1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the TypeBasedAliasAnalysis pass, which implements
10 // metadata-based TBAA.
11 //
12 // In LLVM IR, memory does not have types, so LLVM's own type system is not
13 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
14 // a type system of a higher level language. This can be used to implement
15 // typical C/C++ TBAA, but it can also be used to implement custom alias
16 // analysis behavior for other languages.
17 //
18 // We now support two types of metadata format: scalar TBAA and struct-path
19 // aware TBAA. After all testing cases are upgraded to use struct-path aware
20 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
21 // can be dropped.
22 //
23 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
24 // three fields, e.g.:
25 //   !0 = !{ !"an example type tree" }
26 //   !1 = !{ !"int", !0 }
27 //   !2 = !{ !"float", !0 }
28 //   !3 = !{ !"const float", !2, i64 1 }
29 //
30 // The first field is an identity field. It can be any value, usually
31 // an MDString, which uniquely identifies the type. The most important
32 // name in the tree is the name of the root node. Two trees with
33 // different root node names are entirely disjoint, even if they
34 // have leaves with common names.
35 //
36 // The second field identifies the type's parent node in the tree, or
37 // is null or omitted for a root node. A type is considered to alias
38 // all of its descendants and all of its ancestors in the tree. Also,
39 // a type is considered to alias all types in other trees, so that
40 // bitcode produced from multiple front-ends is handled conservatively.
41 //
42 // If the third field is present, it's an integer which if equal to 1
43 // indicates that the type is "constant" (meaning pointsToConstantMemory
44 // should return true; see
45 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
46 //
47 // With struct-path aware TBAA, the MDNodes attached to an instruction using
48 // "!tbaa" are called path tag nodes.
49 //
50 // The path tag node has 4 fields with the last field being optional.
51 //
52 // The first field is the base type node, it can be a struct type node
53 // or a scalar type node. The second field is the access type node, it
54 // must be a scalar type node. The third field is the offset into the base type.
55 // The last field has the same meaning as the last field of our scalar TBAA:
56 // it's an integer which if equal to 1 indicates that the access is "constant".
57 //
58 // The struct type node has a name and a list of pairs, one pair for each member
59 // of the struct. The first element of each pair is a type node (a struct type
60 // node or a scalar type node), specifying the type of the member, the second
61 // element of each pair is the offset of the member.
62 //
63 // Given an example
64 // typedef struct {
65 //   short s;
66 // } A;
67 // typedef struct {
68 //   uint16_t s;
69 //   A a;
70 // } B;
71 //
72 // For an access to B.a.s, we attach !5 (a path tag node) to the load/store
73 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
74 // type short) and the offset is 4.
75 //
76 // !0 = !{!"Simple C/C++ TBAA"}
77 // !1 = !{!"omnipotent char", !0} // Scalar type node
78 // !2 = !{!"short", !1}           // Scalar type node
79 // !3 = !{!"A", !2, i64 0}        // Struct type node
80 // !4 = !{!"B", !2, i64 0, !3, i64 4}
81 //                                                           // Struct type node
82 // !5 = !{!4, !2, i64 4}          // Path tag node
83 //
84 // The struct type nodes and the scalar type nodes form a type DAG.
85 //         Root (!0)
86 //         char (!1)  -- edge to Root
87 //         short (!2) -- edge to char
88 //         A (!3) -- edge with offset 0 to short
89 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
90 //
91 // To check if two tags (tagX and tagY) can alias, we start from the base type
92 // of tagX, follow the edge with the correct offset in the type DAG and adjust
93 // the offset until we reach the base type of tagY or until we reach the Root
94 // node.
95 // If we reach the base type of tagY, compare the adjusted offset with
96 // offset of tagY, return Alias if the offsets are the same, return NoAlias
97 // otherwise.
98 // If we reach the Root node, perform the above starting from base type of tagY
99 // to see if we reach base type of tagX.
100 //
101 // If they have different roots, they're part of different potentially
102 // unrelated type systems, so we return Alias to be conservative.
103 // If neither node is an ancestor of the other and they have the same root,
104 // then we say NoAlias.
105 //
106 //===----------------------------------------------------------------------===//
107 
108 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/Analysis/AliasAnalysis.h"
111 #include "llvm/Analysis/MemoryLocation.h"
112 #include "llvm/IR/Constants.h"
113 #include "llvm/IR/DerivedTypes.h"
114 #include "llvm/IR/InstrTypes.h"
115 #include "llvm/IR/LLVMContext.h"
116 #include "llvm/IR/Metadata.h"
117 #include "llvm/InitializePasses.h"
118 #include "llvm/Pass.h"
119 #include "llvm/Support/Casting.h"
120 #include "llvm/Support/CommandLine.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include <cassert>
123 #include <cstdint>
124 
125 using namespace llvm;
126 
127 // A handy option for disabling TBAA functionality. The same effect can also be
128 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
129 // more convenient.
130 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true), cl::Hidden);
131 
132 namespace {
133 
134 /// isNewFormatTypeNode - Return true iff the given type node is in the new
135 /// size-aware format.
136 static bool isNewFormatTypeNode(const MDNode *N) {
137   if (N->getNumOperands() < 3)
138     return false;
139   // In the old format the first operand is a string.
140   if (!isa<MDNode>(N->getOperand(0)))
141     return false;
142   return true;
143 }
144 
145 /// This is a simple wrapper around an MDNode which provides a higher-level
146 /// interface by hiding the details of how alias analysis information is encoded
147 /// in its operands.
148 template<typename MDNodeTy>
149 class TBAANodeImpl {
150   MDNodeTy *Node = nullptr;
151 
152 public:
153   TBAANodeImpl() = default;
154   explicit TBAANodeImpl(MDNodeTy *N) : Node(N) {}
155 
156   /// getNode - Get the MDNode for this TBAANode.
157   MDNodeTy *getNode() const { return Node; }
158 
159   /// isNewFormat - Return true iff the wrapped type node is in the new
160   /// size-aware format.
161   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
162 
163   /// getParent - Get this TBAANode's Alias tree parent.
164   TBAANodeImpl<MDNodeTy> getParent() const {
165     if (isNewFormat())
166       return TBAANodeImpl(cast<MDNodeTy>(Node->getOperand(0)));
167 
168     if (Node->getNumOperands() < 2)
169       return TBAANodeImpl<MDNodeTy>();
170     MDNodeTy *P = dyn_cast_or_null<MDNodeTy>(Node->getOperand(1));
171     if (!P)
172       return TBAANodeImpl<MDNodeTy>();
173     // Ok, this node has a valid parent. Return it.
174     return TBAANodeImpl<MDNodeTy>(P);
175   }
176 
177   /// Test if this TBAANode represents a type for objects which are
178   /// not modified (by any means) in the context where this
179   /// AliasAnalysis is relevant.
180   bool isTypeImmutable() const {
181     if (Node->getNumOperands() < 3)
182       return false;
183     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
184     if (!CI)
185       return false;
186     return CI->getValue()[0];
187   }
188 };
189 
190 /// \name Specializations of \c TBAANodeImpl for const and non const qualified
191 /// \c MDNode.
192 /// @{
193 using TBAANode = TBAANodeImpl<const MDNode>;
194 using MutableTBAANode = TBAANodeImpl<MDNode>;
195 /// @}
196 
197 /// This is a simple wrapper around an MDNode which provides a
198 /// higher-level interface by hiding the details of how alias analysis
199 /// information is encoded in its operands.
200 template<typename MDNodeTy>
201 class TBAAStructTagNodeImpl {
202   /// This node should be created with createTBAAAccessTag().
203   MDNodeTy *Node;
204 
205 public:
206   explicit TBAAStructTagNodeImpl(MDNodeTy *N) : Node(N) {}
207 
208   /// Get the MDNode for this TBAAStructTagNode.
209   MDNodeTy *getNode() const { return Node; }
210 
211   /// isNewFormat - Return true iff the wrapped access tag is in the new
212   /// size-aware format.
213   bool isNewFormat() const {
214     if (Node->getNumOperands() < 4)
215       return false;
216     if (MDNodeTy *AccessType = getAccessType())
217       if (!TBAANodeImpl<MDNodeTy>(AccessType).isNewFormat())
218         return false;
219     return true;
220   }
221 
222   MDNodeTy *getBaseType() const {
223     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
224   }
225 
226   MDNodeTy *getAccessType() const {
227     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
228   }
229 
230   uint64_t getOffset() const {
231     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
232   }
233 
234   uint64_t getSize() const {
235     if (!isNewFormat())
236       return UINT64_MAX;
237     return mdconst::extract<ConstantInt>(Node->getOperand(3))->getZExtValue();
238   }
239 
240   /// Test if this TBAAStructTagNode represents a type for objects
241   /// which are not modified (by any means) in the context where this
242   /// AliasAnalysis is relevant.
243   bool isTypeImmutable() const {
244     unsigned OpNo = isNewFormat() ? 4 : 3;
245     if (Node->getNumOperands() < OpNo + 1)
246       return false;
247     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(OpNo));
248     if (!CI)
249       return false;
250     return CI->getValue()[0];
251   }
252 };
253 
254 /// \name Specializations of \c TBAAStructTagNodeImpl for const and non const
255 /// qualified \c MDNods.
256 /// @{
257 using TBAAStructTagNode = TBAAStructTagNodeImpl<const MDNode>;
258 using MutableTBAAStructTagNode = TBAAStructTagNodeImpl<MDNode>;
259 /// @}
260 
261 /// This is a simple wrapper around an MDNode which provides a
262 /// higher-level interface by hiding the details of how alias analysis
263 /// information is encoded in its operands.
264 class TBAAStructTypeNode {
265   /// This node should be created with createTBAATypeNode().
266   const MDNode *Node = nullptr;
267 
268 public:
269   TBAAStructTypeNode() = default;
270   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
271 
272   /// Get the MDNode for this TBAAStructTypeNode.
273   const MDNode *getNode() const { return Node; }
274 
275   /// isNewFormat - Return true iff the wrapped type node is in the new
276   /// size-aware format.
277   bool isNewFormat() const { return isNewFormatTypeNode(Node); }
278 
279   bool operator==(const TBAAStructTypeNode &Other) const {
280     return getNode() == Other.getNode();
281   }
282 
283   /// getId - Return type identifier.
284   Metadata *getId() const {
285     return Node->getOperand(isNewFormat() ? 2 : 0);
286   }
287 
288   unsigned getNumFields() const {
289     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
290     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
291     return (getNode()->getNumOperands() - FirstFieldOpNo) / NumOpsPerField;
292   }
293 
294   TBAAStructTypeNode getFieldType(unsigned FieldIndex) const {
295     unsigned FirstFieldOpNo = isNewFormat() ? 3 : 1;
296     unsigned NumOpsPerField = isNewFormat() ? 3 : 2;
297     unsigned OpIndex = FirstFieldOpNo + FieldIndex * NumOpsPerField;
298     auto *TypeNode = cast<MDNode>(getNode()->getOperand(OpIndex));
299     return TBAAStructTypeNode(TypeNode);
300   }
301 
302   /// Get this TBAAStructTypeNode's field in the type DAG with
303   /// given offset. Update the offset to be relative to the field type.
304   TBAAStructTypeNode getField(uint64_t &Offset) const {
305     bool NewFormat = isNewFormat();
306     const ArrayRef<MDOperand> Operands = Node->operands();
307     const unsigned NumOperands = Operands.size();
308 
309     if (NewFormat) {
310       // New-format root and scalar type nodes have no fields.
311       if (NumOperands < 6)
312         return TBAAStructTypeNode();
313     } else {
314       // Parent can be omitted for the root node.
315       if (NumOperands < 2)
316         return TBAAStructTypeNode();
317 
318       // Fast path for a scalar type node and a struct type node with a single
319       // field.
320       if (NumOperands <= 3) {
321         uint64_t Cur =
322             NumOperands == 2
323                 ? 0
324                 : mdconst::extract<ConstantInt>(Operands[2])->getZExtValue();
325         Offset -= Cur;
326         MDNode *P = dyn_cast_or_null<MDNode>(Operands[1]);
327         if (!P)
328           return TBAAStructTypeNode();
329         return TBAAStructTypeNode(P);
330       }
331     }
332 
333     // Assume the offsets are in order. We return the previous field if
334     // the current offset is bigger than the given offset.
335     unsigned FirstFieldOpNo = NewFormat ? 3 : 1;
336     unsigned NumOpsPerField = NewFormat ? 3 : 2;
337     unsigned TheIdx = 0;
338 
339     for (unsigned Idx = FirstFieldOpNo; Idx < NumOperands;
340          Idx += NumOpsPerField) {
341       uint64_t Cur =
342           mdconst::extract<ConstantInt>(Operands[Idx + 1])->getZExtValue();
343       if (Cur > Offset) {
344         assert(Idx >= FirstFieldOpNo + NumOpsPerField &&
345                "TBAAStructTypeNode::getField should have an offset match!");
346         TheIdx = Idx - NumOpsPerField;
347         break;
348       }
349     }
350     // Move along the last field.
351     if (TheIdx == 0)
352       TheIdx = NumOperands - NumOpsPerField;
353     uint64_t Cur =
354         mdconst::extract<ConstantInt>(Operands[TheIdx + 1])->getZExtValue();
355     Offset -= Cur;
356     MDNode *P = dyn_cast_or_null<MDNode>(Operands[TheIdx]);
357     if (!P)
358       return TBAAStructTypeNode();
359     return TBAAStructTypeNode(P);
360   }
361 };
362 
363 } // end anonymous namespace
364 
365 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
366 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
367 /// format.
368 static bool isStructPathTBAA(const MDNode *MD) {
369   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
370   // a TBAA tag.
371   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
372 }
373 
374 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
375                                      const MemoryLocation &LocB,
376                                      AAQueryInfo &AAQI, const Instruction *) {
377   if (!EnableTBAA)
378     return AAResultBase::alias(LocA, LocB, AAQI, nullptr);
379 
380   // If accesses may alias, chain to the next AliasAnalysis.
381   if (Aliases(LocA.AATags.TBAA, LocB.AATags.TBAA))
382     return AAResultBase::alias(LocA, LocB, AAQI, nullptr);
383 
384   // Otherwise return a definitive result.
385   return AliasResult::NoAlias;
386 }
387 
388 ModRefInfo TypeBasedAAResult::getModRefInfoMask(const MemoryLocation &Loc,
389                                                 AAQueryInfo &AAQI,
390                                                 bool IgnoreLocals) {
391   if (!EnableTBAA)
392     return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals);
393 
394   const MDNode *M = Loc.AATags.TBAA;
395   if (!M)
396     return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals);
397 
398   // If this is an "immutable" type, we can assume the pointer is pointing
399   // to constant memory.
400   if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
401       (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
402     return ModRefInfo::NoModRef;
403 
404   return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals);
405 }
406 
407 MemoryEffects TypeBasedAAResult::getMemoryEffects(const CallBase *Call,
408                                                   AAQueryInfo &AAQI) {
409   if (!EnableTBAA)
410     return AAResultBase::getMemoryEffects(Call, AAQI);
411 
412   // If this is an "immutable" type, the access is not observable.
413   if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
414     if ((!isStructPathTBAA(M) && TBAANode(M).isTypeImmutable()) ||
415         (isStructPathTBAA(M) && TBAAStructTagNode(M).isTypeImmutable()))
416       return MemoryEffects::none();
417 
418   return AAResultBase::getMemoryEffects(Call, AAQI);
419 }
420 
421 MemoryEffects TypeBasedAAResult::getMemoryEffects(const Function *F) {
422   // Functions don't have metadata. Just chain to the next implementation.
423   return AAResultBase::getMemoryEffects(F);
424 }
425 
426 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call,
427                                             const MemoryLocation &Loc,
428                                             AAQueryInfo &AAQI) {
429   if (!EnableTBAA)
430     return AAResultBase::getModRefInfo(Call, Loc, AAQI);
431 
432   if (const MDNode *L = Loc.AATags.TBAA)
433     if (const MDNode *M = Call->getMetadata(LLVMContext::MD_tbaa))
434       if (!Aliases(L, M))
435         return ModRefInfo::NoModRef;
436 
437   return AAResultBase::getModRefInfo(Call, Loc, AAQI);
438 }
439 
440 ModRefInfo TypeBasedAAResult::getModRefInfo(const CallBase *Call1,
441                                             const CallBase *Call2,
442                                             AAQueryInfo &AAQI) {
443   if (!EnableTBAA)
444     return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
445 
446   if (const MDNode *M1 = Call1->getMetadata(LLVMContext::MD_tbaa))
447     if (const MDNode *M2 = Call2->getMetadata(LLVMContext::MD_tbaa))
448       if (!Aliases(M1, M2))
449         return ModRefInfo::NoModRef;
450 
451   return AAResultBase::getModRefInfo(Call1, Call2, AAQI);
452 }
453 
454 bool MDNode::isTBAAVtableAccess() const {
455   if (!isStructPathTBAA(this)) {
456     if (getNumOperands() < 1)
457       return false;
458     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
459       if (Tag1->getString() == "vtable pointer")
460         return true;
461     }
462     return false;
463   }
464 
465   // For struct-path aware TBAA, we use the access type of the tag.
466   TBAAStructTagNode Tag(this);
467   TBAAStructTypeNode AccessType(Tag.getAccessType());
468   if(auto *Id = dyn_cast<MDString>(AccessType.getId()))
469     if (Id->getString() == "vtable pointer")
470       return true;
471   return false;
472 }
473 
474 static bool matchAccessTags(const MDNode *A, const MDNode *B,
475                             const MDNode **GenericTag = nullptr);
476 
477 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
478   const MDNode *GenericTag;
479   matchAccessTags(A, B, &GenericTag);
480   return const_cast<MDNode*>(GenericTag);
481 }
482 
483 static const MDNode *getLeastCommonType(const MDNode *A, const MDNode *B) {
484   if (!A || !B)
485     return nullptr;
486 
487   if (A == B)
488     return A;
489 
490   SmallSetVector<const MDNode *, 4> PathA;
491   TBAANode TA(A);
492   while (TA.getNode()) {
493     if (!PathA.insert(TA.getNode()))
494       report_fatal_error("Cycle found in TBAA metadata.");
495     TA = TA.getParent();
496   }
497 
498   SmallSetVector<const MDNode *, 4> PathB;
499   TBAANode TB(B);
500   while (TB.getNode()) {
501     if (!PathB.insert(TB.getNode()))
502       report_fatal_error("Cycle found in TBAA metadata.");
503     TB = TB.getParent();
504   }
505 
506   int IA = PathA.size() - 1;
507   int IB = PathB.size() - 1;
508 
509   const MDNode *Ret = nullptr;
510   while (IA >= 0 && IB >= 0) {
511     if (PathA[IA] == PathB[IB])
512       Ret = PathA[IA];
513     else
514       break;
515     --IA;
516     --IB;
517   }
518 
519   return Ret;
520 }
521 
522 AAMDNodes AAMDNodes::merge(const AAMDNodes &Other) const {
523   AAMDNodes Result;
524   Result.TBAA = MDNode::getMostGenericTBAA(TBAA, Other.TBAA);
525   Result.TBAAStruct = nullptr;
526   Result.Scope = MDNode::getMostGenericAliasScope(Scope, Other.Scope);
527   Result.NoAlias = MDNode::intersect(NoAlias, Other.NoAlias);
528   return Result;
529 }
530 
531 AAMDNodes AAMDNodes::concat(const AAMDNodes &Other) const {
532   AAMDNodes Result;
533   Result.TBAA = Result.TBAAStruct = nullptr;
534   Result.Scope = MDNode::getMostGenericAliasScope(Scope, Other.Scope);
535   Result.NoAlias = MDNode::intersect(NoAlias, Other.NoAlias);
536   return Result;
537 }
538 
539 static const MDNode *createAccessTag(const MDNode *AccessType) {
540   // If there is no access type or the access type is the root node, then
541   // we don't have any useful access tag to return.
542   if (!AccessType || AccessType->getNumOperands() < 2)
543     return nullptr;
544 
545   Type *Int64 = IntegerType::get(AccessType->getContext(), 64);
546   auto *OffsetNode = ConstantAsMetadata::get(ConstantInt::get(Int64, 0));
547 
548   if (TBAAStructTypeNode(AccessType).isNewFormat()) {
549     // TODO: Take access ranges into account when matching access tags and
550     // fix this code to generate actual access sizes for generic tags.
551     uint64_t AccessSize = UINT64_MAX;
552     auto *SizeNode =
553         ConstantAsMetadata::get(ConstantInt::get(Int64, AccessSize));
554     Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
555                        const_cast<MDNode*>(AccessType),
556                        OffsetNode, SizeNode};
557     return MDNode::get(AccessType->getContext(), Ops);
558   }
559 
560   Metadata *Ops[] = {const_cast<MDNode*>(AccessType),
561                      const_cast<MDNode*>(AccessType),
562                      OffsetNode};
563   return MDNode::get(AccessType->getContext(), Ops);
564 }
565 
566 static bool hasField(TBAAStructTypeNode BaseType,
567                      TBAAStructTypeNode FieldType) {
568   for (unsigned I = 0, E = BaseType.getNumFields(); I != E; ++I) {
569     TBAAStructTypeNode T = BaseType.getFieldType(I);
570     if (T == FieldType || hasField(T, FieldType))
571       return true;
572   }
573   return false;
574 }
575 
576 /// Return true if for two given accesses, one of the accessed objects may be a
577 /// subobject of the other. The \p BaseTag and \p SubobjectTag parameters
578 /// describe the accesses to the base object and the subobject respectively.
579 /// \p CommonType must be the metadata node describing the common type of the
580 /// accessed objects. On return, \p MayAlias is set to true iff these accesses
581 /// may alias and \p Generic, if not null, points to the most generic access
582 /// tag for the given two.
583 static bool mayBeAccessToSubobjectOf(TBAAStructTagNode BaseTag,
584                                      TBAAStructTagNode SubobjectTag,
585                                      const MDNode *CommonType,
586                                      const MDNode **GenericTag,
587                                      bool &MayAlias) {
588   // If the base object is of the least common type, then this may be an access
589   // to its subobject.
590   if (BaseTag.getAccessType() == BaseTag.getBaseType() &&
591       BaseTag.getAccessType() == CommonType) {
592     if (GenericTag)
593       *GenericTag = createAccessTag(CommonType);
594     MayAlias = true;
595     return true;
596   }
597 
598   // If the access to the base object is through a field of the subobject's
599   // type, then this may be an access to that field. To check for that we start
600   // from the base type, follow the edge with the correct offset in the type DAG
601   // and adjust the offset until we reach the field type or until we reach the
602   // access type.
603   bool NewFormat = BaseTag.isNewFormat();
604   TBAAStructTypeNode BaseType(BaseTag.getBaseType());
605   uint64_t OffsetInBase = BaseTag.getOffset();
606 
607   for (;;) {
608     // In the old format there is no distinction between fields and parent
609     // types, so in this case we consider all nodes up to the root.
610     if (!BaseType.getNode()) {
611       assert(!NewFormat && "Did not see access type in access path!");
612       break;
613     }
614 
615     if (BaseType.getNode() == SubobjectTag.getBaseType()) {
616       bool SameMemberAccess = OffsetInBase == SubobjectTag.getOffset();
617       if (GenericTag) {
618         *GenericTag = SameMemberAccess ? SubobjectTag.getNode() :
619                                          createAccessTag(CommonType);
620       }
621       MayAlias = SameMemberAccess;
622       return true;
623     }
624 
625     // With new-format nodes we stop at the access type.
626     if (NewFormat && BaseType.getNode() == BaseTag.getAccessType())
627       break;
628 
629     // Follow the edge with the correct offset. Offset will be adjusted to
630     // be relative to the field type.
631     BaseType = BaseType.getField(OffsetInBase);
632   }
633 
634   // If the base object has a direct or indirect field of the subobject's type,
635   // then this may be an access to that field. We need this to check now that
636   // we support aggregates as access types.
637   if (NewFormat) {
638     // TBAAStructTypeNode BaseAccessType(BaseTag.getAccessType());
639     TBAAStructTypeNode FieldType(SubobjectTag.getBaseType());
640     if (hasField(BaseType, FieldType)) {
641       if (GenericTag)
642         *GenericTag = createAccessTag(CommonType);
643       MayAlias = true;
644       return true;
645     }
646   }
647 
648   return false;
649 }
650 
651 /// matchTags - Return true if the given couple of accesses are allowed to
652 /// overlap. If \arg GenericTag is not null, then on return it points to the
653 /// most generic access descriptor for the given two.
654 static bool matchAccessTags(const MDNode *A, const MDNode *B,
655                             const MDNode **GenericTag) {
656   if (A == B) {
657     if (GenericTag)
658       *GenericTag = A;
659     return true;
660   }
661 
662   // Accesses with no TBAA information may alias with any other accesses.
663   if (!A || !B) {
664     if (GenericTag)
665       *GenericTag = nullptr;
666     return true;
667   }
668 
669   // Verify that both input nodes are struct-path aware.  Auto-upgrade should
670   // have taken care of this.
671   assert(isStructPathTBAA(A) && "Access A is not struct-path aware!");
672   assert(isStructPathTBAA(B) && "Access B is not struct-path aware!");
673 
674   TBAAStructTagNode TagA(A), TagB(B);
675   const MDNode *CommonType = getLeastCommonType(TagA.getAccessType(),
676                                                 TagB.getAccessType());
677 
678   // If the final access types have different roots, they're part of different
679   // potentially unrelated type systems, so we must be conservative.
680   if (!CommonType) {
681     if (GenericTag)
682       *GenericTag = nullptr;
683     return true;
684   }
685 
686   // If one of the accessed objects may be a subobject of the other, then such
687   // accesses may alias.
688   bool MayAlias;
689   if (mayBeAccessToSubobjectOf(/* BaseTag= */ TagA, /* SubobjectTag= */ TagB,
690                                CommonType, GenericTag, MayAlias) ||
691       mayBeAccessToSubobjectOf(/* BaseTag= */ TagB, /* SubobjectTag= */ TagA,
692                                CommonType, GenericTag, MayAlias))
693     return MayAlias;
694 
695   // Otherwise, we've proved there's no alias.
696   if (GenericTag)
697     *GenericTag = createAccessTag(CommonType);
698   return false;
699 }
700 
701 /// Aliases - Test whether the access represented by tag A may alias the
702 /// access represented by tag B.
703 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
704   return matchAccessTags(A, B);
705 }
706 
707 AnalysisKey TypeBasedAA::Key;
708 
709 TypeBasedAAResult TypeBasedAA::run(Function &F, FunctionAnalysisManager &AM) {
710   return TypeBasedAAResult();
711 }
712 
713 char TypeBasedAAWrapperPass::ID = 0;
714 INITIALIZE_PASS(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
715                 false, true)
716 
717 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
718   return new TypeBasedAAWrapperPass();
719 }
720 
721 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
722   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
723 }
724 
725 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
726   Result.reset(new TypeBasedAAResult());
727   return false;
728 }
729 
730 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
731   Result.reset();
732   return false;
733 }
734 
735 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
736   AU.setPreservesAll();
737 }
738 
739 MDNode *AAMDNodes::shiftTBAA(MDNode *MD, size_t Offset) {
740   // Fast path if there's no offset
741   if (Offset == 0)
742     return MD;
743   // Fast path if there's no path tbaa node (and thus scalar)
744   if (!isStructPathTBAA(MD))
745     return MD;
746 
747   // The correct behavior here is to add the offset into the TBAA
748   // struct node offset. The base type, however may not have defined
749   // a type at this additional offset, resulting in errors. Since
750   // this method is only used within a given load/store access
751   // the offset provided is only used to subdivide the previous load
752   // maintaining the validity of the previous TBAA.
753   //
754   // This, however, should be revisited in the future.
755   return MD;
756 }
757 
758 MDNode *AAMDNodes::shiftTBAAStruct(MDNode *MD, size_t Offset) {
759   // Fast path if there's no offset
760   if (Offset == 0)
761     return MD;
762   SmallVector<Metadata *, 3> Sub;
763   for (size_t i = 0, size = MD->getNumOperands(); i < size; i += 3) {
764     ConstantInt *InnerOffset = mdconst::extract<ConstantInt>(MD->getOperand(i));
765     ConstantInt *InnerSize =
766         mdconst::extract<ConstantInt>(MD->getOperand(i + 1));
767     // Don't include any triples that aren't in bounds
768     if (InnerOffset->getZExtValue() + InnerSize->getZExtValue() <= Offset)
769       continue;
770 
771     uint64_t NewSize = InnerSize->getZExtValue();
772     uint64_t NewOffset = InnerOffset->getZExtValue() - Offset;
773     if (InnerOffset->getZExtValue() < Offset) {
774       NewOffset = 0;
775       NewSize -= Offset - InnerOffset->getZExtValue();
776     }
777 
778     // Shift the offset of the triple
779     Sub.push_back(ConstantAsMetadata::get(
780         ConstantInt::get(InnerOffset->getType(), NewOffset)));
781     Sub.push_back(ConstantAsMetadata::get(
782         ConstantInt::get(InnerSize->getType(), NewSize)));
783     Sub.push_back(MD->getOperand(i + 2));
784   }
785   return MDNode::get(MD->getContext(), Sub);
786 }
787 
788 MDNode *AAMDNodes::extendToTBAA(MDNode *MD, ssize_t Len) {
789   // Fast path if 0-length
790   if (Len == 0)
791     return nullptr;
792 
793   // Regular TBAA is invariant of length, so we only need to consider
794   // struct-path TBAA.
795   if (!isStructPathTBAA(MD))
796     return MD;
797 
798   TBAAStructTagNode Tag(MD);
799 
800   // Only new format TBAA has a size
801   if (!Tag.isNewFormat())
802     return MD;
803 
804   // If unknown size, drop the TBAA.
805   if (Len == -1)
806     return nullptr;
807 
808   // Otherwise, create TBAA with the new Len
809   ArrayRef<MDOperand> MDOperands = MD->operands();
810   SmallVector<Metadata *, 4> NextNodes(MDOperands.begin(), MDOperands.end());
811   ConstantInt *PreviousSize = mdconst::extract<ConstantInt>(NextNodes[3]);
812 
813   // Don't create a new MDNode if it is the same length.
814   if (PreviousSize->equalsInt(Len))
815     return MD;
816 
817   NextNodes[3] =
818       ConstantAsMetadata::get(ConstantInt::get(PreviousSize->getType(), Len));
819   return MDNode::get(MD->getContext(), NextNodes);
820 }
821