the overflow conditions.
13129   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
13130     return SE.getCouldNotCompute();
13131 
13132   // Okay at this point we know that all elements of the chrec are constants and
13133   // that the start element is zero.
13134 
13135   // First check to see if the range contains zero.  If not, the first
13136   // iteration exits.
13137   unsigned BitWidth = SE.getTypeSizeInBits(getType());
13138   if (!Range.contains(APInt(BitWidth, 0)))
13139     return SE.getZero(getType());
13140 
13141   if (isAffine()) {
13142     // If this is an affine expression then we have this situation:
13143     //   Solve {0,+,A} in Range  ===  Ax in Range
13144 
13145     // We know that zero is in the range.  If A is positive then we know that
13146     // the upper value of the range must be the first possible exit value.
13147     // If A is negative then the lower of the range is the last possible loop
13148     // value.  Also note that we already checked for a full range.
13149     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
13150     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
13151 
13152     // The exit value should be (End+A)/A.
13153     APInt ExitVal = (End + A).udiv(A);
13154     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
13155 
13156     // Evaluate at the exit value.  If we really did fall out of the valid
13157     // range, then we computed our trip count, otherwise wrap around or other
13158     // things must have happened.
13159     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
13160     if (Range.contains(Val->getValue()))
13161       return SE.getCouldNotCompute();  // Something strange happened
13162 
13163     // Ensure that the previous value is in the range.
13164     assert(Range.contains(
13165            EvaluateConstantChrecAtConstant(this,
13166            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
13167            "Linear scev computation is off in a bad way!");
13168     return SE.getConstant(ExitValue);
13169   }
13170 
13171   if (isQuadratic()) {
13172     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
13173       return SE.getConstant(*S);
13174   }
13175 
13176   return SE.getCouldNotCompute();
13177 }
13178 
13179 const SCEVAddRecExpr *
13180 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
13181   assert(getNumOperands() > 1 && "AddRec with zero step?");
13182   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13183   // but in this case we cannot guarantee that the value returned will be an
13184   // AddRec because SCEV does not have a fixed point where it stops
13185   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13186   // may happen if we reach arithmetic depth limit while simplifying. So we
13187   // construct the returned value explicitly.
13188   SmallVector<const SCEV *, 3> Ops;
13189   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13190   // (this + Step) is {A+B,+,B+C,+...,+,N}.
13191   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
13192     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
13193   // We know that the last operand is not a constant zero (otherwise it would
13194   // have been popped out earlier). This guarantees us that if the result has
13195   // the same last operand, then it will also not be popped out, meaning that
13196   // the returned value will be an AddRec.
13197   const SCEV *Last = getOperand(getNumOperands() - 1);
13198   assert(!Last->isZero() && "Recurrency with zero step?");
13199   Ops.push_back(Last);
13200   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
13201                                                SCEV::FlagAnyWrap));
13202 }
13203 
13204 // Return true when S contains at least an undef value.
13205 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
13206   return SCEVExprContains(S, [](const SCEV *S) {
13207     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13208       return isa<UndefValue>(SU->getValue());
13209     return false;
13210   });
13211 }
13212 
13213 // Return true when S contains a value that is a nullptr.
13214 bool ScalarEvolution::containsErasedValue(const SCEV *S) const {
13215   return SCEVExprContains(S, [](const SCEV *S) {
13216     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
13217       return SU->getValue() == nullptr;
13218     return false;
13219   });
13220 }
13221 
13222 /// Return the size of an element read or written by Inst.
13223 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
13224   Type *Ty;
13225   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
13226     Ty = Store->getValueOperand()->getType();
13227   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
13228     Ty = Load->getType();
13229   else
13230     return nullptr;
13231 
13232   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
13233   return getSizeOfExpr(ETy, Ty);
13234 }
13235 
13236 //===----------------------------------------------------------------------===//
13237 //                   SCEVCallbackVH Class Implementation
13238 //===----------------------------------------------------------------------===//
13239 
13240 void ScalarEvolution::SCEVCallbackVH::deleted() {
13241   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13242   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
13243     SE->ConstantEvolutionLoopExitValue.erase(PN);
13244   SE->eraseValueFromMap(getValPtr());
13245   // this now dangles!
13246 }
13247 
13248 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
13249   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
13250 
13251   // Forget all the expressions associated with users of the old value,
13252   // so that future queries will recompute the expressions using the new
13253   // value.
13254   Value *Old = getValPtr();
13255   SmallVector<User *, 16> Worklist(Old->users());
13256   SmallPtrSet<User *, 8> Visited;
13257   while (!Worklist.empty()) {
13258     User *U = Worklist.pop_back_val();
13259     // Deleting the Old value will cause this to dangle. Postpone
13260     // that until everything else is done.
13261     if (U == Old)
13262       continue;
13263     if (!Visited.insert(U).second)
13264       continue;
13265     if (PHINode *PN = dyn_cast<PHINode>(U))
13266       SE->ConstantEvolutionLoopExitValue.erase(PN);
13267     SE->eraseValueFromMap(U);
13268     llvm::append_range(Worklist, U->users());
13269   }
13270   // Delete the Old value.
13271   if (PHINode *PN = dyn_cast<PHINode>(Old))
13272     SE->ConstantEvolutionLoopExitValue.erase(PN);
13273   SE->eraseValueFromMap(Old);
13274   // this now dangles!
13275 }
13276 
13277 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
13278   : CallbackVH(V), SE(se) {}
13279 
13280 //===----------------------------------------------------------------------===//
13281 //                   ScalarEvolution Class Implementation
13282 //===----------------------------------------------------------------------===//
13283 
13284 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
13285                                  AssumptionCache &AC, DominatorTree &DT,
13286                                  LoopInfo &LI)
13287     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
13288       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13289       LoopDispositions(64), BlockDispositions(64) {
13290   // To use guards for proving predicates, we need to scan every instruction in
13291   // relevant basic blocks, and not just terminators.  Doing this is a waste of
13292   // time if the IR does not actually contain any calls to
13293   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13294   //
13295   // This pessimizes the case where a pass that preserves ScalarEvolution wants
13296   // to _add_ guards to the module when there weren't any before, and wants
13297   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
13298   // efficient in lieu of being smart in that rather obscure case.
13299 
13300   auto *GuardDecl = F.getParent()->getFunction(
13301       Intrinsic::getName(Intrinsic::experimental_guard));
13302   HasGuards = GuardDecl && !GuardDecl->use_empty();
13303 }
13304 
13305 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
13306     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
13307       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
13308       ValueExprMap(std::move(Arg.ValueExprMap)),
13309       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
13310       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
13311       PendingMerges(std::move(Arg.PendingMerges)),
13312       ConstantMultipleCache(std::move(Arg.ConstantMultipleCache)),
13313       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
13314       PredicatedBackedgeTakenCounts(
13315           std::move(Arg.PredicatedBackedgeTakenCounts)),
13316       BECountUsers(std::move(Arg.BECountUsers)),
13317       ConstantEvolutionLoopExitValue(
13318           std::move(Arg.ConstantEvolutionLoopExitValue)),
13319       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
13320       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
13321       LoopDispositions(std::move(Arg.LoopDispositions)),
13322       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
13323       BlockDispositions(std::move(Arg.BlockDispositions)),
13324       SCEVUsers(std::move(Arg.SCEVUsers)),
13325       UnsignedRanges(std::move(Arg.UnsignedRanges)),
13326       SignedRanges(std::move(Arg.SignedRanges)),
13327       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
13328       UniquePreds(std::move(Arg.UniquePreds)),
13329       SCEVAllocator(std::move(Arg.SCEVAllocator)),
13330       LoopUsers(std::move(Arg.LoopUsers)),
13331       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
13332       FirstUnknown(Arg.FirstUnknown) {
13333   Arg.FirstUnknown = nullptr;
13334 }
13335 
13336 ScalarEvolution::~ScalarEvolution() {
13337   // Iterate through all the SCEVUnknown instances and call their
13338   // destructors, so that they release their references to their values.
13339   for (SCEVUnknown *U = FirstUnknown; U;) {
13340     SCEVUnknown *Tmp = U;
13341     U = U->Next;
13342     Tmp->~SCEVUnknown();
13343   }
13344   FirstUnknown = nullptr;
13345 
13346   ExprValueMap.clear();
13347   ValueExprMap.clear();
13348   HasRecMap.clear();
13349   BackedgeTakenCounts.clear();
13350   PredicatedBackedgeTakenCounts.clear();
13351 
13352   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
13353   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
13354   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
13355   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
13356   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
13357 }
13358 
13359 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
13360   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
13361 }
13362 
13363 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
13364                           const Loop *L) {
13365   // Print all inner loops first
13366   for (Loop *I : *L)
13367     PrintLoopInfo(OS, SE, I);
13368 
13369   OS << "Loop ";
13370   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13371   OS << ": ";
13372 
13373   SmallVector<BasicBlock *, 8> ExitingBlocks;
13374   L->getExitingBlocks(ExitingBlocks);
13375   if (ExitingBlocks.size() != 1)
13376     OS << "<multiple exits> ";
13377 
13378   if (SE->hasLoopInvariantBackedgeTakenCount(L))
13379     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
13380   else
13381     OS << "Unpredictable backedge-taken count.\n";
13382 
13383   if (ExitingBlocks.size() > 1)
13384     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13385       OS << "  exit count for " << ExitingBlock->getName() << ": "
13386          << *SE->getExitCount(L, ExitingBlock) << "\n";
13387     }
13388 
13389   OS << "Loop ";
13390   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13391   OS << ": ";
13392 
13393   auto *ConstantBTC = SE->getConstantMaxBackedgeTakenCount(L);
13394   if (!isa<SCEVCouldNotCompute>(ConstantBTC)) {
13395     OS << "constant max backedge-taken count is " << *ConstantBTC;
13396     if (SE->isBackedgeTakenCountMaxOrZero(L))
13397       OS << ", actual taken count either this or zero.";
13398   } else {
13399     OS << "Unpredictable constant max backedge-taken count. ";
13400   }
13401 
13402   OS << "\n"
13403         "Loop ";
13404   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13405   OS << ": ";
13406 
13407   auto *SymbolicBTC = SE->getSymbolicMaxBackedgeTakenCount(L);
13408   if (!isa<SCEVCouldNotCompute>(SymbolicBTC)) {
13409     OS << "symbolic max backedge-taken count is " << *SymbolicBTC;
13410     if (SE->isBackedgeTakenCountMaxOrZero(L))
13411       OS << ", actual taken count either this or zero.";
13412   } else {
13413     OS << "Unpredictable symbolic max backedge-taken count. ";
13414   }
13415 
13416   OS << "\n";
13417   if (ExitingBlocks.size() > 1)
13418     for (BasicBlock *ExitingBlock : ExitingBlocks) {
13419       OS << "  symbolic max exit count for " << ExitingBlock->getName() << ": "
13420          << *SE->getExitCount(L, ExitingBlock, ScalarEvolution::SymbolicMaximum)
13421          << "\n";
13422     }
13423 
13424   OS << "Loop ";
13425   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13426   OS << ": ";
13427 
13428   SmallVector<const SCEVPredicate *, 4> Preds;
13429   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13430   if (!isa<SCEVCouldNotCompute>(PBT)) {
13431     OS << "Predicated backedge-taken count is " << *PBT << "\n";
13432     OS << " Predicates:\n";
13433     for (const auto *P : Preds)
13434       P->print(OS, 4);
13435   } else {
13436     OS << "Unpredictable predicated backedge-taken count. ";
13437   }
13438   OS << "\n";
13439 
13440   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13441     OS << "Loop ";
13442     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13443     OS << ": ";
13444     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13445   }
13446 }
13447 
13448 namespace llvm {
13449 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::LoopDisposition LD) {
13450   switch (LD) {
13451   case ScalarEvolution::LoopVariant:
13452     OS << "Variant";
13453     break;
13454   case ScalarEvolution::LoopInvariant:
13455     OS << "Invariant";
13456     break;
13457   case ScalarEvolution::LoopComputable:
13458     OS << "Computable";
13459     break;
13460   }
13461   return OS;
13462 }
13463 
13464 raw_ostream &operator<<(raw_ostream &OS, ScalarEvolution::BlockDisposition BD) {
13465   switch (BD) {
13466   case ScalarEvolution::DoesNotDominateBlock:
13467     OS << "DoesNotDominate";
13468     break;
13469   case ScalarEvolution::DominatesBlock:
13470     OS << "Dominates";
13471     break;
13472   case ScalarEvolution::ProperlyDominatesBlock:
13473     OS << "ProperlyDominates";
13474     break;
13475   }
13476   return OS;
13477 }
13478 }
13479 
13480 void ScalarEvolution::print(raw_ostream &OS) const {
13481   // ScalarEvolution's implementation of the print method is to print
13482   // out SCEV values of all instructions that are interesting. Doing
13483   // this potentially causes it to create new SCEV objects though,
13484   // which technically conflicts with the const qualifier. This isn't
13485   // observable from outside the class though, so casting away the
13486   // const isn't dangerous.
13487   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13488 
13489   if (ClassifyExpressions) {
13490     OS << "Classifying expressions for: ";
13491     F.printAsOperand(OS, /*PrintType=*/false);
13492     OS << "\n";
13493     for (Instruction &I : instructions(F))
13494       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13495         OS << I << '\n';
13496         OS << "  -->  ";
13497         const SCEV *SV = SE.getSCEV(&I);
13498         SV->print(OS);
13499         if (!isa<SCEVCouldNotCompute>(SV)) {
13500           OS << " U: ";
13501           SE.getUnsignedRange(SV).print(OS);
13502           OS << " S: ";
13503           SE.getSignedRange(SV).print(OS);
13504         }
13505 
13506         const Loop *L = LI.getLoopFor(I.getParent());
13507 
13508         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13509         if (AtUse != SV) {
13510           OS << "  -->  ";
13511           AtUse->print(OS);
13512           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13513             OS << " U: ";
13514             SE.getUnsignedRange(AtUse).print(OS);
13515             OS << " S: ";
13516             SE.getSignedRange(AtUse).print(OS);
13517           }
13518         }
13519 
13520         if (L) {
13521           OS << "\t\t" "Exits: ";
13522           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13523           if (!SE.isLoopInvariant(ExitValue, L)) {
13524             OS << "<<Unknown>>";
13525           } else {
13526             OS << *ExitValue;
13527           }
13528 
13529           bool First = true;
13530           for (const auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13531             if (First) {
13532               OS << "\t\t" "LoopDispositions: { ";
13533               First = false;
13534             } else {
13535               OS << ", ";
13536             }
13537 
13538             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13539             OS << ": " << SE.getLoopDisposition(SV, Iter);
13540           }
13541 
13542           for (const auto *InnerL : depth_first(L)) {
13543             if (InnerL == L)
13544               continue;
13545             if (First) {
13546               OS << "\t\t" "LoopDispositions: { ";
13547               First = false;
13548             } else {
13549               OS << ", ";
13550             }
13551 
13552             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13553             OS << ": " << SE.getLoopDisposition(SV, InnerL);
13554           }
13555 
13556           OS << " }";
13557         }
13558 
13559         OS << "\n";
13560       }
13561   }
13562 
13563   OS << "Determining loop execution counts for: ";
13564   F.printAsOperand(OS, /*PrintType=*/false);
13565   OS << "\n";
13566   for (Loop *I : LI)
13567     PrintLoopInfo(OS, &SE, I);
13568 }
13569 
13570 ScalarEvolution::LoopDisposition
13571 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13572   auto &Values = LoopDispositions[S];
13573   for (auto &V : Values) {
13574     if (V.getPointer() == L)
13575       return V.getInt();
13576   }
13577   Values.emplace_back(L, LoopVariant);
13578   LoopDisposition D = computeLoopDisposition(S, L);
13579   auto &Values2 = LoopDispositions[S];
13580   for (auto &V : llvm::reverse(Values2)) {
13581     if (V.getPointer() == L) {
13582       V.setInt(D);
13583       break;
13584     }
13585   }
13586   return D;
13587 }
13588 
13589 ScalarEvolution::LoopDisposition
13590 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13591   switch (S->getSCEVType()) {
13592   case scConstant:
13593   case scVScale:
13594     return LoopInvariant;
13595   case scAddRecExpr: {
13596     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13597 
13598     // If L is the addrec's loop, it's computable.
13599     if (AR->getLoop() == L)
13600       return LoopComputable;
13601 
13602     // Add recurrences are never invariant in the function-body (null loop).
13603     if (!L)
13604       return LoopVariant;
13605 
13606     // Everything that is not defined at loop entry is variant.
13607     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13608       return LoopVariant;
13609     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13610            " dominate the contained loop's header?");
13611 
13612     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13613     if (AR->getLoop()->contains(L))
13614       return LoopInvariant;
13615 
13616     // This recurrence is variant w.r.t. L if any of its operands
13617     // are variant.
13618     for (const auto *Op : AR->operands())
13619       if (!isLoopInvariant(Op, L))
13620         return LoopVariant;
13621 
13622     // Otherwise it's loop-invariant.
13623     return LoopInvariant;
13624   }
13625   case scTruncate:
13626   case scZeroExtend:
13627   case scSignExtend:
13628   case scPtrToInt:
13629   case scAddExpr:
13630   case scMulExpr:
13631   case scUDivExpr:
13632   case scUMaxExpr:
13633   case scSMaxExpr:
13634   case scUMinExpr:
13635   case scSMinExpr:
13636   case scSequentialUMinExpr: {
13637     bool HasVarying = false;
13638     for (const auto *Op : S->operands()) {
13639       LoopDisposition D = getLoopDisposition(Op, L);
13640       if (D == LoopVariant)
13641         return LoopVariant;
13642       if (D == LoopComputable)
13643         HasVarying = true;
13644     }
13645     return HasVarying ? LoopComputable : LoopInvariant;
13646   }
13647   case scUnknown:
13648     // All non-instruction values are loop invariant.  All instructions are loop
13649     // invariant if they are not contained in the specified loop.
13650     // Instructions are never considered invariant in the function body
13651     // (null loop) because they are defined within the "loop".
13652     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13653       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13654     return LoopInvariant;
13655   case scCouldNotCompute:
13656     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13657   }
13658   llvm_unreachable("Unknown SCEV kind!");
13659 }
13660 
13661 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13662   return getLoopDisposition(S, L) == LoopInvariant;
13663 }
13664 
13665 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13666   return getLoopDisposition(S, L) == LoopComputable;
13667 }
13668 
13669 ScalarEvolution::BlockDisposition
13670 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13671   auto &Values = BlockDispositions[S];
13672   for (auto &V : Values) {
13673     if (V.getPointer() == BB)
13674       return V.getInt();
13675   }
13676   Values.emplace_back(BB, DoesNotDominateBlock);
13677   BlockDisposition D = computeBlockDisposition(S, BB);
13678   auto &Values2 = BlockDispositions[S];
13679   for (auto &V : llvm::reverse(Values2)) {
13680     if (V.getPointer() == BB) {
13681       V.setInt(D);
13682       break;
13683     }
13684   }
13685   return D;
13686 }
13687 
13688 ScalarEvolution::BlockDisposition
13689 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13690   switch (S->getSCEVType()) {
13691   case scConstant:
13692   case scVScale:
13693     return ProperlyDominatesBlock;
13694   case scAddRecExpr: {
13695     // This uses a "dominates" query instead of "properly dominates" query
13696     // to test for proper dominance too, because the instruction which
13697     // produces the addrec's value is a PHI, and a PHI effectively properly
13698     // dominates its entire containing block.
13699     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13700     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13701       return DoesNotDominateBlock;
13702 
13703     // Fall through into SCEVNAryExpr handling.
13704     [[fallthrough]];
13705   }
13706   case scTruncate:
13707   case scZeroExtend:
13708   case scSignExtend:
13709   case scPtrToInt:
13710   case scAddExpr:
13711   case scMulExpr:
13712   case scUDivExpr:
13713   case scUMaxExpr:
13714   case scSMaxExpr:
13715   case scUMinExpr:
13716   case scSMinExpr:
13717   case scSequentialUMinExpr: {
13718     bool Proper = true;
13719     for (const SCEV *NAryOp : S->operands()) {
13720       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13721       if (D == DoesNotDominateBlock)
13722         return DoesNotDominateBlock;
13723       if (D == DominatesBlock)
13724         Proper = false;
13725     }
13726     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13727   }
13728   case scUnknown:
13729     if (Instruction *I =
13730           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13731       if (I->getParent() == BB)
13732         return DominatesBlock;
13733       if (DT.properlyDominates(I->getParent(), BB))
13734         return ProperlyDominatesBlock;
13735       return DoesNotDominateBlock;
13736     }
13737     return ProperlyDominatesBlock;
13738   case scCouldNotCompute:
13739     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13740   }
13741   llvm_unreachable("Unknown SCEV kind!");
13742 }
13743 
13744 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13745   return getBlockDisposition(S, BB) >= DominatesBlock;
13746 }
13747 
13748 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13749   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13750 }
13751 
13752 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13753   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13754 }
13755 
13756 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13757                                                 bool Predicated) {
13758   auto &BECounts =
13759       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13760   auto It = BECounts.find(L);
13761   if (It != BECounts.end()) {
13762     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13763       for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
13764         if (!isa<SCEVConstant>(S)) {
13765           auto UserIt = BECountUsers.find(S);
13766           assert(UserIt != BECountUsers.end());
13767           UserIt->second.erase({L, Predicated});
13768         }
13769       }
13770     }
13771     BECounts.erase(It);
13772   }
13773 }
13774 
13775 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13776   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13777   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13778 
13779   while (!Worklist.empty()) {
13780     const SCEV *Curr = Worklist.pop_back_val();
13781     auto Users = SCEVUsers.find(Curr);
13782     if (Users != SCEVUsers.end())
13783       for (const auto *User : Users->second)
13784         if (ToForget.insert(User).second)
13785           Worklist.push_back(User);
13786   }
13787 
13788   for (const auto *S : ToForget)
13789     forgetMemoizedResultsImpl(S);
13790 
13791   for (auto I = PredicatedSCEVRewrites.begin();
13792        I != PredicatedSCEVRewrites.end();) {
13793     std::pair<const SCEV *, const Loop *> Entry = I->first;
13794     if (ToForget.count(Entry.first))
13795       PredicatedSCEVRewrites.erase(I++);
13796     else
13797       ++I;
13798   }
13799 }
13800 
13801 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13802   LoopDispositions.erase(S);
13803   BlockDispositions.erase(S);
13804   UnsignedRanges.erase(S);
13805   SignedRanges.erase(S);
13806   HasRecMap.erase(S);
13807   ConstantMultipleCache.erase(S);
13808 
13809   if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) {
13810     UnsignedWrapViaInductionTried.erase(AR);
13811     SignedWrapViaInductionTried.erase(AR);
13812   }
13813 
13814   auto ExprIt = ExprValueMap.find(S);
13815   if (ExprIt != ExprValueMap.end()) {
13816     for (Value *V : ExprIt->second) {
13817       auto ValueIt = ValueExprMap.find_as(V);
13818       if (ValueIt != ValueExprMap.end())
13819         ValueExprMap.erase(ValueIt);
13820     }
13821     ExprValueMap.erase(ExprIt);
13822   }
13823 
13824   auto ScopeIt = ValuesAtScopes.find(S);
13825   if (ScopeIt != ValuesAtScopes.end()) {
13826     for (const auto &Pair : ScopeIt->second)
13827       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13828         erase_value(ValuesAtScopesUsers[Pair.second],
13829                     std::make_pair(Pair.first, S));
13830     ValuesAtScopes.erase(ScopeIt);
13831   }
13832 
13833   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13834   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13835     for (const auto &Pair : ScopeUserIt->second)
13836       erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13837     ValuesAtScopesUsers.erase(ScopeUserIt);
13838   }
13839 
13840   auto BEUsersIt = BECountUsers.find(S);
13841   if (BEUsersIt != BECountUsers.end()) {
13842     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13843     auto Copy = BEUsersIt->second;
13844     for (const auto &Pair : Copy)
13845       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13846     BECountUsers.erase(BEUsersIt);
13847   }
13848 
13849   auto FoldUser = FoldCacheUser.find(S);
13850   if (FoldUser != FoldCacheUser.end())
13851     for (auto &KV : FoldUser->second)
13852       FoldCache.erase(KV);
13853   FoldCacheUser.erase(S);
13854 }
13855 
13856 void
13857 ScalarEvolution::getUsedLoops(const SCEV *S,
13858                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13859   struct FindUsedLoops {
13860     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13861         : LoopsUsed(LoopsUsed) {}
13862     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13863     bool follow(const SCEV *S) {
13864       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13865         LoopsUsed.insert(AR->getLoop());
13866       return true;
13867     }
13868 
13869     bool isDone() const { return false; }
13870   };
13871 
13872   FindUsedLoops F(LoopsUsed);
13873   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13874 }
13875 
13876 void ScalarEvolution::getReachableBlocks(
13877     SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) {
13878   SmallVector<BasicBlock *> Worklist;
13879   Worklist.push_back(&F.getEntryBlock());
13880   while (!Worklist.empty()) {
13881     BasicBlock *BB = Worklist.pop_back_val();
13882     if (!Reachable.insert(BB).second)
13883       continue;
13884 
13885     Value *Cond;
13886     BasicBlock *TrueBB, *FalseBB;
13887     if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB),
13888                                         m_BasicBlock(FalseBB)))) {
13889       if (auto *C = dyn_cast<ConstantInt>(Cond)) {
13890         Worklist.push_back(C->isOne() ? TrueBB : FalseBB);
13891         continue;
13892       }
13893 
13894       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13895         const SCEV *L = getSCEV(Cmp->getOperand(0));
13896         const SCEV *R = getSCEV(Cmp->getOperand(1));
13897         if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) {
13898           Worklist.push_back(TrueBB);
13899           continue;
13900         }
13901         if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L,
13902                                               R)) {
13903           Worklist.push_back(FalseBB);
13904           continue;
13905         }
13906       }
13907     }
13908 
13909     append_range(Worklist, successors(BB));
13910   }
13911 }
13912 
13913 void ScalarEvolution::verify() const {
13914   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13915   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13916 
13917   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13918 
13919   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13920   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13921     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13922 
13923     const SCEV *visitConstant(const SCEVConstant *Constant) {
13924       return SE.getConstant(Constant->getAPInt());
13925     }
13926 
13927     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13928       return SE.getUnknown(Expr->getValue());
13929     }
13930 
13931     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13932       return SE.getCouldNotCompute();
13933     }
13934   };
13935 
13936   SCEVMapper SCM(SE2);
13937   SmallPtrSet<BasicBlock *, 16> ReachableBlocks;
13938   SE2.getReachableBlocks(ReachableBlocks, F);
13939 
13940   auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * {
13941     if (containsUndefs(Old) || containsUndefs(New)) {
13942       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13943       // not propagate undef aggressively).  This means we can (and do) fail
13944       // verification in cases where a transform makes a value go from "undef"
13945       // to "undef+1" (say).  The transform is fine, since in both cases the
13946       // result is "undef", but SCEV thinks the value increased by 1.
13947       return nullptr;
13948     }
13949 
13950     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13951     const SCEV *Delta = SE2.getMinusSCEV(Old, New);
13952     if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta))
13953       return nullptr;
13954 
13955     return Delta;
13956   };
13957 
13958   while (!LoopStack.empty()) {
13959     auto *L = LoopStack.pop_back_val();
13960     llvm::append_range(LoopStack, *L);
13961 
13962     // Only verify BECounts in reachable loops. For an unreachable loop,
13963     // any BECount is legal.
13964     if (!ReachableBlocks.contains(L->getHeader()))
13965       continue;
13966 
13967     // Only verify cached BECounts. Computing new BECounts may change the
13968     // results of subsequent SCEV uses.
13969     auto It = BackedgeTakenCounts.find(L);
13970     if (It == BackedgeTakenCounts.end())
13971       continue;
13972 
13973     auto *CurBECount =
13974         SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this)));
13975     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13976 
13977     if (CurBECount == SE2.getCouldNotCompute() ||
13978         NewBECount == SE2.getCouldNotCompute()) {
13979       // NB! This situation is legal, but is very suspicious -- whatever pass
13980       // change the loop to make a trip count go from could not compute to
13981       // computable or vice-versa *should have* invalidated SCEV.  However, we
13982       // choose not to assert here (for now) since we don't want false
13983       // positives.
13984       continue;
13985     }
13986 
13987     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13988         SE.getTypeSizeInBits(NewBECount->getType()))
13989       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13990     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13991              SE.getTypeSizeInBits(NewBECount->getType()))
13992       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13993 
13994     const SCEV *Delta = GetDelta(CurBECount, NewBECount);
13995     if (Delta && !Delta->isZero()) {
13996       dbgs() << "Trip Count for " << *L << " Changed!\n";
13997       dbgs() << "Old: " << *CurBECount << "\n";
13998       dbgs() << "New: " << *NewBECount << "\n";
13999       dbgs() << "Delta: " << *Delta << "\n";
14000       std::abort();
14001     }
14002   }
14003 
14004   // Collect all valid loops currently in LoopInfo.
14005   SmallPtrSet<Loop *, 32> ValidLoops;
14006   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
14007   while (!Worklist.empty()) {
14008     Loop *L = Worklist.pop_back_val();
14009     if (ValidLoops.insert(L).second)
14010       Worklist.append(L->begin(), L->end());
14011   }
14012   for (const auto &KV : ValueExprMap) {
14013 #ifndef NDEBUG
14014     // Check for SCEV expressions referencing invalid/deleted loops.
14015     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
14016       assert(ValidLoops.contains(AR->getLoop()) &&
14017              "AddRec references invalid loop");
14018     }
14019 #endif
14020 
14021     // Check that the value is also part of the reverse map.
14022     auto It = ExprValueMap.find(KV.second);
14023     if (It == ExprValueMap.end() || !It->second.contains(KV.first)) {
14024       dbgs() << "Value " << *KV.first
14025              << " is in ValueExprMap but not in ExprValueMap\n";
14026       std::abort();
14027     }
14028 
14029     if (auto *I = dyn_cast<Instruction>(&*KV.first)) {
14030       if (!ReachableBlocks.contains(I->getParent()))
14031         continue;
14032       const SCEV *OldSCEV = SCM.visit(KV.second);
14033       const SCEV *NewSCEV = SE2.getSCEV(I);
14034       const SCEV *Delta = GetDelta(OldSCEV, NewSCEV);
14035       if (Delta && !Delta->isZero()) {
14036         dbgs() << "SCEV for value " << *I << " changed!\n"
14037                << "Old: " << *OldSCEV << "\n"
14038                << "New: " << *NewSCEV << "\n"
14039                << "Delta: " << *Delta << "\n";
14040         std::abort();
14041       }
14042     }
14043   }
14044 
14045   for (const auto &KV : ExprValueMap) {
14046     for (Value *V : KV.second) {
14047       auto It = ValueExprMap.find_as(V);
14048       if (It == ValueExprMap.end()) {
14049         dbgs() << "Value " << *V
14050                << " is in ExprValueMap but not in ValueExprMap\n";
14051         std::abort();
14052       }
14053       if (It->second != KV.first) {
14054         dbgs() << "Value " << *V << " mapped to " << *It->second
14055                << " rather than " << *KV.first << "\n";
14056         std::abort();
14057       }
14058     }
14059   }
14060 
14061   // Verify integrity of SCEV users.
14062   for (const auto &S : UniqueSCEVs) {
14063     for (const auto *Op : S.operands()) {
14064       // We do not store dependencies of constants.
14065       if (isa<SCEVConstant>(Op))
14066         continue;
14067       auto It = SCEVUsers.find(Op);
14068       if (It != SCEVUsers.end() && It->second.count(&S))
14069         continue;
14070       dbgs() << "Use of operand  " << *Op << " by user " << S
14071              << " is not being tracked!\n";
14072       std::abort();
14073     }
14074   }
14075 
14076   // Verify integrity of ValuesAtScopes users.
14077   for (const auto &ValueAndVec : ValuesAtScopes) {
14078     const SCEV *Value = ValueAndVec.first;
14079     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
14080       const Loop *L = LoopAndValueAtScope.first;
14081       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
14082       if (!isa<SCEVConstant>(ValueAtScope)) {
14083         auto It = ValuesAtScopesUsers.find(ValueAtScope);
14084         if (It != ValuesAtScopesUsers.end() &&
14085             is_contained(It->second, std::make_pair(L, Value)))
14086           continue;
14087         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14088                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
14089         std::abort();
14090       }
14091     }
14092   }
14093 
14094   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
14095     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
14096     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
14097       const Loop *L = LoopAndValue.first;
14098       const SCEV *Value = LoopAndValue.second;
14099       assert(!isa<SCEVConstant>(Value));
14100       auto It = ValuesAtScopes.find(Value);
14101       if (It != ValuesAtScopes.end() &&
14102           is_contained(It->second, std::make_pair(L, ValueAtScope)))
14103         continue;
14104       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
14105              << *ValueAtScope << " missing in ValuesAtScopes\n";
14106       std::abort();
14107     }
14108   }
14109 
14110   // Verify integrity of BECountUsers.
14111   auto VerifyBECountUsers = [&](bool Predicated) {
14112     auto &BECounts =
14113         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
14114     for (const auto &LoopAndBEInfo : BECounts) {
14115       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
14116         for (const SCEV *S : {ENT.ExactNotTaken, ENT.SymbolicMaxNotTaken}) {
14117           if (!isa<SCEVConstant>(S)) {
14118             auto UserIt = BECountUsers.find(S);
14119             if (UserIt != BECountUsers.end() &&
14120                 UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
14121               continue;
14122             dbgs() << "Value " << *S << " for loop " << *LoopAndBEInfo.first
14123                    << " missing from BECountUsers\n";
14124             std::abort();
14125           }
14126         }
14127       }
14128     }
14129   };
14130   VerifyBECountUsers(/* Predicated */ false);
14131   VerifyBECountUsers(/* Predicated */ true);
14132 
14133   // Verify intergity of loop disposition cache.
14134   for (auto &[S, Values] : LoopDispositions) {
14135     for (auto [Loop, CachedDisposition] : Values) {
14136       const auto RecomputedDisposition = SE2.getLoopDisposition(S, Loop);
14137       if (CachedDisposition != RecomputedDisposition) {
14138         dbgs() << "Cached disposition of " << *S << " for loop " << *Loop
14139                << " is incorrect: cached " << CachedDisposition << ", actual "
14140                << RecomputedDisposition << "\n";
14141         std::abort();
14142       }
14143     }
14144   }
14145 
14146   // Verify integrity of the block disposition cache.
14147   for (auto &[S, Values] : BlockDispositions) {
14148     for (auto [BB, CachedDisposition] : Values) {
14149       const auto RecomputedDisposition = SE2.getBlockDisposition(S, BB);
14150       if (CachedDisposition != RecomputedDisposition) {
14151         dbgs() << "Cached disposition of " << *S << " for block %"
14152                << BB->getName() << " is incorrect: cached " << CachedDisposition
14153                << ", actual " << RecomputedDisposition << "\n";
14154         std::abort();
14155       }
14156     }
14157   }
14158 
14159   // Verify FoldCache/FoldCacheUser caches.
14160   for (auto [FoldID, Expr] : FoldCache) {
14161     auto I = FoldCacheUser.find(Expr);
14162     if (I == FoldCacheUser.end()) {
14163       dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14164              << "!\n";
14165       std::abort();
14166     }
14167     if (!is_contained(I->second, FoldID)) {
14168       dbgs() << "Missing FoldID in cached users of " << *Expr << "!\n";
14169       std::abort();
14170     }
14171   }
14172   for (auto [Expr, IDs] : FoldCacheUser) {
14173     for (auto &FoldID : IDs) {
14174       auto I = FoldCache.find(FoldID);
14175       if (I == FoldCache.end()) {
14176         dbgs() << "Missing entry in FoldCache for expression " << *Expr
14177                << "!\n";
14178         std::abort();
14179       }
14180       if (I->second != Expr) {
14181         dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14182                << *I->second << " != " << *Expr << "!\n";
14183         std::abort();
14184       }
14185     }
14186   }
14187 
14188   // Verify that ConstantMultipleCache computations are correct. We check that
14189   // cached multiples and recomputed multiples are multiples of each other to
14190   // verify correctness. It is possible that a recomputed multiple is different
14191   // from the cached multiple due to strengthened no wrap flags or changes in
14192   // KnownBits computations.
14193   for (auto [S, Multiple] : ConstantMultipleCache) {
14194     APInt RecomputedMultiple = SE2.getConstantMultiple(S);
14195     if ((Multiple != 0 && RecomputedMultiple != 0 &&
14196          Multiple.urem(RecomputedMultiple) != 0 &&
14197          RecomputedMultiple.urem(Multiple) != 0)) {
14198       dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14199              << *S << " : Computed " << RecomputedMultiple
14200              << " but cache contains " << Multiple << "!\n";
14201       std::abort();
14202     }
14203   }
14204 }
14205 
14206 bool ScalarEvolution::invalidate(
14207     Function &F, const PreservedAnalyses &PA,
14208     FunctionAnalysisManager::Invalidator &Inv) {
14209   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14210   // of its dependencies is invalidated.
14211   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
14212   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
14213          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
14214          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
14215          Inv.invalidate<LoopAnalysis>(F, PA);
14216 }
14217 
14218 AnalysisKey ScalarEvolutionAnalysis::Key;
14219 
14220 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
14221                                              FunctionAnalysisManager &AM) {
14222   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
14223   auto &AC = AM.getResult<AssumptionAnalysis>(F);
14224   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
14225   auto &LI = AM.getResult<LoopAnalysis>(F);
14226   return ScalarEvolution(F, TLI, AC, DT, LI);
14227 }
14228 
14229 PreservedAnalyses
14230 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
14231   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
14232   return PreservedAnalyses::all();
14233 }
14234 
14235 PreservedAnalyses
14236 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
14237   // For compatibility with opt's -analyze feature under legacy pass manager
14238   // which was not ported to NPM. This keeps tests using
14239   // update_analyze_test_checks.py working.
14240   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
14241      << F.getName() << "':\n";
14242   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
14243   return PreservedAnalyses::all();
14244 }
14245 
14246 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
14247                       "Scalar Evolution Analysis", false, true)
14248 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
14249 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
14250 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
14251 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
14252 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
14253                     "Scalar Evolution Analysis", false, true)
14254 
14255 char ScalarEvolutionWrapperPass::ID = 0;
14256 
14257 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
14258   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14259 }
14260 
14261 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
14262   SE.reset(new ScalarEvolution(
14263       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
14264       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
14265       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
14266       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
14267   return false;
14268 }
14269 
14270 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
14271 
14272 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
14273   SE->print(OS);
14274 }
14275 
14276 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14277   if (!VerifySCEV)
14278     return;
14279 
14280   SE->verify();
14281 }
14282 
14283 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
14284   AU.setPreservesAll();
14285   AU.addRequiredTransitive<AssumptionCacheTracker>();
14286   AU.addRequiredTransitive<LoopInfoWrapperPass>();
14287   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
14288   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
14289 }
14290 
14291 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
14292                                                         const SCEV *RHS) {
14293   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
14294 }
14295 
14296 const SCEVPredicate *
14297 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
14298                                      const SCEV *LHS, const SCEV *RHS) {
14299   FoldingSetNodeID ID;
14300   assert(LHS->getType() == RHS->getType() &&
14301          "Type mismatch between LHS and RHS");
14302   // Unique this node based on the arguments
14303   ID.AddInteger(SCEVPredicate::P_Compare);
14304   ID.AddInteger(Pred);
14305   ID.AddPointer(LHS);
14306   ID.AddPointer(RHS);
14307   void *IP = nullptr;
14308   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14309     return S;
14310   SCEVComparePredicate *Eq = new (SCEVAllocator)
14311     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
14312   UniquePreds.InsertNode(Eq, IP);
14313   return Eq;
14314 }
14315 
14316 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
14317     const SCEVAddRecExpr *AR,
14318     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14319   FoldingSetNodeID ID;
14320   // Unique this node based on the arguments
14321   ID.AddInteger(SCEVPredicate::P_Wrap);
14322   ID.AddPointer(AR);
14323   ID.AddInteger(AddedFlags);
14324   void *IP = nullptr;
14325   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
14326     return S;
14327   auto *OF = new (SCEVAllocator)
14328       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
14329   UniquePreds.InsertNode(OF, IP);
14330   return OF;
14331 }
14332 
14333 namespace {
14334 
14335 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
14336 public:
14337 
14338   /// Rewrites \p S in the context of a loop L and the SCEV predication
14339   /// infrastructure.
14340   ///
14341   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14342   /// equivalences present in \p Pred.
14343   ///
14344   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14345   /// \p NewPreds such that the result will be an AddRecExpr.
14346   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
14347                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14348                              const SCEVPredicate *Pred) {
14349     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
14350     return Rewriter.visit(S);
14351   }
14352 
14353   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14354     if (Pred) {
14355       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
14356         for (const auto *Pred : U->getPredicates())
14357           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
14358             if (IPred->getLHS() == Expr &&
14359                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
14360               return IPred->getRHS();
14361       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
14362         if (IPred->getLHS() == Expr &&
14363             IPred->getPredicate() == ICmpInst::ICMP_EQ)
14364           return IPred->getRHS();
14365       }
14366     }
14367     return convertToAddRecWithPreds(Expr);
14368   }
14369 
14370   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14371     const SCEV *Operand = visit(Expr->getOperand());
14372     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14373     if (AR && AR->getLoop() == L && AR->isAffine()) {
14374       // This couldn't be folded because the operand didn't have the nuw
14375       // flag. Add the nusw flag as an assumption that we could make.
14376       const SCEV *Step = AR->getStepRecurrence(SE);
14377       Type *Ty = Expr->getType();
14378       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
14379         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
14380                                 SE.getSignExtendExpr(Step, Ty), L,
14381                                 AR->getNoWrapFlags());
14382     }
14383     return SE.getZeroExtendExpr(Operand, Expr->getType());
14384   }
14385 
14386   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14387     const SCEV *Operand = visit(Expr->getOperand());
14388     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
14389     if (AR && AR->getLoop() == L && AR->isAffine()) {
14390       // This couldn't be folded because the operand didn't have the nsw
14391       // flag. Add the nssw flag as an assumption that we could make.
14392       const SCEV *Step = AR->getStepRecurrence(SE);
14393       Type *Ty = Expr->getType();
14394       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
14395         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
14396                                 SE.getSignExtendExpr(Step, Ty), L,
14397                                 AR->getNoWrapFlags());
14398     }
14399     return SE.getSignExtendExpr(Operand, Expr->getType());
14400   }
14401 
14402 private:
14403   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
14404                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
14405                         const SCEVPredicate *Pred)
14406       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
14407 
14408   bool addOverflowAssumption(const SCEVPredicate *P) {
14409     if (!NewPreds) {
14410       // Check if we've already made this assumption.
14411       return Pred && Pred->implies(P);
14412     }
14413     NewPreds->insert(P);
14414     return true;
14415   }
14416 
14417   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
14418                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
14419     auto *A = SE.getWrapPredicate(AR, AddedFlags);
14420     return addOverflowAssumption(A);
14421   }
14422 
14423   // If \p Expr represents a PHINode, we try to see if it can be represented
14424   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14425   // to add this predicate as a runtime overflow check, we return the AddRec.
14426   // If \p Expr does not meet these conditions (is not a PHI node, or we
14427   // couldn't create an AddRec for it, or couldn't add the predicate), we just
14428   // return \p Expr.
14429   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
14430     if (!isa<PHINode>(Expr->getValue()))
14431       return Expr;
14432     std::optional<
14433         std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
14434         PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
14435     if (!PredicatedRewrite)
14436       return Expr;
14437     for (const auto *P : PredicatedRewrite->second){
14438       // Wrap predicates from outer loops are not supported.
14439       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
14440         if (L != WP->getExpr()->getLoop())
14441           return Expr;
14442       }
14443       if (!addOverflowAssumption(P))
14444         return Expr;
14445     }
14446     return PredicatedRewrite->first;
14447   }
14448 
14449   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
14450   const SCEVPredicate *Pred;
14451   const Loop *L;
14452 };
14453 
14454 } // end anonymous namespace
14455 
14456 const SCEV *
14457 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
14458                                        const SCEVPredicate &Preds) {
14459   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
14460 }
14461 
14462 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
14463     const SCEV *S, const Loop *L,
14464     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
14465   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
14466   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
14467   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
14468 
14469   if (!AddRec)
14470     return nullptr;
14471 
14472   // Since the transformation was successful, we can now transfer the SCEV
14473   // predicates.
14474   for (const auto *P : TransformPreds)
14475     Preds.insert(P);
14476 
14477   return AddRec;
14478 }
14479 
14480 /// SCEV predicates
14481 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
14482                              SCEVPredicateKind Kind)
14483     : FastID(ID), Kind(Kind) {}
14484 
14485 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
14486                                    const ICmpInst::Predicate Pred,
14487                                    const SCEV *LHS, const SCEV *RHS)
14488   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
14489   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
14490   assert(LHS != RHS && "LHS and RHS are the same SCEV");
14491 }
14492 
14493 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
14494   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
14495 
14496   if (!Op)
14497     return false;
14498 
14499   if (Pred != ICmpInst::ICMP_EQ)
14500     return false;
14501 
14502   return Op->LHS == LHS && Op->RHS == RHS;
14503 }
14504 
14505 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14506 
14507 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
14508   if (Pred == ICmpInst::ICMP_EQ)
14509     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
14510   else
14511     OS.indent(Depth) << "Compare predicate: " << *LHS << " " << Pred << ") "
14512                      << *RHS << "\n";
14513 
14514 }
14515 
14516 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
14517                                      const SCEVAddRecExpr *AR,
14518                                      IncrementWrapFlags Flags)
14519     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
14520 
14521 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
14522 
14523 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
14524   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
14525 
14526   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
14527 }
14528 
14529 bool SCEVWrapPredicate::isAlwaysTrue() const {
14530   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
14531   IncrementWrapFlags IFlags = Flags;
14532 
14533   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
14534     IFlags = clearFlags(IFlags, IncrementNSSW);
14535 
14536   return IFlags == IncrementAnyWrap;
14537 }
14538 
14539 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
14540   OS.indent(Depth) << *getExpr() << " Added Flags: ";
14541   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
14542     OS << "<nusw>";
14543   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
14544     OS << "<nssw>";
14545   OS << "\n";
14546 }
14547 
14548 SCEVWrapPredicate::IncrementWrapFlags
14549 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
14550                                    ScalarEvolution &SE) {
14551   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
14552   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
14553 
14554   // We can safely transfer the NSW flag as NSSW.
14555   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
14556     ImpliedFlags = IncrementNSSW;
14557 
14558   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
14559     // If the increment is positive, the SCEV NUW flag will also imply the
14560     // WrapPredicate NUSW flag.
14561     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14562       if (Step->getValue()->getValue().isNonNegative())
14563         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14564   }
14565 
14566   return ImpliedFlags;
14567 }
14568 
14569 /// Union predicates don't get cached so create a dummy set ID for it.
14570 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14571   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14572   for (const auto *P : Preds)
14573     add(P);
14574 }
14575 
14576 bool SCEVUnionPredicate::isAlwaysTrue() const {
14577   return all_of(Preds,
14578                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14579 }
14580 
14581 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14582   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14583     return all_of(Set->Preds,
14584                   [this](const SCEVPredicate *I) { return this->implies(I); });
14585 
14586   return any_of(Preds,
14587                 [N](const SCEVPredicate *I) { return I->implies(N); });
14588 }
14589 
14590 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14591   for (const auto *Pred : Preds)
14592     Pred->print(OS, Depth);
14593 }
14594 
14595 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14596   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14597     for (const auto *Pred : Set->Preds)
14598       add(Pred);
14599     return;
14600   }
14601 
14602   Preds.push_back(N);
14603 }
14604 
14605 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14606                                                      Loop &L)
14607     : SE(SE), L(L) {
14608   SmallVector<const SCEVPredicate*, 4> Empty;
14609   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14610 }
14611 
14612 void ScalarEvolution::registerUser(const SCEV *User,
14613                                    ArrayRef<const SCEV *> Ops) {
14614   for (const auto *Op : Ops)
14615     // We do not expect that forgetting cached data for SCEVConstants will ever
14616     // open any prospects for sharpening or introduce any correctness issues,
14617     // so we don't bother storing their dependencies.
14618     if (!isa<SCEVConstant>(Op))
14619       SCEVUsers[Op].insert(User);
14620 }
14621 
14622 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14623   const SCEV *Expr = SE.getSCEV(V);
14624   RewriteEntry &Entry = RewriteMap[Expr];
14625 
14626   // If we already have an entry and the version matches, return it.
14627   if (Entry.second && Generation == Entry.first)
14628     return Entry.second;
14629 
14630   // We found an entry but it's stale. Rewrite the stale entry
14631   // according to the current predicate.
14632   if (Entry.second)
14633     Expr = Entry.second;
14634 
14635   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14636   Entry = {Generation, NewSCEV};
14637 
14638   return NewSCEV;
14639 }
14640 
14641 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14642   if (!BackedgeCount) {
14643     SmallVector<const SCEVPredicate *, 4> Preds;
14644     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14645     for (const auto *P : Preds)
14646       addPredicate(*P);
14647   }
14648   return BackedgeCount;
14649 }
14650 
14651 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14652   if (Preds->implies(&Pred))
14653     return;
14654 
14655   auto &OldPreds = Preds->getPredicates();
14656   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14657   NewPreds.push_back(&Pred);
14658   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14659   updateGeneration();
14660 }
14661 
14662 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14663   return *Preds;
14664 }
14665 
14666 void PredicatedScalarEvolution::updateGeneration() {
14667   // If the generation number wrapped recompute everything.
14668   if (++Generation == 0) {
14669     for (auto &II : RewriteMap) {
14670       const SCEV *Rewritten = II.second.second;
14671       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14672     }
14673   }
14674 }
14675 
14676 void PredicatedScalarEvolution::setNoOverflow(
14677     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14678   const SCEV *Expr = getSCEV(V);
14679   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14680 
14681   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14682 
14683   // Clear the statically implied flags.
14684   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14685   addPredicate(*SE.getWrapPredicate(AR, Flags));
14686 
14687   auto II = FlagsMap.insert({V, Flags});
14688   if (!II.second)
14689     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14690 }
14691 
14692 bool PredicatedScalarEvolution::hasNoOverflow(
14693     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14694   const SCEV *Expr = getSCEV(V);
14695   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14696 
14697   Flags = SCEVWrapPredicate::clearFlags(
14698       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14699 
14700   auto II = FlagsMap.find(V);
14701 
14702   if (II != FlagsMap.end())
14703     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14704 
14705   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14706 }
14707 
14708 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14709   const SCEV *Expr = this->getSCEV(V);
14710   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14711   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14712 
14713   if (!New)
14714     return nullptr;
14715 
14716   for (const auto *P : NewPreds)
14717     addPredicate(*P);
14718 
14719   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14720   return New;
14721 }
14722 
14723 PredicatedScalarEvolution::PredicatedScalarEvolution(
14724     const PredicatedScalarEvolution &Init)
14725   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14726     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14727     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14728   for (auto I : Init.FlagsMap)
14729     FlagsMap.insert(I);
14730 }
14731 
14732 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14733   // For each block.
14734   for (auto *BB : L.getBlocks())
14735     for (auto &I : *BB) {
14736       if (!SE.isSCEVable(I.getType()))
14737         continue;
14738 
14739       auto *Expr = SE.getSCEV(&I);
14740       auto II = RewriteMap.find(Expr);
14741 
14742       if (II == RewriteMap.end())
14743         continue;
14744 
14745       // Don't print things that are not interesting.
14746       if (II->second.second == Expr)
14747         continue;
14748 
14749       OS.indent(Depth) << "[PSE]" << I << ":\n";
14750       OS.indent(Depth + 2) << *Expr << "\n";
14751       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14752     }
14753 }
14754 
14755 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14756 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14757 // for URem with constant power-of-2 second operands.
14758 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14759 // 4, A / B becomes X / 8).
14760 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14761                                 const SCEV *&RHS) {
14762   // Try to match 'zext (trunc A to iB) to iY', which is used
14763   // for URem with constant power-of-2 second operands. Make sure the size of
14764   // the operand A matches the size of the whole expressions.
14765   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14766     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14767       LHS = Trunc->getOperand();
14768       // Bail out if the type of the LHS is larger than the type of the
14769       // expression for now.
14770       if (getTypeSizeInBits(LHS->getType()) >
14771           getTypeSizeInBits(Expr->getType()))
14772         return false;
14773       if (LHS->getType() != Expr->getType())
14774         LHS = getZeroExtendExpr(LHS, Expr->getType());
14775       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14776                         << getTypeSizeInBits(Trunc->getType()));
14777       return true;
14778     }
14779   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14780   if (Add == nullptr || Add->getNumOperands() != 2)
14781     return false;
14782 
14783   const SCEV *A = Add->getOperand(1);
14784   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14785 
14786   if (Mul == nullptr)
14787     return false;
14788 
14789   const auto MatchURemWithDivisor = [&](const SCEV *B) {
14790     // (SomeExpr + (-(SomeExpr / B) * B)).
14791     if (Expr == getURemExpr(A, B)) {
14792       LHS = A;
14793       RHS = B;
14794       return true;
14795     }
14796     return false;
14797   };
14798 
14799   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14800   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14801     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14802            MatchURemWithDivisor(Mul->getOperand(2));
14803 
14804   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14805   if (Mul->getNumOperands() == 2)
14806     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14807            MatchURemWithDivisor(Mul->getOperand(0)) ||
14808            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14809            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14810   return false;
14811 }
14812 
14813 const SCEV *
14814 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14815   SmallVector<BasicBlock*, 16> ExitingBlocks;
14816   L->getExitingBlocks(ExitingBlocks);
14817 
14818   // Form an expression for the maximum exit count possible for this loop. We
14819   // merge the max and exact information to approximate a version of
14820   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14821   SmallVector<const SCEV*, 4> ExitCounts;
14822   for (BasicBlock *ExitingBB : ExitingBlocks) {
14823     const SCEV *ExitCount =
14824         getExitCount(L, ExitingBB, ScalarEvolution::SymbolicMaximum);
14825     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14826       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14827              "We should only have known counts for exiting blocks that "
14828              "dominate latch!");
14829       ExitCounts.push_back(ExitCount);
14830     }
14831   }
14832   if (ExitCounts.empty())
14833     return getCouldNotCompute();
14834   return getUMinFromMismatchedTypes(ExitCounts, /*Sequential*/ true);
14835 }
14836 
14837 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14838 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14839 /// replacement is loop invariant in the loop of the AddRec.
14840 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14841   const DenseMap<const SCEV *, const SCEV *> &Map;
14842 
14843 public:
14844   SCEVLoopGuardRewriter(ScalarEvolution &SE,
14845                         DenseMap<const SCEV *, const SCEV *> &M)
14846       : SCEVRewriteVisitor(SE), Map(M) {}
14847 
14848   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14849 
14850   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14851     auto I = Map.find(Expr);
14852     if (I == Map.end())
14853       return Expr;
14854     return I->second;
14855   }
14856 
14857   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14858     auto I = Map.find(Expr);
14859     if (I == Map.end()) {
14860       // If we didn't find the extact ZExt expr in the map, check if there's an
14861       // entry for a smaller ZExt we can use instead.
14862       Type *Ty = Expr->getType();
14863       const SCEV *Op = Expr->getOperand(0);
14864       unsigned Bitwidth = Ty->getScalarSizeInBits() / 2;
14865       while (Bitwidth % 8 == 0 && Bitwidth >= 8 &&
14866              Bitwidth > Op->getType()->getScalarSizeInBits()) {
14867         Type *NarrowTy = IntegerType::get(SE.getContext(), Bitwidth);
14868         auto *NarrowExt = SE.getZeroExtendExpr(Op, NarrowTy);
14869         auto I = Map.find(NarrowExt);
14870         if (I != Map.end())
14871           return SE.getZeroExtendExpr(I->second, Ty);
14872         Bitwidth = Bitwidth / 2;
14873       }
14874 
14875       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14876           Expr);
14877     }
14878     return I->second;
14879   }
14880 
14881   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
14882     auto I = Map.find(Expr);
14883     if (I == Map.end())
14884       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSignExtendExpr(
14885           Expr);
14886     return I->second;
14887   }
14888 
14889   const SCEV *visitUMinExpr(const SCEVUMinExpr *Expr) {
14890     auto I = Map.find(Expr);
14891     if (I == Map.end())
14892       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitUMinExpr(Expr);
14893     return I->second;
14894   }
14895 
14896   const SCEV *visitSMinExpr(const SCEVSMinExpr *Expr) {
14897     auto I = Map.find(Expr);
14898     if (I == Map.end())
14899       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitSMinExpr(Expr);
14900     return I->second;
14901   }
14902 };
14903 
14904 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14905   SmallVector<const SCEV *> ExprsToRewrite;
14906   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14907                               const SCEV *RHS,
14908                               DenseMap<const SCEV *, const SCEV *>
14909                                   &RewriteMap) {
14910     // WARNING: It is generally unsound to apply any wrap flags to the proposed
14911     // replacement SCEV which isn't directly implied by the structure of that
14912     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
14913     // legal.  See the scoping rules for flags in the header to understand why.
14914 
14915     // If LHS is a constant, apply information to the other expression.
14916     if (isa<SCEVConstant>(LHS)) {
14917       std::swap(LHS, RHS);
14918       Predicate = CmpInst::getSwappedPredicate(Predicate);
14919     }
14920 
14921     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
14922     // create this form when combining two checks of the form (X u< C2 + C1) and
14923     // (X >=u C1).
14924     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14925                                  &ExprsToRewrite]() {
14926       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14927       if (!AddExpr || AddExpr->getNumOperands() != 2)
14928         return false;
14929 
14930       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14931       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14932       auto *C2 = dyn_cast<SCEVConstant>(RHS);
14933       if (!C1 || !C2 || !LHSUnknown)
14934         return false;
14935 
14936       auto ExactRegion =
14937           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14938               .sub(C1->getAPInt());
14939 
14940       // Bail out, unless we have a non-wrapping, monotonic range.
14941       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
14942         return false;
14943       auto I = RewriteMap.find(LHSUnknown);
14944       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
14945       RewriteMap[LHSUnknown] = getUMaxExpr(
14946           getConstant(ExactRegion.getUnsignedMin()),
14947           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
14948       ExprsToRewrite.push_back(LHSUnknown);
14949       return true;
14950     };
14951     if (MatchRangeCheckIdiom())
14952       return;
14953 
14954     // Return true if \p Expr is a MinMax SCEV expression with a non-negative
14955     // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
14956     // the non-constant operand and in \p LHS the constant operand.
14957     auto IsMinMaxSCEVWithNonNegativeConstant =
14958         [&](const SCEV *Expr, SCEVTypes &SCTy, const SCEV *&LHS,
14959             const SCEV *&RHS) {
14960           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr)) {
14961             if (MinMax->getNumOperands() != 2)
14962               return false;
14963             if (auto *C = dyn_cast<SCEVConstant>(MinMax->getOperand(0))) {
14964               if (C->getAPInt().isNegative())
14965                 return false;
14966               SCTy = MinMax->getSCEVType();
14967               LHS = MinMax->getOperand(0);
14968               RHS = MinMax->getOperand(1);
14969               return true;
14970             }
14971           }
14972           return false;
14973         };
14974 
14975     // Checks whether Expr is a non-negative constant, and Divisor is a positive
14976     // constant, and returns their APInt in ExprVal and in DivisorVal.
14977     auto GetNonNegExprAndPosDivisor = [&](const SCEV *Expr, const SCEV *Divisor,
14978                                           APInt &ExprVal, APInt &DivisorVal) {
14979       auto *ConstExpr = dyn_cast<SCEVConstant>(Expr);
14980       auto *ConstDivisor = dyn_cast<SCEVConstant>(Divisor);
14981       if (!ConstExpr || !ConstDivisor)
14982         return false;
14983       ExprVal = ConstExpr->getAPInt();
14984       DivisorVal = ConstDivisor->getAPInt();
14985       return ExprVal.isNonNegative() && !DivisorVal.isNonPositive();
14986     };
14987 
14988     // Return a new SCEV that modifies \p Expr to the closest number divides by
14989     // \p Divisor and greater or equal than Expr.
14990     // For now, only handle constant Expr and Divisor.
14991     auto GetNextSCEVDividesByDivisor = [&](const SCEV *Expr,
14992                                            const SCEV *Divisor) {
14993       APInt ExprVal;
14994       APInt DivisorVal;
14995       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
14996         return Expr;
14997       APInt Rem = ExprVal.urem(DivisorVal);
14998       if (!Rem.isZero())
14999         // return the SCEV: Expr + Divisor - Expr % Divisor
15000         return getConstant(ExprVal + DivisorVal - Rem);
15001       return Expr;
15002     };
15003 
15004     // Return a new SCEV that modifies \p Expr to the closest number divides by
15005     // \p Divisor and less or equal than Expr.
15006     // For now, only handle constant Expr and Divisor.
15007     auto GetPreviousSCEVDividesByDivisor = [&](const SCEV *Expr,
15008                                                const SCEV *Divisor) {
15009       APInt ExprVal;
15010       APInt DivisorVal;
15011       if (!GetNonNegExprAndPosDivisor(Expr, Divisor, ExprVal, DivisorVal))
15012         return Expr;
15013       APInt Rem = ExprVal.urem(DivisorVal);
15014       // return the SCEV: Expr - Expr % Divisor
15015       return getConstant(ExprVal - Rem);
15016     };
15017 
15018     // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15019     // recursively. This is done by aligning up/down the constant value to the
15020     // Divisor.
15021     std::function<const SCEV *(const SCEV *, const SCEV *)>
15022         ApplyDivisibiltyOnMinMaxExpr = [&](const SCEV *MinMaxExpr,
15023                                            const SCEV *Divisor) {
15024           const SCEV *MinMaxLHS = nullptr, *MinMaxRHS = nullptr;
15025           SCEVTypes SCTy;
15026           if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr, SCTy, MinMaxLHS,
15027                                                    MinMaxRHS))
15028             return MinMaxExpr;
15029           auto IsMin =
15030               isa<SCEVSMinExpr>(MinMaxExpr) || isa<SCEVUMinExpr>(MinMaxExpr);
15031           assert(isKnownNonNegative(MinMaxLHS) &&
15032                  "Expected non-negative operand!");
15033           auto *DivisibleExpr =
15034               IsMin ? GetPreviousSCEVDividesByDivisor(MinMaxLHS, Divisor)
15035                     : GetNextSCEVDividesByDivisor(MinMaxLHS, Divisor);
15036           SmallVector<const SCEV *> Ops = {
15037               ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS, Divisor), DivisibleExpr};
15038           return getMinMaxExpr(SCTy, Ops);
15039         };
15040 
15041     // If we have LHS == 0, check if LHS is computing a property of some unknown
15042     // SCEV %v which we can rewrite %v to express explicitly.
15043     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
15044     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
15045         RHSC->getValue()->isNullValue()) {
15046       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15047       // explicitly express that.
15048       const SCEV *URemLHS = nullptr;
15049       const SCEV *URemRHS = nullptr;
15050       if (matchURem(LHS, URemLHS, URemRHS)) {
15051         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
15052           auto I = RewriteMap.find(LHSUnknown);
15053           const SCEV *RewrittenLHS =
15054               I != RewriteMap.end() ? I->second : LHSUnknown;
15055           RewrittenLHS = ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS, URemRHS);
15056           const auto *Multiple =
15057               getMulExpr(getUDivExpr(RewrittenLHS, URemRHS), URemRHS);
15058           RewriteMap[LHSUnknown] = Multiple;
15059           ExprsToRewrite.push_back(LHSUnknown);
15060           return;
15061         }
15062       }
15063     }
15064 
15065     // Do not apply information for constants or if RHS contains an AddRec.
15066     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
15067       return;
15068 
15069     // If RHS is SCEVUnknown, make sure the information is applied to it.
15070     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
15071       std::swap(LHS, RHS);
15072       Predicate = CmpInst::getSwappedPredicate(Predicate);
15073     }
15074 
15075     // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15076     // and \p FromRewritten are the same (i.e. there has been no rewrite
15077     // registered for \p From), then puts this value in the list of rewritten
15078     // expressions.
15079     auto AddRewrite = [&](const SCEV *From, const SCEV *FromRewritten,
15080                           const SCEV *To) {
15081       if (From == FromRewritten)
15082         ExprsToRewrite.push_back(From);
15083       RewriteMap[From] = To;
15084     };
15085 
15086     // Checks whether \p S has already been rewritten. In that case returns the
15087     // existing rewrite because we want to chain further rewrites onto the
15088     // already rewritten value. Otherwise returns \p S.
15089     auto GetMaybeRewritten = [&](const SCEV *S) {
15090       auto I = RewriteMap.find(S);
15091       return I != RewriteMap.end() ? I->second : S;
15092     };
15093 
15094     // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15095     // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15096     // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15097     // /u B) * B was found, and return the divisor B in \p DividesBy. For
15098     // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15099     // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15100     // DividesBy.
15101     std::function<bool(const SCEV *, const SCEV *&)> HasDivisibiltyInfo =
15102         [&](const SCEV *Expr, const SCEV *&DividesBy) {
15103           if (auto *Mul = dyn_cast<SCEVMulExpr>(Expr)) {
15104             if (Mul->getNumOperands() != 2)
15105               return false;
15106             auto *MulLHS = Mul->getOperand(0);
15107             auto *MulRHS = Mul->getOperand(1);
15108             if (isa<SCEVConstant>(MulLHS))
15109               std::swap(MulLHS, MulRHS);
15110             if (auto *Div = dyn_cast<SCEVUDivExpr>(MulLHS))
15111               if (Div->getOperand(1) == MulRHS) {
15112                 DividesBy = MulRHS;
15113                 return true;
15114               }
15115           }
15116           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15117             return HasDivisibiltyInfo(MinMax->getOperand(0), DividesBy) ||
15118                    HasDivisibiltyInfo(MinMax->getOperand(1), DividesBy);
15119           return false;
15120         };
15121 
15122     // Return true if Expr known to divide by \p DividesBy.
15123     std::function<bool(const SCEV *, const SCEV *&)> IsKnownToDivideBy =
15124         [&](const SCEV *Expr, const SCEV *DividesBy) {
15125           if (getURemExpr(Expr, DividesBy)->isZero())
15126             return true;
15127           if (auto *MinMax = dyn_cast<SCEVMinMaxExpr>(Expr))
15128             return IsKnownToDivideBy(MinMax->getOperand(0), DividesBy) &&
15129                    IsKnownToDivideBy(MinMax->getOperand(1), DividesBy);
15130           return false;
15131         };
15132 
15133     const SCEV *RewrittenLHS = GetMaybeRewritten(LHS);
15134     const SCEV *DividesBy = nullptr;
15135     if (HasDivisibiltyInfo(RewrittenLHS, DividesBy))
15136       // Check that the whole expression is divided by DividesBy
15137       DividesBy =
15138           IsKnownToDivideBy(RewrittenLHS, DividesBy) ? DividesBy : nullptr;
15139 
15140     // Collect rewrites for LHS and its transitive operands based on the
15141     // condition.
15142     // For min/max expressions, also apply the guard to its operands:
15143     //  'min(a, b) >= c'   ->   '(a >= c) and (b >= c)',
15144     //  'min(a, b) >  c'   ->   '(a >  c) and (b >  c)',
15145     //  'max(a, b) <= c'   ->   '(a <= c) and (b <= c)',
15146     //  'max(a, b) <  c'   ->   '(a <  c) and (b <  c)'.
15147 
15148     // We cannot express strict predicates in SCEV, so instead we replace them
15149     // with non-strict ones against plus or minus one of RHS depending on the
15150     // predicate.
15151     const SCEV *One = getOne(RHS->getType());
15152     switch (Predicate) {
15153       case CmpInst::ICMP_ULT:
15154         if (RHS->getType()->isPointerTy())
15155           return;
15156         RHS = getUMaxExpr(RHS, One);
15157         [[fallthrough]];
15158       case CmpInst::ICMP_SLT: {
15159         RHS = getMinusSCEV(RHS, One);
15160         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15161         break;
15162       }
15163       case CmpInst::ICMP_UGT:
15164       case CmpInst::ICMP_SGT:
15165         RHS = getAddExpr(RHS, One);
15166         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15167         break;
15168       case CmpInst::ICMP_ULE:
15169       case CmpInst::ICMP_SLE:
15170         RHS = DividesBy ? GetPreviousSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15171         break;
15172       case CmpInst::ICMP_UGE:
15173       case CmpInst::ICMP_SGE:
15174         RHS = DividesBy ? GetNextSCEVDividesByDivisor(RHS, DividesBy) : RHS;
15175         break;
15176       default:
15177         break;
15178     }
15179 
15180     SmallVector<const SCEV *, 16> Worklist(1, LHS);
15181     SmallPtrSet<const SCEV *, 16> Visited;
15182 
15183     auto EnqueueOperands = [&Worklist](const SCEVNAryExpr *S) {
15184       append_range(Worklist, S->operands());
15185     };
15186 
15187     while (!Worklist.empty()) {
15188       const SCEV *From = Worklist.pop_back_val();
15189       if (isa<SCEVConstant>(From))
15190         continue;
15191       if (!Visited.insert(From).second)
15192         continue;
15193       const SCEV *FromRewritten = GetMaybeRewritten(From);
15194       const SCEV *To = nullptr;
15195 
15196       switch (Predicate) {
15197       case CmpInst::ICMP_ULT:
15198       case CmpInst::ICMP_ULE:
15199         To = getUMinExpr(FromRewritten, RHS);
15200         if (auto *UMax = dyn_cast<SCEVUMaxExpr>(FromRewritten))
15201           EnqueueOperands(UMax);
15202         break;
15203       case CmpInst::ICMP_SLT:
15204       case CmpInst::ICMP_SLE:
15205         To = getSMinExpr(FromRewritten, RHS);
15206         if (auto *SMax = dyn_cast<SCEVSMaxExpr>(FromRewritten))
15207           EnqueueOperands(SMax);
15208         break;
15209       case CmpInst::ICMP_UGT:
15210       case CmpInst::ICMP_UGE:
15211         To = getUMaxExpr(FromRewritten, RHS);
15212         if (auto *UMin = dyn_cast<SCEVUMinExpr>(FromRewritten))
15213           EnqueueOperands(UMin);
15214         break;
15215       case CmpInst::ICMP_SGT:
15216       case CmpInst::ICMP_SGE:
15217         To = getSMaxExpr(FromRewritten, RHS);
15218         if (auto *SMin = dyn_cast<SCEVSMinExpr>(FromRewritten))
15219           EnqueueOperands(SMin);
15220         break;
15221       case CmpInst::ICMP_EQ:
15222         if (isa<SCEVConstant>(RHS))
15223           To = RHS;
15224         break;
15225       case CmpInst::ICMP_NE:
15226         if (isa<SCEVConstant>(RHS) &&
15227             cast<SCEVConstant>(RHS)->getValue()->isNullValue()) {
15228           const SCEV *OneAlignedUp =
15229               DividesBy ? GetNextSCEVDividesByDivisor(One, DividesBy) : One;
15230           To = getUMaxExpr(FromRewritten, OneAlignedUp);
15231         }
15232         break;
15233       default:
15234         break;
15235       }
15236 
15237       if (To)
15238         AddRewrite(From, FromRewritten, To);
15239     }
15240   };
15241 
15242   BasicBlock *Header = L->getHeader();
15243   SmallVector<PointerIntPair<Value *, 1, bool>> Terms;
15244   // First, collect information from assumptions dominating the loop.
15245   for (auto &AssumeVH : AC.assumptions()) {
15246     if (!AssumeVH)
15247       continue;
15248     auto *AssumeI = cast<CallInst>(AssumeVH);
15249     if (!DT.dominates(AssumeI, Header))
15250       continue;
15251     Terms.emplace_back(AssumeI->getOperand(0), true);
15252   }
15253 
15254   // Second, collect information from llvm.experimental.guards dominating the loop.
15255   auto *GuardDecl = F.getParent()->getFunction(
15256       Intrinsic::getName(Intrinsic::experimental_guard));
15257   if (GuardDecl)
15258     for (const auto *GU : GuardDecl->users())
15259       if (const auto *Guard = dyn_cast<IntrinsicInst>(GU))
15260         if (Guard->getFunction() == Header->getParent() && DT.dominates(Guard, Header))
15261           Terms.emplace_back(Guard->getArgOperand(0), true);
15262 
15263   // Third, collect conditions from dominating branches. Starting at the loop
15264   // predecessor, climb up the predecessor chain, as long as there are
15265   // predecessors that can be found that have unique successors leading to the
15266   // original header.
15267   // TODO: share this logic with isLoopEntryGuardedByCond.
15268   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
15269            L->getLoopPredecessor(), Header);
15270        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
15271 
15272     const BranchInst *LoopEntryPredicate =
15273         dyn_cast<BranchInst>(Pair.first->getTerminator());
15274     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
15275       continue;
15276 
15277     Terms.emplace_back(LoopEntryPredicate->getCondition(),
15278                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
15279   }
15280 
15281   // Now apply the information from the collected conditions to RewriteMap.
15282   // Conditions are processed in reverse order, so the earliest conditions is
15283   // processed first. This ensures the SCEVs with the shortest dependency chains
15284   // are constructed first.
15285   DenseMap<const SCEV *, const SCEV *> RewriteMap;
15286   for (auto [Term, EnterIfTrue] : reverse(Terms)) {
15287     SmallVector<Value *, 8> Worklist;
15288     SmallPtrSet<Value *, 8> Visited;
15289     Worklist.push_back(Term);
15290     while (!Worklist.empty()) {
15291       Value *Cond = Worklist.pop_back_val();
15292       if (!Visited.insert(Cond).second)
15293         continue;
15294 
15295       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
15296         auto Predicate =
15297             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
15298         const auto *LHS = getSCEV(Cmp->getOperand(0));
15299         const auto *RHS = getSCEV(Cmp->getOperand(1));
15300         CollectCondition(Predicate, LHS, RHS, RewriteMap);
15301         continue;
15302       }
15303 
15304       Value *L, *R;
15305       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
15306                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
15307         Worklist.push_back(L);
15308         Worklist.push_back(R);
15309       }
15310     }
15311   }
15312 
15313   if (RewriteMap.empty())
15314     return Expr;
15315 
15316   // Now that all rewrite information is collect, rewrite the collected
15317   // expressions with the information in the map. This applies information to
15318   // sub-expressions.
15319   if (ExprsToRewrite.size() > 1) {
15320     for (const SCEV *Expr : ExprsToRewrite) {
15321       const SCEV *RewriteTo = RewriteMap[Expr];
15322       RewriteMap.erase(Expr);
15323       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15324       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
15325     }
15326   }
15327 
15328   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
15329   return Rewriter.visit(Expr);
15330 }
15331