1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/CFG.h"
11 #include "llvm/Analysis/LoopIterator.h"
12 #include "llvm/Analysis/TargetTransformInfoImpl.h"
13 #include "llvm/IR/CFG.h"
14 #include "llvm/IR/Dominators.h"
15 #include "llvm/IR/Instruction.h"
16 #include "llvm/IR/Instructions.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/PatternMatch.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/CommandLine.h"
23 #include <utility>
24 
25 using namespace llvm;
26 using namespace PatternMatch;
27 
28 #define DEBUG_TYPE "tti"
29 
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31                                      cl::Hidden,
32                                      cl::desc("Recognize reduction patterns."));
33 
34 static cl::opt<unsigned> CacheLineSize(
35     "cache-line-size", cl::init(0), cl::Hidden,
36     cl::desc("Use this to override the target cache line size when "
37              "specified by the user."));
38 
39 namespace {
40 /// No-op implementation of the TTI interface using the utility base
41 /// classes.
42 ///
43 /// This is used when no target specific information is available.
44 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
45   explicit NoTTIImpl(const DataLayout &DL)
46       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
47 };
48 } // namespace
49 
50 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
51   // If the loop has irreducible control flow, it can not be converted to
52   // Hardware loop.
53   LoopBlocksRPO RPOT(L);
54   RPOT.perform(&LI);
55   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
56     return false;
57   return true;
58 }
59 
60 IntrinsicCostAttributes::IntrinsicCostAttributes(
61     Intrinsic::ID Id, const CallBase &CI, InstructionCost ScalarizationCost,
62     bool TypeBasedOnly)
63     : II(dyn_cast<IntrinsicInst>(&CI)), RetTy(CI.getType()), IID(Id),
64       ScalarizationCost(ScalarizationCost) {
65 
66   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
67     FMF = FPMO->getFastMathFlags();
68 
69   if (!TypeBasedOnly)
70     Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
71   FunctionType *FTy = CI.getCalledFunction()->getFunctionType();
72   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
73 }
74 
75 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
76                                                  ArrayRef<Type *> Tys,
77                                                  FastMathFlags Flags,
78                                                  const IntrinsicInst *I,
79                                                  InstructionCost ScalarCost)
80     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
81   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
82 }
83 
84 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
85                                                  ArrayRef<const Value *> Args)
86     : RetTy(Ty), IID(Id) {
87 
88   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
89   ParamTys.reserve(Arguments.size());
90   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
91     ParamTys.push_back(Arguments[Idx]->getType());
92 }
93 
94 IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
95                                                  ArrayRef<const Value *> Args,
96                                                  ArrayRef<Type *> Tys,
97                                                  FastMathFlags Flags,
98                                                  const IntrinsicInst *I,
99                                                  InstructionCost ScalarCost)
100     : II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
101   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
102   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
103 }
104 
105 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
106                                                LoopInfo &LI, DominatorTree &DT,
107                                                bool ForceNestedLoop,
108                                                bool ForceHardwareLoopPHI) {
109   SmallVector<BasicBlock *, 4> ExitingBlocks;
110   L->getExitingBlocks(ExitingBlocks);
111 
112   for (BasicBlock *BB : ExitingBlocks) {
113     // If we pass the updated counter back through a phi, we need to know
114     // which latch the updated value will be coming from.
115     if (!L->isLoopLatch(BB)) {
116       if (ForceHardwareLoopPHI || CounterInReg)
117         continue;
118     }
119 
120     const SCEV *EC = SE.getExitCount(L, BB);
121     if (isa<SCEVCouldNotCompute>(EC))
122       continue;
123     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
124       if (ConstEC->getValue()->isZero())
125         continue;
126     } else if (!SE.isLoopInvariant(EC, L))
127       continue;
128 
129     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
130       continue;
131 
132     // If this exiting block is contained in a nested loop, it is not eligible
133     // for insertion of the branch-and-decrement since the inner loop would
134     // end up messing up the value in the CTR.
135     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
136       continue;
137 
138     // We now have a loop-invariant count of loop iterations (which is not the
139     // constant zero) for which we know that this loop will not exit via this
140     // existing block.
141 
142     // We need to make sure that this block will run on every loop iteration.
143     // For this to be true, we must dominate all blocks with backedges. Such
144     // blocks are in-loop predecessors to the header block.
145     bool NotAlways = false;
146     for (BasicBlock *Pred : predecessors(L->getHeader())) {
147       if (!L->contains(Pred))
148         continue;
149 
150       if (!DT.dominates(BB, Pred)) {
151         NotAlways = true;
152         break;
153       }
154     }
155 
156     if (NotAlways)
157       continue;
158 
159     // Make sure this blocks ends with a conditional branch.
160     Instruction *TI = BB->getTerminator();
161     if (!TI)
162       continue;
163 
164     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
165       if (!BI->isConditional())
166         continue;
167 
168       ExitBranch = BI;
169     } else
170       continue;
171 
172     // Note that this block may not be the loop latch block, even if the loop
173     // has a latch block.
174     ExitBlock = BB;
175     ExitCount = EC;
176     break;
177   }
178 
179   if (!ExitBlock)
180     return false;
181   return true;
182 }
183 
184 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
185     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
186 
187 TargetTransformInfo::~TargetTransformInfo() = default;
188 
189 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
190     : TTIImpl(std::move(Arg.TTIImpl)) {}
191 
192 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
193   TTIImpl = std::move(RHS.TTIImpl);
194   return *this;
195 }
196 
197 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
198   return TTIImpl->getInliningThresholdMultiplier();
199 }
200 
201 unsigned
202 TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
203   return TTIImpl->adjustInliningThreshold(CB);
204 }
205 
206 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
207   return TTIImpl->getInlinerVectorBonusPercent();
208 }
209 
210 InstructionCost
211 TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
212                                 ArrayRef<const Value *> Operands,
213                                 TTI::TargetCostKind CostKind) const {
214   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
215 }
216 
217 unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
218     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
219     BlockFrequencyInfo *BFI) const {
220   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
221 }
222 
223 InstructionCost
224 TargetTransformInfo::getUserCost(const User *U,
225                                  ArrayRef<const Value *> Operands,
226                                  enum TargetCostKind CostKind) const {
227   InstructionCost Cost = TTIImpl->getUserCost(U, Operands, CostKind);
228   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
229          "TTI should not produce negative costs!");
230   return Cost;
231 }
232 
233 BranchProbability TargetTransformInfo::getPredictableBranchThreshold() const {
234   return TTIImpl->getPredictableBranchThreshold();
235 }
236 
237 bool TargetTransformInfo::hasBranchDivergence() const {
238   return TTIImpl->hasBranchDivergence();
239 }
240 
241 bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
242   return TTIImpl->useGPUDivergenceAnalysis();
243 }
244 
245 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
246   return TTIImpl->isSourceOfDivergence(V);
247 }
248 
249 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
250   return TTIImpl->isAlwaysUniform(V);
251 }
252 
253 unsigned TargetTransformInfo::getFlatAddressSpace() const {
254   return TTIImpl->getFlatAddressSpace();
255 }
256 
257 bool TargetTransformInfo::collectFlatAddressOperands(
258     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
259   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
260 }
261 
262 bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
263                                               unsigned ToAS) const {
264   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
265 }
266 
267 bool TargetTransformInfo::canHaveNonUndefGlobalInitializerInAddressSpace(
268     unsigned AS) const {
269   return TTIImpl->canHaveNonUndefGlobalInitializerInAddressSpace(AS);
270 }
271 
272 unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
273   return TTIImpl->getAssumedAddrSpace(V);
274 }
275 
276 std::pair<const Value *, unsigned>
277 TargetTransformInfo::getPredicatedAddrSpace(const Value *V) const {
278   return TTIImpl->getPredicatedAddrSpace(V);
279 }
280 
281 Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
282     IntrinsicInst *II, Value *OldV, Value *NewV) const {
283   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
284 }
285 
286 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
287   return TTIImpl->isLoweredToCall(F);
288 }
289 
290 bool TargetTransformInfo::isHardwareLoopProfitable(
291     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
292     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
293   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
294 }
295 
296 bool TargetTransformInfo::preferPredicateOverEpilogue(
297     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
298     TargetLibraryInfo *TLI, DominatorTree *DT,
299     LoopVectorizationLegality *LVL) const {
300   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LVL);
301 }
302 
303 PredicationStyle TargetTransformInfo::emitGetActiveLaneMask() const {
304   return TTIImpl->emitGetActiveLaneMask();
305 }
306 
307 Optional<Instruction *>
308 TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
309                                           IntrinsicInst &II) const {
310   return TTIImpl->instCombineIntrinsic(IC, II);
311 }
312 
313 Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
314     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
315     bool &KnownBitsComputed) const {
316   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
317                                                    KnownBitsComputed);
318 }
319 
320 Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
321     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
322     APInt &UndefElts2, APInt &UndefElts3,
323     std::function<void(Instruction *, unsigned, APInt, APInt &)>
324         SimplifyAndSetOp) const {
325   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
326       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
327       SimplifyAndSetOp);
328 }
329 
330 void TargetTransformInfo::getUnrollingPreferences(
331     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP,
332     OptimizationRemarkEmitter *ORE) const {
333   return TTIImpl->getUnrollingPreferences(L, SE, UP, ORE);
334 }
335 
336 void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
337                                                 PeelingPreferences &PP) const {
338   return TTIImpl->getPeelingPreferences(L, SE, PP);
339 }
340 
341 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
342   return TTIImpl->isLegalAddImmediate(Imm);
343 }
344 
345 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
346   return TTIImpl->isLegalICmpImmediate(Imm);
347 }
348 
349 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
350                                                 int64_t BaseOffset,
351                                                 bool HasBaseReg, int64_t Scale,
352                                                 unsigned AddrSpace,
353                                                 Instruction *I) const {
354   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
355                                         Scale, AddrSpace, I);
356 }
357 
358 bool TargetTransformInfo::isLSRCostLess(const LSRCost &C1,
359                                         const LSRCost &C2) const {
360   return TTIImpl->isLSRCostLess(C1, C2);
361 }
362 
363 bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
364   return TTIImpl->isNumRegsMajorCostOfLSR();
365 }
366 
367 bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
368   return TTIImpl->isProfitableLSRChainElement(I);
369 }
370 
371 bool TargetTransformInfo::canMacroFuseCmp() const {
372   return TTIImpl->canMacroFuseCmp();
373 }
374 
375 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
376                                      ScalarEvolution *SE, LoopInfo *LI,
377                                      DominatorTree *DT, AssumptionCache *AC,
378                                      TargetLibraryInfo *LibInfo) const {
379   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
380 }
381 
382 TTI::AddressingModeKind
383 TargetTransformInfo::getPreferredAddressingMode(const Loop *L,
384                                                 ScalarEvolution *SE) const {
385   return TTIImpl->getPreferredAddressingMode(L, SE);
386 }
387 
388 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
389                                              Align Alignment) const {
390   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
391 }
392 
393 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
394                                             Align Alignment) const {
395   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
396 }
397 
398 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
399                                          Align Alignment) const {
400   return TTIImpl->isLegalNTStore(DataType, Alignment);
401 }
402 
403 bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
404   return TTIImpl->isLegalNTLoad(DataType, Alignment);
405 }
406 
407 bool TargetTransformInfo::isLegalBroadcastLoad(Type *ElementTy,
408                                                ElementCount NumElements) const {
409   return TTIImpl->isLegalBroadcastLoad(ElementTy, NumElements);
410 }
411 
412 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
413                                               Align Alignment) const {
414   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
415 }
416 
417 bool TargetTransformInfo::isLegalAltInstr(
418     VectorType *VecTy, unsigned Opcode0, unsigned Opcode1,
419     const SmallBitVector &OpcodeMask) const {
420   return TTIImpl->isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask);
421 }
422 
423 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
424                                                Align Alignment) const {
425   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
426 }
427 
428 bool TargetTransformInfo::forceScalarizeMaskedGather(VectorType *DataType,
429                                                      Align Alignment) const {
430   return TTIImpl->forceScalarizeMaskedGather(DataType, Alignment);
431 }
432 
433 bool TargetTransformInfo::forceScalarizeMaskedScatter(VectorType *DataType,
434                                                       Align Alignment) const {
435   return TTIImpl->forceScalarizeMaskedScatter(DataType, Alignment);
436 }
437 
438 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
439   return TTIImpl->isLegalMaskedCompressStore(DataType);
440 }
441 
442 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
443   return TTIImpl->isLegalMaskedExpandLoad(DataType);
444 }
445 
446 bool TargetTransformInfo::enableOrderedReductions() const {
447   return TTIImpl->enableOrderedReductions();
448 }
449 
450 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
451   return TTIImpl->hasDivRemOp(DataType, IsSigned);
452 }
453 
454 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
455                                              unsigned AddrSpace) const {
456   return TTIImpl->hasVolatileVariant(I, AddrSpace);
457 }
458 
459 bool TargetTransformInfo::prefersVectorizedAddressing() const {
460   return TTIImpl->prefersVectorizedAddressing();
461 }
462 
463 InstructionCost TargetTransformInfo::getScalingFactorCost(
464     Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg,
465     int64_t Scale, unsigned AddrSpace) const {
466   InstructionCost Cost = TTIImpl->getScalingFactorCost(
467       Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace);
468   assert(Cost >= 0 && "TTI should not produce negative costs!");
469   return Cost;
470 }
471 
472 bool TargetTransformInfo::LSRWithInstrQueries() const {
473   return TTIImpl->LSRWithInstrQueries();
474 }
475 
476 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
477   return TTIImpl->isTruncateFree(Ty1, Ty2);
478 }
479 
480 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
481   return TTIImpl->isProfitableToHoist(I);
482 }
483 
484 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
485 
486 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
487   return TTIImpl->isTypeLegal(Ty);
488 }
489 
490 unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
491   return TTIImpl->getRegUsageForType(Ty);
492 }
493 
494 bool TargetTransformInfo::shouldBuildLookupTables() const {
495   return TTIImpl->shouldBuildLookupTables();
496 }
497 
498 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
499     Constant *C) const {
500   return TTIImpl->shouldBuildLookupTablesForConstant(C);
501 }
502 
503 bool TargetTransformInfo::shouldBuildRelLookupTables() const {
504   return TTIImpl->shouldBuildRelLookupTables();
505 }
506 
507 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
508   return TTIImpl->useColdCCForColdCall(F);
509 }
510 
511 InstructionCost
512 TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
513                                               const APInt &DemandedElts,
514                                               bool Insert, bool Extract) const {
515   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
516 }
517 
518 InstructionCost TargetTransformInfo::getOperandsScalarizationOverhead(
519     ArrayRef<const Value *> Args, ArrayRef<Type *> Tys) const {
520   return TTIImpl->getOperandsScalarizationOverhead(Args, Tys);
521 }
522 
523 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
524   return TTIImpl->supportsEfficientVectorElementLoadStore();
525 }
526 
527 bool TargetTransformInfo::supportsTailCalls() const {
528   return TTIImpl->supportsTailCalls();
529 }
530 
531 bool TargetTransformInfo::enableAggressiveInterleaving(
532     bool LoopHasReductions) const {
533   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
534 }
535 
536 TargetTransformInfo::MemCmpExpansionOptions
537 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
538   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
539 }
540 
541 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
542   return TTIImpl->enableInterleavedAccessVectorization();
543 }
544 
545 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
546   return TTIImpl->enableMaskedInterleavedAccessVectorization();
547 }
548 
549 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
550   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
551 }
552 
553 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
554                                                          unsigned BitWidth,
555                                                          unsigned AddressSpace,
556                                                          Align Alignment,
557                                                          bool *Fast) const {
558   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
559                                                  AddressSpace, Alignment, Fast);
560 }
561 
562 TargetTransformInfo::PopcntSupportKind
563 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
564   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
565 }
566 
567 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
568   return TTIImpl->haveFastSqrt(Ty);
569 }
570 
571 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
572   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
573 }
574 
575 InstructionCost TargetTransformInfo::getFPOpCost(Type *Ty) const {
576   InstructionCost Cost = TTIImpl->getFPOpCost(Ty);
577   assert(Cost >= 0 && "TTI should not produce negative costs!");
578   return Cost;
579 }
580 
581 InstructionCost TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode,
582                                                            unsigned Idx,
583                                                            const APInt &Imm,
584                                                            Type *Ty) const {
585   InstructionCost Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
586   assert(Cost >= 0 && "TTI should not produce negative costs!");
587   return Cost;
588 }
589 
590 InstructionCost
591 TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
592                                    TTI::TargetCostKind CostKind) const {
593   InstructionCost Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
594   assert(Cost >= 0 && "TTI should not produce negative costs!");
595   return Cost;
596 }
597 
598 InstructionCost TargetTransformInfo::getIntImmCostInst(
599     unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty,
600     TTI::TargetCostKind CostKind, Instruction *Inst) const {
601   InstructionCost Cost =
602       TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
603   assert(Cost >= 0 && "TTI should not produce negative costs!");
604   return Cost;
605 }
606 
607 InstructionCost
608 TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
609                                          const APInt &Imm, Type *Ty,
610                                          TTI::TargetCostKind CostKind) const {
611   InstructionCost Cost =
612       TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
613   assert(Cost >= 0 && "TTI should not produce negative costs!");
614   return Cost;
615 }
616 
617 unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
618   return TTIImpl->getNumberOfRegisters(ClassID);
619 }
620 
621 unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
622                                                       Type *Ty) const {
623   return TTIImpl->getRegisterClassForType(Vector, Ty);
624 }
625 
626 const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
627   return TTIImpl->getRegisterClassName(ClassID);
628 }
629 
630 TypeSize TargetTransformInfo::getRegisterBitWidth(
631     TargetTransformInfo::RegisterKind K) const {
632   return TTIImpl->getRegisterBitWidth(K);
633 }
634 
635 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
636   return TTIImpl->getMinVectorRegisterBitWidth();
637 }
638 
639 Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
640   return TTIImpl->getMaxVScale();
641 }
642 
643 Optional<unsigned> TargetTransformInfo::getVScaleForTuning() const {
644   return TTIImpl->getVScaleForTuning();
645 }
646 
647 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(
648     TargetTransformInfo::RegisterKind K) const {
649   return TTIImpl->shouldMaximizeVectorBandwidth(K);
650 }
651 
652 ElementCount TargetTransformInfo::getMinimumVF(unsigned ElemWidth,
653                                                bool IsScalable) const {
654   return TTIImpl->getMinimumVF(ElemWidth, IsScalable);
655 }
656 
657 unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
658                                            unsigned Opcode) const {
659   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
660 }
661 
662 unsigned TargetTransformInfo::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
663                                                 Type *ScalarValTy) const {
664   return TTIImpl->getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
665 }
666 
667 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
668     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
669   return TTIImpl->shouldConsiderAddressTypePromotion(
670       I, AllowPromotionWithoutCommonHeader);
671 }
672 
673 unsigned TargetTransformInfo::getCacheLineSize() const {
674   return CacheLineSize.getNumOccurrences() > 0 ? CacheLineSize
675                                                : TTIImpl->getCacheLineSize();
676 }
677 
678 llvm::Optional<unsigned>
679 TargetTransformInfo::getCacheSize(CacheLevel Level) const {
680   return TTIImpl->getCacheSize(Level);
681 }
682 
683 llvm::Optional<unsigned>
684 TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
685   return TTIImpl->getCacheAssociativity(Level);
686 }
687 
688 unsigned TargetTransformInfo::getPrefetchDistance() const {
689   return TTIImpl->getPrefetchDistance();
690 }
691 
692 unsigned TargetTransformInfo::getMinPrefetchStride(
693     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
694     unsigned NumPrefetches, bool HasCall) const {
695   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
696                                        NumPrefetches, HasCall);
697 }
698 
699 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
700   return TTIImpl->getMaxPrefetchIterationsAhead();
701 }
702 
703 bool TargetTransformInfo::enableWritePrefetching() const {
704   return TTIImpl->enableWritePrefetching();
705 }
706 
707 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
708   return TTIImpl->getMaxInterleaveFactor(VF);
709 }
710 
711 TargetTransformInfo::OperandValueKind
712 TargetTransformInfo::getOperandInfo(const Value *V,
713                                     OperandValueProperties &OpProps) {
714   OperandValueKind OpInfo = OK_AnyValue;
715   OpProps = OP_None;
716 
717   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
718     if (CI->getValue().isPowerOf2())
719       OpProps = OP_PowerOf2;
720     return OK_UniformConstantValue;
721   }
722 
723   // A broadcast shuffle creates a uniform value.
724   // TODO: Add support for non-zero index broadcasts.
725   // TODO: Add support for different source vector width.
726   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
727     if (ShuffleInst->isZeroEltSplat())
728       OpInfo = OK_UniformValue;
729 
730   const Value *Splat = getSplatValue(V);
731 
732   // Check for a splat of a constant or for a non uniform vector of constants
733   // and check if the constant(s) are all powers of two.
734   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
735     OpInfo = OK_NonUniformConstantValue;
736     if (Splat) {
737       OpInfo = OK_UniformConstantValue;
738       if (auto *CI = dyn_cast<ConstantInt>(Splat))
739         if (CI->getValue().isPowerOf2())
740           OpProps = OP_PowerOf2;
741     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
742       OpProps = OP_PowerOf2;
743       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
744         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
745           if (CI->getValue().isPowerOf2())
746             continue;
747         OpProps = OP_None;
748         break;
749       }
750     }
751   }
752 
753   // Check for a splat of a uniform value. This is not loop aware, so return
754   // true only for the obviously uniform cases (argument, globalvalue)
755   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
756     OpInfo = OK_UniformValue;
757 
758   return OpInfo;
759 }
760 
761 InstructionCost TargetTransformInfo::getArithmeticInstrCost(
762     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
763     OperandValueKind Opd1Info, OperandValueKind Opd2Info,
764     OperandValueProperties Opd1PropInfo, OperandValueProperties Opd2PropInfo,
765     ArrayRef<const Value *> Args, const Instruction *CxtI) const {
766   InstructionCost Cost =
767       TTIImpl->getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
768                                       Opd1PropInfo, Opd2PropInfo, Args, CxtI);
769   assert(Cost >= 0 && "TTI should not produce negative costs!");
770   return Cost;
771 }
772 
773 InstructionCost TargetTransformInfo::getShuffleCost(
774     ShuffleKind Kind, VectorType *Ty, ArrayRef<int> Mask, int Index,
775     VectorType *SubTp, ArrayRef<const Value *> Args) const {
776   InstructionCost Cost =
777       TTIImpl->getShuffleCost(Kind, Ty, Mask, Index, SubTp, Args);
778   assert(Cost >= 0 && "TTI should not produce negative costs!");
779   return Cost;
780 }
781 
782 TTI::CastContextHint
783 TargetTransformInfo::getCastContextHint(const Instruction *I) {
784   if (!I)
785     return CastContextHint::None;
786 
787   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
788                              unsigned GatScatOp) {
789     const Instruction *I = dyn_cast<Instruction>(V);
790     if (!I)
791       return CastContextHint::None;
792 
793     if (I->getOpcode() == LdStOp)
794       return CastContextHint::Normal;
795 
796     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
797       if (II->getIntrinsicID() == MaskedOp)
798         return TTI::CastContextHint::Masked;
799       if (II->getIntrinsicID() == GatScatOp)
800         return TTI::CastContextHint::GatherScatter;
801     }
802 
803     return TTI::CastContextHint::None;
804   };
805 
806   switch (I->getOpcode()) {
807   case Instruction::ZExt:
808   case Instruction::SExt:
809   case Instruction::FPExt:
810     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
811                             Intrinsic::masked_load, Intrinsic::masked_gather);
812   case Instruction::Trunc:
813   case Instruction::FPTrunc:
814     if (I->hasOneUse())
815       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
816                               Intrinsic::masked_store,
817                               Intrinsic::masked_scatter);
818     break;
819   default:
820     return CastContextHint::None;
821   }
822 
823   return TTI::CastContextHint::None;
824 }
825 
826 InstructionCost TargetTransformInfo::getCastInstrCost(
827     unsigned Opcode, Type *Dst, Type *Src, CastContextHint CCH,
828     TTI::TargetCostKind CostKind, const Instruction *I) const {
829   assert((I == nullptr || I->getOpcode() == Opcode) &&
830          "Opcode should reflect passed instruction.");
831   InstructionCost Cost =
832       TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
833   assert(Cost >= 0 && "TTI should not produce negative costs!");
834   return Cost;
835 }
836 
837 InstructionCost TargetTransformInfo::getExtractWithExtendCost(
838     unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) const {
839   InstructionCost Cost =
840       TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
841   assert(Cost >= 0 && "TTI should not produce negative costs!");
842   return Cost;
843 }
844 
845 InstructionCost TargetTransformInfo::getCFInstrCost(
846     unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) const {
847   assert((I == nullptr || I->getOpcode() == Opcode) &&
848          "Opcode should reflect passed instruction.");
849   InstructionCost Cost = TTIImpl->getCFInstrCost(Opcode, CostKind, I);
850   assert(Cost >= 0 && "TTI should not produce negative costs!");
851   return Cost;
852 }
853 
854 InstructionCost TargetTransformInfo::getCmpSelInstrCost(
855     unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
856     TTI::TargetCostKind CostKind, const Instruction *I) const {
857   assert((I == nullptr || I->getOpcode() == Opcode) &&
858          "Opcode should reflect passed instruction.");
859   InstructionCost Cost =
860       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
861   assert(Cost >= 0 && "TTI should not produce negative costs!");
862   return Cost;
863 }
864 
865 InstructionCost TargetTransformInfo::getVectorInstrCost(unsigned Opcode,
866                                                         Type *Val,
867                                                         unsigned Index) const {
868   InstructionCost Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
869   assert(Cost >= 0 && "TTI should not produce negative costs!");
870   return Cost;
871 }
872 
873 InstructionCost TargetTransformInfo::getReplicationShuffleCost(
874     Type *EltTy, int ReplicationFactor, int VF, const APInt &DemandedDstElts,
875     TTI::TargetCostKind CostKind) {
876   InstructionCost Cost = TTIImpl->getReplicationShuffleCost(
877       EltTy, ReplicationFactor, VF, DemandedDstElts, CostKind);
878   assert(Cost >= 0 && "TTI should not produce negative costs!");
879   return Cost;
880 }
881 
882 InstructionCost TargetTransformInfo::getMemoryOpCost(
883     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
884     TTI::TargetCostKind CostKind, const Instruction *I) const {
885   assert((I == nullptr || I->getOpcode() == Opcode) &&
886          "Opcode should reflect passed instruction.");
887   InstructionCost Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment,
888                                                   AddressSpace, CostKind, I);
889   assert(Cost >= 0 && "TTI should not produce negative costs!");
890   return Cost;
891 }
892 
893 InstructionCost TargetTransformInfo::getMaskedMemoryOpCost(
894     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
895     TTI::TargetCostKind CostKind) const {
896   InstructionCost Cost = TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment,
897                                                         AddressSpace, CostKind);
898   assert(Cost >= 0 && "TTI should not produce negative costs!");
899   return Cost;
900 }
901 
902 InstructionCost TargetTransformInfo::getGatherScatterOpCost(
903     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
904     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
905   InstructionCost Cost = TTIImpl->getGatherScatterOpCost(
906       Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I);
907   assert(Cost >= 0 && "TTI should not produce negative costs!");
908   return Cost;
909 }
910 
911 InstructionCost TargetTransformInfo::getInterleavedMemoryOpCost(
912     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
913     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
914     bool UseMaskForCond, bool UseMaskForGaps) const {
915   InstructionCost Cost = TTIImpl->getInterleavedMemoryOpCost(
916       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
917       UseMaskForCond, UseMaskForGaps);
918   assert(Cost >= 0 && "TTI should not produce negative costs!");
919   return Cost;
920 }
921 
922 InstructionCost
923 TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
924                                            TTI::TargetCostKind CostKind) const {
925   InstructionCost Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
926   assert(Cost >= 0 && "TTI should not produce negative costs!");
927   return Cost;
928 }
929 
930 InstructionCost
931 TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
932                                       ArrayRef<Type *> Tys,
933                                       TTI::TargetCostKind CostKind) const {
934   InstructionCost Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
935   assert(Cost >= 0 && "TTI should not produce negative costs!");
936   return Cost;
937 }
938 
939 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
940   return TTIImpl->getNumberOfParts(Tp);
941 }
942 
943 InstructionCost
944 TargetTransformInfo::getAddressComputationCost(Type *Tp, ScalarEvolution *SE,
945                                                const SCEV *Ptr) const {
946   InstructionCost Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
947   assert(Cost >= 0 && "TTI should not produce negative costs!");
948   return Cost;
949 }
950 
951 InstructionCost TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
952   InstructionCost Cost = TTIImpl->getMemcpyCost(I);
953   assert(Cost >= 0 && "TTI should not produce negative costs!");
954   return Cost;
955 }
956 
957 InstructionCost TargetTransformInfo::getArithmeticReductionCost(
958     unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
959     TTI::TargetCostKind CostKind) const {
960   InstructionCost Cost =
961       TTIImpl->getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
962   assert(Cost >= 0 && "TTI should not produce negative costs!");
963   return Cost;
964 }
965 
966 InstructionCost TargetTransformInfo::getMinMaxReductionCost(
967     VectorType *Ty, VectorType *CondTy, bool IsUnsigned,
968     TTI::TargetCostKind CostKind) const {
969   InstructionCost Cost =
970       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsUnsigned, CostKind);
971   assert(Cost >= 0 && "TTI should not produce negative costs!");
972   return Cost;
973 }
974 
975 InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
976     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
977     TTI::TargetCostKind CostKind) const {
978   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
979                                               CostKind);
980 }
981 
982 InstructionCost
983 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
984   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
985 }
986 
987 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
988                                              MemIntrinsicInfo &Info) const {
989   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
990 }
991 
992 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
993   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
994 }
995 
996 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
997     IntrinsicInst *Inst, Type *ExpectedType) const {
998   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
999 }
1000 
1001 Type *TargetTransformInfo::getMemcpyLoopLoweringType(
1002     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
1003     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
1004     Optional<uint32_t> AtomicElementSize) const {
1005   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
1006                                             DestAddrSpace, SrcAlign, DestAlign,
1007                                             AtomicElementSize);
1008 }
1009 
1010 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
1011     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1012     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
1013     unsigned SrcAlign, unsigned DestAlign,
1014     Optional<uint32_t> AtomicCpySize) const {
1015   TTIImpl->getMemcpyLoopResidualLoweringType(
1016       OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
1017       DestAlign, AtomicCpySize);
1018 }
1019 
1020 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
1021                                               const Function *Callee) const {
1022   return TTIImpl->areInlineCompatible(Caller, Callee);
1023 }
1024 
1025 bool TargetTransformInfo::areTypesABICompatible(
1026     const Function *Caller, const Function *Callee,
1027     const ArrayRef<Type *> &Types) const {
1028   return TTIImpl->areTypesABICompatible(Caller, Callee, Types);
1029 }
1030 
1031 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
1032                                              Type *Ty) const {
1033   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
1034 }
1035 
1036 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
1037                                               Type *Ty) const {
1038   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
1039 }
1040 
1041 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
1042   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
1043 }
1044 
1045 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
1046   return TTIImpl->isLegalToVectorizeLoad(LI);
1047 }
1048 
1049 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
1050   return TTIImpl->isLegalToVectorizeStore(SI);
1051 }
1052 
1053 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
1054     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1055   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1056                                               AddrSpace);
1057 }
1058 
1059 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
1060     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
1061   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1062                                                AddrSpace);
1063 }
1064 
1065 bool TargetTransformInfo::isLegalToVectorizeReduction(
1066     const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
1067   return TTIImpl->isLegalToVectorizeReduction(RdxDesc, VF);
1068 }
1069 
1070 bool TargetTransformInfo::isElementTypeLegalForScalableVector(Type *Ty) const {
1071   return TTIImpl->isElementTypeLegalForScalableVector(Ty);
1072 }
1073 
1074 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
1075                                                   unsigned LoadSize,
1076                                                   unsigned ChainSizeInBytes,
1077                                                   VectorType *VecTy) const {
1078   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1079 }
1080 
1081 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
1082                                                    unsigned StoreSize,
1083                                                    unsigned ChainSizeInBytes,
1084                                                    VectorType *VecTy) const {
1085   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1086 }
1087 
1088 bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
1089                                                 ReductionFlags Flags) const {
1090   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
1091 }
1092 
1093 bool TargetTransformInfo::preferPredicatedReductionSelect(
1094     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
1095   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
1096 }
1097 
1098 TargetTransformInfo::VPLegalization
1099 TargetTransformInfo::getVPLegalizationStrategy(const VPIntrinsic &VPI) const {
1100   return TTIImpl->getVPLegalizationStrategy(VPI);
1101 }
1102 
1103 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
1104   return TTIImpl->shouldExpandReduction(II);
1105 }
1106 
1107 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
1108   return TTIImpl->getGISelRematGlobalCost();
1109 }
1110 
1111 bool TargetTransformInfo::supportsScalableVectors() const {
1112   return TTIImpl->supportsScalableVectors();
1113 }
1114 
1115 bool TargetTransformInfo::enableScalableVectorization() const {
1116   return TTIImpl->enableScalableVectorization();
1117 }
1118 
1119 bool TargetTransformInfo::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1120                                                 Align Alignment) const {
1121   return TTIImpl->hasActiveVectorLength(Opcode, DataType, Alignment);
1122 }
1123 
1124 InstructionCost
1125 TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
1126   return TTIImpl->getInstructionLatency(I);
1127 }
1128 
1129 InstructionCost
1130 TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1131   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
1132 
1133   switch (I->getOpcode()) {
1134   case Instruction::GetElementPtr:
1135   case Instruction::Ret:
1136   case Instruction::PHI:
1137   case Instruction::Br:
1138   case Instruction::Add:
1139   case Instruction::FAdd:
1140   case Instruction::Sub:
1141   case Instruction::FSub:
1142   case Instruction::Mul:
1143   case Instruction::FMul:
1144   case Instruction::UDiv:
1145   case Instruction::SDiv:
1146   case Instruction::FDiv:
1147   case Instruction::URem:
1148   case Instruction::SRem:
1149   case Instruction::FRem:
1150   case Instruction::Shl:
1151   case Instruction::LShr:
1152   case Instruction::AShr:
1153   case Instruction::And:
1154   case Instruction::Or:
1155   case Instruction::Xor:
1156   case Instruction::FNeg:
1157   case Instruction::Select:
1158   case Instruction::ICmp:
1159   case Instruction::FCmp:
1160   case Instruction::Store:
1161   case Instruction::Load:
1162   case Instruction::ZExt:
1163   case Instruction::SExt:
1164   case Instruction::FPToUI:
1165   case Instruction::FPToSI:
1166   case Instruction::FPExt:
1167   case Instruction::PtrToInt:
1168   case Instruction::IntToPtr:
1169   case Instruction::SIToFP:
1170   case Instruction::UIToFP:
1171   case Instruction::Trunc:
1172   case Instruction::FPTrunc:
1173   case Instruction::BitCast:
1174   case Instruction::AddrSpaceCast:
1175   case Instruction::ExtractElement:
1176   case Instruction::InsertElement:
1177   case Instruction::ExtractValue:
1178   case Instruction::ShuffleVector:
1179   case Instruction::Call:
1180   case Instruction::Switch:
1181     return getUserCost(I, CostKind);
1182   default:
1183     // We don't have any information on this instruction.
1184     return -1;
1185   }
1186 }
1187 
1188 TargetTransformInfo::Concept::~Concept() = default;
1189 
1190 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1191 
1192 TargetIRAnalysis::TargetIRAnalysis(
1193     std::function<Result(const Function &)> TTICallback)
1194     : TTICallback(std::move(TTICallback)) {}
1195 
1196 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1197                                                FunctionAnalysisManager &) {
1198   return TTICallback(F);
1199 }
1200 
1201 AnalysisKey TargetIRAnalysis::Key;
1202 
1203 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1204   return Result(F.getParent()->getDataLayout());
1205 }
1206 
1207 // Register the basic pass.
1208 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1209                 "Target Transform Information", false, true)
1210 char TargetTransformInfoWrapperPass::ID = 0;
1211 
1212 void TargetTransformInfoWrapperPass::anchor() {}
1213 
1214 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1215     : ImmutablePass(ID) {
1216   initializeTargetTransformInfoWrapperPassPass(
1217       *PassRegistry::getPassRegistry());
1218 }
1219 
1220 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1221     TargetIRAnalysis TIRA)
1222     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1223   initializeTargetTransformInfoWrapperPassPass(
1224       *PassRegistry::getPassRegistry());
1225 }
1226 
1227 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1228   FunctionAnalysisManager DummyFAM;
1229   TTI = TIRA.run(F, DummyFAM);
1230   return *TTI;
1231 }
1232 
1233 ImmutablePass *
1234 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1235   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1236 }
1237