1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/IntrinsicsAArch64.h"
56 #include "llvm/IR/IntrinsicsRISCV.h"
57 #include "llvm/IR/IntrinsicsX86.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include <algorithm>
73 #include <array>
74 #include <cassert>
75 #include <cstdint>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace llvm::PatternMatch;
81 
82 // Controls the number of uses of the value searched for possible
83 // dominating comparisons.
84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85                                               cl::Hidden, cl::init(20));
86 
87 // According to the LangRef, branching on a poison condition is absolutely
88 // immediate full UB.  However, historically we haven't implemented that
89 // consistently as we have an important transformation (non-trivial unswitch)
90 // which introduces instances of branch on poison/undef to otherwise well
91 // defined programs.  This flag exists to let us test optimization benefit
92 // of exploiting the specified behavior (in combination with enabling the
93 // unswitch fix.)
94 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
95                                         cl::Hidden, cl::init(false));
96 
97 
98 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
99 /// returns the element type's bitwidth.
100 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
101   if (unsigned BitWidth = Ty->getScalarSizeInBits())
102     return BitWidth;
103 
104   return DL.getPointerTypeSizeInBits(Ty);
105 }
106 
107 namespace {
108 
109 // Simplifying using an assume can only be done in a particular control-flow
110 // context (the context instruction provides that context). If an assume and
111 // the context instruction are not in the same block then the DT helps in
112 // figuring out if we can use it.
113 struct Query {
114   const DataLayout &DL;
115   AssumptionCache *AC;
116   const Instruction *CxtI;
117   const DominatorTree *DT;
118 
119   // Unlike the other analyses, this may be a nullptr because not all clients
120   // provide it currently.
121   OptimizationRemarkEmitter *ORE;
122 
123   /// If true, it is safe to use metadata during simplification.
124   InstrInfoQuery IIQ;
125 
126   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
127         const DominatorTree *DT, bool UseInstrInfo,
128         OptimizationRemarkEmitter *ORE = nullptr)
129       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
130 };
131 
132 } // end anonymous namespace
133 
134 // Given the provided Value and, potentially, a context instruction, return
135 // the preferred context instruction (if any).
136 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
137   // If we've been provided with a context instruction, then use that (provided
138   // it has been inserted).
139   if (CxtI && CxtI->getParent())
140     return CxtI;
141 
142   // If the value is really an already-inserted instruction, then use that.
143   CxtI = dyn_cast<Instruction>(V);
144   if (CxtI && CxtI->getParent())
145     return CxtI;
146 
147   return nullptr;
148 }
149 
150 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V1);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   CxtI = dyn_cast<Instruction>(V2);
162   if (CxtI && CxtI->getParent())
163     return CxtI;
164 
165   return nullptr;
166 }
167 
168 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
169                                    const APInt &DemandedElts,
170                                    APInt &DemandedLHS, APInt &DemandedRHS) {
171   // The length of scalable vectors is unknown at compile time, thus we
172   // cannot check their values
173   if (isa<ScalableVectorType>(Shuf->getType()))
174     return false;
175 
176   int NumElts =
177       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
178   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
179   DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
180   if (DemandedElts.isZero())
181     return true;
182   // Simple case of a shuffle with zeroinitializer.
183   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
184     DemandedLHS.setBit(0);
185     return true;
186   }
187   for (int i = 0; i != NumMaskElts; ++i) {
188     if (!DemandedElts[i])
189       continue;
190     int M = Shuf->getMaskValue(i);
191     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
192 
193     // For undef elements, we don't know anything about the common state of
194     // the shuffle result.
195     if (M == -1)
196       return false;
197     if (M < NumElts)
198       DemandedLHS.setBit(M % NumElts);
199     else
200       DemandedRHS.setBit(M % NumElts);
201   }
202 
203   return true;
204 }
205 
206 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
207                              KnownBits &Known, unsigned Depth, const Query &Q);
208 
209 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
210                              const Query &Q) {
211   // FIXME: We currently have no way to represent the DemandedElts of a scalable
212   // vector
213   if (isa<ScalableVectorType>(V->getType())) {
214     Known.resetAll();
215     return;
216   }
217 
218   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
219   APInt DemandedElts =
220       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
221   computeKnownBits(V, DemandedElts, Known, Depth, Q);
222 }
223 
224 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
225                             const DataLayout &DL, unsigned Depth,
226                             AssumptionCache *AC, const Instruction *CxtI,
227                             const DominatorTree *DT,
228                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
229   ::computeKnownBits(V, Known, Depth,
230                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
231 }
232 
233 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
234                             KnownBits &Known, const DataLayout &DL,
235                             unsigned Depth, AssumptionCache *AC,
236                             const Instruction *CxtI, const DominatorTree *DT,
237                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
238   ::computeKnownBits(V, DemandedElts, Known, Depth,
239                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
240 }
241 
242 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
243                                   unsigned Depth, const Query &Q);
244 
245 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
246                                   const Query &Q);
247 
248 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
249                                  unsigned Depth, AssumptionCache *AC,
250                                  const Instruction *CxtI,
251                                  const DominatorTree *DT,
252                                  OptimizationRemarkEmitter *ORE,
253                                  bool UseInstrInfo) {
254   return ::computeKnownBits(
255       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
256 }
257 
258 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
259                                  const DataLayout &DL, unsigned Depth,
260                                  AssumptionCache *AC, const Instruction *CxtI,
261                                  const DominatorTree *DT,
262                                  OptimizationRemarkEmitter *ORE,
263                                  bool UseInstrInfo) {
264   return ::computeKnownBits(
265       V, DemandedElts, Depth,
266       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
267 }
268 
269 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
270                                const DataLayout &DL, AssumptionCache *AC,
271                                const Instruction *CxtI, const DominatorTree *DT,
272                                bool UseInstrInfo) {
273   assert(LHS->getType() == RHS->getType() &&
274          "LHS and RHS should have the same type");
275   assert(LHS->getType()->isIntOrIntVectorTy() &&
276          "LHS and RHS should be integers");
277   // Look for an inverted mask: (X & ~M) op (Y & M).
278   Value *M;
279   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
280       match(RHS, m_c_And(m_Specific(M), m_Value())))
281     return true;
282   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
283       match(LHS, m_c_And(m_Specific(M), m_Value())))
284     return true;
285   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
286   KnownBits LHSKnown(IT->getBitWidth());
287   KnownBits RHSKnown(IT->getBitWidth());
288   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
289   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
290   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
291 }
292 
293 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
294   return !I->user_empty() && all_of(I->users(), [](const User *U) {
295     ICmpInst::Predicate P;
296     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
297   });
298 }
299 
300 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
301                                    const Query &Q);
302 
303 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
304                                   bool OrZero, unsigned Depth,
305                                   AssumptionCache *AC, const Instruction *CxtI,
306                                   const DominatorTree *DT, bool UseInstrInfo) {
307   return ::isKnownToBeAPowerOfTwo(
308       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
309 }
310 
311 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
312                            unsigned Depth, const Query &Q);
313 
314 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
315 
316 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
317                           AssumptionCache *AC, const Instruction *CxtI,
318                           const DominatorTree *DT, bool UseInstrInfo) {
319   return ::isKnownNonZero(V, Depth,
320                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
321 }
322 
323 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
324                               unsigned Depth, AssumptionCache *AC,
325                               const Instruction *CxtI, const DominatorTree *DT,
326                               bool UseInstrInfo) {
327   KnownBits Known =
328       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
329   return Known.isNonNegative();
330 }
331 
332 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
333                            AssumptionCache *AC, const Instruction *CxtI,
334                            const DominatorTree *DT, bool UseInstrInfo) {
335   if (auto *CI = dyn_cast<ConstantInt>(V))
336     return CI->getValue().isStrictlyPositive();
337 
338   // TODO: We'd doing two recursive queries here.  We should factor this such
339   // that only a single query is needed.
340   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
341          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
342 }
343 
344 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
345                            AssumptionCache *AC, const Instruction *CxtI,
346                            const DominatorTree *DT, bool UseInstrInfo) {
347   KnownBits Known =
348       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
349   return Known.isNegative();
350 }
351 
352 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
353                             const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2, 0,
360                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
400                                          unsigned Depth, AssumptionCache *AC,
401                                          const Instruction *CxtI,
402                                          const DominatorTree *DT) {
403   unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
404   return V->getType()->getScalarSizeInBits() - SignBits + 1;
405 }
406 
407 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
408                                    bool NSW, const APInt &DemandedElts,
409                                    KnownBits &KnownOut, KnownBits &Known2,
410                                    unsigned Depth, const Query &Q) {
411   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
412 
413   // If one operand is unknown and we have no nowrap information,
414   // the result will be unknown independently of the second operand.
415   if (KnownOut.isUnknown() && !NSW)
416     return;
417 
418   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
419   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
420 }
421 
422 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
423                                 const APInt &DemandedElts, KnownBits &Known,
424                                 KnownBits &Known2, unsigned Depth,
425                                 const Query &Q) {
426   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
427   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
428 
429   bool isKnownNegative = false;
430   bool isKnownNonNegative = false;
431   // If the multiplication is known not to overflow, compute the sign bit.
432   if (NSW) {
433     if (Op0 == Op1) {
434       // The product of a number with itself is non-negative.
435       isKnownNonNegative = true;
436     } else {
437       bool isKnownNonNegativeOp1 = Known.isNonNegative();
438       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
439       bool isKnownNegativeOp1 = Known.isNegative();
440       bool isKnownNegativeOp0 = Known2.isNegative();
441       // The product of two numbers with the same sign is non-negative.
442       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
443                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
444       // The product of a negative number and a non-negative number is either
445       // negative or zero.
446       if (!isKnownNonNegative)
447         isKnownNegative =
448             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
449              Known2.isNonZero()) ||
450             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
451     }
452   }
453 
454   Known = KnownBits::mul(Known, Known2);
455 
456   // Only make use of no-wrap flags if we failed to compute the sign bit
457   // directly.  This matters if the multiplication always overflows, in
458   // which case we prefer to follow the result of the direct computation,
459   // though as the program is invoking undefined behaviour we can choose
460   // whatever we like here.
461   if (isKnownNonNegative && !Known.isNegative())
462     Known.makeNonNegative();
463   else if (isKnownNegative && !Known.isNonNegative())
464     Known.makeNegative();
465 }
466 
467 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
468                                              KnownBits &Known) {
469   unsigned BitWidth = Known.getBitWidth();
470   unsigned NumRanges = Ranges.getNumOperands() / 2;
471   assert(NumRanges >= 1);
472 
473   Known.Zero.setAllBits();
474   Known.One.setAllBits();
475 
476   for (unsigned i = 0; i < NumRanges; ++i) {
477     ConstantInt *Lower =
478         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
479     ConstantInt *Upper =
480         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
481     ConstantRange Range(Lower->getValue(), Upper->getValue());
482 
483     // The first CommonPrefixBits of all values in Range are equal.
484     unsigned CommonPrefixBits =
485         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
486     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
487     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
488     Known.One &= UnsignedMax & Mask;
489     Known.Zero &= ~UnsignedMax & Mask;
490   }
491 }
492 
493 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
494   SmallVector<const Value *, 16> WorkSet(1, I);
495   SmallPtrSet<const Value *, 32> Visited;
496   SmallPtrSet<const Value *, 16> EphValues;
497 
498   // The instruction defining an assumption's condition itself is always
499   // considered ephemeral to that assumption (even if it has other
500   // non-ephemeral users). See r246696's test case for an example.
501   if (is_contained(I->operands(), E))
502     return true;
503 
504   while (!WorkSet.empty()) {
505     const Value *V = WorkSet.pop_back_val();
506     if (!Visited.insert(V).second)
507       continue;
508 
509     // If all uses of this value are ephemeral, then so is this value.
510     if (llvm::all_of(V->users(), [&](const User *U) {
511                                    return EphValues.count(U);
512                                  })) {
513       if (V == E)
514         return true;
515 
516       if (V == I || (isa<Instruction>(V) &&
517                      !cast<Instruction>(V)->mayHaveSideEffects() &&
518                      !cast<Instruction>(V)->isTerminator())) {
519        EphValues.insert(V);
520        if (const User *U = dyn_cast<User>(V))
521          append_range(WorkSet, U->operands());
522       }
523     }
524   }
525 
526   return false;
527 }
528 
529 // Is this an intrinsic that cannot be speculated but also cannot trap?
530 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
531   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
532     return CI->isAssumeLikeIntrinsic();
533 
534   return false;
535 }
536 
537 bool llvm::isValidAssumeForContext(const Instruction *Inv,
538                                    const Instruction *CxtI,
539                                    const DominatorTree *DT) {
540   // There are two restrictions on the use of an assume:
541   //  1. The assume must dominate the context (or the control flow must
542   //     reach the assume whenever it reaches the context).
543   //  2. The context must not be in the assume's set of ephemeral values
544   //     (otherwise we will use the assume to prove that the condition
545   //     feeding the assume is trivially true, thus causing the removal of
546   //     the assume).
547 
548   if (Inv->getParent() == CxtI->getParent()) {
549     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
550     // in the BB.
551     if (Inv->comesBefore(CxtI))
552       return true;
553 
554     // Don't let an assume affect itself - this would cause the problems
555     // `isEphemeralValueOf` is trying to prevent, and it would also make
556     // the loop below go out of bounds.
557     if (Inv == CxtI)
558       return false;
559 
560     // The context comes first, but they're both in the same block.
561     // Make sure there is nothing in between that might interrupt
562     // the control flow, not even CxtI itself.
563     // We limit the scan distance between the assume and its context instruction
564     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
565     // it can be adjusted if needed (could be turned into a cl::opt).
566     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
567     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
568       return false;
569 
570     return !isEphemeralValueOf(Inv, CxtI);
571   }
572 
573   // Inv and CxtI are in different blocks.
574   if (DT) {
575     if (DT->dominates(Inv, CxtI))
576       return true;
577   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
578     // We don't have a DT, but this trivially dominates.
579     return true;
580   }
581 
582   return false;
583 }
584 
585 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
586   // v u> y implies v != 0.
587   if (Pred == ICmpInst::ICMP_UGT)
588     return true;
589 
590   // Special-case v != 0 to also handle v != null.
591   if (Pred == ICmpInst::ICMP_NE)
592     return match(RHS, m_Zero());
593 
594   // All other predicates - rely on generic ConstantRange handling.
595   const APInt *C;
596   if (!match(RHS, m_APInt(C)))
597     return false;
598 
599   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
600   return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
601 }
602 
603 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
604   // Use of assumptions is context-sensitive. If we don't have a context, we
605   // cannot use them!
606   if (!Q.AC || !Q.CxtI)
607     return false;
608 
609   if (Q.CxtI && V->getType()->isPointerTy()) {
610     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
611     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
612                               V->getType()->getPointerAddressSpace()))
613       AttrKinds.push_back(Attribute::Dereferenceable);
614 
615     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
616       return true;
617   }
618 
619   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
620     if (!AssumeVH)
621       continue;
622     CallInst *I = cast<CallInst>(AssumeVH);
623     assert(I->getFunction() == Q.CxtI->getFunction() &&
624            "Got assumption for the wrong function!");
625 
626     // Warning: This loop can end up being somewhat performance sensitive.
627     // We're running this loop for once for each value queried resulting in a
628     // runtime of ~O(#assumes * #values).
629 
630     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
631            "must be an assume intrinsic");
632 
633     Value *RHS;
634     CmpInst::Predicate Pred;
635     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
636     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
637       return false;
638 
639     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
640       return true;
641   }
642 
643   return false;
644 }
645 
646 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
647                                        unsigned Depth, const Query &Q) {
648   // Use of assumptions is context-sensitive. If we don't have a context, we
649   // cannot use them!
650   if (!Q.AC || !Q.CxtI)
651     return;
652 
653   unsigned BitWidth = Known.getBitWidth();
654 
655   // Refine Known set if the pointer alignment is set by assume bundles.
656   if (V->getType()->isPointerTy()) {
657     if (RetainedKnowledge RK = getKnowledgeValidInContext(
658             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
659       Known.Zero.setLowBits(Log2_64(RK.ArgValue));
660     }
661   }
662 
663   // Note that the patterns below need to be kept in sync with the code
664   // in AssumptionCache::updateAffectedValues.
665 
666   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
667     if (!AssumeVH)
668       continue;
669     CallInst *I = cast<CallInst>(AssumeVH);
670     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
671            "Got assumption for the wrong function!");
672 
673     // Warning: This loop can end up being somewhat performance sensitive.
674     // We're running this loop for once for each value queried resulting in a
675     // runtime of ~O(#assumes * #values).
676 
677     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
678            "must be an assume intrinsic");
679 
680     Value *Arg = I->getArgOperand(0);
681 
682     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
683       assert(BitWidth == 1 && "assume operand is not i1?");
684       Known.setAllOnes();
685       return;
686     }
687     if (match(Arg, m_Not(m_Specific(V))) &&
688         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
689       assert(BitWidth == 1 && "assume operand is not i1?");
690       Known.setAllZero();
691       return;
692     }
693 
694     // The remaining tests are all recursive, so bail out if we hit the limit.
695     if (Depth == MaxAnalysisRecursionDepth)
696       continue;
697 
698     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
699     if (!Cmp)
700       continue;
701 
702     // We are attempting to compute known bits for the operands of an assume.
703     // Do not try to use other assumptions for those recursive calls because
704     // that can lead to mutual recursion and a compile-time explosion.
705     // An example of the mutual recursion: computeKnownBits can call
706     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
707     // and so on.
708     Query QueryNoAC = Q;
709     QueryNoAC.AC = nullptr;
710 
711     // Note that ptrtoint may change the bitwidth.
712     Value *A, *B;
713     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
714 
715     CmpInst::Predicate Pred;
716     uint64_t C;
717     switch (Cmp->getPredicate()) {
718     default:
719       break;
720     case ICmpInst::ICMP_EQ:
721       // assume(v = a)
722       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
723           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
724         KnownBits RHSKnown =
725             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
726         Known.Zero |= RHSKnown.Zero;
727         Known.One  |= RHSKnown.One;
728       // assume(v & b = a)
729       } else if (match(Cmp,
730                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
731                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
732         KnownBits RHSKnown =
733             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
734         KnownBits MaskKnown =
735             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
736 
737         // For those bits in the mask that are known to be one, we can propagate
738         // known bits from the RHS to V.
739         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
740         Known.One  |= RHSKnown.One  & MaskKnown.One;
741       // assume(~(v & b) = a)
742       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
743                                      m_Value(A))) &&
744                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
745         KnownBits RHSKnown =
746             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
747         KnownBits MaskKnown =
748             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
749 
750         // For those bits in the mask that are known to be one, we can propagate
751         // inverted known bits from the RHS to V.
752         Known.Zero |= RHSKnown.One  & MaskKnown.One;
753         Known.One  |= RHSKnown.Zero & MaskKnown.One;
754       // assume(v | b = a)
755       } else if (match(Cmp,
756                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
757                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758         KnownBits RHSKnown =
759             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
760         KnownBits BKnown =
761             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
762 
763         // For those bits in B that are known to be zero, we can propagate known
764         // bits from the RHS to V.
765         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
766         Known.One  |= RHSKnown.One  & BKnown.Zero;
767       // assume(~(v | b) = a)
768       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
769                                      m_Value(A))) &&
770                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
771         KnownBits RHSKnown =
772             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
773         KnownBits BKnown =
774             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
775 
776         // For those bits in B that are known to be zero, we can propagate
777         // inverted known bits from the RHS to V.
778         Known.Zero |= RHSKnown.One  & BKnown.Zero;
779         Known.One  |= RHSKnown.Zero & BKnown.Zero;
780       // assume(v ^ b = a)
781       } else if (match(Cmp,
782                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
783                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
784         KnownBits RHSKnown =
785             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
786         KnownBits BKnown =
787             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
788 
789         // For those bits in B that are known to be zero, we can propagate known
790         // bits from the RHS to V. For those bits in B that are known to be one,
791         // we can propagate inverted known bits from the RHS to V.
792         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
793         Known.One  |= RHSKnown.One  & BKnown.Zero;
794         Known.Zero |= RHSKnown.One  & BKnown.One;
795         Known.One  |= RHSKnown.Zero & BKnown.One;
796       // assume(~(v ^ b) = a)
797       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
798                                      m_Value(A))) &&
799                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
800         KnownBits RHSKnown =
801             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
802         KnownBits BKnown =
803             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
804 
805         // For those bits in B that are known to be zero, we can propagate
806         // inverted known bits from the RHS to V. For those bits in B that are
807         // known to be one, we can propagate known bits from the RHS to V.
808         Known.Zero |= RHSKnown.One  & BKnown.Zero;
809         Known.One  |= RHSKnown.Zero & BKnown.Zero;
810         Known.Zero |= RHSKnown.Zero & BKnown.One;
811         Known.One  |= RHSKnown.One  & BKnown.One;
812       // assume(v << c = a)
813       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
814                                      m_Value(A))) &&
815                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
816         KnownBits RHSKnown =
817             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
818 
819         // For those bits in RHS that are known, we can propagate them to known
820         // bits in V shifted to the right by C.
821         RHSKnown.Zero.lshrInPlace(C);
822         Known.Zero |= RHSKnown.Zero;
823         RHSKnown.One.lshrInPlace(C);
824         Known.One  |= RHSKnown.One;
825       // assume(~(v << c) = a)
826       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
827                                      m_Value(A))) &&
828                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
829         KnownBits RHSKnown =
830             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
831         // For those bits in RHS that are known, we can propagate them inverted
832         // to known bits in V shifted to the right by C.
833         RHSKnown.One.lshrInPlace(C);
834         Known.Zero |= RHSKnown.One;
835         RHSKnown.Zero.lshrInPlace(C);
836         Known.One  |= RHSKnown.Zero;
837       // assume(v >> c = a)
838       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
839                                      m_Value(A))) &&
840                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
841         KnownBits RHSKnown =
842             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
843         // For those bits in RHS that are known, we can propagate them to known
844         // bits in V shifted to the right by C.
845         Known.Zero |= RHSKnown.Zero << C;
846         Known.One  |= RHSKnown.One  << C;
847       // assume(~(v >> c) = a)
848       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
849                                      m_Value(A))) &&
850                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
851         KnownBits RHSKnown =
852             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
853         // For those bits in RHS that are known, we can propagate them inverted
854         // to known bits in V shifted to the right by C.
855         Known.Zero |= RHSKnown.One  << C;
856         Known.One  |= RHSKnown.Zero << C;
857       }
858       break;
859     case ICmpInst::ICMP_SGE:
860       // assume(v >=_s c) where c is non-negative
861       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
862           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
863         KnownBits RHSKnown =
864             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
865 
866         if (RHSKnown.isNonNegative()) {
867           // We know that the sign bit is zero.
868           Known.makeNonNegative();
869         }
870       }
871       break;
872     case ICmpInst::ICMP_SGT:
873       // assume(v >_s c) where c is at least -1.
874       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
875           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
876         KnownBits RHSKnown =
877             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
878 
879         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
880           // We know that the sign bit is zero.
881           Known.makeNonNegative();
882         }
883       }
884       break;
885     case ICmpInst::ICMP_SLE:
886       // assume(v <=_s c) where c is negative
887       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
888           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
889         KnownBits RHSKnown =
890             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
891 
892         if (RHSKnown.isNegative()) {
893           // We know that the sign bit is one.
894           Known.makeNegative();
895         }
896       }
897       break;
898     case ICmpInst::ICMP_SLT:
899       // assume(v <_s c) where c is non-positive
900       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
901           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
902         KnownBits RHSKnown =
903             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
904 
905         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
906           // We know that the sign bit is one.
907           Known.makeNegative();
908         }
909       }
910       break;
911     case ICmpInst::ICMP_ULE:
912       // assume(v <=_u c)
913       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
914           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
915         KnownBits RHSKnown =
916             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
917 
918         // Whatever high bits in c are zero are known to be zero.
919         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
920       }
921       break;
922     case ICmpInst::ICMP_ULT:
923       // assume(v <_u c)
924       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
925           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
926         KnownBits RHSKnown =
927             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
928 
929         // If the RHS is known zero, then this assumption must be wrong (nothing
930         // is unsigned less than zero). Signal a conflict and get out of here.
931         if (RHSKnown.isZero()) {
932           Known.Zero.setAllBits();
933           Known.One.setAllBits();
934           break;
935         }
936 
937         // Whatever high bits in c are zero are known to be zero (if c is a power
938         // of 2, then one more).
939         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
940           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
941         else
942           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
943       }
944       break;
945     }
946   }
947 
948   // If assumptions conflict with each other or previous known bits, then we
949   // have a logical fallacy. It's possible that the assumption is not reachable,
950   // so this isn't a real bug. On the other hand, the program may have undefined
951   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
952   // clear out the known bits, try to warn the user, and hope for the best.
953   if (Known.Zero.intersects(Known.One)) {
954     Known.resetAll();
955 
956     if (Q.ORE)
957       Q.ORE->emit([&]() {
958         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
959         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
960                                           CxtI)
961                << "Detected conflicting code assumptions. Program may "
962                   "have undefined behavior, or compiler may have "
963                   "internal error.";
964       });
965   }
966 }
967 
968 /// Compute known bits from a shift operator, including those with a
969 /// non-constant shift amount. Known is the output of this function. Known2 is a
970 /// pre-allocated temporary with the same bit width as Known and on return
971 /// contains the known bit of the shift value source. KF is an
972 /// operator-specific function that, given the known-bits and a shift amount,
973 /// compute the implied known-bits of the shift operator's result respectively
974 /// for that shift amount. The results from calling KF are conservatively
975 /// combined for all permitted shift amounts.
976 static void computeKnownBitsFromShiftOperator(
977     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
978     KnownBits &Known2, unsigned Depth, const Query &Q,
979     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
980   unsigned BitWidth = Known.getBitWidth();
981   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
982   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
983 
984   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
985   // BitWidth > 64 and any upper bits are known, we'll end up returning the
986   // limit value (which implies all bits are known).
987   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
988   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
989   bool ShiftAmtIsConstant = Known.isConstant();
990   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
991 
992   if (ShiftAmtIsConstant) {
993     Known = KF(Known2, Known);
994 
995     // If the known bits conflict, this must be an overflowing left shift, so
996     // the shift result is poison. We can return anything we want. Choose 0 for
997     // the best folding opportunity.
998     if (Known.hasConflict())
999       Known.setAllZero();
1000 
1001     return;
1002   }
1003 
1004   // If the shift amount could be greater than or equal to the bit-width of the
1005   // LHS, the value could be poison, but bail out because the check below is
1006   // expensive.
1007   // TODO: Should we just carry on?
1008   if (MaxShiftAmtIsOutOfRange) {
1009     Known.resetAll();
1010     return;
1011   }
1012 
1013   // It would be more-clearly correct to use the two temporaries for this
1014   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1015   Known.resetAll();
1016 
1017   // If we know the shifter operand is nonzero, we can sometimes infer more
1018   // known bits. However this is expensive to compute, so be lazy about it and
1019   // only compute it when absolutely necessary.
1020   Optional<bool> ShifterOperandIsNonZero;
1021 
1022   // Early exit if we can't constrain any well-defined shift amount.
1023   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1024       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1025     ShifterOperandIsNonZero =
1026         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1027     if (!*ShifterOperandIsNonZero)
1028       return;
1029   }
1030 
1031   Known.Zero.setAllBits();
1032   Known.One.setAllBits();
1033   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1034     // Combine the shifted known input bits only for those shift amounts
1035     // compatible with its known constraints.
1036     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1037       continue;
1038     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1039       continue;
1040     // If we know the shifter is nonzero, we may be able to infer more known
1041     // bits. This check is sunk down as far as possible to avoid the expensive
1042     // call to isKnownNonZero if the cheaper checks above fail.
1043     if (ShiftAmt == 0) {
1044       if (!ShifterOperandIsNonZero.hasValue())
1045         ShifterOperandIsNonZero =
1046             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1047       if (*ShifterOperandIsNonZero)
1048         continue;
1049     }
1050 
1051     Known = KnownBits::commonBits(
1052         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1053   }
1054 
1055   // If the known bits conflict, the result is poison. Return a 0 and hope the
1056   // caller can further optimize that.
1057   if (Known.hasConflict())
1058     Known.setAllZero();
1059 }
1060 
1061 static void computeKnownBitsFromOperator(const Operator *I,
1062                                          const APInt &DemandedElts,
1063                                          KnownBits &Known, unsigned Depth,
1064                                          const Query &Q) {
1065   unsigned BitWidth = Known.getBitWidth();
1066 
1067   KnownBits Known2(BitWidth);
1068   switch (I->getOpcode()) {
1069   default: break;
1070   case Instruction::Load:
1071     if (MDNode *MD =
1072             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1073       computeKnownBitsFromRangeMetadata(*MD, Known);
1074     break;
1075   case Instruction::And: {
1076     // If either the LHS or the RHS are Zero, the result is zero.
1077     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1078     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1079 
1080     Known &= Known2;
1081 
1082     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1083     // here we handle the more general case of adding any odd number by
1084     // matching the form add(x, add(x, y)) where y is odd.
1085     // TODO: This could be generalized to clearing any bit set in y where the
1086     // following bit is known to be unset in y.
1087     Value *X = nullptr, *Y = nullptr;
1088     if (!Known.Zero[0] && !Known.One[0] &&
1089         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1090       Known2.resetAll();
1091       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1092       if (Known2.countMinTrailingOnes() > 0)
1093         Known.Zero.setBit(0);
1094     }
1095     break;
1096   }
1097   case Instruction::Or:
1098     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1099     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1100 
1101     Known |= Known2;
1102     break;
1103   case Instruction::Xor:
1104     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1105     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1106 
1107     Known ^= Known2;
1108     break;
1109   case Instruction::Mul: {
1110     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1111     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1112                         Known, Known2, Depth, Q);
1113     break;
1114   }
1115   case Instruction::UDiv: {
1116     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1117     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1118     Known = KnownBits::udiv(Known, Known2);
1119     break;
1120   }
1121   case Instruction::Select: {
1122     const Value *LHS = nullptr, *RHS = nullptr;
1123     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1124     if (SelectPatternResult::isMinOrMax(SPF)) {
1125       computeKnownBits(RHS, Known, Depth + 1, Q);
1126       computeKnownBits(LHS, Known2, Depth + 1, Q);
1127       switch (SPF) {
1128       default:
1129         llvm_unreachable("Unhandled select pattern flavor!");
1130       case SPF_SMAX:
1131         Known = KnownBits::smax(Known, Known2);
1132         break;
1133       case SPF_SMIN:
1134         Known = KnownBits::smin(Known, Known2);
1135         break;
1136       case SPF_UMAX:
1137         Known = KnownBits::umax(Known, Known2);
1138         break;
1139       case SPF_UMIN:
1140         Known = KnownBits::umin(Known, Known2);
1141         break;
1142       }
1143       break;
1144     }
1145 
1146     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1147     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148 
1149     // Only known if known in both the LHS and RHS.
1150     Known = KnownBits::commonBits(Known, Known2);
1151 
1152     if (SPF == SPF_ABS) {
1153       // RHS from matchSelectPattern returns the negation part of abs pattern.
1154       // If the negate has an NSW flag we can assume the sign bit of the result
1155       // will be 0 because that makes abs(INT_MIN) undefined.
1156       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1157           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1158         Known.Zero.setSignBit();
1159     }
1160 
1161     break;
1162   }
1163   case Instruction::FPTrunc:
1164   case Instruction::FPExt:
1165   case Instruction::FPToUI:
1166   case Instruction::FPToSI:
1167   case Instruction::SIToFP:
1168   case Instruction::UIToFP:
1169     break; // Can't work with floating point.
1170   case Instruction::PtrToInt:
1171   case Instruction::IntToPtr:
1172     // Fall through and handle them the same as zext/trunc.
1173     LLVM_FALLTHROUGH;
1174   case Instruction::ZExt:
1175   case Instruction::Trunc: {
1176     Type *SrcTy = I->getOperand(0)->getType();
1177 
1178     unsigned SrcBitWidth;
1179     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1180     // which fall through here.
1181     Type *ScalarTy = SrcTy->getScalarType();
1182     SrcBitWidth = ScalarTy->isPointerTy() ?
1183       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1184       Q.DL.getTypeSizeInBits(ScalarTy);
1185 
1186     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1187     Known = Known.anyextOrTrunc(SrcBitWidth);
1188     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1189     Known = Known.zextOrTrunc(BitWidth);
1190     break;
1191   }
1192   case Instruction::BitCast: {
1193     Type *SrcTy = I->getOperand(0)->getType();
1194     if (SrcTy->isIntOrPtrTy() &&
1195         // TODO: For now, not handling conversions like:
1196         // (bitcast i64 %x to <2 x i32>)
1197         !I->getType()->isVectorTy()) {
1198       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1199       break;
1200     }
1201 
1202     // Handle cast from vector integer type to scalar or vector integer.
1203     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1204     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1205         !I->getType()->isIntOrIntVectorTy())
1206       break;
1207 
1208     // Look through a cast from narrow vector elements to wider type.
1209     // Examples: v4i32 -> v2i64, v3i8 -> v24
1210     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1211     if (BitWidth % SubBitWidth == 0) {
1212       // Known bits are automatically intersected across demanded elements of a
1213       // vector. So for example, if a bit is computed as known zero, it must be
1214       // zero across all demanded elements of the vector.
1215       //
1216       // For this bitcast, each demanded element of the output is sub-divided
1217       // across a set of smaller vector elements in the source vector. To get
1218       // the known bits for an entire element of the output, compute the known
1219       // bits for each sub-element sequentially. This is done by shifting the
1220       // one-set-bit demanded elements parameter across the sub-elements for
1221       // consecutive calls to computeKnownBits. We are using the demanded
1222       // elements parameter as a mask operator.
1223       //
1224       // The known bits of each sub-element are then inserted into place
1225       // (dependent on endian) to form the full result of known bits.
1226       unsigned NumElts = DemandedElts.getBitWidth();
1227       unsigned SubScale = BitWidth / SubBitWidth;
1228       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1229       for (unsigned i = 0; i != NumElts; ++i) {
1230         if (DemandedElts[i])
1231           SubDemandedElts.setBit(i * SubScale);
1232       }
1233 
1234       KnownBits KnownSrc(SubBitWidth);
1235       for (unsigned i = 0; i != SubScale; ++i) {
1236         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1237                          Depth + 1, Q);
1238         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1239         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1240       }
1241     }
1242     break;
1243   }
1244   case Instruction::SExt: {
1245     // Compute the bits in the result that are not present in the input.
1246     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1247 
1248     Known = Known.trunc(SrcBitWidth);
1249     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1250     // If the sign bit of the input is known set or clear, then we know the
1251     // top bits of the result.
1252     Known = Known.sext(BitWidth);
1253     break;
1254   }
1255   case Instruction::Shl: {
1256     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1257     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1258       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1259       // If this shift has "nsw" keyword, then the result is either a poison
1260       // value or has the same sign bit as the first operand.
1261       if (NSW) {
1262         if (KnownVal.Zero.isSignBitSet())
1263           Result.Zero.setSignBit();
1264         if (KnownVal.One.isSignBitSet())
1265           Result.One.setSignBit();
1266       }
1267       return Result;
1268     };
1269     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1270                                       KF);
1271     // Trailing zeros of a right-shifted constant never decrease.
1272     const APInt *C;
1273     if (match(I->getOperand(0), m_APInt(C)))
1274       Known.Zero.setLowBits(C->countTrailingZeros());
1275     break;
1276   }
1277   case Instruction::LShr: {
1278     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1279       return KnownBits::lshr(KnownVal, KnownAmt);
1280     };
1281     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1282                                       KF);
1283     // Leading zeros of a left-shifted constant never decrease.
1284     const APInt *C;
1285     if (match(I->getOperand(0), m_APInt(C)))
1286       Known.Zero.setHighBits(C->countLeadingZeros());
1287     break;
1288   }
1289   case Instruction::AShr: {
1290     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1291       return KnownBits::ashr(KnownVal, KnownAmt);
1292     };
1293     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1294                                       KF);
1295     break;
1296   }
1297   case Instruction::Sub: {
1298     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1299     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1300                            DemandedElts, Known, Known2, Depth, Q);
1301     break;
1302   }
1303   case Instruction::Add: {
1304     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1305     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1306                            DemandedElts, Known, Known2, Depth, Q);
1307     break;
1308   }
1309   case Instruction::SRem:
1310     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1311     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1312     Known = KnownBits::srem(Known, Known2);
1313     break;
1314 
1315   case Instruction::URem:
1316     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1317     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1318     Known = KnownBits::urem(Known, Known2);
1319     break;
1320   case Instruction::Alloca:
1321     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1322     break;
1323   case Instruction::GetElementPtr: {
1324     // Analyze all of the subscripts of this getelementptr instruction
1325     // to determine if we can prove known low zero bits.
1326     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1327     // Accumulate the constant indices in a separate variable
1328     // to minimize the number of calls to computeForAddSub.
1329     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1330 
1331     gep_type_iterator GTI = gep_type_begin(I);
1332     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1333       // TrailZ can only become smaller, short-circuit if we hit zero.
1334       if (Known.isUnknown())
1335         break;
1336 
1337       Value *Index = I->getOperand(i);
1338 
1339       // Handle case when index is zero.
1340       Constant *CIndex = dyn_cast<Constant>(Index);
1341       if (CIndex && CIndex->isZeroValue())
1342         continue;
1343 
1344       if (StructType *STy = GTI.getStructTypeOrNull()) {
1345         // Handle struct member offset arithmetic.
1346 
1347         assert(CIndex &&
1348                "Access to structure field must be known at compile time");
1349 
1350         if (CIndex->getType()->isVectorTy())
1351           Index = CIndex->getSplatValue();
1352 
1353         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1354         const StructLayout *SL = Q.DL.getStructLayout(STy);
1355         uint64_t Offset = SL->getElementOffset(Idx);
1356         AccConstIndices += Offset;
1357         continue;
1358       }
1359 
1360       // Handle array index arithmetic.
1361       Type *IndexedTy = GTI.getIndexedType();
1362       if (!IndexedTy->isSized()) {
1363         Known.resetAll();
1364         break;
1365       }
1366 
1367       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1368       KnownBits IndexBits(IndexBitWidth);
1369       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1370       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1371       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1372       KnownBits ScalingFactor(IndexBitWidth);
1373       // Multiply by current sizeof type.
1374       // &A[i] == A + i * sizeof(*A[i]).
1375       if (IndexTypeSize.isScalable()) {
1376         // For scalable types the only thing we know about sizeof is
1377         // that this is a multiple of the minimum size.
1378         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1379       } else if (IndexBits.isConstant()) {
1380         APInt IndexConst = IndexBits.getConstant();
1381         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1382         IndexConst *= ScalingFactor;
1383         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1384         continue;
1385       } else {
1386         ScalingFactor =
1387             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1388       }
1389       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1390 
1391       // If the offsets have a different width from the pointer, according
1392       // to the language reference we need to sign-extend or truncate them
1393       // to the width of the pointer.
1394       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1395 
1396       // Note that inbounds does *not* guarantee nsw for the addition, as only
1397       // the offset is signed, while the base address is unsigned.
1398       Known = KnownBits::computeForAddSub(
1399           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1400     }
1401     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1402       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1403       Known = KnownBits::computeForAddSub(
1404           /*Add=*/true, /*NSW=*/false, Known, Index);
1405     }
1406     break;
1407   }
1408   case Instruction::PHI: {
1409     const PHINode *P = cast<PHINode>(I);
1410     BinaryOperator *BO = nullptr;
1411     Value *R = nullptr, *L = nullptr;
1412     if (matchSimpleRecurrence(P, BO, R, L)) {
1413       // Handle the case of a simple two-predecessor recurrence PHI.
1414       // There's a lot more that could theoretically be done here, but
1415       // this is sufficient to catch some interesting cases.
1416       unsigned Opcode = BO->getOpcode();
1417 
1418       // If this is a shift recurrence, we know the bits being shifted in.
1419       // We can combine that with information about the start value of the
1420       // recurrence to conclude facts about the result.
1421       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1422            Opcode == Instruction::Shl) &&
1423           BO->getOperand(0) == I) {
1424 
1425         // We have matched a recurrence of the form:
1426         // %iv = [R, %entry], [%iv.next, %backedge]
1427         // %iv.next = shift_op %iv, L
1428 
1429         // Recurse with the phi context to avoid concern about whether facts
1430         // inferred hold at original context instruction.  TODO: It may be
1431         // correct to use the original context.  IF warranted, explore and
1432         // add sufficient tests to cover.
1433         Query RecQ = Q;
1434         RecQ.CxtI = P;
1435         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1436         switch (Opcode) {
1437         case Instruction::Shl:
1438           // A shl recurrence will only increase the tailing zeros
1439           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1440           break;
1441         case Instruction::LShr:
1442           // A lshr recurrence will preserve the leading zeros of the
1443           // start value
1444           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1445           break;
1446         case Instruction::AShr:
1447           // An ashr recurrence will extend the initial sign bit
1448           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1449           Known.One.setHighBits(Known2.countMinLeadingOnes());
1450           break;
1451         };
1452       }
1453 
1454       // Check for operations that have the property that if
1455       // both their operands have low zero bits, the result
1456       // will have low zero bits.
1457       if (Opcode == Instruction::Add ||
1458           Opcode == Instruction::Sub ||
1459           Opcode == Instruction::And ||
1460           Opcode == Instruction::Or ||
1461           Opcode == Instruction::Mul) {
1462         // Change the context instruction to the "edge" that flows into the
1463         // phi. This is important because that is where the value is actually
1464         // "evaluated" even though it is used later somewhere else. (see also
1465         // D69571).
1466         Query RecQ = Q;
1467 
1468         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1469         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1470         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1471 
1472         // Ok, we have a PHI of the form L op= R. Check for low
1473         // zero bits.
1474         RecQ.CxtI = RInst;
1475         computeKnownBits(R, Known2, Depth + 1, RecQ);
1476 
1477         // We need to take the minimum number of known bits
1478         KnownBits Known3(BitWidth);
1479         RecQ.CxtI = LInst;
1480         computeKnownBits(L, Known3, Depth + 1, RecQ);
1481 
1482         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1483                                        Known3.countMinTrailingZeros()));
1484 
1485         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1486         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1487           // If initial value of recurrence is nonnegative, and we are adding
1488           // a nonnegative number with nsw, the result can only be nonnegative
1489           // or poison value regardless of the number of times we execute the
1490           // add in phi recurrence. If initial value is negative and we are
1491           // adding a negative number with nsw, the result can only be
1492           // negative or poison value. Similar arguments apply to sub and mul.
1493           //
1494           // (add non-negative, non-negative) --> non-negative
1495           // (add negative, negative) --> negative
1496           if (Opcode == Instruction::Add) {
1497             if (Known2.isNonNegative() && Known3.isNonNegative())
1498               Known.makeNonNegative();
1499             else if (Known2.isNegative() && Known3.isNegative())
1500               Known.makeNegative();
1501           }
1502 
1503           // (sub nsw non-negative, negative) --> non-negative
1504           // (sub nsw negative, non-negative) --> negative
1505           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1506             if (Known2.isNonNegative() && Known3.isNegative())
1507               Known.makeNonNegative();
1508             else if (Known2.isNegative() && Known3.isNonNegative())
1509               Known.makeNegative();
1510           }
1511 
1512           // (mul nsw non-negative, non-negative) --> non-negative
1513           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1514                    Known3.isNonNegative())
1515             Known.makeNonNegative();
1516         }
1517 
1518         break;
1519       }
1520     }
1521 
1522     // Unreachable blocks may have zero-operand PHI nodes.
1523     if (P->getNumIncomingValues() == 0)
1524       break;
1525 
1526     // Otherwise take the unions of the known bit sets of the operands,
1527     // taking conservative care to avoid excessive recursion.
1528     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1529       // Skip if every incoming value references to ourself.
1530       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1531         break;
1532 
1533       Known.Zero.setAllBits();
1534       Known.One.setAllBits();
1535       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1536         Value *IncValue = P->getIncomingValue(u);
1537         // Skip direct self references.
1538         if (IncValue == P) continue;
1539 
1540         // Change the context instruction to the "edge" that flows into the
1541         // phi. This is important because that is where the value is actually
1542         // "evaluated" even though it is used later somewhere else. (see also
1543         // D69571).
1544         Query RecQ = Q;
1545         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1546 
1547         Known2 = KnownBits(BitWidth);
1548         // Recurse, but cap the recursion to one level, because we don't
1549         // want to waste time spinning around in loops.
1550         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1551         Known = KnownBits::commonBits(Known, Known2);
1552         // If all bits have been ruled out, there's no need to check
1553         // more operands.
1554         if (Known.isUnknown())
1555           break;
1556       }
1557     }
1558     break;
1559   }
1560   case Instruction::Call:
1561   case Instruction::Invoke:
1562     // If range metadata is attached to this call, set known bits from that,
1563     // and then intersect with known bits based on other properties of the
1564     // function.
1565     if (MDNode *MD =
1566             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1567       computeKnownBitsFromRangeMetadata(*MD, Known);
1568     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1569       computeKnownBits(RV, Known2, Depth + 1, Q);
1570       Known.Zero |= Known2.Zero;
1571       Known.One |= Known2.One;
1572     }
1573     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1574       switch (II->getIntrinsicID()) {
1575       default: break;
1576       case Intrinsic::abs: {
1577         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1578         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1579         Known = Known2.abs(IntMinIsPoison);
1580         break;
1581       }
1582       case Intrinsic::bitreverse:
1583         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1584         Known.Zero |= Known2.Zero.reverseBits();
1585         Known.One |= Known2.One.reverseBits();
1586         break;
1587       case Intrinsic::bswap:
1588         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1589         Known.Zero |= Known2.Zero.byteSwap();
1590         Known.One |= Known2.One.byteSwap();
1591         break;
1592       case Intrinsic::ctlz: {
1593         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1594         // If we have a known 1, its position is our upper bound.
1595         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1596         // If this call is poison for 0 input, the result will be less than 2^n.
1597         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1598           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1599         unsigned LowBits = Log2_32(PossibleLZ)+1;
1600         Known.Zero.setBitsFrom(LowBits);
1601         break;
1602       }
1603       case Intrinsic::cttz: {
1604         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1605         // If we have a known 1, its position is our upper bound.
1606         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1607         // If this call is poison for 0 input, the result will be less than 2^n.
1608         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1609           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1610         unsigned LowBits = Log2_32(PossibleTZ)+1;
1611         Known.Zero.setBitsFrom(LowBits);
1612         break;
1613       }
1614       case Intrinsic::ctpop: {
1615         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1616         // We can bound the space the count needs.  Also, bits known to be zero
1617         // can't contribute to the population.
1618         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1619         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1620         Known.Zero.setBitsFrom(LowBits);
1621         // TODO: we could bound KnownOne using the lower bound on the number
1622         // of bits which might be set provided by popcnt KnownOne2.
1623         break;
1624       }
1625       case Intrinsic::fshr:
1626       case Intrinsic::fshl: {
1627         const APInt *SA;
1628         if (!match(I->getOperand(2), m_APInt(SA)))
1629           break;
1630 
1631         // Normalize to funnel shift left.
1632         uint64_t ShiftAmt = SA->urem(BitWidth);
1633         if (II->getIntrinsicID() == Intrinsic::fshr)
1634           ShiftAmt = BitWidth - ShiftAmt;
1635 
1636         KnownBits Known3(BitWidth);
1637         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1638         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1639 
1640         Known.Zero =
1641             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1642         Known.One =
1643             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1644         break;
1645       }
1646       case Intrinsic::uadd_sat:
1647       case Intrinsic::usub_sat: {
1648         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1649         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1650         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1651 
1652         // Add: Leading ones of either operand are preserved.
1653         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1654         // as leading zeros in the result.
1655         unsigned LeadingKnown;
1656         if (IsAdd)
1657           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1658                                   Known2.countMinLeadingOnes());
1659         else
1660           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1661                                   Known2.countMinLeadingOnes());
1662 
1663         Known = KnownBits::computeForAddSub(
1664             IsAdd, /* NSW */ false, Known, Known2);
1665 
1666         // We select between the operation result and all-ones/zero
1667         // respectively, so we can preserve known ones/zeros.
1668         if (IsAdd) {
1669           Known.One.setHighBits(LeadingKnown);
1670           Known.Zero.clearAllBits();
1671         } else {
1672           Known.Zero.setHighBits(LeadingKnown);
1673           Known.One.clearAllBits();
1674         }
1675         break;
1676       }
1677       case Intrinsic::umin:
1678         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1679         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1680         Known = KnownBits::umin(Known, Known2);
1681         break;
1682       case Intrinsic::umax:
1683         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1684         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1685         Known = KnownBits::umax(Known, Known2);
1686         break;
1687       case Intrinsic::smin:
1688         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1689         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1690         Known = KnownBits::smin(Known, Known2);
1691         break;
1692       case Intrinsic::smax:
1693         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1694         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1695         Known = KnownBits::smax(Known, Known2);
1696         break;
1697       case Intrinsic::x86_sse42_crc32_64_64:
1698         Known.Zero.setBitsFrom(32);
1699         break;
1700       case Intrinsic::riscv_vsetvli:
1701       case Intrinsic::riscv_vsetvlimax:
1702         // Assume that VL output is positive and would fit in an int32_t.
1703         // TODO: VLEN might be capped at 16 bits in a future V spec update.
1704         if (BitWidth >= 32)
1705           Known.Zero.setBitsFrom(31);
1706         break;
1707       case Intrinsic::vscale: {
1708         if (!II->getParent() || !II->getFunction() ||
1709             !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1710           break;
1711 
1712         auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1713         Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1714 
1715         if (!VScaleMax)
1716           break;
1717 
1718         unsigned VScaleMin = Attr.getVScaleRangeMin();
1719 
1720         // If vscale min = max then we know the exact value at compile time
1721         // and hence we know the exact bits.
1722         if (VScaleMin == VScaleMax) {
1723           Known.One = VScaleMin;
1724           Known.Zero = VScaleMin;
1725           Known.Zero.flipAllBits();
1726           break;
1727         }
1728 
1729         unsigned FirstZeroHighBit =
1730             32 - countLeadingZeros(VScaleMax.getValue());
1731         if (FirstZeroHighBit < BitWidth)
1732           Known.Zero.setBitsFrom(FirstZeroHighBit);
1733 
1734         break;
1735       }
1736       }
1737     }
1738     break;
1739   case Instruction::ShuffleVector: {
1740     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1741     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1742     if (!Shuf) {
1743       Known.resetAll();
1744       return;
1745     }
1746     // For undef elements, we don't know anything about the common state of
1747     // the shuffle result.
1748     APInt DemandedLHS, DemandedRHS;
1749     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1750       Known.resetAll();
1751       return;
1752     }
1753     Known.One.setAllBits();
1754     Known.Zero.setAllBits();
1755     if (!!DemandedLHS) {
1756       const Value *LHS = Shuf->getOperand(0);
1757       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1758       // If we don't know any bits, early out.
1759       if (Known.isUnknown())
1760         break;
1761     }
1762     if (!!DemandedRHS) {
1763       const Value *RHS = Shuf->getOperand(1);
1764       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1765       Known = KnownBits::commonBits(Known, Known2);
1766     }
1767     break;
1768   }
1769   case Instruction::InsertElement: {
1770     const Value *Vec = I->getOperand(0);
1771     const Value *Elt = I->getOperand(1);
1772     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1773     // Early out if the index is non-constant or out-of-range.
1774     unsigned NumElts = DemandedElts.getBitWidth();
1775     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1776       Known.resetAll();
1777       return;
1778     }
1779     Known.One.setAllBits();
1780     Known.Zero.setAllBits();
1781     unsigned EltIdx = CIdx->getZExtValue();
1782     // Do we demand the inserted element?
1783     if (DemandedElts[EltIdx]) {
1784       computeKnownBits(Elt, Known, Depth + 1, Q);
1785       // If we don't know any bits, early out.
1786       if (Known.isUnknown())
1787         break;
1788     }
1789     // We don't need the base vector element that has been inserted.
1790     APInt DemandedVecElts = DemandedElts;
1791     DemandedVecElts.clearBit(EltIdx);
1792     if (!!DemandedVecElts) {
1793       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1794       Known = KnownBits::commonBits(Known, Known2);
1795     }
1796     break;
1797   }
1798   case Instruction::ExtractElement: {
1799     // Look through extract element. If the index is non-constant or
1800     // out-of-range demand all elements, otherwise just the extracted element.
1801     const Value *Vec = I->getOperand(0);
1802     const Value *Idx = I->getOperand(1);
1803     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1804     if (isa<ScalableVectorType>(Vec->getType())) {
1805       // FIXME: there's probably *something* we can do with scalable vectors
1806       Known.resetAll();
1807       break;
1808     }
1809     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1810     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1811     if (CIdx && CIdx->getValue().ult(NumElts))
1812       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1813     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1814     break;
1815   }
1816   case Instruction::ExtractValue:
1817     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1818       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1819       if (EVI->getNumIndices() != 1) break;
1820       if (EVI->getIndices()[0] == 0) {
1821         switch (II->getIntrinsicID()) {
1822         default: break;
1823         case Intrinsic::uadd_with_overflow:
1824         case Intrinsic::sadd_with_overflow:
1825           computeKnownBitsAddSub(true, II->getArgOperand(0),
1826                                  II->getArgOperand(1), false, DemandedElts,
1827                                  Known, Known2, Depth, Q);
1828           break;
1829         case Intrinsic::usub_with_overflow:
1830         case Intrinsic::ssub_with_overflow:
1831           computeKnownBitsAddSub(false, II->getArgOperand(0),
1832                                  II->getArgOperand(1), false, DemandedElts,
1833                                  Known, Known2, Depth, Q);
1834           break;
1835         case Intrinsic::umul_with_overflow:
1836         case Intrinsic::smul_with_overflow:
1837           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1838                               DemandedElts, Known, Known2, Depth, Q);
1839           break;
1840         }
1841       }
1842     }
1843     break;
1844   case Instruction::Freeze:
1845     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1846                                   Depth + 1))
1847       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1848     break;
1849   }
1850 }
1851 
1852 /// Determine which bits of V are known to be either zero or one and return
1853 /// them.
1854 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1855                            unsigned Depth, const Query &Q) {
1856   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1857   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1858   return Known;
1859 }
1860 
1861 /// Determine which bits of V are known to be either zero or one and return
1862 /// them.
1863 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1864   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1865   computeKnownBits(V, Known, Depth, Q);
1866   return Known;
1867 }
1868 
1869 /// Determine which bits of V are known to be either zero or one and return
1870 /// them in the Known bit set.
1871 ///
1872 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1873 /// we cannot optimize based on the assumption that it is zero without changing
1874 /// it to be an explicit zero.  If we don't change it to zero, other code could
1875 /// optimized based on the contradictory assumption that it is non-zero.
1876 /// Because instcombine aggressively folds operations with undef args anyway,
1877 /// this won't lose us code quality.
1878 ///
1879 /// This function is defined on values with integer type, values with pointer
1880 /// type, and vectors of integers.  In the case
1881 /// where V is a vector, known zero, and known one values are the
1882 /// same width as the vector element, and the bit is set only if it is true
1883 /// for all of the demanded elements in the vector specified by DemandedElts.
1884 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1885                       KnownBits &Known, unsigned Depth, const Query &Q) {
1886   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1887     // No demanded elts or V is a scalable vector, better to assume we don't
1888     // know anything.
1889     Known.resetAll();
1890     return;
1891   }
1892 
1893   assert(V && "No Value?");
1894   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1895 
1896 #ifndef NDEBUG
1897   Type *Ty = V->getType();
1898   unsigned BitWidth = Known.getBitWidth();
1899 
1900   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1901          "Not integer or pointer type!");
1902 
1903   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1904     assert(
1905         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1906         "DemandedElt width should equal the fixed vector number of elements");
1907   } else {
1908     assert(DemandedElts == APInt(1, 1) &&
1909            "DemandedElt width should be 1 for scalars");
1910   }
1911 
1912   Type *ScalarTy = Ty->getScalarType();
1913   if (ScalarTy->isPointerTy()) {
1914     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1915            "V and Known should have same BitWidth");
1916   } else {
1917     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1918            "V and Known should have same BitWidth");
1919   }
1920 #endif
1921 
1922   const APInt *C;
1923   if (match(V, m_APInt(C))) {
1924     // We know all of the bits for a scalar constant or a splat vector constant!
1925     Known = KnownBits::makeConstant(*C);
1926     return;
1927   }
1928   // Null and aggregate-zero are all-zeros.
1929   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1930     Known.setAllZero();
1931     return;
1932   }
1933   // Handle a constant vector by taking the intersection of the known bits of
1934   // each element.
1935   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1936     // We know that CDV must be a vector of integers. Take the intersection of
1937     // each element.
1938     Known.Zero.setAllBits(); Known.One.setAllBits();
1939     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1940       if (!DemandedElts[i])
1941         continue;
1942       APInt Elt = CDV->getElementAsAPInt(i);
1943       Known.Zero &= ~Elt;
1944       Known.One &= Elt;
1945     }
1946     return;
1947   }
1948 
1949   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1950     // We know that CV must be a vector of integers. Take the intersection of
1951     // each element.
1952     Known.Zero.setAllBits(); Known.One.setAllBits();
1953     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1954       if (!DemandedElts[i])
1955         continue;
1956       Constant *Element = CV->getAggregateElement(i);
1957       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1958       if (!ElementCI) {
1959         Known.resetAll();
1960         return;
1961       }
1962       const APInt &Elt = ElementCI->getValue();
1963       Known.Zero &= ~Elt;
1964       Known.One &= Elt;
1965     }
1966     return;
1967   }
1968 
1969   // Start out not knowing anything.
1970   Known.resetAll();
1971 
1972   // We can't imply anything about undefs.
1973   if (isa<UndefValue>(V))
1974     return;
1975 
1976   // There's no point in looking through other users of ConstantData for
1977   // assumptions.  Confirm that we've handled them all.
1978   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1979 
1980   // All recursive calls that increase depth must come after this.
1981   if (Depth == MaxAnalysisRecursionDepth)
1982     return;
1983 
1984   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1985   // the bits of its aliasee.
1986   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1987     if (!GA->isInterposable())
1988       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1989     return;
1990   }
1991 
1992   if (const Operator *I = dyn_cast<Operator>(V))
1993     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1994 
1995   // Aligned pointers have trailing zeros - refine Known.Zero set
1996   if (isa<PointerType>(V->getType())) {
1997     Align Alignment = V->getPointerAlignment(Q.DL);
1998     Known.Zero.setLowBits(Log2(Alignment));
1999   }
2000 
2001   // computeKnownBitsFromAssume strictly refines Known.
2002   // Therefore, we run them after computeKnownBitsFromOperator.
2003 
2004   // Check whether a nearby assume intrinsic can determine some known bits.
2005   computeKnownBitsFromAssume(V, Known, Depth, Q);
2006 
2007   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2008 }
2009 
2010 /// Return true if the given value is known to have exactly one
2011 /// bit set when defined. For vectors return true if every element is known to
2012 /// be a power of two when defined. Supports values with integer or pointer
2013 /// types and vectors of integers.
2014 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2015                             const Query &Q) {
2016   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2017 
2018   // Attempt to match against constants.
2019   if (OrZero && match(V, m_Power2OrZero()))
2020       return true;
2021   if (match(V, m_Power2()))
2022       return true;
2023 
2024   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2025   // it is shifted off the end then the result is undefined.
2026   if (match(V, m_Shl(m_One(), m_Value())))
2027     return true;
2028 
2029   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2030   // the bottom.  If it is shifted off the bottom then the result is undefined.
2031   if (match(V, m_LShr(m_SignMask(), m_Value())))
2032     return true;
2033 
2034   // The remaining tests are all recursive, so bail out if we hit the limit.
2035   if (Depth++ == MaxAnalysisRecursionDepth)
2036     return false;
2037 
2038   Value *X = nullptr, *Y = nullptr;
2039   // A shift left or a logical shift right of a power of two is a power of two
2040   // or zero.
2041   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2042                  match(V, m_LShr(m_Value(X), m_Value()))))
2043     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2044 
2045   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2046     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2047 
2048   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2049     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2050            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2051 
2052   // Peek through min/max.
2053   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2054     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2055            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2056   }
2057 
2058   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2059     // A power of two and'd with anything is a power of two or zero.
2060     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2061         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2062       return true;
2063     // X & (-X) is always a power of two or zero.
2064     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2065       return true;
2066     return false;
2067   }
2068 
2069   // Adding a power-of-two or zero to the same power-of-two or zero yields
2070   // either the original power-of-two, a larger power-of-two or zero.
2071   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2072     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2073     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2074         Q.IIQ.hasNoSignedWrap(VOBO)) {
2075       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2076           match(X, m_And(m_Value(), m_Specific(Y))))
2077         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2078           return true;
2079       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2080           match(Y, m_And(m_Value(), m_Specific(X))))
2081         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2082           return true;
2083 
2084       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2085       KnownBits LHSBits(BitWidth);
2086       computeKnownBits(X, LHSBits, Depth, Q);
2087 
2088       KnownBits RHSBits(BitWidth);
2089       computeKnownBits(Y, RHSBits, Depth, Q);
2090       // If i8 V is a power of two or zero:
2091       //  ZeroBits: 1 1 1 0 1 1 1 1
2092       // ~ZeroBits: 0 0 0 1 0 0 0 0
2093       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2094         // If OrZero isn't set, we cannot give back a zero result.
2095         // Make sure either the LHS or RHS has a bit set.
2096         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2097           return true;
2098     }
2099   }
2100 
2101   // An exact divide or right shift can only shift off zero bits, so the result
2102   // is a power of two only if the first operand is a power of two and not
2103   // copying a sign bit (sdiv int_min, 2).
2104   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2105       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2106     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2107                                   Depth, Q);
2108   }
2109 
2110   return false;
2111 }
2112 
2113 /// Test whether a GEP's result is known to be non-null.
2114 ///
2115 /// Uses properties inherent in a GEP to try to determine whether it is known
2116 /// to be non-null.
2117 ///
2118 /// Currently this routine does not support vector GEPs.
2119 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2120                               const Query &Q) {
2121   const Function *F = nullptr;
2122   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2123     F = I->getFunction();
2124 
2125   if (!GEP->isInBounds() ||
2126       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2127     return false;
2128 
2129   // FIXME: Support vector-GEPs.
2130   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2131 
2132   // If the base pointer is non-null, we cannot walk to a null address with an
2133   // inbounds GEP in address space zero.
2134   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2135     return true;
2136 
2137   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2138   // If so, then the GEP cannot produce a null pointer, as doing so would
2139   // inherently violate the inbounds contract within address space zero.
2140   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2141        GTI != GTE; ++GTI) {
2142     // Struct types are easy -- they must always be indexed by a constant.
2143     if (StructType *STy = GTI.getStructTypeOrNull()) {
2144       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2145       unsigned ElementIdx = OpC->getZExtValue();
2146       const StructLayout *SL = Q.DL.getStructLayout(STy);
2147       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2148       if (ElementOffset > 0)
2149         return true;
2150       continue;
2151     }
2152 
2153     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2154     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2155       continue;
2156 
2157     // Fast path the constant operand case both for efficiency and so we don't
2158     // increment Depth when just zipping down an all-constant GEP.
2159     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2160       if (!OpC->isZero())
2161         return true;
2162       continue;
2163     }
2164 
2165     // We post-increment Depth here because while isKnownNonZero increments it
2166     // as well, when we pop back up that increment won't persist. We don't want
2167     // to recurse 10k times just because we have 10k GEP operands. We don't
2168     // bail completely out because we want to handle constant GEPs regardless
2169     // of depth.
2170     if (Depth++ >= MaxAnalysisRecursionDepth)
2171       continue;
2172 
2173     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2174       return true;
2175   }
2176 
2177   return false;
2178 }
2179 
2180 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2181                                                   const Instruction *CtxI,
2182                                                   const DominatorTree *DT) {
2183   if (isa<Constant>(V))
2184     return false;
2185 
2186   if (!CtxI || !DT)
2187     return false;
2188 
2189   unsigned NumUsesExplored = 0;
2190   for (auto *U : V->users()) {
2191     // Avoid massive lists
2192     if (NumUsesExplored >= DomConditionsMaxUses)
2193       break;
2194     NumUsesExplored++;
2195 
2196     // If the value is used as an argument to a call or invoke, then argument
2197     // attributes may provide an answer about null-ness.
2198     if (const auto *CB = dyn_cast<CallBase>(U))
2199       if (auto *CalledFunc = CB->getCalledFunction())
2200         for (const Argument &Arg : CalledFunc->args())
2201           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2202               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2203               DT->dominates(CB, CtxI))
2204             return true;
2205 
2206     // If the value is used as a load/store, then the pointer must be non null.
2207     if (V == getLoadStorePointerOperand(U)) {
2208       const Instruction *I = cast<Instruction>(U);
2209       if (!NullPointerIsDefined(I->getFunction(),
2210                                 V->getType()->getPointerAddressSpace()) &&
2211           DT->dominates(I, CtxI))
2212         return true;
2213     }
2214 
2215     // Consider only compare instructions uniquely controlling a branch
2216     Value *RHS;
2217     CmpInst::Predicate Pred;
2218     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2219       continue;
2220 
2221     bool NonNullIfTrue;
2222     if (cmpExcludesZero(Pred, RHS))
2223       NonNullIfTrue = true;
2224     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2225       NonNullIfTrue = false;
2226     else
2227       continue;
2228 
2229     SmallVector<const User *, 4> WorkList;
2230     SmallPtrSet<const User *, 4> Visited;
2231     for (auto *CmpU : U->users()) {
2232       assert(WorkList.empty() && "Should be!");
2233       if (Visited.insert(CmpU).second)
2234         WorkList.push_back(CmpU);
2235 
2236       while (!WorkList.empty()) {
2237         auto *Curr = WorkList.pop_back_val();
2238 
2239         // If a user is an AND, add all its users to the work list. We only
2240         // propagate "pred != null" condition through AND because it is only
2241         // correct to assume that all conditions of AND are met in true branch.
2242         // TODO: Support similar logic of OR and EQ predicate?
2243         if (NonNullIfTrue)
2244           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2245             for (auto *CurrU : Curr->users())
2246               if (Visited.insert(CurrU).second)
2247                 WorkList.push_back(CurrU);
2248             continue;
2249           }
2250 
2251         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2252           assert(BI->isConditional() && "uses a comparison!");
2253 
2254           BasicBlock *NonNullSuccessor =
2255               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2256           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2257           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2258             return true;
2259         } else if (NonNullIfTrue && isGuard(Curr) &&
2260                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2261           return true;
2262         }
2263       }
2264     }
2265   }
2266 
2267   return false;
2268 }
2269 
2270 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2271 /// ensure that the value it's attached to is never Value?  'RangeType' is
2272 /// is the type of the value described by the range.
2273 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2274   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2275   assert(NumRanges >= 1);
2276   for (unsigned i = 0; i < NumRanges; ++i) {
2277     ConstantInt *Lower =
2278         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2279     ConstantInt *Upper =
2280         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2281     ConstantRange Range(Lower->getValue(), Upper->getValue());
2282     if (Range.contains(Value))
2283       return false;
2284   }
2285   return true;
2286 }
2287 
2288 /// Try to detect a recurrence that monotonically increases/decreases from a
2289 /// non-zero starting value. These are common as induction variables.
2290 static bool isNonZeroRecurrence(const PHINode *PN) {
2291   BinaryOperator *BO = nullptr;
2292   Value *Start = nullptr, *Step = nullptr;
2293   const APInt *StartC, *StepC;
2294   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2295       !match(Start, m_APInt(StartC)) || StartC->isZero())
2296     return false;
2297 
2298   switch (BO->getOpcode()) {
2299   case Instruction::Add:
2300     // Starting from non-zero and stepping away from zero can never wrap back
2301     // to zero.
2302     return BO->hasNoUnsignedWrap() ||
2303            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2304             StartC->isNegative() == StepC->isNegative());
2305   case Instruction::Mul:
2306     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2307            match(Step, m_APInt(StepC)) && !StepC->isZero();
2308   case Instruction::Shl:
2309     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2310   case Instruction::AShr:
2311   case Instruction::LShr:
2312     return BO->isExact();
2313   default:
2314     return false;
2315   }
2316 }
2317 
2318 /// Return true if the given value is known to be non-zero when defined. For
2319 /// vectors, return true if every demanded element is known to be non-zero when
2320 /// defined. For pointers, if the context instruction and dominator tree are
2321 /// specified, perform context-sensitive analysis and return true if the
2322 /// pointer couldn't possibly be null at the specified instruction.
2323 /// Supports values with integer or pointer type and vectors of integers.
2324 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2325                     const Query &Q) {
2326   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2327   // vector
2328   if (isa<ScalableVectorType>(V->getType()))
2329     return false;
2330 
2331   if (auto *C = dyn_cast<Constant>(V)) {
2332     if (C->isNullValue())
2333       return false;
2334     if (isa<ConstantInt>(C))
2335       // Must be non-zero due to null test above.
2336       return true;
2337 
2338     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2339       // See the comment for IntToPtr/PtrToInt instructions below.
2340       if (CE->getOpcode() == Instruction::IntToPtr ||
2341           CE->getOpcode() == Instruction::PtrToInt)
2342         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2343                 .getFixedSize() <=
2344             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2345           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2346     }
2347 
2348     // For constant vectors, check that all elements are undefined or known
2349     // non-zero to determine that the whole vector is known non-zero.
2350     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2351       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2352         if (!DemandedElts[i])
2353           continue;
2354         Constant *Elt = C->getAggregateElement(i);
2355         if (!Elt || Elt->isNullValue())
2356           return false;
2357         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2358           return false;
2359       }
2360       return true;
2361     }
2362 
2363     // A global variable in address space 0 is non null unless extern weak
2364     // or an absolute symbol reference. Other address spaces may have null as a
2365     // valid address for a global, so we can't assume anything.
2366     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2367       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2368           GV->getType()->getAddressSpace() == 0)
2369         return true;
2370     } else
2371       return false;
2372   }
2373 
2374   if (auto *I = dyn_cast<Instruction>(V)) {
2375     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2376       // If the possible ranges don't contain zero, then the value is
2377       // definitely non-zero.
2378       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2379         const APInt ZeroValue(Ty->getBitWidth(), 0);
2380         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2381           return true;
2382       }
2383     }
2384   }
2385 
2386   if (isKnownNonZeroFromAssume(V, Q))
2387     return true;
2388 
2389   // Some of the tests below are recursive, so bail out if we hit the limit.
2390   if (Depth++ >= MaxAnalysisRecursionDepth)
2391     return false;
2392 
2393   // Check for pointer simplifications.
2394 
2395   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2396     // Alloca never returns null, malloc might.
2397     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2398       return true;
2399 
2400     // A byval, inalloca may not be null in a non-default addres space. A
2401     // nonnull argument is assumed never 0.
2402     if (const Argument *A = dyn_cast<Argument>(V)) {
2403       if (((A->hasPassPointeeByValueCopyAttr() &&
2404             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2405            A->hasNonNullAttr()))
2406         return true;
2407     }
2408 
2409     // A Load tagged with nonnull metadata is never null.
2410     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2411       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2412         return true;
2413 
2414     if (const auto *Call = dyn_cast<CallBase>(V)) {
2415       if (Call->isReturnNonNull())
2416         return true;
2417       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2418         return isKnownNonZero(RP, Depth, Q);
2419     }
2420   }
2421 
2422   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2423     return true;
2424 
2425   // Check for recursive pointer simplifications.
2426   if (V->getType()->isPointerTy()) {
2427     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2428     // do not alter the value, or at least not the nullness property of the
2429     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2430     //
2431     // Note that we have to take special care to avoid looking through
2432     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2433     // as casts that can alter the value, e.g., AddrSpaceCasts.
2434     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2435       return isGEPKnownNonNull(GEP, Depth, Q);
2436 
2437     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2438       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2439 
2440     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2441       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2442           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2443         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2444   }
2445 
2446   // Similar to int2ptr above, we can look through ptr2int here if the cast
2447   // is a no-op or an extend and not a truncate.
2448   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2449     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2450         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2451       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2452 
2453   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2454 
2455   // X | Y != 0 if X != 0 or Y != 0.
2456   Value *X = nullptr, *Y = nullptr;
2457   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2458     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2459            isKnownNonZero(Y, DemandedElts, Depth, Q);
2460 
2461   // ext X != 0 if X != 0.
2462   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2463     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2464 
2465   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2466   // if the lowest bit is shifted off the end.
2467   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2468     // shl nuw can't remove any non-zero bits.
2469     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2470     if (Q.IIQ.hasNoUnsignedWrap(BO))
2471       return isKnownNonZero(X, Depth, Q);
2472 
2473     KnownBits Known(BitWidth);
2474     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2475     if (Known.One[0])
2476       return true;
2477   }
2478   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2479   // defined if the sign bit is shifted off the end.
2480   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2481     // shr exact can only shift out zero bits.
2482     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2483     if (BO->isExact())
2484       return isKnownNonZero(X, Depth, Q);
2485 
2486     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2487     if (Known.isNegative())
2488       return true;
2489 
2490     // If the shifter operand is a constant, and all of the bits shifted
2491     // out are known to be zero, and X is known non-zero then at least one
2492     // non-zero bit must remain.
2493     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2494       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2495       // Is there a known one in the portion not shifted out?
2496       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2497         return true;
2498       // Are all the bits to be shifted out known zero?
2499       if (Known.countMinTrailingZeros() >= ShiftVal)
2500         return isKnownNonZero(X, DemandedElts, Depth, Q);
2501     }
2502   }
2503   // div exact can only produce a zero if the dividend is zero.
2504   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2505     return isKnownNonZero(X, DemandedElts, Depth, Q);
2506   }
2507   // X + Y.
2508   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2509     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2510     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2511 
2512     // If X and Y are both non-negative (as signed values) then their sum is not
2513     // zero unless both X and Y are zero.
2514     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2515       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2516           isKnownNonZero(Y, DemandedElts, Depth, Q))
2517         return true;
2518 
2519     // If X and Y are both negative (as signed values) then their sum is not
2520     // zero unless both X and Y equal INT_MIN.
2521     if (XKnown.isNegative() && YKnown.isNegative()) {
2522       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2523       // The sign bit of X is set.  If some other bit is set then X is not equal
2524       // to INT_MIN.
2525       if (XKnown.One.intersects(Mask))
2526         return true;
2527       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2528       // to INT_MIN.
2529       if (YKnown.One.intersects(Mask))
2530         return true;
2531     }
2532 
2533     // The sum of a non-negative number and a power of two is not zero.
2534     if (XKnown.isNonNegative() &&
2535         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2536       return true;
2537     if (YKnown.isNonNegative() &&
2538         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2539       return true;
2540   }
2541   // X * Y.
2542   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2543     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2544     // If X and Y are non-zero then so is X * Y as long as the multiplication
2545     // does not overflow.
2546     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2547         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2548         isKnownNonZero(Y, DemandedElts, Depth, Q))
2549       return true;
2550   }
2551   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2552   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2553     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2554         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2555       return true;
2556   }
2557   // PHI
2558   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2559     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2560       return true;
2561 
2562     // Check if all incoming values are non-zero using recursion.
2563     Query RecQ = Q;
2564     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2565     return llvm::all_of(PN->operands(), [&](const Use &U) {
2566       if (U.get() == PN)
2567         return true;
2568       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2569       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2570     });
2571   }
2572   // ExtractElement
2573   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2574     const Value *Vec = EEI->getVectorOperand();
2575     const Value *Idx = EEI->getIndexOperand();
2576     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2577     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2578       unsigned NumElts = VecTy->getNumElements();
2579       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2580       if (CIdx && CIdx->getValue().ult(NumElts))
2581         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2582       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2583     }
2584   }
2585   // Freeze
2586   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2587     auto *Op = FI->getOperand(0);
2588     if (isKnownNonZero(Op, Depth, Q) &&
2589         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2590       return true;
2591   }
2592 
2593   KnownBits Known(BitWidth);
2594   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2595   return Known.One != 0;
2596 }
2597 
2598 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2599   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2600   // vector
2601   if (isa<ScalableVectorType>(V->getType()))
2602     return false;
2603 
2604   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2605   APInt DemandedElts =
2606       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2607   return isKnownNonZero(V, DemandedElts, Depth, Q);
2608 }
2609 
2610 /// If the pair of operators are the same invertible function, return the
2611 /// the operands of the function corresponding to each input. Otherwise,
2612 /// return None.  An invertible function is one that is 1-to-1 and maps
2613 /// every input value to exactly one output value.  This is equivalent to
2614 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2615 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2616 static Optional<std::pair<Value*, Value*>>
2617 getInvertibleOperands(const Operator *Op1,
2618                       const Operator *Op2) {
2619   if (Op1->getOpcode() != Op2->getOpcode())
2620     return None;
2621 
2622   auto getOperands = [&](unsigned OpNum) -> auto {
2623     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2624   };
2625 
2626   switch (Op1->getOpcode()) {
2627   default:
2628     break;
2629   case Instruction::Add:
2630   case Instruction::Sub:
2631     if (Op1->getOperand(0) == Op2->getOperand(0))
2632       return getOperands(1);
2633     if (Op1->getOperand(1) == Op2->getOperand(1))
2634       return getOperands(0);
2635     break;
2636   case Instruction::Mul: {
2637     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2638     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2639     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2640     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2641     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2642     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2643         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2644       break;
2645 
2646     // Assume operand order has been canonicalized
2647     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2648         isa<ConstantInt>(Op1->getOperand(1)) &&
2649         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2650       return getOperands(0);
2651     break;
2652   }
2653   case Instruction::Shl: {
2654     // Same as multiplies, with the difference that we don't need to check
2655     // for a non-zero multiply. Shifts always multiply by non-zero.
2656     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2657     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2658     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2659         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2660       break;
2661 
2662     if (Op1->getOperand(1) == Op2->getOperand(1))
2663       return getOperands(0);
2664     break;
2665   }
2666   case Instruction::AShr:
2667   case Instruction::LShr: {
2668     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2669     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2670     if (!PEO1->isExact() || !PEO2->isExact())
2671       break;
2672 
2673     if (Op1->getOperand(1) == Op2->getOperand(1))
2674       return getOperands(0);
2675     break;
2676   }
2677   case Instruction::SExt:
2678   case Instruction::ZExt:
2679     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2680       return getOperands(0);
2681     break;
2682   case Instruction::PHI: {
2683     const PHINode *PN1 = cast<PHINode>(Op1);
2684     const PHINode *PN2 = cast<PHINode>(Op2);
2685 
2686     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2687     // are a single invertible function of the start values? Note that repeated
2688     // application of an invertible function is also invertible
2689     BinaryOperator *BO1 = nullptr;
2690     Value *Start1 = nullptr, *Step1 = nullptr;
2691     BinaryOperator *BO2 = nullptr;
2692     Value *Start2 = nullptr, *Step2 = nullptr;
2693     if (PN1->getParent() != PN2->getParent() ||
2694         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2695         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2696       break;
2697 
2698     auto Values = getInvertibleOperands(cast<Operator>(BO1),
2699                                         cast<Operator>(BO2));
2700     if (!Values)
2701        break;
2702 
2703     // We have to be careful of mutually defined recurrences here.  Ex:
2704     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2705     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2706     // The invertibility of these is complicated, and not worth reasoning
2707     // about (yet?).
2708     if (Values->first != PN1 || Values->second != PN2)
2709       break;
2710 
2711     return std::make_pair(Start1, Start2);
2712   }
2713   }
2714   return None;
2715 }
2716 
2717 /// Return true if V2 == V1 + X, where X is known non-zero.
2718 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2719                            const Query &Q) {
2720   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2721   if (!BO || BO->getOpcode() != Instruction::Add)
2722     return false;
2723   Value *Op = nullptr;
2724   if (V2 == BO->getOperand(0))
2725     Op = BO->getOperand(1);
2726   else if (V2 == BO->getOperand(1))
2727     Op = BO->getOperand(0);
2728   else
2729     return false;
2730   return isKnownNonZero(Op, Depth + 1, Q);
2731 }
2732 
2733 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2734 /// the multiplication is nuw or nsw.
2735 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2736                           const Query &Q) {
2737   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2738     const APInt *C;
2739     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2740            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2741            !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2742   }
2743   return false;
2744 }
2745 
2746 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2747 /// the shift is nuw or nsw.
2748 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2749                           const Query &Q) {
2750   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2751     const APInt *C;
2752     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2753            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2754            !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2755   }
2756   return false;
2757 }
2758 
2759 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2760                            unsigned Depth, const Query &Q) {
2761   // Check two PHIs are in same block.
2762   if (PN1->getParent() != PN2->getParent())
2763     return false;
2764 
2765   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2766   bool UsedFullRecursion = false;
2767   for (const BasicBlock *IncomBB : PN1->blocks()) {
2768     if (!VisitedBBs.insert(IncomBB).second)
2769       continue; // Don't reprocess blocks that we have dealt with already.
2770     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2771     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2772     const APInt *C1, *C2;
2773     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2774       continue;
2775 
2776     // Only one pair of phi operands is allowed for full recursion.
2777     if (UsedFullRecursion)
2778       return false;
2779 
2780     Query RecQ = Q;
2781     RecQ.CxtI = IncomBB->getTerminator();
2782     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2783       return false;
2784     UsedFullRecursion = true;
2785   }
2786   return true;
2787 }
2788 
2789 /// Return true if it is known that V1 != V2.
2790 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2791                             const Query &Q) {
2792   if (V1 == V2)
2793     return false;
2794   if (V1->getType() != V2->getType())
2795     // We can't look through casts yet.
2796     return false;
2797 
2798   if (Depth >= MaxAnalysisRecursionDepth)
2799     return false;
2800 
2801   // See if we can recurse through (exactly one of) our operands.  This
2802   // requires our operation be 1-to-1 and map every input value to exactly
2803   // one output value.  Such an operation is invertible.
2804   auto *O1 = dyn_cast<Operator>(V1);
2805   auto *O2 = dyn_cast<Operator>(V2);
2806   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2807     if (auto Values = getInvertibleOperands(O1, O2))
2808       return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2809 
2810     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2811       const PHINode *PN2 = cast<PHINode>(V2);
2812       // FIXME: This is missing a generalization to handle the case where one is
2813       // a PHI and another one isn't.
2814       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2815         return true;
2816     };
2817   }
2818 
2819   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2820     return true;
2821 
2822   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2823     return true;
2824 
2825   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2826     return true;
2827 
2828   if (V1->getType()->isIntOrIntVectorTy()) {
2829     // Are any known bits in V1 contradictory to known bits in V2? If V1
2830     // has a known zero where V2 has a known one, they must not be equal.
2831     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2832     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2833 
2834     if (Known1.Zero.intersects(Known2.One) ||
2835         Known2.Zero.intersects(Known1.One))
2836       return true;
2837   }
2838   return false;
2839 }
2840 
2841 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2842 /// simplify operations downstream. Mask is known to be zero for bits that V
2843 /// cannot have.
2844 ///
2845 /// This function is defined on values with integer type, values with pointer
2846 /// type, and vectors of integers.  In the case
2847 /// where V is a vector, the mask, known zero, and known one values are the
2848 /// same width as the vector element, and the bit is set only if it is true
2849 /// for all of the elements in the vector.
2850 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2851                        const Query &Q) {
2852   KnownBits Known(Mask.getBitWidth());
2853   computeKnownBits(V, Known, Depth, Q);
2854   return Mask.isSubsetOf(Known.Zero);
2855 }
2856 
2857 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2858 // Returns the input and lower/upper bounds.
2859 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2860                                 const APInt *&CLow, const APInt *&CHigh) {
2861   assert(isa<Operator>(Select) &&
2862          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2863          "Input should be a Select!");
2864 
2865   const Value *LHS = nullptr, *RHS = nullptr;
2866   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2867   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2868     return false;
2869 
2870   if (!match(RHS, m_APInt(CLow)))
2871     return false;
2872 
2873   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2874   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2875   if (getInverseMinMaxFlavor(SPF) != SPF2)
2876     return false;
2877 
2878   if (!match(RHS2, m_APInt(CHigh)))
2879     return false;
2880 
2881   if (SPF == SPF_SMIN)
2882     std::swap(CLow, CHigh);
2883 
2884   In = LHS2;
2885   return CLow->sle(*CHigh);
2886 }
2887 
2888 /// For vector constants, loop over the elements and find the constant with the
2889 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2890 /// or if any element was not analyzed; otherwise, return the count for the
2891 /// element with the minimum number of sign bits.
2892 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2893                                                  const APInt &DemandedElts,
2894                                                  unsigned TyBits) {
2895   const auto *CV = dyn_cast<Constant>(V);
2896   if (!CV || !isa<FixedVectorType>(CV->getType()))
2897     return 0;
2898 
2899   unsigned MinSignBits = TyBits;
2900   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2901   for (unsigned i = 0; i != NumElts; ++i) {
2902     if (!DemandedElts[i])
2903       continue;
2904     // If we find a non-ConstantInt, bail out.
2905     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2906     if (!Elt)
2907       return 0;
2908 
2909     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2910   }
2911 
2912   return MinSignBits;
2913 }
2914 
2915 static unsigned ComputeNumSignBitsImpl(const Value *V,
2916                                        const APInt &DemandedElts,
2917                                        unsigned Depth, const Query &Q);
2918 
2919 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2920                                    unsigned Depth, const Query &Q) {
2921   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2922   assert(Result > 0 && "At least one sign bit needs to be present!");
2923   return Result;
2924 }
2925 
2926 /// Return the number of times the sign bit of the register is replicated into
2927 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2928 /// (itself), but other cases can give us information. For example, immediately
2929 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2930 /// other, so we return 3. For vectors, return the number of sign bits for the
2931 /// vector element with the minimum number of known sign bits of the demanded
2932 /// elements in the vector specified by DemandedElts.
2933 static unsigned ComputeNumSignBitsImpl(const Value *V,
2934                                        const APInt &DemandedElts,
2935                                        unsigned Depth, const Query &Q) {
2936   Type *Ty = V->getType();
2937 
2938   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2939   // vector
2940   if (isa<ScalableVectorType>(Ty))
2941     return 1;
2942 
2943 #ifndef NDEBUG
2944   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2945 
2946   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2947     assert(
2948         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2949         "DemandedElt width should equal the fixed vector number of elements");
2950   } else {
2951     assert(DemandedElts == APInt(1, 1) &&
2952            "DemandedElt width should be 1 for scalars");
2953   }
2954 #endif
2955 
2956   // We return the minimum number of sign bits that are guaranteed to be present
2957   // in V, so for undef we have to conservatively return 1.  We don't have the
2958   // same behavior for poison though -- that's a FIXME today.
2959 
2960   Type *ScalarTy = Ty->getScalarType();
2961   unsigned TyBits = ScalarTy->isPointerTy() ?
2962     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2963     Q.DL.getTypeSizeInBits(ScalarTy);
2964 
2965   unsigned Tmp, Tmp2;
2966   unsigned FirstAnswer = 1;
2967 
2968   // Note that ConstantInt is handled by the general computeKnownBits case
2969   // below.
2970 
2971   if (Depth == MaxAnalysisRecursionDepth)
2972     return 1;
2973 
2974   if (auto *U = dyn_cast<Operator>(V)) {
2975     switch (Operator::getOpcode(V)) {
2976     default: break;
2977     case Instruction::SExt:
2978       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2979       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2980 
2981     case Instruction::SDiv: {
2982       const APInt *Denominator;
2983       // sdiv X, C -> adds log(C) sign bits.
2984       if (match(U->getOperand(1), m_APInt(Denominator))) {
2985 
2986         // Ignore non-positive denominator.
2987         if (!Denominator->isStrictlyPositive())
2988           break;
2989 
2990         // Calculate the incoming numerator bits.
2991         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2992 
2993         // Add floor(log(C)) bits to the numerator bits.
2994         return std::min(TyBits, NumBits + Denominator->logBase2());
2995       }
2996       break;
2997     }
2998 
2999     case Instruction::SRem: {
3000       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3001 
3002       const APInt *Denominator;
3003       // srem X, C -> we know that the result is within [-C+1,C) when C is a
3004       // positive constant.  This let us put a lower bound on the number of sign
3005       // bits.
3006       if (match(U->getOperand(1), m_APInt(Denominator))) {
3007 
3008         // Ignore non-positive denominator.
3009         if (Denominator->isStrictlyPositive()) {
3010           // Calculate the leading sign bit constraints by examining the
3011           // denominator.  Given that the denominator is positive, there are two
3012           // cases:
3013           //
3014           //  1. The numerator is positive. The result range is [0,C) and
3015           //     [0,C) u< (1 << ceilLogBase2(C)).
3016           //
3017           //  2. The numerator is negative. Then the result range is (-C,0] and
3018           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3019           //
3020           // Thus a lower bound on the number of sign bits is `TyBits -
3021           // ceilLogBase2(C)`.
3022 
3023           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3024           Tmp = std::max(Tmp, ResBits);
3025         }
3026       }
3027       return Tmp;
3028     }
3029 
3030     case Instruction::AShr: {
3031       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3032       // ashr X, C   -> adds C sign bits.  Vectors too.
3033       const APInt *ShAmt;
3034       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3035         if (ShAmt->uge(TyBits))
3036           break; // Bad shift.
3037         unsigned ShAmtLimited = ShAmt->getZExtValue();
3038         Tmp += ShAmtLimited;
3039         if (Tmp > TyBits) Tmp = TyBits;
3040       }
3041       return Tmp;
3042     }
3043     case Instruction::Shl: {
3044       const APInt *ShAmt;
3045       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3046         // shl destroys sign bits.
3047         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3048         if (ShAmt->uge(TyBits) ||   // Bad shift.
3049             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3050         Tmp2 = ShAmt->getZExtValue();
3051         return Tmp - Tmp2;
3052       }
3053       break;
3054     }
3055     case Instruction::And:
3056     case Instruction::Or:
3057     case Instruction::Xor: // NOT is handled here.
3058       // Logical binary ops preserve the number of sign bits at the worst.
3059       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3060       if (Tmp != 1) {
3061         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3062         FirstAnswer = std::min(Tmp, Tmp2);
3063         // We computed what we know about the sign bits as our first
3064         // answer. Now proceed to the generic code that uses
3065         // computeKnownBits, and pick whichever answer is better.
3066       }
3067       break;
3068 
3069     case Instruction::Select: {
3070       // If we have a clamp pattern, we know that the number of sign bits will
3071       // be the minimum of the clamp min/max range.
3072       const Value *X;
3073       const APInt *CLow, *CHigh;
3074       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3075         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3076 
3077       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3078       if (Tmp == 1) break;
3079       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3080       return std::min(Tmp, Tmp2);
3081     }
3082 
3083     case Instruction::Add:
3084       // Add can have at most one carry bit.  Thus we know that the output
3085       // is, at worst, one more bit than the inputs.
3086       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3087       if (Tmp == 1) break;
3088 
3089       // Special case decrementing a value (ADD X, -1):
3090       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3091         if (CRHS->isAllOnesValue()) {
3092           KnownBits Known(TyBits);
3093           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3094 
3095           // If the input is known to be 0 or 1, the output is 0/-1, which is
3096           // all sign bits set.
3097           if ((Known.Zero | 1).isAllOnes())
3098             return TyBits;
3099 
3100           // If we are subtracting one from a positive number, there is no carry
3101           // out of the result.
3102           if (Known.isNonNegative())
3103             return Tmp;
3104         }
3105 
3106       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3107       if (Tmp2 == 1) break;
3108       return std::min(Tmp, Tmp2) - 1;
3109 
3110     case Instruction::Sub:
3111       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3112       if (Tmp2 == 1) break;
3113 
3114       // Handle NEG.
3115       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3116         if (CLHS->isNullValue()) {
3117           KnownBits Known(TyBits);
3118           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3119           // If the input is known to be 0 or 1, the output is 0/-1, which is
3120           // all sign bits set.
3121           if ((Known.Zero | 1).isAllOnes())
3122             return TyBits;
3123 
3124           // If the input is known to be positive (the sign bit is known clear),
3125           // the output of the NEG has the same number of sign bits as the
3126           // input.
3127           if (Known.isNonNegative())
3128             return Tmp2;
3129 
3130           // Otherwise, we treat this like a SUB.
3131         }
3132 
3133       // Sub can have at most one carry bit.  Thus we know that the output
3134       // is, at worst, one more bit than the inputs.
3135       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3136       if (Tmp == 1) break;
3137       return std::min(Tmp, Tmp2) - 1;
3138 
3139     case Instruction::Mul: {
3140       // The output of the Mul can be at most twice the valid bits in the
3141       // inputs.
3142       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3143       if (SignBitsOp0 == 1) break;
3144       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3145       if (SignBitsOp1 == 1) break;
3146       unsigned OutValidBits =
3147           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3148       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3149     }
3150 
3151     case Instruction::PHI: {
3152       const PHINode *PN = cast<PHINode>(U);
3153       unsigned NumIncomingValues = PN->getNumIncomingValues();
3154       // Don't analyze large in-degree PHIs.
3155       if (NumIncomingValues > 4) break;
3156       // Unreachable blocks may have zero-operand PHI nodes.
3157       if (NumIncomingValues == 0) break;
3158 
3159       // Take the minimum of all incoming values.  This can't infinitely loop
3160       // because of our depth threshold.
3161       Query RecQ = Q;
3162       Tmp = TyBits;
3163       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3164         if (Tmp == 1) return Tmp;
3165         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3166         Tmp = std::min(
3167             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3168       }
3169       return Tmp;
3170     }
3171 
3172     case Instruction::Trunc:
3173       // FIXME: it's tricky to do anything useful for this, but it is an
3174       // important case for targets like X86.
3175       break;
3176 
3177     case Instruction::ExtractElement:
3178       // Look through extract element. At the moment we keep this simple and
3179       // skip tracking the specific element. But at least we might find
3180       // information valid for all elements of the vector (for example if vector
3181       // is sign extended, shifted, etc).
3182       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3183 
3184     case Instruction::ShuffleVector: {
3185       // Collect the minimum number of sign bits that are shared by every vector
3186       // element referenced by the shuffle.
3187       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3188       if (!Shuf) {
3189         // FIXME: Add support for shufflevector constant expressions.
3190         return 1;
3191       }
3192       APInt DemandedLHS, DemandedRHS;
3193       // For undef elements, we don't know anything about the common state of
3194       // the shuffle result.
3195       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3196         return 1;
3197       Tmp = std::numeric_limits<unsigned>::max();
3198       if (!!DemandedLHS) {
3199         const Value *LHS = Shuf->getOperand(0);
3200         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3201       }
3202       // If we don't know anything, early out and try computeKnownBits
3203       // fall-back.
3204       if (Tmp == 1)
3205         break;
3206       if (!!DemandedRHS) {
3207         const Value *RHS = Shuf->getOperand(1);
3208         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3209         Tmp = std::min(Tmp, Tmp2);
3210       }
3211       // If we don't know anything, early out and try computeKnownBits
3212       // fall-back.
3213       if (Tmp == 1)
3214         break;
3215       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3216       return Tmp;
3217     }
3218     case Instruction::Call: {
3219       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3220         switch (II->getIntrinsicID()) {
3221         default: break;
3222         case Intrinsic::abs:
3223           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3224           if (Tmp == 1) break;
3225 
3226           // Absolute value reduces number of sign bits by at most 1.
3227           return Tmp - 1;
3228         }
3229       }
3230     }
3231     }
3232   }
3233 
3234   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3235   // use this information.
3236 
3237   // If we can examine all elements of a vector constant successfully, we're
3238   // done (we can't do any better than that). If not, keep trying.
3239   if (unsigned VecSignBits =
3240           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3241     return VecSignBits;
3242 
3243   KnownBits Known(TyBits);
3244   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3245 
3246   // If we know that the sign bit is either zero or one, determine the number of
3247   // identical bits in the top of the input value.
3248   return std::max(FirstAnswer, Known.countMinSignBits());
3249 }
3250 
3251 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3252                                             const TargetLibraryInfo *TLI) {
3253   const Function *F = CB.getCalledFunction();
3254   if (!F)
3255     return Intrinsic::not_intrinsic;
3256 
3257   if (F->isIntrinsic())
3258     return F->getIntrinsicID();
3259 
3260   // We are going to infer semantics of a library function based on mapping it
3261   // to an LLVM intrinsic. Check that the library function is available from
3262   // this callbase and in this environment.
3263   LibFunc Func;
3264   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3265       !CB.onlyReadsMemory())
3266     return Intrinsic::not_intrinsic;
3267 
3268   switch (Func) {
3269   default:
3270     break;
3271   case LibFunc_sin:
3272   case LibFunc_sinf:
3273   case LibFunc_sinl:
3274     return Intrinsic::sin;
3275   case LibFunc_cos:
3276   case LibFunc_cosf:
3277   case LibFunc_cosl:
3278     return Intrinsic::cos;
3279   case LibFunc_exp:
3280   case LibFunc_expf:
3281   case LibFunc_expl:
3282     return Intrinsic::exp;
3283   case LibFunc_exp2:
3284   case LibFunc_exp2f:
3285   case LibFunc_exp2l:
3286     return Intrinsic::exp2;
3287   case LibFunc_log:
3288   case LibFunc_logf:
3289   case LibFunc_logl:
3290     return Intrinsic::log;
3291   case LibFunc_log10:
3292   case LibFunc_log10f:
3293   case LibFunc_log10l:
3294     return Intrinsic::log10;
3295   case LibFunc_log2:
3296   case LibFunc_log2f:
3297   case LibFunc_log2l:
3298     return Intrinsic::log2;
3299   case LibFunc_fabs:
3300   case LibFunc_fabsf:
3301   case LibFunc_fabsl:
3302     return Intrinsic::fabs;
3303   case LibFunc_fmin:
3304   case LibFunc_fminf:
3305   case LibFunc_fminl:
3306     return Intrinsic::minnum;
3307   case LibFunc_fmax:
3308   case LibFunc_fmaxf:
3309   case LibFunc_fmaxl:
3310     return Intrinsic::maxnum;
3311   case LibFunc_copysign:
3312   case LibFunc_copysignf:
3313   case LibFunc_copysignl:
3314     return Intrinsic::copysign;
3315   case LibFunc_floor:
3316   case LibFunc_floorf:
3317   case LibFunc_floorl:
3318     return Intrinsic::floor;
3319   case LibFunc_ceil:
3320   case LibFunc_ceilf:
3321   case LibFunc_ceill:
3322     return Intrinsic::ceil;
3323   case LibFunc_trunc:
3324   case LibFunc_truncf:
3325   case LibFunc_truncl:
3326     return Intrinsic::trunc;
3327   case LibFunc_rint:
3328   case LibFunc_rintf:
3329   case LibFunc_rintl:
3330     return Intrinsic::rint;
3331   case LibFunc_nearbyint:
3332   case LibFunc_nearbyintf:
3333   case LibFunc_nearbyintl:
3334     return Intrinsic::nearbyint;
3335   case LibFunc_round:
3336   case LibFunc_roundf:
3337   case LibFunc_roundl:
3338     return Intrinsic::round;
3339   case LibFunc_roundeven:
3340   case LibFunc_roundevenf:
3341   case LibFunc_roundevenl:
3342     return Intrinsic::roundeven;
3343   case LibFunc_pow:
3344   case LibFunc_powf:
3345   case LibFunc_powl:
3346     return Intrinsic::pow;
3347   case LibFunc_sqrt:
3348   case LibFunc_sqrtf:
3349   case LibFunc_sqrtl:
3350     return Intrinsic::sqrt;
3351   }
3352 
3353   return Intrinsic::not_intrinsic;
3354 }
3355 
3356 /// Return true if we can prove that the specified FP value is never equal to
3357 /// -0.0.
3358 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3359 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3360 ///       the same as +0.0 in floating-point ops.
3361 ///
3362 /// NOTE: this function will need to be revisited when we support non-default
3363 /// rounding modes!
3364 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3365                                 unsigned Depth) {
3366   if (auto *CFP = dyn_cast<ConstantFP>(V))
3367     return !CFP->getValueAPF().isNegZero();
3368 
3369   if (Depth == MaxAnalysisRecursionDepth)
3370     return false;
3371 
3372   auto *Op = dyn_cast<Operator>(V);
3373   if (!Op)
3374     return false;
3375 
3376   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3377   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3378     return true;
3379 
3380   // sitofp and uitofp turn into +0.0 for zero.
3381   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3382     return true;
3383 
3384   if (auto *Call = dyn_cast<CallInst>(Op)) {
3385     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3386     switch (IID) {
3387     default:
3388       break;
3389     // sqrt(-0.0) = -0.0, no other negative results are possible.
3390     case Intrinsic::sqrt:
3391     case Intrinsic::canonicalize:
3392       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3393     // fabs(x) != -0.0
3394     case Intrinsic::fabs:
3395       return true;
3396     }
3397   }
3398 
3399   return false;
3400 }
3401 
3402 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3403 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3404 /// bit despite comparing equal.
3405 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3406                                             const TargetLibraryInfo *TLI,
3407                                             bool SignBitOnly,
3408                                             unsigned Depth) {
3409   // TODO: This function does not do the right thing when SignBitOnly is true
3410   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3411   // which flips the sign bits of NaNs.  See
3412   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3413 
3414   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3415     return !CFP->getValueAPF().isNegative() ||
3416            (!SignBitOnly && CFP->getValueAPF().isZero());
3417   }
3418 
3419   // Handle vector of constants.
3420   if (auto *CV = dyn_cast<Constant>(V)) {
3421     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3422       unsigned NumElts = CVFVTy->getNumElements();
3423       for (unsigned i = 0; i != NumElts; ++i) {
3424         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3425         if (!CFP)
3426           return false;
3427         if (CFP->getValueAPF().isNegative() &&
3428             (SignBitOnly || !CFP->getValueAPF().isZero()))
3429           return false;
3430       }
3431 
3432       // All non-negative ConstantFPs.
3433       return true;
3434     }
3435   }
3436 
3437   if (Depth == MaxAnalysisRecursionDepth)
3438     return false;
3439 
3440   const Operator *I = dyn_cast<Operator>(V);
3441   if (!I)
3442     return false;
3443 
3444   switch (I->getOpcode()) {
3445   default:
3446     break;
3447   // Unsigned integers are always nonnegative.
3448   case Instruction::UIToFP:
3449     return true;
3450   case Instruction::FMul:
3451   case Instruction::FDiv:
3452     // X * X is always non-negative or a NaN.
3453     // X / X is always exactly 1.0 or a NaN.
3454     if (I->getOperand(0) == I->getOperand(1) &&
3455         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3456       return true;
3457 
3458     LLVM_FALLTHROUGH;
3459   case Instruction::FAdd:
3460   case Instruction::FRem:
3461     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3462                                            Depth + 1) &&
3463            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3464                                            Depth + 1);
3465   case Instruction::Select:
3466     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3467                                            Depth + 1) &&
3468            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3469                                            Depth + 1);
3470   case Instruction::FPExt:
3471   case Instruction::FPTrunc:
3472     // Widening/narrowing never change sign.
3473     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3474                                            Depth + 1);
3475   case Instruction::ExtractElement:
3476     // Look through extract element. At the moment we keep this simple and skip
3477     // tracking the specific element. But at least we might find information
3478     // valid for all elements of the vector.
3479     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3480                                            Depth + 1);
3481   case Instruction::Call:
3482     const auto *CI = cast<CallInst>(I);
3483     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3484     switch (IID) {
3485     default:
3486       break;
3487     case Intrinsic::maxnum: {
3488       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3489       auto isPositiveNum = [&](Value *V) {
3490         if (SignBitOnly) {
3491           // With SignBitOnly, this is tricky because the result of
3492           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3493           // a constant strictly greater than 0.0.
3494           const APFloat *C;
3495           return match(V, m_APFloat(C)) &&
3496                  *C > APFloat::getZero(C->getSemantics());
3497         }
3498 
3499         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3500         // maxnum can't be ordered-less-than-zero.
3501         return isKnownNeverNaN(V, TLI) &&
3502                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3503       };
3504 
3505       // TODO: This could be improved. We could also check that neither operand
3506       //       has its sign bit set (and at least 1 is not-NAN?).
3507       return isPositiveNum(V0) || isPositiveNum(V1);
3508     }
3509 
3510     case Intrinsic::maximum:
3511       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3512                                              Depth + 1) ||
3513              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3514                                              Depth + 1);
3515     case Intrinsic::minnum:
3516     case Intrinsic::minimum:
3517       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3518                                              Depth + 1) &&
3519              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3520                                              Depth + 1);
3521     case Intrinsic::exp:
3522     case Intrinsic::exp2:
3523     case Intrinsic::fabs:
3524       return true;
3525 
3526     case Intrinsic::sqrt:
3527       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3528       if (!SignBitOnly)
3529         return true;
3530       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3531                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3532 
3533     case Intrinsic::powi:
3534       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3535         // powi(x,n) is non-negative if n is even.
3536         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3537           return true;
3538       }
3539       // TODO: This is not correct.  Given that exp is an integer, here are the
3540       // ways that pow can return a negative value:
3541       //
3542       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3543       //   pow(-0, exp)   --> -inf if exp is negative odd.
3544       //   pow(-0, exp)   --> -0 if exp is positive odd.
3545       //   pow(-inf, exp) --> -0 if exp is negative odd.
3546       //   pow(-inf, exp) --> -inf if exp is positive odd.
3547       //
3548       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3549       // but we must return false if x == -0.  Unfortunately we do not currently
3550       // have a way of expressing this constraint.  See details in
3551       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3552       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3553                                              Depth + 1);
3554 
3555     case Intrinsic::fma:
3556     case Intrinsic::fmuladd:
3557       // x*x+y is non-negative if y is non-negative.
3558       return I->getOperand(0) == I->getOperand(1) &&
3559              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3560              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3561                                              Depth + 1);
3562     }
3563     break;
3564   }
3565   return false;
3566 }
3567 
3568 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3569                                        const TargetLibraryInfo *TLI) {
3570   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3571 }
3572 
3573 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3574   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3575 }
3576 
3577 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3578                                 unsigned Depth) {
3579   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3580 
3581   // If we're told that infinities won't happen, assume they won't.
3582   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3583     if (FPMathOp->hasNoInfs())
3584       return true;
3585 
3586   // Handle scalar constants.
3587   if (auto *CFP = dyn_cast<ConstantFP>(V))
3588     return !CFP->isInfinity();
3589 
3590   if (Depth == MaxAnalysisRecursionDepth)
3591     return false;
3592 
3593   if (auto *Inst = dyn_cast<Instruction>(V)) {
3594     switch (Inst->getOpcode()) {
3595     case Instruction::Select: {
3596       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3597              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3598     }
3599     case Instruction::SIToFP:
3600     case Instruction::UIToFP: {
3601       // Get width of largest magnitude integer (remove a bit if signed).
3602       // This still works for a signed minimum value because the largest FP
3603       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3604       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3605       if (Inst->getOpcode() == Instruction::SIToFP)
3606         --IntSize;
3607 
3608       // If the exponent of the largest finite FP value can hold the largest
3609       // integer, the result of the cast must be finite.
3610       Type *FPTy = Inst->getType()->getScalarType();
3611       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3612     }
3613     default:
3614       break;
3615     }
3616   }
3617 
3618   // try to handle fixed width vector constants
3619   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3620   if (VFVTy && isa<Constant>(V)) {
3621     // For vectors, verify that each element is not infinity.
3622     unsigned NumElts = VFVTy->getNumElements();
3623     for (unsigned i = 0; i != NumElts; ++i) {
3624       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3625       if (!Elt)
3626         return false;
3627       if (isa<UndefValue>(Elt))
3628         continue;
3629       auto *CElt = dyn_cast<ConstantFP>(Elt);
3630       if (!CElt || CElt->isInfinity())
3631         return false;
3632     }
3633     // All elements were confirmed non-infinity or undefined.
3634     return true;
3635   }
3636 
3637   // was not able to prove that V never contains infinity
3638   return false;
3639 }
3640 
3641 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3642                            unsigned Depth) {
3643   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3644 
3645   // If we're told that NaNs won't happen, assume they won't.
3646   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3647     if (FPMathOp->hasNoNaNs())
3648       return true;
3649 
3650   // Handle scalar constants.
3651   if (auto *CFP = dyn_cast<ConstantFP>(V))
3652     return !CFP->isNaN();
3653 
3654   if (Depth == MaxAnalysisRecursionDepth)
3655     return false;
3656 
3657   if (auto *Inst = dyn_cast<Instruction>(V)) {
3658     switch (Inst->getOpcode()) {
3659     case Instruction::FAdd:
3660     case Instruction::FSub:
3661       // Adding positive and negative infinity produces NaN.
3662       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3663              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3664              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3665               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3666 
3667     case Instruction::FMul:
3668       // Zero multiplied with infinity produces NaN.
3669       // FIXME: If neither side can be zero fmul never produces NaN.
3670       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3671              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3672              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3673              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3674 
3675     case Instruction::FDiv:
3676     case Instruction::FRem:
3677       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3678       return false;
3679 
3680     case Instruction::Select: {
3681       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3682              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3683     }
3684     case Instruction::SIToFP:
3685     case Instruction::UIToFP:
3686       return true;
3687     case Instruction::FPTrunc:
3688     case Instruction::FPExt:
3689       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3690     default:
3691       break;
3692     }
3693   }
3694 
3695   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3696     switch (II->getIntrinsicID()) {
3697     case Intrinsic::canonicalize:
3698     case Intrinsic::fabs:
3699     case Intrinsic::copysign:
3700     case Intrinsic::exp:
3701     case Intrinsic::exp2:
3702     case Intrinsic::floor:
3703     case Intrinsic::ceil:
3704     case Intrinsic::trunc:
3705     case Intrinsic::rint:
3706     case Intrinsic::nearbyint:
3707     case Intrinsic::round:
3708     case Intrinsic::roundeven:
3709       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3710     case Intrinsic::sqrt:
3711       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3712              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3713     case Intrinsic::minnum:
3714     case Intrinsic::maxnum:
3715       // If either operand is not NaN, the result is not NaN.
3716       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3717              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3718     default:
3719       return false;
3720     }
3721   }
3722 
3723   // Try to handle fixed width vector constants
3724   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3725   if (VFVTy && isa<Constant>(V)) {
3726     // For vectors, verify that each element is not NaN.
3727     unsigned NumElts = VFVTy->getNumElements();
3728     for (unsigned i = 0; i != NumElts; ++i) {
3729       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3730       if (!Elt)
3731         return false;
3732       if (isa<UndefValue>(Elt))
3733         continue;
3734       auto *CElt = dyn_cast<ConstantFP>(Elt);
3735       if (!CElt || CElt->isNaN())
3736         return false;
3737     }
3738     // All elements were confirmed not-NaN or undefined.
3739     return true;
3740   }
3741 
3742   // Was not able to prove that V never contains NaN
3743   return false;
3744 }
3745 
3746 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3747 
3748   // All byte-wide stores are splatable, even of arbitrary variables.
3749   if (V->getType()->isIntegerTy(8))
3750     return V;
3751 
3752   LLVMContext &Ctx = V->getContext();
3753 
3754   // Undef don't care.
3755   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3756   if (isa<UndefValue>(V))
3757     return UndefInt8;
3758 
3759   // Return Undef for zero-sized type.
3760   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3761     return UndefInt8;
3762 
3763   Constant *C = dyn_cast<Constant>(V);
3764   if (!C) {
3765     // Conceptually, we could handle things like:
3766     //   %a = zext i8 %X to i16
3767     //   %b = shl i16 %a, 8
3768     //   %c = or i16 %a, %b
3769     // but until there is an example that actually needs this, it doesn't seem
3770     // worth worrying about.
3771     return nullptr;
3772   }
3773 
3774   // Handle 'null' ConstantArrayZero etc.
3775   if (C->isNullValue())
3776     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3777 
3778   // Constant floating-point values can be handled as integer values if the
3779   // corresponding integer value is "byteable".  An important case is 0.0.
3780   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3781     Type *Ty = nullptr;
3782     if (CFP->getType()->isHalfTy())
3783       Ty = Type::getInt16Ty(Ctx);
3784     else if (CFP->getType()->isFloatTy())
3785       Ty = Type::getInt32Ty(Ctx);
3786     else if (CFP->getType()->isDoubleTy())
3787       Ty = Type::getInt64Ty(Ctx);
3788     // Don't handle long double formats, which have strange constraints.
3789     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3790               : nullptr;
3791   }
3792 
3793   // We can handle constant integers that are multiple of 8 bits.
3794   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3795     if (CI->getBitWidth() % 8 == 0) {
3796       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3797       if (!CI->getValue().isSplat(8))
3798         return nullptr;
3799       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3800     }
3801   }
3802 
3803   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3804     if (CE->getOpcode() == Instruction::IntToPtr) {
3805       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3806         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3807         return isBytewiseValue(
3808             ConstantExpr::getIntegerCast(CE->getOperand(0),
3809                                          Type::getIntNTy(Ctx, BitWidth), false),
3810             DL);
3811       }
3812     }
3813   }
3814 
3815   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3816     if (LHS == RHS)
3817       return LHS;
3818     if (!LHS || !RHS)
3819       return nullptr;
3820     if (LHS == UndefInt8)
3821       return RHS;
3822     if (RHS == UndefInt8)
3823       return LHS;
3824     return nullptr;
3825   };
3826 
3827   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3828     Value *Val = UndefInt8;
3829     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3830       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3831         return nullptr;
3832     return Val;
3833   }
3834 
3835   if (isa<ConstantAggregate>(C)) {
3836     Value *Val = UndefInt8;
3837     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3838       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3839         return nullptr;
3840     return Val;
3841   }
3842 
3843   // Don't try to handle the handful of other constants.
3844   return nullptr;
3845 }
3846 
3847 // This is the recursive version of BuildSubAggregate. It takes a few different
3848 // arguments. Idxs is the index within the nested struct From that we are
3849 // looking at now (which is of type IndexedType). IdxSkip is the number of
3850 // indices from Idxs that should be left out when inserting into the resulting
3851 // struct. To is the result struct built so far, new insertvalue instructions
3852 // build on that.
3853 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3854                                 SmallVectorImpl<unsigned> &Idxs,
3855                                 unsigned IdxSkip,
3856                                 Instruction *InsertBefore) {
3857   StructType *STy = dyn_cast<StructType>(IndexedType);
3858   if (STy) {
3859     // Save the original To argument so we can modify it
3860     Value *OrigTo = To;
3861     // General case, the type indexed by Idxs is a struct
3862     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3863       // Process each struct element recursively
3864       Idxs.push_back(i);
3865       Value *PrevTo = To;
3866       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3867                              InsertBefore);
3868       Idxs.pop_back();
3869       if (!To) {
3870         // Couldn't find any inserted value for this index? Cleanup
3871         while (PrevTo != OrigTo) {
3872           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3873           PrevTo = Del->getAggregateOperand();
3874           Del->eraseFromParent();
3875         }
3876         // Stop processing elements
3877         break;
3878       }
3879     }
3880     // If we successfully found a value for each of our subaggregates
3881     if (To)
3882       return To;
3883   }
3884   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3885   // the struct's elements had a value that was inserted directly. In the latter
3886   // case, perhaps we can't determine each of the subelements individually, but
3887   // we might be able to find the complete struct somewhere.
3888 
3889   // Find the value that is at that particular spot
3890   Value *V = FindInsertedValue(From, Idxs);
3891 
3892   if (!V)
3893     return nullptr;
3894 
3895   // Insert the value in the new (sub) aggregate
3896   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3897                                  "tmp", InsertBefore);
3898 }
3899 
3900 // This helper takes a nested struct and extracts a part of it (which is again a
3901 // struct) into a new value. For example, given the struct:
3902 // { a, { b, { c, d }, e } }
3903 // and the indices "1, 1" this returns
3904 // { c, d }.
3905 //
3906 // It does this by inserting an insertvalue for each element in the resulting
3907 // struct, as opposed to just inserting a single struct. This will only work if
3908 // each of the elements of the substruct are known (ie, inserted into From by an
3909 // insertvalue instruction somewhere).
3910 //
3911 // All inserted insertvalue instructions are inserted before InsertBefore
3912 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3913                                 Instruction *InsertBefore) {
3914   assert(InsertBefore && "Must have someplace to insert!");
3915   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3916                                                              idx_range);
3917   Value *To = UndefValue::get(IndexedType);
3918   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3919   unsigned IdxSkip = Idxs.size();
3920 
3921   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3922 }
3923 
3924 /// Given an aggregate and a sequence of indices, see if the scalar value
3925 /// indexed is already around as a register, for example if it was inserted
3926 /// directly into the aggregate.
3927 ///
3928 /// If InsertBefore is not null, this function will duplicate (modified)
3929 /// insertvalues when a part of a nested struct is extracted.
3930 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3931                                Instruction *InsertBefore) {
3932   // Nothing to index? Just return V then (this is useful at the end of our
3933   // recursion).
3934   if (idx_range.empty())
3935     return V;
3936   // We have indices, so V should have an indexable type.
3937   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3938          "Not looking at a struct or array?");
3939   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3940          "Invalid indices for type?");
3941 
3942   if (Constant *C = dyn_cast<Constant>(V)) {
3943     C = C->getAggregateElement(idx_range[0]);
3944     if (!C) return nullptr;
3945     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3946   }
3947 
3948   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3949     // Loop the indices for the insertvalue instruction in parallel with the
3950     // requested indices
3951     const unsigned *req_idx = idx_range.begin();
3952     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3953          i != e; ++i, ++req_idx) {
3954       if (req_idx == idx_range.end()) {
3955         // We can't handle this without inserting insertvalues
3956         if (!InsertBefore)
3957           return nullptr;
3958 
3959         // The requested index identifies a part of a nested aggregate. Handle
3960         // this specially. For example,
3961         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3962         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3963         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3964         // This can be changed into
3965         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3966         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3967         // which allows the unused 0,0 element from the nested struct to be
3968         // removed.
3969         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3970                                  InsertBefore);
3971       }
3972 
3973       // This insert value inserts something else than what we are looking for.
3974       // See if the (aggregate) value inserted into has the value we are
3975       // looking for, then.
3976       if (*req_idx != *i)
3977         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3978                                  InsertBefore);
3979     }
3980     // If we end up here, the indices of the insertvalue match with those
3981     // requested (though possibly only partially). Now we recursively look at
3982     // the inserted value, passing any remaining indices.
3983     return FindInsertedValue(I->getInsertedValueOperand(),
3984                              makeArrayRef(req_idx, idx_range.end()),
3985                              InsertBefore);
3986   }
3987 
3988   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3989     // If we're extracting a value from an aggregate that was extracted from
3990     // something else, we can extract from that something else directly instead.
3991     // However, we will need to chain I's indices with the requested indices.
3992 
3993     // Calculate the number of indices required
3994     unsigned size = I->getNumIndices() + idx_range.size();
3995     // Allocate some space to put the new indices in
3996     SmallVector<unsigned, 5> Idxs;
3997     Idxs.reserve(size);
3998     // Add indices from the extract value instruction
3999     Idxs.append(I->idx_begin(), I->idx_end());
4000 
4001     // Add requested indices
4002     Idxs.append(idx_range.begin(), idx_range.end());
4003 
4004     assert(Idxs.size() == size
4005            && "Number of indices added not correct?");
4006 
4007     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4008   }
4009   // Otherwise, we don't know (such as, extracting from a function return value
4010   // or load instruction)
4011   return nullptr;
4012 }
4013 
4014 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4015                                        unsigned CharSize) {
4016   // Make sure the GEP has exactly three arguments.
4017   if (GEP->getNumOperands() != 3)
4018     return false;
4019 
4020   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4021   // CharSize.
4022   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4023   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4024     return false;
4025 
4026   // Check to make sure that the first operand of the GEP is an integer and
4027   // has value 0 so that we are sure we're indexing into the initializer.
4028   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4029   if (!FirstIdx || !FirstIdx->isZero())
4030     return false;
4031 
4032   return true;
4033 }
4034 
4035 bool llvm::getConstantDataArrayInfo(const Value *V,
4036                                     ConstantDataArraySlice &Slice,
4037                                     unsigned ElementSize, uint64_t Offset) {
4038   assert(V);
4039 
4040   // Look through bitcast instructions and geps.
4041   V = V->stripPointerCasts();
4042 
4043   // If the value is a GEP instruction or constant expression, treat it as an
4044   // offset.
4045   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4046     // The GEP operator should be based on a pointer to string constant, and is
4047     // indexing into the string constant.
4048     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4049       return false;
4050 
4051     // If the second index isn't a ConstantInt, then this is a variable index
4052     // into the array.  If this occurs, we can't say anything meaningful about
4053     // the string.
4054     uint64_t StartIdx = 0;
4055     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4056       StartIdx = CI->getZExtValue();
4057     else
4058       return false;
4059     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4060                                     StartIdx + Offset);
4061   }
4062 
4063   // The GEP instruction, constant or instruction, must reference a global
4064   // variable that is a constant and is initialized. The referenced constant
4065   // initializer is the array that we'll use for optimization.
4066   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4067   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4068     return false;
4069 
4070   const ConstantDataArray *Array;
4071   ArrayType *ArrayTy;
4072   if (GV->getInitializer()->isNullValue()) {
4073     Type *GVTy = GV->getValueType();
4074     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4075       // A zeroinitializer for the array; there is no ConstantDataArray.
4076       Array = nullptr;
4077     } else {
4078       const DataLayout &DL = GV->getParent()->getDataLayout();
4079       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4080       uint64_t Length = SizeInBytes / (ElementSize / 8);
4081       if (Length <= Offset)
4082         return false;
4083 
4084       Slice.Array = nullptr;
4085       Slice.Offset = 0;
4086       Slice.Length = Length - Offset;
4087       return true;
4088     }
4089   } else {
4090     // This must be a ConstantDataArray.
4091     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4092     if (!Array)
4093       return false;
4094     ArrayTy = Array->getType();
4095   }
4096   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4097     return false;
4098 
4099   uint64_t NumElts = ArrayTy->getArrayNumElements();
4100   if (Offset > NumElts)
4101     return false;
4102 
4103   Slice.Array = Array;
4104   Slice.Offset = Offset;
4105   Slice.Length = NumElts - Offset;
4106   return true;
4107 }
4108 
4109 /// This function computes the length of a null-terminated C string pointed to
4110 /// by V. If successful, it returns true and returns the string in Str.
4111 /// If unsuccessful, it returns false.
4112 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4113                                  uint64_t Offset, bool TrimAtNul) {
4114   ConstantDataArraySlice Slice;
4115   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4116     return false;
4117 
4118   if (Slice.Array == nullptr) {
4119     if (TrimAtNul) {
4120       Str = StringRef();
4121       return true;
4122     }
4123     if (Slice.Length == 1) {
4124       Str = StringRef("", 1);
4125       return true;
4126     }
4127     // We cannot instantiate a StringRef as we do not have an appropriate string
4128     // of 0s at hand.
4129     return false;
4130   }
4131 
4132   // Start out with the entire array in the StringRef.
4133   Str = Slice.Array->getAsString();
4134   // Skip over 'offset' bytes.
4135   Str = Str.substr(Slice.Offset);
4136 
4137   if (TrimAtNul) {
4138     // Trim off the \0 and anything after it.  If the array is not nul
4139     // terminated, we just return the whole end of string.  The client may know
4140     // some other way that the string is length-bound.
4141     Str = Str.substr(0, Str.find('\0'));
4142   }
4143   return true;
4144 }
4145 
4146 // These next two are very similar to the above, but also look through PHI
4147 // nodes.
4148 // TODO: See if we can integrate these two together.
4149 
4150 /// If we can compute the length of the string pointed to by
4151 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4152 static uint64_t GetStringLengthH(const Value *V,
4153                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4154                                  unsigned CharSize) {
4155   // Look through noop bitcast instructions.
4156   V = V->stripPointerCasts();
4157 
4158   // If this is a PHI node, there are two cases: either we have already seen it
4159   // or we haven't.
4160   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4161     if (!PHIs.insert(PN).second)
4162       return ~0ULL;  // already in the set.
4163 
4164     // If it was new, see if all the input strings are the same length.
4165     uint64_t LenSoFar = ~0ULL;
4166     for (Value *IncValue : PN->incoming_values()) {
4167       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4168       if (Len == 0) return 0; // Unknown length -> unknown.
4169 
4170       if (Len == ~0ULL) continue;
4171 
4172       if (Len != LenSoFar && LenSoFar != ~0ULL)
4173         return 0;    // Disagree -> unknown.
4174       LenSoFar = Len;
4175     }
4176 
4177     // Success, all agree.
4178     return LenSoFar;
4179   }
4180 
4181   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4182   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4183     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4184     if (Len1 == 0) return 0;
4185     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4186     if (Len2 == 0) return 0;
4187     if (Len1 == ~0ULL) return Len2;
4188     if (Len2 == ~0ULL) return Len1;
4189     if (Len1 != Len2) return 0;
4190     return Len1;
4191   }
4192 
4193   // Otherwise, see if we can read the string.
4194   ConstantDataArraySlice Slice;
4195   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4196     return 0;
4197 
4198   if (Slice.Array == nullptr)
4199     return 1;
4200 
4201   // Search for nul characters
4202   unsigned NullIndex = 0;
4203   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4204     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4205       break;
4206   }
4207 
4208   return NullIndex + 1;
4209 }
4210 
4211 /// If we can compute the length of the string pointed to by
4212 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4213 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4214   if (!V->getType()->isPointerTy())
4215     return 0;
4216 
4217   SmallPtrSet<const PHINode*, 32> PHIs;
4218   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4219   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4220   // an empty string as a length.
4221   return Len == ~0ULL ? 1 : Len;
4222 }
4223 
4224 const Value *
4225 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4226                                            bool MustPreserveNullness) {
4227   assert(Call &&
4228          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4229   if (const Value *RV = Call->getReturnedArgOperand())
4230     return RV;
4231   // This can be used only as a aliasing property.
4232   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4233           Call, MustPreserveNullness))
4234     return Call->getArgOperand(0);
4235   return nullptr;
4236 }
4237 
4238 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4239     const CallBase *Call, bool MustPreserveNullness) {
4240   switch (Call->getIntrinsicID()) {
4241   case Intrinsic::launder_invariant_group:
4242   case Intrinsic::strip_invariant_group:
4243   case Intrinsic::aarch64_irg:
4244   case Intrinsic::aarch64_tagp:
4245     return true;
4246   case Intrinsic::ptrmask:
4247     return !MustPreserveNullness;
4248   default:
4249     return false;
4250   }
4251 }
4252 
4253 /// \p PN defines a loop-variant pointer to an object.  Check if the
4254 /// previous iteration of the loop was referring to the same object as \p PN.
4255 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4256                                          const LoopInfo *LI) {
4257   // Find the loop-defined value.
4258   Loop *L = LI->getLoopFor(PN->getParent());
4259   if (PN->getNumIncomingValues() != 2)
4260     return true;
4261 
4262   // Find the value from previous iteration.
4263   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4264   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4265     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4266   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4267     return true;
4268 
4269   // If a new pointer is loaded in the loop, the pointer references a different
4270   // object in every iteration.  E.g.:
4271   //    for (i)
4272   //       int *p = a[i];
4273   //       ...
4274   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4275     if (!L->isLoopInvariant(Load->getPointerOperand()))
4276       return false;
4277   return true;
4278 }
4279 
4280 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4281   if (!V->getType()->isPointerTy())
4282     return V;
4283   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4284     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4285       V = GEP->getPointerOperand();
4286     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4287                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4288       V = cast<Operator>(V)->getOperand(0);
4289       if (!V->getType()->isPointerTy())
4290         return V;
4291     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4292       if (GA->isInterposable())
4293         return V;
4294       V = GA->getAliasee();
4295     } else {
4296       if (auto *PHI = dyn_cast<PHINode>(V)) {
4297         // Look through single-arg phi nodes created by LCSSA.
4298         if (PHI->getNumIncomingValues() == 1) {
4299           V = PHI->getIncomingValue(0);
4300           continue;
4301         }
4302       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4303         // CaptureTracking can know about special capturing properties of some
4304         // intrinsics like launder.invariant.group, that can't be expressed with
4305         // the attributes, but have properties like returning aliasing pointer.
4306         // Because some analysis may assume that nocaptured pointer is not
4307         // returned from some special intrinsic (because function would have to
4308         // be marked with returns attribute), it is crucial to use this function
4309         // because it should be in sync with CaptureTracking. Not using it may
4310         // cause weird miscompilations where 2 aliasing pointers are assumed to
4311         // noalias.
4312         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4313           V = RP;
4314           continue;
4315         }
4316       }
4317 
4318       return V;
4319     }
4320     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4321   }
4322   return V;
4323 }
4324 
4325 void llvm::getUnderlyingObjects(const Value *V,
4326                                 SmallVectorImpl<const Value *> &Objects,
4327                                 LoopInfo *LI, unsigned MaxLookup) {
4328   SmallPtrSet<const Value *, 4> Visited;
4329   SmallVector<const Value *, 4> Worklist;
4330   Worklist.push_back(V);
4331   do {
4332     const Value *P = Worklist.pop_back_val();
4333     P = getUnderlyingObject(P, MaxLookup);
4334 
4335     if (!Visited.insert(P).second)
4336       continue;
4337 
4338     if (auto *SI = dyn_cast<SelectInst>(P)) {
4339       Worklist.push_back(SI->getTrueValue());
4340       Worklist.push_back(SI->getFalseValue());
4341       continue;
4342     }
4343 
4344     if (auto *PN = dyn_cast<PHINode>(P)) {
4345       // If this PHI changes the underlying object in every iteration of the
4346       // loop, don't look through it.  Consider:
4347       //   int **A;
4348       //   for (i) {
4349       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4350       //     Curr = A[i];
4351       //     *Prev, *Curr;
4352       //
4353       // Prev is tracking Curr one iteration behind so they refer to different
4354       // underlying objects.
4355       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4356           isSameUnderlyingObjectInLoop(PN, LI))
4357         append_range(Worklist, PN->incoming_values());
4358       continue;
4359     }
4360 
4361     Objects.push_back(P);
4362   } while (!Worklist.empty());
4363 }
4364 
4365 /// This is the function that does the work of looking through basic
4366 /// ptrtoint+arithmetic+inttoptr sequences.
4367 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4368   do {
4369     if (const Operator *U = dyn_cast<Operator>(V)) {
4370       // If we find a ptrtoint, we can transfer control back to the
4371       // regular getUnderlyingObjectFromInt.
4372       if (U->getOpcode() == Instruction::PtrToInt)
4373         return U->getOperand(0);
4374       // If we find an add of a constant, a multiplied value, or a phi, it's
4375       // likely that the other operand will lead us to the base
4376       // object. We don't have to worry about the case where the
4377       // object address is somehow being computed by the multiply,
4378       // because our callers only care when the result is an
4379       // identifiable object.
4380       if (U->getOpcode() != Instruction::Add ||
4381           (!isa<ConstantInt>(U->getOperand(1)) &&
4382            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4383            !isa<PHINode>(U->getOperand(1))))
4384         return V;
4385       V = U->getOperand(0);
4386     } else {
4387       return V;
4388     }
4389     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4390   } while (true);
4391 }
4392 
4393 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4394 /// ptrtoint+arithmetic+inttoptr sequences.
4395 /// It returns false if unidentified object is found in getUnderlyingObjects.
4396 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4397                                           SmallVectorImpl<Value *> &Objects) {
4398   SmallPtrSet<const Value *, 16> Visited;
4399   SmallVector<const Value *, 4> Working(1, V);
4400   do {
4401     V = Working.pop_back_val();
4402 
4403     SmallVector<const Value *, 4> Objs;
4404     getUnderlyingObjects(V, Objs);
4405 
4406     for (const Value *V : Objs) {
4407       if (!Visited.insert(V).second)
4408         continue;
4409       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4410         const Value *O =
4411           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4412         if (O->getType()->isPointerTy()) {
4413           Working.push_back(O);
4414           continue;
4415         }
4416       }
4417       // If getUnderlyingObjects fails to find an identifiable object,
4418       // getUnderlyingObjectsForCodeGen also fails for safety.
4419       if (!isIdentifiedObject(V)) {
4420         Objects.clear();
4421         return false;
4422       }
4423       Objects.push_back(const_cast<Value *>(V));
4424     }
4425   } while (!Working.empty());
4426   return true;
4427 }
4428 
4429 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4430   AllocaInst *Result = nullptr;
4431   SmallPtrSet<Value *, 4> Visited;
4432   SmallVector<Value *, 4> Worklist;
4433 
4434   auto AddWork = [&](Value *V) {
4435     if (Visited.insert(V).second)
4436       Worklist.push_back(V);
4437   };
4438 
4439   AddWork(V);
4440   do {
4441     V = Worklist.pop_back_val();
4442     assert(Visited.count(V));
4443 
4444     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4445       if (Result && Result != AI)
4446         return nullptr;
4447       Result = AI;
4448     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4449       AddWork(CI->getOperand(0));
4450     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4451       for (Value *IncValue : PN->incoming_values())
4452         AddWork(IncValue);
4453     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4454       AddWork(SI->getTrueValue());
4455       AddWork(SI->getFalseValue());
4456     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4457       if (OffsetZero && !GEP->hasAllZeroIndices())
4458         return nullptr;
4459       AddWork(GEP->getPointerOperand());
4460     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4461       Value *Returned = CB->getReturnedArgOperand();
4462       if (Returned)
4463         AddWork(Returned);
4464       else
4465         return nullptr;
4466     } else {
4467       return nullptr;
4468     }
4469   } while (!Worklist.empty());
4470 
4471   return Result;
4472 }
4473 
4474 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4475     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4476   for (const User *U : V->users()) {
4477     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4478     if (!II)
4479       return false;
4480 
4481     if (AllowLifetime && II->isLifetimeStartOrEnd())
4482       continue;
4483 
4484     if (AllowDroppable && II->isDroppable())
4485       continue;
4486 
4487     return false;
4488   }
4489   return true;
4490 }
4491 
4492 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4493   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4494       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4495 }
4496 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4497   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4498       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4499 }
4500 
4501 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4502   if (!LI.isUnordered())
4503     return true;
4504   const Function &F = *LI.getFunction();
4505   // Speculative load may create a race that did not exist in the source.
4506   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4507     // Speculative load may load data from dirty regions.
4508     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4509     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4510 }
4511 
4512 
4513 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4514                                         const Instruction *CtxI,
4515                                         const DominatorTree *DT,
4516                                         const TargetLibraryInfo *TLI) {
4517   const Operator *Inst = dyn_cast<Operator>(V);
4518   if (!Inst)
4519     return false;
4520 
4521   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4522     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4523       if (C->canTrap())
4524         return false;
4525 
4526   switch (Inst->getOpcode()) {
4527   default:
4528     return true;
4529   case Instruction::UDiv:
4530   case Instruction::URem: {
4531     // x / y is undefined if y == 0.
4532     const APInt *V;
4533     if (match(Inst->getOperand(1), m_APInt(V)))
4534       return *V != 0;
4535     return false;
4536   }
4537   case Instruction::SDiv:
4538   case Instruction::SRem: {
4539     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4540     const APInt *Numerator, *Denominator;
4541     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4542       return false;
4543     // We cannot hoist this division if the denominator is 0.
4544     if (*Denominator == 0)
4545       return false;
4546     // It's safe to hoist if the denominator is not 0 or -1.
4547     if (!Denominator->isAllOnes())
4548       return true;
4549     // At this point we know that the denominator is -1.  It is safe to hoist as
4550     // long we know that the numerator is not INT_MIN.
4551     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4552       return !Numerator->isMinSignedValue();
4553     // The numerator *might* be MinSignedValue.
4554     return false;
4555   }
4556   case Instruction::Load: {
4557     const LoadInst *LI = cast<LoadInst>(Inst);
4558     if (mustSuppressSpeculation(*LI))
4559       return false;
4560     const DataLayout &DL = LI->getModule()->getDataLayout();
4561     return isDereferenceableAndAlignedPointer(
4562         LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
4563         TLI);
4564   }
4565   case Instruction::Call: {
4566     auto *CI = cast<const CallInst>(Inst);
4567     const Function *Callee = CI->getCalledFunction();
4568 
4569     // The called function could have undefined behavior or side-effects, even
4570     // if marked readnone nounwind.
4571     return Callee && Callee->isSpeculatable();
4572   }
4573   case Instruction::VAArg:
4574   case Instruction::Alloca:
4575   case Instruction::Invoke:
4576   case Instruction::CallBr:
4577   case Instruction::PHI:
4578   case Instruction::Store:
4579   case Instruction::Ret:
4580   case Instruction::Br:
4581   case Instruction::IndirectBr:
4582   case Instruction::Switch:
4583   case Instruction::Unreachable:
4584   case Instruction::Fence:
4585   case Instruction::AtomicRMW:
4586   case Instruction::AtomicCmpXchg:
4587   case Instruction::LandingPad:
4588   case Instruction::Resume:
4589   case Instruction::CatchSwitch:
4590   case Instruction::CatchPad:
4591   case Instruction::CatchRet:
4592   case Instruction::CleanupPad:
4593   case Instruction::CleanupRet:
4594     return false; // Misc instructions which have effects
4595   }
4596 }
4597 
4598 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4599   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4600 }
4601 
4602 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4603 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4604   switch (OR) {
4605     case ConstantRange::OverflowResult::MayOverflow:
4606       return OverflowResult::MayOverflow;
4607     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4608       return OverflowResult::AlwaysOverflowsLow;
4609     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4610       return OverflowResult::AlwaysOverflowsHigh;
4611     case ConstantRange::OverflowResult::NeverOverflows:
4612       return OverflowResult::NeverOverflows;
4613   }
4614   llvm_unreachable("Unknown OverflowResult");
4615 }
4616 
4617 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4618 static ConstantRange computeConstantRangeIncludingKnownBits(
4619     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4620     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4621     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4622   KnownBits Known = computeKnownBits(
4623       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4624   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4625   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4626   ConstantRange::PreferredRangeType RangeType =
4627       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4628   return CR1.intersectWith(CR2, RangeType);
4629 }
4630 
4631 OverflowResult llvm::computeOverflowForUnsignedMul(
4632     const Value *LHS, const Value *RHS, const DataLayout &DL,
4633     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4634     bool UseInstrInfo) {
4635   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4636                                         nullptr, UseInstrInfo);
4637   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4638                                         nullptr, UseInstrInfo);
4639   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4640   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4641   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4642 }
4643 
4644 OverflowResult
4645 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4646                                   const DataLayout &DL, AssumptionCache *AC,
4647                                   const Instruction *CxtI,
4648                                   const DominatorTree *DT, bool UseInstrInfo) {
4649   // Multiplying n * m significant bits yields a result of n + m significant
4650   // bits. If the total number of significant bits does not exceed the
4651   // result bit width (minus 1), there is no overflow.
4652   // This means if we have enough leading sign bits in the operands
4653   // we can guarantee that the result does not overflow.
4654   // Ref: "Hacker's Delight" by Henry Warren
4655   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4656 
4657   // Note that underestimating the number of sign bits gives a more
4658   // conservative answer.
4659   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4660                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4661 
4662   // First handle the easy case: if we have enough sign bits there's
4663   // definitely no overflow.
4664   if (SignBits > BitWidth + 1)
4665     return OverflowResult::NeverOverflows;
4666 
4667   // There are two ambiguous cases where there can be no overflow:
4668   //   SignBits == BitWidth + 1    and
4669   //   SignBits == BitWidth
4670   // The second case is difficult to check, therefore we only handle the
4671   // first case.
4672   if (SignBits == BitWidth + 1) {
4673     // It overflows only when both arguments are negative and the true
4674     // product is exactly the minimum negative number.
4675     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4676     // For simplicity we just check if at least one side is not negative.
4677     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4678                                           nullptr, UseInstrInfo);
4679     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4680                                           nullptr, UseInstrInfo);
4681     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4682       return OverflowResult::NeverOverflows;
4683   }
4684   return OverflowResult::MayOverflow;
4685 }
4686 
4687 OverflowResult llvm::computeOverflowForUnsignedAdd(
4688     const Value *LHS, const Value *RHS, const DataLayout &DL,
4689     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4690     bool UseInstrInfo) {
4691   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4692       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4693       nullptr, UseInstrInfo);
4694   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4695       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4696       nullptr, UseInstrInfo);
4697   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4698 }
4699 
4700 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4701                                                   const Value *RHS,
4702                                                   const AddOperator *Add,
4703                                                   const DataLayout &DL,
4704                                                   AssumptionCache *AC,
4705                                                   const Instruction *CxtI,
4706                                                   const DominatorTree *DT) {
4707   if (Add && Add->hasNoSignedWrap()) {
4708     return OverflowResult::NeverOverflows;
4709   }
4710 
4711   // If LHS and RHS each have at least two sign bits, the addition will look
4712   // like
4713   //
4714   // XX..... +
4715   // YY.....
4716   //
4717   // If the carry into the most significant position is 0, X and Y can't both
4718   // be 1 and therefore the carry out of the addition is also 0.
4719   //
4720   // If the carry into the most significant position is 1, X and Y can't both
4721   // be 0 and therefore the carry out of the addition is also 1.
4722   //
4723   // Since the carry into the most significant position is always equal to
4724   // the carry out of the addition, there is no signed overflow.
4725   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4726       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4727     return OverflowResult::NeverOverflows;
4728 
4729   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4730       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4731   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4732       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4733   OverflowResult OR =
4734       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4735   if (OR != OverflowResult::MayOverflow)
4736     return OR;
4737 
4738   // The remaining code needs Add to be available. Early returns if not so.
4739   if (!Add)
4740     return OverflowResult::MayOverflow;
4741 
4742   // If the sign of Add is the same as at least one of the operands, this add
4743   // CANNOT overflow. If this can be determined from the known bits of the
4744   // operands the above signedAddMayOverflow() check will have already done so.
4745   // The only other way to improve on the known bits is from an assumption, so
4746   // call computeKnownBitsFromAssume() directly.
4747   bool LHSOrRHSKnownNonNegative =
4748       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4749   bool LHSOrRHSKnownNegative =
4750       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4751   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4752     KnownBits AddKnown(LHSRange.getBitWidth());
4753     computeKnownBitsFromAssume(
4754         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4755     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4756         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4757       return OverflowResult::NeverOverflows;
4758   }
4759 
4760   return OverflowResult::MayOverflow;
4761 }
4762 
4763 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4764                                                    const Value *RHS,
4765                                                    const DataLayout &DL,
4766                                                    AssumptionCache *AC,
4767                                                    const Instruction *CxtI,
4768                                                    const DominatorTree *DT) {
4769   // Checking for conditions implied by dominating conditions may be expensive.
4770   // Limit it to usub_with_overflow calls for now.
4771   if (match(CxtI,
4772             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4773     if (auto C =
4774             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4775       if (*C)
4776         return OverflowResult::NeverOverflows;
4777       return OverflowResult::AlwaysOverflowsLow;
4778     }
4779   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4780       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4781   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4782       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4783   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4784 }
4785 
4786 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4787                                                  const Value *RHS,
4788                                                  const DataLayout &DL,
4789                                                  AssumptionCache *AC,
4790                                                  const Instruction *CxtI,
4791                                                  const DominatorTree *DT) {
4792   // If LHS and RHS each have at least two sign bits, the subtraction
4793   // cannot overflow.
4794   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4795       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4796     return OverflowResult::NeverOverflows;
4797 
4798   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4799       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4800   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4801       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4802   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4803 }
4804 
4805 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4806                                      const DominatorTree &DT) {
4807   SmallVector<const BranchInst *, 2> GuardingBranches;
4808   SmallVector<const ExtractValueInst *, 2> Results;
4809 
4810   for (const User *U : WO->users()) {
4811     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4812       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4813 
4814       if (EVI->getIndices()[0] == 0)
4815         Results.push_back(EVI);
4816       else {
4817         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4818 
4819         for (const auto *U : EVI->users())
4820           if (const auto *B = dyn_cast<BranchInst>(U)) {
4821             assert(B->isConditional() && "How else is it using an i1?");
4822             GuardingBranches.push_back(B);
4823           }
4824       }
4825     } else {
4826       // We are using the aggregate directly in a way we don't want to analyze
4827       // here (storing it to a global, say).
4828       return false;
4829     }
4830   }
4831 
4832   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4833     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4834     if (!NoWrapEdge.isSingleEdge())
4835       return false;
4836 
4837     // Check if all users of the add are provably no-wrap.
4838     for (const auto *Result : Results) {
4839       // If the extractvalue itself is not executed on overflow, the we don't
4840       // need to check each use separately, since domination is transitive.
4841       if (DT.dominates(NoWrapEdge, Result->getParent()))
4842         continue;
4843 
4844       for (auto &RU : Result->uses())
4845         if (!DT.dominates(NoWrapEdge, RU))
4846           return false;
4847     }
4848 
4849     return true;
4850   };
4851 
4852   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4853 }
4854 
4855 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
4856                                    bool ConsiderFlags) {
4857 
4858   if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
4859     return true;
4860 
4861   unsigned Opcode = Op->getOpcode();
4862 
4863   // Check whether opcode is a poison/undef-generating operation
4864   switch (Opcode) {
4865   case Instruction::Shl:
4866   case Instruction::AShr:
4867   case Instruction::LShr: {
4868     // Shifts return poison if shiftwidth is larger than the bitwidth.
4869     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4870       SmallVector<Constant *, 4> ShiftAmounts;
4871       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4872         unsigned NumElts = FVTy->getNumElements();
4873         for (unsigned i = 0; i < NumElts; ++i)
4874           ShiftAmounts.push_back(C->getAggregateElement(i));
4875       } else if (isa<ScalableVectorType>(C->getType()))
4876         return true; // Can't tell, just return true to be safe
4877       else
4878         ShiftAmounts.push_back(C);
4879 
4880       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4881         auto *CI = dyn_cast_or_null<ConstantInt>(C);
4882         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4883       });
4884       return !Safe;
4885     }
4886     return true;
4887   }
4888   case Instruction::FPToSI:
4889   case Instruction::FPToUI:
4890     // fptosi/ui yields poison if the resulting value does not fit in the
4891     // destination type.
4892     return true;
4893   case Instruction::Call:
4894     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4895       switch (II->getIntrinsicID()) {
4896       // TODO: Add more intrinsics.
4897       case Intrinsic::ctpop:
4898       case Intrinsic::sadd_with_overflow:
4899       case Intrinsic::ssub_with_overflow:
4900       case Intrinsic::smul_with_overflow:
4901       case Intrinsic::uadd_with_overflow:
4902       case Intrinsic::usub_with_overflow:
4903       case Intrinsic::umul_with_overflow:
4904         return false;
4905       }
4906     }
4907     LLVM_FALLTHROUGH;
4908   case Instruction::CallBr:
4909   case Instruction::Invoke: {
4910     const auto *CB = cast<CallBase>(Op);
4911     return !CB->hasRetAttr(Attribute::NoUndef);
4912   }
4913   case Instruction::InsertElement:
4914   case Instruction::ExtractElement: {
4915     // If index exceeds the length of the vector, it returns poison
4916     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4917     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4918     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4919     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4920       return true;
4921     return false;
4922   }
4923   case Instruction::ShuffleVector: {
4924     // shufflevector may return undef.
4925     if (PoisonOnly)
4926       return false;
4927     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4928                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4929                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4930     return is_contained(Mask, UndefMaskElem);
4931   }
4932   case Instruction::FNeg:
4933   case Instruction::PHI:
4934   case Instruction::Select:
4935   case Instruction::URem:
4936   case Instruction::SRem:
4937   case Instruction::ExtractValue:
4938   case Instruction::InsertValue:
4939   case Instruction::Freeze:
4940   case Instruction::ICmp:
4941   case Instruction::FCmp:
4942     return false;
4943   case Instruction::GetElementPtr:
4944     // inbounds is handled above
4945     // TODO: what about inrange on constexpr?
4946     return false;
4947   default: {
4948     const auto *CE = dyn_cast<ConstantExpr>(Op);
4949     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4950       return false;
4951     else if (Instruction::isBinaryOp(Opcode))
4952       return false;
4953     // Be conservative and return true.
4954     return true;
4955   }
4956   }
4957 }
4958 
4959 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
4960   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags);
4961 }
4962 
4963 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
4964   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags);
4965 }
4966 
4967 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
4968                                   const Value *V, unsigned Depth) {
4969   if (ValAssumedPoison == V)
4970     return true;
4971 
4972   const unsigned MaxDepth = 2;
4973   if (Depth >= MaxDepth)
4974     return false;
4975 
4976   if (const auto *I = dyn_cast<Instruction>(V)) {
4977     if (propagatesPoison(cast<Operator>(I)))
4978       return any_of(I->operands(), [=](const Value *Op) {
4979         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
4980       });
4981 
4982     // 'select ValAssumedPoison, _, _' is poison.
4983     if (const auto *SI = dyn_cast<SelectInst>(I))
4984       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
4985                                    Depth + 1);
4986     // V  = extractvalue V0, idx
4987     // V2 = extractvalue V0, idx2
4988     // V0's elements are all poison or not. (e.g., add_with_overflow)
4989     const WithOverflowInst *II;
4990     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
4991         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
4992          llvm::is_contained(II->args(), ValAssumedPoison)))
4993       return true;
4994   }
4995   return false;
4996 }
4997 
4998 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
4999                           unsigned Depth) {
5000   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5001     return true;
5002 
5003   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5004     return true;
5005 
5006   const unsigned MaxDepth = 2;
5007   if (Depth >= MaxDepth)
5008     return false;
5009 
5010   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5011   if (I && !canCreatePoison(cast<Operator>(I))) {
5012     return all_of(I->operands(), [=](const Value *Op) {
5013       return impliesPoison(Op, V, Depth + 1);
5014     });
5015   }
5016   return false;
5017 }
5018 
5019 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5020   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5021 }
5022 
5023 static bool programUndefinedIfUndefOrPoison(const Value *V,
5024                                             bool PoisonOnly);
5025 
5026 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5027                                              AssumptionCache *AC,
5028                                              const Instruction *CtxI,
5029                                              const DominatorTree *DT,
5030                                              unsigned Depth, bool PoisonOnly) {
5031   if (Depth >= MaxAnalysisRecursionDepth)
5032     return false;
5033 
5034   if (isa<MetadataAsValue>(V))
5035     return false;
5036 
5037   if (const auto *A = dyn_cast<Argument>(V)) {
5038     if (A->hasAttribute(Attribute::NoUndef))
5039       return true;
5040   }
5041 
5042   if (auto *C = dyn_cast<Constant>(V)) {
5043     if (isa<UndefValue>(C))
5044       return PoisonOnly && !isa<PoisonValue>(C);
5045 
5046     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5047         isa<ConstantPointerNull>(C) || isa<Function>(C))
5048       return true;
5049 
5050     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5051       return (PoisonOnly ? !C->containsPoisonElement()
5052                          : !C->containsUndefOrPoisonElement()) &&
5053              !C->containsConstantExpression();
5054   }
5055 
5056   // Strip cast operations from a pointer value.
5057   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5058   // inbounds with zero offset. To guarantee that the result isn't poison, the
5059   // stripped pointer is checked as it has to be pointing into an allocated
5060   // object or be null `null` to ensure `inbounds` getelement pointers with a
5061   // zero offset could not produce poison.
5062   // It can strip off addrspacecast that do not change bit representation as
5063   // well. We believe that such addrspacecast is equivalent to no-op.
5064   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5065   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5066       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5067     return true;
5068 
5069   auto OpCheck = [&](const Value *V) {
5070     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5071                                             PoisonOnly);
5072   };
5073 
5074   if (auto *Opr = dyn_cast<Operator>(V)) {
5075     // If the value is a freeze instruction, then it can never
5076     // be undef or poison.
5077     if (isa<FreezeInst>(V))
5078       return true;
5079 
5080     if (const auto *CB = dyn_cast<CallBase>(V)) {
5081       if (CB->hasRetAttr(Attribute::NoUndef))
5082         return true;
5083     }
5084 
5085     if (const auto *PN = dyn_cast<PHINode>(V)) {
5086       unsigned Num = PN->getNumIncomingValues();
5087       bool IsWellDefined = true;
5088       for (unsigned i = 0; i < Num; ++i) {
5089         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5090         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5091                                               DT, Depth + 1, PoisonOnly)) {
5092           IsWellDefined = false;
5093           break;
5094         }
5095       }
5096       if (IsWellDefined)
5097         return true;
5098     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5099       return true;
5100   }
5101 
5102   if (auto *I = dyn_cast<LoadInst>(V))
5103     if (I->getMetadata(LLVMContext::MD_noundef))
5104       return true;
5105 
5106   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5107     return true;
5108 
5109   // CxtI may be null or a cloned instruction.
5110   if (!CtxI || !CtxI->getParent() || !DT)
5111     return false;
5112 
5113   auto *DNode = DT->getNode(CtxI->getParent());
5114   if (!DNode)
5115     // Unreachable block
5116     return false;
5117 
5118   // If V is used as a branch condition before reaching CtxI, V cannot be
5119   // undef or poison.
5120   //   br V, BB1, BB2
5121   // BB1:
5122   //   CtxI ; V cannot be undef or poison here
5123   auto *Dominator = DNode->getIDom();
5124   while (Dominator) {
5125     auto *TI = Dominator->getBlock()->getTerminator();
5126 
5127     Value *Cond = nullptr;
5128     if (auto BI = dyn_cast<BranchInst>(TI)) {
5129       if (BI->isConditional())
5130         Cond = BI->getCondition();
5131     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
5132       Cond = SI->getCondition();
5133     }
5134 
5135     if (Cond) {
5136       if (Cond == V)
5137         return true;
5138       else if (PoisonOnly && isa<Operator>(Cond)) {
5139         // For poison, we can analyze further
5140         auto *Opr = cast<Operator>(Cond);
5141         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5142           return true;
5143       }
5144     }
5145 
5146     Dominator = Dominator->getIDom();
5147   }
5148 
5149   if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5150     return true;
5151 
5152   return false;
5153 }
5154 
5155 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5156                                             const Instruction *CtxI,
5157                                             const DominatorTree *DT,
5158                                             unsigned Depth) {
5159   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5160 }
5161 
5162 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5163                                      const Instruction *CtxI,
5164                                      const DominatorTree *DT, unsigned Depth) {
5165   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5166 }
5167 
5168 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5169                                                  const DataLayout &DL,
5170                                                  AssumptionCache *AC,
5171                                                  const Instruction *CxtI,
5172                                                  const DominatorTree *DT) {
5173   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5174                                        Add, DL, AC, CxtI, DT);
5175 }
5176 
5177 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5178                                                  const Value *RHS,
5179                                                  const DataLayout &DL,
5180                                                  AssumptionCache *AC,
5181                                                  const Instruction *CxtI,
5182                                                  const DominatorTree *DT) {
5183   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5184 }
5185 
5186 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5187   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5188   // of time because it's possible for another thread to interfere with it for an
5189   // arbitrary length of time, but programs aren't allowed to rely on that.
5190 
5191   // If there is no successor, then execution can't transfer to it.
5192   if (isa<ReturnInst>(I))
5193     return false;
5194   if (isa<UnreachableInst>(I))
5195     return false;
5196 
5197   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5198   // Instruction::willReturn.
5199   //
5200   // FIXME: Move this check into Instruction::willReturn.
5201   if (isa<CatchPadInst>(I)) {
5202     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5203     default:
5204       // A catchpad may invoke exception object constructors and such, which
5205       // in some languages can be arbitrary code, so be conservative by default.
5206       return false;
5207     case EHPersonality::CoreCLR:
5208       // For CoreCLR, it just involves a type test.
5209       return true;
5210     }
5211   }
5212 
5213   // An instruction that returns without throwing must transfer control flow
5214   // to a successor.
5215   return !I->mayThrow() && I->willReturn();
5216 }
5217 
5218 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5219   // TODO: This is slightly conservative for invoke instruction since exiting
5220   // via an exception *is* normal control for them.
5221   for (const Instruction &I : *BB)
5222     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5223       return false;
5224   return true;
5225 }
5226 
5227 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5228    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5229    unsigned ScanLimit) {
5230   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5231                                                     ScanLimit);
5232 }
5233 
5234 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5235    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5236   assert(ScanLimit && "scan limit must be non-zero");
5237   for (const Instruction &I : Range) {
5238     if (isa<DbgInfoIntrinsic>(I))
5239         continue;
5240     if (--ScanLimit == 0)
5241       return false;
5242     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5243       return false;
5244   }
5245   return true;
5246 }
5247 
5248 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5249                                                   const Loop *L) {
5250   // The loop header is guaranteed to be executed for every iteration.
5251   //
5252   // FIXME: Relax this constraint to cover all basic blocks that are
5253   // guaranteed to be executed at every iteration.
5254   if (I->getParent() != L->getHeader()) return false;
5255 
5256   for (const Instruction &LI : *L->getHeader()) {
5257     if (&LI == I) return true;
5258     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5259   }
5260   llvm_unreachable("Instruction not contained in its own parent basic block.");
5261 }
5262 
5263 bool llvm::propagatesPoison(const Operator *I) {
5264   switch (I->getOpcode()) {
5265   case Instruction::Freeze:
5266   case Instruction::Select:
5267   case Instruction::PHI:
5268   case Instruction::Invoke:
5269     return false;
5270   case Instruction::Call:
5271     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5272       switch (II->getIntrinsicID()) {
5273       // TODO: Add more intrinsics.
5274       case Intrinsic::sadd_with_overflow:
5275       case Intrinsic::ssub_with_overflow:
5276       case Intrinsic::smul_with_overflow:
5277       case Intrinsic::uadd_with_overflow:
5278       case Intrinsic::usub_with_overflow:
5279       case Intrinsic::umul_with_overflow:
5280         // If an input is a vector containing a poison element, the
5281         // two output vectors (calculated results, overflow bits)'
5282         // corresponding lanes are poison.
5283         return true;
5284       case Intrinsic::ctpop:
5285         return true;
5286       }
5287     }
5288     return false;
5289   case Instruction::ICmp:
5290   case Instruction::FCmp:
5291   case Instruction::GetElementPtr:
5292     return true;
5293   default:
5294     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5295       return true;
5296 
5297     // Be conservative and return false.
5298     return false;
5299   }
5300 }
5301 
5302 void llvm::getGuaranteedWellDefinedOps(
5303     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5304   switch (I->getOpcode()) {
5305     case Instruction::Store:
5306       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5307       break;
5308 
5309     case Instruction::Load:
5310       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5311       break;
5312 
5313     // Since dereferenceable attribute imply noundef, atomic operations
5314     // also implicitly have noundef pointers too
5315     case Instruction::AtomicCmpXchg:
5316       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5317       break;
5318 
5319     case Instruction::AtomicRMW:
5320       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5321       break;
5322 
5323     case Instruction::Call:
5324     case Instruction::Invoke: {
5325       const CallBase *CB = cast<CallBase>(I);
5326       if (CB->isIndirectCall())
5327         Operands.insert(CB->getCalledOperand());
5328       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5329         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5330             CB->paramHasAttr(i, Attribute::Dereferenceable))
5331           Operands.insert(CB->getArgOperand(i));
5332       }
5333       break;
5334     }
5335     case Instruction::Ret:
5336       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5337         Operands.insert(I->getOperand(0));
5338       break;
5339     default:
5340       break;
5341   }
5342 }
5343 
5344 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5345                                      SmallPtrSetImpl<const Value *> &Operands) {
5346   getGuaranteedWellDefinedOps(I, Operands);
5347   switch (I->getOpcode()) {
5348   // Divisors of these operations are allowed to be partially undef.
5349   case Instruction::UDiv:
5350   case Instruction::SDiv:
5351   case Instruction::URem:
5352   case Instruction::SRem:
5353     Operands.insert(I->getOperand(1));
5354     break;
5355   case Instruction::Switch:
5356     if (BranchOnPoisonAsUB)
5357       Operands.insert(cast<SwitchInst>(I)->getCondition());
5358     break;
5359   case Instruction::Br: {
5360     auto *BR = cast<BranchInst>(I);
5361     if (BranchOnPoisonAsUB && BR->isConditional())
5362       Operands.insert(BR->getCondition());
5363     break;
5364   }
5365   default:
5366     break;
5367   }
5368 }
5369 
5370 bool llvm::mustTriggerUB(const Instruction *I,
5371                          const SmallSet<const Value *, 16>& KnownPoison) {
5372   SmallPtrSet<const Value *, 4> NonPoisonOps;
5373   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5374 
5375   for (const auto *V : NonPoisonOps)
5376     if (KnownPoison.count(V))
5377       return true;
5378 
5379   return false;
5380 }
5381 
5382 static bool programUndefinedIfUndefOrPoison(const Value *V,
5383                                             bool PoisonOnly) {
5384   // We currently only look for uses of values within the same basic
5385   // block, as that makes it easier to guarantee that the uses will be
5386   // executed given that Inst is executed.
5387   //
5388   // FIXME: Expand this to consider uses beyond the same basic block. To do
5389   // this, look out for the distinction between post-dominance and strong
5390   // post-dominance.
5391   const BasicBlock *BB = nullptr;
5392   BasicBlock::const_iterator Begin;
5393   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5394     BB = Inst->getParent();
5395     Begin = Inst->getIterator();
5396     Begin++;
5397   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5398     BB = &Arg->getParent()->getEntryBlock();
5399     Begin = BB->begin();
5400   } else {
5401     return false;
5402   }
5403 
5404   // Limit number of instructions we look at, to avoid scanning through large
5405   // blocks. The current limit is chosen arbitrarily.
5406   unsigned ScanLimit = 32;
5407   BasicBlock::const_iterator End = BB->end();
5408 
5409   if (!PoisonOnly) {
5410     // Since undef does not propagate eagerly, be conservative & just check
5411     // whether a value is directly passed to an instruction that must take
5412     // well-defined operands.
5413 
5414     for (auto &I : make_range(Begin, End)) {
5415       if (isa<DbgInfoIntrinsic>(I))
5416         continue;
5417       if (--ScanLimit == 0)
5418         break;
5419 
5420       SmallPtrSet<const Value *, 4> WellDefinedOps;
5421       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5422       if (WellDefinedOps.contains(V))
5423         return true;
5424 
5425       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5426         break;
5427     }
5428     return false;
5429   }
5430 
5431   // Set of instructions that we have proved will yield poison if Inst
5432   // does.
5433   SmallSet<const Value *, 16> YieldsPoison;
5434   SmallSet<const BasicBlock *, 4> Visited;
5435 
5436   YieldsPoison.insert(V);
5437   auto Propagate = [&](const User *User) {
5438     if (propagatesPoison(cast<Operator>(User)))
5439       YieldsPoison.insert(User);
5440   };
5441   for_each(V->users(), Propagate);
5442   Visited.insert(BB);
5443 
5444   while (true) {
5445     for (auto &I : make_range(Begin, End)) {
5446       if (isa<DbgInfoIntrinsic>(I))
5447         continue;
5448       if (--ScanLimit == 0)
5449         return false;
5450       if (mustTriggerUB(&I, YieldsPoison))
5451         return true;
5452       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5453         return false;
5454 
5455       // Mark poison that propagates from I through uses of I.
5456       if (YieldsPoison.count(&I))
5457         for_each(I.users(), Propagate);
5458     }
5459 
5460     BB = BB->getSingleSuccessor();
5461     if (!BB || !Visited.insert(BB).second)
5462       break;
5463 
5464     Begin = BB->getFirstNonPHI()->getIterator();
5465     End = BB->end();
5466   }
5467   return false;
5468 }
5469 
5470 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5471   return ::programUndefinedIfUndefOrPoison(Inst, false);
5472 }
5473 
5474 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5475   return ::programUndefinedIfUndefOrPoison(Inst, true);
5476 }
5477 
5478 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5479   if (FMF.noNaNs())
5480     return true;
5481 
5482   if (auto *C = dyn_cast<ConstantFP>(V))
5483     return !C->isNaN();
5484 
5485   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5486     if (!C->getElementType()->isFloatingPointTy())
5487       return false;
5488     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5489       if (C->getElementAsAPFloat(I).isNaN())
5490         return false;
5491     }
5492     return true;
5493   }
5494 
5495   if (isa<ConstantAggregateZero>(V))
5496     return true;
5497 
5498   return false;
5499 }
5500 
5501 static bool isKnownNonZero(const Value *V) {
5502   if (auto *C = dyn_cast<ConstantFP>(V))
5503     return !C->isZero();
5504 
5505   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5506     if (!C->getElementType()->isFloatingPointTy())
5507       return false;
5508     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5509       if (C->getElementAsAPFloat(I).isZero())
5510         return false;
5511     }
5512     return true;
5513   }
5514 
5515   return false;
5516 }
5517 
5518 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5519 /// Given non-min/max outer cmp/select from the clamp pattern this
5520 /// function recognizes if it can be substitued by a "canonical" min/max
5521 /// pattern.
5522 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5523                                                Value *CmpLHS, Value *CmpRHS,
5524                                                Value *TrueVal, Value *FalseVal,
5525                                                Value *&LHS, Value *&RHS) {
5526   // Try to match
5527   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5528   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5529   // and return description of the outer Max/Min.
5530 
5531   // First, check if select has inverse order:
5532   if (CmpRHS == FalseVal) {
5533     std::swap(TrueVal, FalseVal);
5534     Pred = CmpInst::getInversePredicate(Pred);
5535   }
5536 
5537   // Assume success now. If there's no match, callers should not use these anyway.
5538   LHS = TrueVal;
5539   RHS = FalseVal;
5540 
5541   const APFloat *FC1;
5542   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5543     return {SPF_UNKNOWN, SPNB_NA, false};
5544 
5545   const APFloat *FC2;
5546   switch (Pred) {
5547   case CmpInst::FCMP_OLT:
5548   case CmpInst::FCMP_OLE:
5549   case CmpInst::FCMP_ULT:
5550   case CmpInst::FCMP_ULE:
5551     if (match(FalseVal,
5552               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5553                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5554         *FC1 < *FC2)
5555       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5556     break;
5557   case CmpInst::FCMP_OGT:
5558   case CmpInst::FCMP_OGE:
5559   case CmpInst::FCMP_UGT:
5560   case CmpInst::FCMP_UGE:
5561     if (match(FalseVal,
5562               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5563                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5564         *FC1 > *FC2)
5565       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5566     break;
5567   default:
5568     break;
5569   }
5570 
5571   return {SPF_UNKNOWN, SPNB_NA, false};
5572 }
5573 
5574 /// Recognize variations of:
5575 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5576 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5577                                       Value *CmpLHS, Value *CmpRHS,
5578                                       Value *TrueVal, Value *FalseVal) {
5579   // Swap the select operands and predicate to match the patterns below.
5580   if (CmpRHS != TrueVal) {
5581     Pred = ICmpInst::getSwappedPredicate(Pred);
5582     std::swap(TrueVal, FalseVal);
5583   }
5584   const APInt *C1;
5585   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5586     const APInt *C2;
5587     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5588     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5589         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5590       return {SPF_SMAX, SPNB_NA, false};
5591 
5592     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5593     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5594         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5595       return {SPF_SMIN, SPNB_NA, false};
5596 
5597     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5598     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5599         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5600       return {SPF_UMAX, SPNB_NA, false};
5601 
5602     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5603     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5604         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5605       return {SPF_UMIN, SPNB_NA, false};
5606   }
5607   return {SPF_UNKNOWN, SPNB_NA, false};
5608 }
5609 
5610 /// Recognize variations of:
5611 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5612 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5613                                                Value *CmpLHS, Value *CmpRHS,
5614                                                Value *TVal, Value *FVal,
5615                                                unsigned Depth) {
5616   // TODO: Allow FP min/max with nnan/nsz.
5617   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5618 
5619   Value *A = nullptr, *B = nullptr;
5620   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5621   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5622     return {SPF_UNKNOWN, SPNB_NA, false};
5623 
5624   Value *C = nullptr, *D = nullptr;
5625   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5626   if (L.Flavor != R.Flavor)
5627     return {SPF_UNKNOWN, SPNB_NA, false};
5628 
5629   // We have something like: x Pred y ? min(a, b) : min(c, d).
5630   // Try to match the compare to the min/max operations of the select operands.
5631   // First, make sure we have the right compare predicate.
5632   switch (L.Flavor) {
5633   case SPF_SMIN:
5634     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5635       Pred = ICmpInst::getSwappedPredicate(Pred);
5636       std::swap(CmpLHS, CmpRHS);
5637     }
5638     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5639       break;
5640     return {SPF_UNKNOWN, SPNB_NA, false};
5641   case SPF_SMAX:
5642     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5643       Pred = ICmpInst::getSwappedPredicate(Pred);
5644       std::swap(CmpLHS, CmpRHS);
5645     }
5646     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5647       break;
5648     return {SPF_UNKNOWN, SPNB_NA, false};
5649   case SPF_UMIN:
5650     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5651       Pred = ICmpInst::getSwappedPredicate(Pred);
5652       std::swap(CmpLHS, CmpRHS);
5653     }
5654     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5655       break;
5656     return {SPF_UNKNOWN, SPNB_NA, false};
5657   case SPF_UMAX:
5658     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5659       Pred = ICmpInst::getSwappedPredicate(Pred);
5660       std::swap(CmpLHS, CmpRHS);
5661     }
5662     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5663       break;
5664     return {SPF_UNKNOWN, SPNB_NA, false};
5665   default:
5666     return {SPF_UNKNOWN, SPNB_NA, false};
5667   }
5668 
5669   // If there is a common operand in the already matched min/max and the other
5670   // min/max operands match the compare operands (either directly or inverted),
5671   // then this is min/max of the same flavor.
5672 
5673   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5674   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5675   if (D == B) {
5676     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5677                                          match(A, m_Not(m_Specific(CmpRHS)))))
5678       return {L.Flavor, SPNB_NA, false};
5679   }
5680   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5681   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5682   if (C == B) {
5683     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5684                                          match(A, m_Not(m_Specific(CmpRHS)))))
5685       return {L.Flavor, SPNB_NA, false};
5686   }
5687   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5688   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5689   if (D == A) {
5690     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5691                                          match(B, m_Not(m_Specific(CmpRHS)))))
5692       return {L.Flavor, SPNB_NA, false};
5693   }
5694   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5695   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5696   if (C == A) {
5697     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5698                                          match(B, m_Not(m_Specific(CmpRHS)))))
5699       return {L.Flavor, SPNB_NA, false};
5700   }
5701 
5702   return {SPF_UNKNOWN, SPNB_NA, false};
5703 }
5704 
5705 /// If the input value is the result of a 'not' op, constant integer, or vector
5706 /// splat of a constant integer, return the bitwise-not source value.
5707 /// TODO: This could be extended to handle non-splat vector integer constants.
5708 static Value *getNotValue(Value *V) {
5709   Value *NotV;
5710   if (match(V, m_Not(m_Value(NotV))))
5711     return NotV;
5712 
5713   const APInt *C;
5714   if (match(V, m_APInt(C)))
5715     return ConstantInt::get(V->getType(), ~(*C));
5716 
5717   return nullptr;
5718 }
5719 
5720 /// Match non-obvious integer minimum and maximum sequences.
5721 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5722                                        Value *CmpLHS, Value *CmpRHS,
5723                                        Value *TrueVal, Value *FalseVal,
5724                                        Value *&LHS, Value *&RHS,
5725                                        unsigned Depth) {
5726   // Assume success. If there's no match, callers should not use these anyway.
5727   LHS = TrueVal;
5728   RHS = FalseVal;
5729 
5730   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5731   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5732     return SPR;
5733 
5734   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5735   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5736     return SPR;
5737 
5738   // Look through 'not' ops to find disguised min/max.
5739   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5740   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5741   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5742     switch (Pred) {
5743     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5744     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5745     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5746     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5747     default: break;
5748     }
5749   }
5750 
5751   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5752   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5753   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5754     switch (Pred) {
5755     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5756     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5757     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5758     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5759     default: break;
5760     }
5761   }
5762 
5763   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5764     return {SPF_UNKNOWN, SPNB_NA, false};
5765 
5766   // Z = X -nsw Y
5767   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5768   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5769   if (match(TrueVal, m_Zero()) &&
5770       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5771     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5772 
5773   // Z = X -nsw Y
5774   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5775   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5776   if (match(FalseVal, m_Zero()) &&
5777       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5778     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5779 
5780   const APInt *C1;
5781   if (!match(CmpRHS, m_APInt(C1)))
5782     return {SPF_UNKNOWN, SPNB_NA, false};
5783 
5784   // An unsigned min/max can be written with a signed compare.
5785   const APInt *C2;
5786   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5787       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5788     // Is the sign bit set?
5789     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5790     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5791     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
5792       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5793 
5794     // Is the sign bit clear?
5795     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5796     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5797     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
5798       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5799   }
5800 
5801   return {SPF_UNKNOWN, SPNB_NA, false};
5802 }
5803 
5804 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5805   assert(X && Y && "Invalid operand");
5806 
5807   // X = sub (0, Y) || X = sub nsw (0, Y)
5808   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5809       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5810     return true;
5811 
5812   // Y = sub (0, X) || Y = sub nsw (0, X)
5813   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5814       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5815     return true;
5816 
5817   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5818   Value *A, *B;
5819   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5820                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5821          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5822                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5823 }
5824 
5825 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5826                                               FastMathFlags FMF,
5827                                               Value *CmpLHS, Value *CmpRHS,
5828                                               Value *TrueVal, Value *FalseVal,
5829                                               Value *&LHS, Value *&RHS,
5830                                               unsigned Depth) {
5831   if (CmpInst::isFPPredicate(Pred)) {
5832     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5833     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5834     // purpose of identifying min/max. Disregard vector constants with undefined
5835     // elements because those can not be back-propagated for analysis.
5836     Value *OutputZeroVal = nullptr;
5837     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5838         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5839       OutputZeroVal = TrueVal;
5840     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5841              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5842       OutputZeroVal = FalseVal;
5843 
5844     if (OutputZeroVal) {
5845       if (match(CmpLHS, m_AnyZeroFP()))
5846         CmpLHS = OutputZeroVal;
5847       if (match(CmpRHS, m_AnyZeroFP()))
5848         CmpRHS = OutputZeroVal;
5849     }
5850   }
5851 
5852   LHS = CmpLHS;
5853   RHS = CmpRHS;
5854 
5855   // Signed zero may return inconsistent results between implementations.
5856   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5857   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5858   // Therefore, we behave conservatively and only proceed if at least one of the
5859   // operands is known to not be zero or if we don't care about signed zero.
5860   switch (Pred) {
5861   default: break;
5862   // FIXME: Include OGT/OLT/UGT/ULT.
5863   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5864   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5865     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5866         !isKnownNonZero(CmpRHS))
5867       return {SPF_UNKNOWN, SPNB_NA, false};
5868   }
5869 
5870   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5871   bool Ordered = false;
5872 
5873   // When given one NaN and one non-NaN input:
5874   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5875   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5876   //     ordered comparison fails), which could be NaN or non-NaN.
5877   // so here we discover exactly what NaN behavior is required/accepted.
5878   if (CmpInst::isFPPredicate(Pred)) {
5879     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5880     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5881 
5882     if (LHSSafe && RHSSafe) {
5883       // Both operands are known non-NaN.
5884       NaNBehavior = SPNB_RETURNS_ANY;
5885     } else if (CmpInst::isOrdered(Pred)) {
5886       // An ordered comparison will return false when given a NaN, so it
5887       // returns the RHS.
5888       Ordered = true;
5889       if (LHSSafe)
5890         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5891         NaNBehavior = SPNB_RETURNS_NAN;
5892       else if (RHSSafe)
5893         NaNBehavior = SPNB_RETURNS_OTHER;
5894       else
5895         // Completely unsafe.
5896         return {SPF_UNKNOWN, SPNB_NA, false};
5897     } else {
5898       Ordered = false;
5899       // An unordered comparison will return true when given a NaN, so it
5900       // returns the LHS.
5901       if (LHSSafe)
5902         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5903         NaNBehavior = SPNB_RETURNS_OTHER;
5904       else if (RHSSafe)
5905         NaNBehavior = SPNB_RETURNS_NAN;
5906       else
5907         // Completely unsafe.
5908         return {SPF_UNKNOWN, SPNB_NA, false};
5909     }
5910   }
5911 
5912   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5913     std::swap(CmpLHS, CmpRHS);
5914     Pred = CmpInst::getSwappedPredicate(Pred);
5915     if (NaNBehavior == SPNB_RETURNS_NAN)
5916       NaNBehavior = SPNB_RETURNS_OTHER;
5917     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5918       NaNBehavior = SPNB_RETURNS_NAN;
5919     Ordered = !Ordered;
5920   }
5921 
5922   // ([if]cmp X, Y) ? X : Y
5923   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5924     switch (Pred) {
5925     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5926     case ICmpInst::ICMP_UGT:
5927     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5928     case ICmpInst::ICMP_SGT:
5929     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5930     case ICmpInst::ICMP_ULT:
5931     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5932     case ICmpInst::ICMP_SLT:
5933     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5934     case FCmpInst::FCMP_UGT:
5935     case FCmpInst::FCMP_UGE:
5936     case FCmpInst::FCMP_OGT:
5937     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5938     case FCmpInst::FCMP_ULT:
5939     case FCmpInst::FCMP_ULE:
5940     case FCmpInst::FCMP_OLT:
5941     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5942     }
5943   }
5944 
5945   if (isKnownNegation(TrueVal, FalseVal)) {
5946     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5947     // match against either LHS or sext(LHS).
5948     auto MaybeSExtCmpLHS =
5949         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5950     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5951     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5952     if (match(TrueVal, MaybeSExtCmpLHS)) {
5953       // Set the return values. If the compare uses the negated value (-X >s 0),
5954       // swap the return values because the negated value is always 'RHS'.
5955       LHS = TrueVal;
5956       RHS = FalseVal;
5957       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5958         std::swap(LHS, RHS);
5959 
5960       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5961       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5962       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5963         return {SPF_ABS, SPNB_NA, false};
5964 
5965       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5966       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5967         return {SPF_ABS, SPNB_NA, false};
5968 
5969       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5970       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5971       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5972         return {SPF_NABS, SPNB_NA, false};
5973     }
5974     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5975       // Set the return values. If the compare uses the negated value (-X >s 0),
5976       // swap the return values because the negated value is always 'RHS'.
5977       LHS = FalseVal;
5978       RHS = TrueVal;
5979       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5980         std::swap(LHS, RHS);
5981 
5982       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5983       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5984       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5985         return {SPF_NABS, SPNB_NA, false};
5986 
5987       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5988       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5989       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5990         return {SPF_ABS, SPNB_NA, false};
5991     }
5992   }
5993 
5994   if (CmpInst::isIntPredicate(Pred))
5995     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5996 
5997   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5998   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5999   // semantics than minNum. Be conservative in such case.
6000   if (NaNBehavior != SPNB_RETURNS_ANY ||
6001       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6002        !isKnownNonZero(CmpRHS)))
6003     return {SPF_UNKNOWN, SPNB_NA, false};
6004 
6005   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6006 }
6007 
6008 /// Helps to match a select pattern in case of a type mismatch.
6009 ///
6010 /// The function processes the case when type of true and false values of a
6011 /// select instruction differs from type of the cmp instruction operands because
6012 /// of a cast instruction. The function checks if it is legal to move the cast
6013 /// operation after "select". If yes, it returns the new second value of
6014 /// "select" (with the assumption that cast is moved):
6015 /// 1. As operand of cast instruction when both values of "select" are same cast
6016 /// instructions.
6017 /// 2. As restored constant (by applying reverse cast operation) when the first
6018 /// value of the "select" is a cast operation and the second value is a
6019 /// constant.
6020 /// NOTE: We return only the new second value because the first value could be
6021 /// accessed as operand of cast instruction.
6022 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6023                               Instruction::CastOps *CastOp) {
6024   auto *Cast1 = dyn_cast<CastInst>(V1);
6025   if (!Cast1)
6026     return nullptr;
6027 
6028   *CastOp = Cast1->getOpcode();
6029   Type *SrcTy = Cast1->getSrcTy();
6030   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6031     // If V1 and V2 are both the same cast from the same type, look through V1.
6032     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6033       return Cast2->getOperand(0);
6034     return nullptr;
6035   }
6036 
6037   auto *C = dyn_cast<Constant>(V2);
6038   if (!C)
6039     return nullptr;
6040 
6041   Constant *CastedTo = nullptr;
6042   switch (*CastOp) {
6043   case Instruction::ZExt:
6044     if (CmpI->isUnsigned())
6045       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6046     break;
6047   case Instruction::SExt:
6048     if (CmpI->isSigned())
6049       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6050     break;
6051   case Instruction::Trunc:
6052     Constant *CmpConst;
6053     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6054         CmpConst->getType() == SrcTy) {
6055       // Here we have the following case:
6056       //
6057       //   %cond = cmp iN %x, CmpConst
6058       //   %tr = trunc iN %x to iK
6059       //   %narrowsel = select i1 %cond, iK %t, iK C
6060       //
6061       // We can always move trunc after select operation:
6062       //
6063       //   %cond = cmp iN %x, CmpConst
6064       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6065       //   %tr = trunc iN %widesel to iK
6066       //
6067       // Note that C could be extended in any way because we don't care about
6068       // upper bits after truncation. It can't be abs pattern, because it would
6069       // look like:
6070       //
6071       //   select i1 %cond, x, -x.
6072       //
6073       // So only min/max pattern could be matched. Such match requires widened C
6074       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6075       // CmpConst == C is checked below.
6076       CastedTo = CmpConst;
6077     } else {
6078       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6079     }
6080     break;
6081   case Instruction::FPTrunc:
6082     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6083     break;
6084   case Instruction::FPExt:
6085     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6086     break;
6087   case Instruction::FPToUI:
6088     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6089     break;
6090   case Instruction::FPToSI:
6091     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6092     break;
6093   case Instruction::UIToFP:
6094     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6095     break;
6096   case Instruction::SIToFP:
6097     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6098     break;
6099   default:
6100     break;
6101   }
6102 
6103   if (!CastedTo)
6104     return nullptr;
6105 
6106   // Make sure the cast doesn't lose any information.
6107   Constant *CastedBack =
6108       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6109   if (CastedBack != C)
6110     return nullptr;
6111 
6112   return CastedTo;
6113 }
6114 
6115 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6116                                              Instruction::CastOps *CastOp,
6117                                              unsigned Depth) {
6118   if (Depth >= MaxAnalysisRecursionDepth)
6119     return {SPF_UNKNOWN, SPNB_NA, false};
6120 
6121   SelectInst *SI = dyn_cast<SelectInst>(V);
6122   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6123 
6124   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6125   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6126 
6127   Value *TrueVal = SI->getTrueValue();
6128   Value *FalseVal = SI->getFalseValue();
6129 
6130   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6131                                             CastOp, Depth);
6132 }
6133 
6134 SelectPatternResult llvm::matchDecomposedSelectPattern(
6135     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6136     Instruction::CastOps *CastOp, unsigned Depth) {
6137   CmpInst::Predicate Pred = CmpI->getPredicate();
6138   Value *CmpLHS = CmpI->getOperand(0);
6139   Value *CmpRHS = CmpI->getOperand(1);
6140   FastMathFlags FMF;
6141   if (isa<FPMathOperator>(CmpI))
6142     FMF = CmpI->getFastMathFlags();
6143 
6144   // Bail out early.
6145   if (CmpI->isEquality())
6146     return {SPF_UNKNOWN, SPNB_NA, false};
6147 
6148   // Deal with type mismatches.
6149   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6150     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6151       // If this is a potential fmin/fmax with a cast to integer, then ignore
6152       // -0.0 because there is no corresponding integer value.
6153       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6154         FMF.setNoSignedZeros();
6155       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6156                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6157                                   LHS, RHS, Depth);
6158     }
6159     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6160       // If this is a potential fmin/fmax with a cast to integer, then ignore
6161       // -0.0 because there is no corresponding integer value.
6162       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6163         FMF.setNoSignedZeros();
6164       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6165                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6166                                   LHS, RHS, Depth);
6167     }
6168   }
6169   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6170                               LHS, RHS, Depth);
6171 }
6172 
6173 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6174   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6175   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6176   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6177   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6178   if (SPF == SPF_FMINNUM)
6179     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6180   if (SPF == SPF_FMAXNUM)
6181     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6182   llvm_unreachable("unhandled!");
6183 }
6184 
6185 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6186   if (SPF == SPF_SMIN) return SPF_SMAX;
6187   if (SPF == SPF_UMIN) return SPF_UMAX;
6188   if (SPF == SPF_SMAX) return SPF_SMIN;
6189   if (SPF == SPF_UMAX) return SPF_UMIN;
6190   llvm_unreachable("unhandled!");
6191 }
6192 
6193 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6194   switch (MinMaxID) {
6195   case Intrinsic::smax: return Intrinsic::smin;
6196   case Intrinsic::smin: return Intrinsic::smax;
6197   case Intrinsic::umax: return Intrinsic::umin;
6198   case Intrinsic::umin: return Intrinsic::umax;
6199   default: llvm_unreachable("Unexpected intrinsic");
6200   }
6201 }
6202 
6203 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6204   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6205 }
6206 
6207 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6208   switch (SPF) {
6209   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6210   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6211   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6212   case SPF_UMIN: return APInt::getMinValue(BitWidth);
6213   default: llvm_unreachable("Unexpected flavor");
6214   }
6215 }
6216 
6217 std::pair<Intrinsic::ID, bool>
6218 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6219   // Check if VL contains select instructions that can be folded into a min/max
6220   // vector intrinsic and return the intrinsic if it is possible.
6221   // TODO: Support floating point min/max.
6222   bool AllCmpSingleUse = true;
6223   SelectPatternResult SelectPattern;
6224   SelectPattern.Flavor = SPF_UNKNOWN;
6225   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6226         Value *LHS, *RHS;
6227         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6228         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6229             CurrentPattern.Flavor == SPF_FMINNUM ||
6230             CurrentPattern.Flavor == SPF_FMAXNUM ||
6231             !I->getType()->isIntOrIntVectorTy())
6232           return false;
6233         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6234             SelectPattern.Flavor != CurrentPattern.Flavor)
6235           return false;
6236         SelectPattern = CurrentPattern;
6237         AllCmpSingleUse &=
6238             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6239         return true;
6240       })) {
6241     switch (SelectPattern.Flavor) {
6242     case SPF_SMIN:
6243       return {Intrinsic::smin, AllCmpSingleUse};
6244     case SPF_UMIN:
6245       return {Intrinsic::umin, AllCmpSingleUse};
6246     case SPF_SMAX:
6247       return {Intrinsic::smax, AllCmpSingleUse};
6248     case SPF_UMAX:
6249       return {Intrinsic::umax, AllCmpSingleUse};
6250     default:
6251       llvm_unreachable("unexpected select pattern flavor");
6252     }
6253   }
6254   return {Intrinsic::not_intrinsic, false};
6255 }
6256 
6257 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6258                                  Value *&Start, Value *&Step) {
6259   // Handle the case of a simple two-predecessor recurrence PHI.
6260   // There's a lot more that could theoretically be done here, but
6261   // this is sufficient to catch some interesting cases.
6262   if (P->getNumIncomingValues() != 2)
6263     return false;
6264 
6265   for (unsigned i = 0; i != 2; ++i) {
6266     Value *L = P->getIncomingValue(i);
6267     Value *R = P->getIncomingValue(!i);
6268     Operator *LU = dyn_cast<Operator>(L);
6269     if (!LU)
6270       continue;
6271     unsigned Opcode = LU->getOpcode();
6272 
6273     switch (Opcode) {
6274     default:
6275       continue;
6276     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6277     case Instruction::LShr:
6278     case Instruction::AShr:
6279     case Instruction::Shl:
6280     case Instruction::Add:
6281     case Instruction::Sub:
6282     case Instruction::And:
6283     case Instruction::Or:
6284     case Instruction::Mul: {
6285       Value *LL = LU->getOperand(0);
6286       Value *LR = LU->getOperand(1);
6287       // Find a recurrence.
6288       if (LL == P)
6289         L = LR;
6290       else if (LR == P)
6291         L = LL;
6292       else
6293         continue; // Check for recurrence with L and R flipped.
6294 
6295       break; // Match!
6296     }
6297     };
6298 
6299     // We have matched a recurrence of the form:
6300     //   %iv = [R, %entry], [%iv.next, %backedge]
6301     //   %iv.next = binop %iv, L
6302     // OR
6303     //   %iv = [R, %entry], [%iv.next, %backedge]
6304     //   %iv.next = binop L, %iv
6305     BO = cast<BinaryOperator>(LU);
6306     Start = R;
6307     Step = L;
6308     return true;
6309   }
6310   return false;
6311 }
6312 
6313 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6314                                  Value *&Start, Value *&Step) {
6315   BinaryOperator *BO = nullptr;
6316   P = dyn_cast<PHINode>(I->getOperand(0));
6317   if (!P)
6318     P = dyn_cast<PHINode>(I->getOperand(1));
6319   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6320 }
6321 
6322 /// Return true if "icmp Pred LHS RHS" is always true.
6323 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6324                             const Value *RHS, const DataLayout &DL,
6325                             unsigned Depth) {
6326   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6327   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6328     return true;
6329 
6330   switch (Pred) {
6331   default:
6332     return false;
6333 
6334   case CmpInst::ICMP_SLE: {
6335     const APInt *C;
6336 
6337     // LHS s<= LHS +_{nsw} C   if C >= 0
6338     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6339       return !C->isNegative();
6340     return false;
6341   }
6342 
6343   case CmpInst::ICMP_ULE: {
6344     const APInt *C;
6345 
6346     // LHS u<= LHS +_{nuw} C   for any C
6347     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6348       return true;
6349 
6350     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6351     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6352                                        const Value *&X,
6353                                        const APInt *&CA, const APInt *&CB) {
6354       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6355           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6356         return true;
6357 
6358       // If X & C == 0 then (X | C) == X +_{nuw} C
6359       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6360           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6361         KnownBits Known(CA->getBitWidth());
6362         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6363                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6364         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6365           return true;
6366       }
6367 
6368       return false;
6369     };
6370 
6371     const Value *X;
6372     const APInt *CLHS, *CRHS;
6373     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6374       return CLHS->ule(*CRHS);
6375 
6376     return false;
6377   }
6378   }
6379 }
6380 
6381 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6382 /// ALHS ARHS" is true.  Otherwise, return None.
6383 static Optional<bool>
6384 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6385                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6386                       const DataLayout &DL, unsigned Depth) {
6387   switch (Pred) {
6388   default:
6389     return None;
6390 
6391   case CmpInst::ICMP_SLT:
6392   case CmpInst::ICMP_SLE:
6393     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6394         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6395       return true;
6396     return None;
6397 
6398   case CmpInst::ICMP_ULT:
6399   case CmpInst::ICMP_ULE:
6400     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6401         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6402       return true;
6403     return None;
6404   }
6405 }
6406 
6407 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6408 /// when the operands match, but are swapped.
6409 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6410                           const Value *BLHS, const Value *BRHS,
6411                           bool &IsSwappedOps) {
6412 
6413   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6414   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6415   return IsMatchingOps || IsSwappedOps;
6416 }
6417 
6418 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6419 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6420 /// Otherwise, return None if we can't infer anything.
6421 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6422                                                     CmpInst::Predicate BPred,
6423                                                     bool AreSwappedOps) {
6424   // Canonicalize the predicate as if the operands were not commuted.
6425   if (AreSwappedOps)
6426     BPred = ICmpInst::getSwappedPredicate(BPred);
6427 
6428   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6429     return true;
6430   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6431     return false;
6432 
6433   return None;
6434 }
6435 
6436 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6437 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6438 /// Otherwise, return None if we can't infer anything.
6439 static Optional<bool>
6440 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6441                                  const ConstantInt *C1,
6442                                  CmpInst::Predicate BPred,
6443                                  const ConstantInt *C2) {
6444   ConstantRange DomCR =
6445       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6446   ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue());
6447   ConstantRange Intersection = DomCR.intersectWith(CR);
6448   ConstantRange Difference = DomCR.difference(CR);
6449   if (Intersection.isEmptySet())
6450     return false;
6451   if (Difference.isEmptySet())
6452     return true;
6453   return None;
6454 }
6455 
6456 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6457 /// false.  Otherwise, return None if we can't infer anything.
6458 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6459                                          CmpInst::Predicate BPred,
6460                                          const Value *BLHS, const Value *BRHS,
6461                                          const DataLayout &DL, bool LHSIsTrue,
6462                                          unsigned Depth) {
6463   Value *ALHS = LHS->getOperand(0);
6464   Value *ARHS = LHS->getOperand(1);
6465 
6466   // The rest of the logic assumes the LHS condition is true.  If that's not the
6467   // case, invert the predicate to make it so.
6468   CmpInst::Predicate APred =
6469       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6470 
6471   // Can we infer anything when the two compares have matching operands?
6472   bool AreSwappedOps;
6473   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6474     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6475             APred, BPred, AreSwappedOps))
6476       return Implication;
6477     // No amount of additional analysis will infer the second condition, so
6478     // early exit.
6479     return None;
6480   }
6481 
6482   // Can we infer anything when the LHS operands match and the RHS operands are
6483   // constants (not necessarily matching)?
6484   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6485     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6486             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6487       return Implication;
6488     // No amount of additional analysis will infer the second condition, so
6489     // early exit.
6490     return None;
6491   }
6492 
6493   if (APred == BPred)
6494     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6495   return None;
6496 }
6497 
6498 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6499 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6500 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6501 static Optional<bool>
6502 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6503                    const Value *RHSOp0, const Value *RHSOp1,
6504                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6505   // The LHS must be an 'or', 'and', or a 'select' instruction.
6506   assert((LHS->getOpcode() == Instruction::And ||
6507           LHS->getOpcode() == Instruction::Or ||
6508           LHS->getOpcode() == Instruction::Select) &&
6509          "Expected LHS to be 'and', 'or', or 'select'.");
6510 
6511   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6512 
6513   // If the result of an 'or' is false, then we know both legs of the 'or' are
6514   // false.  Similarly, if the result of an 'and' is true, then we know both
6515   // legs of the 'and' are true.
6516   const Value *ALHS, *ARHS;
6517   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6518       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6519     // FIXME: Make this non-recursion.
6520     if (Optional<bool> Implication = isImpliedCondition(
6521             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6522       return Implication;
6523     if (Optional<bool> Implication = isImpliedCondition(
6524             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6525       return Implication;
6526     return None;
6527   }
6528   return None;
6529 }
6530 
6531 Optional<bool>
6532 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6533                          const Value *RHSOp0, const Value *RHSOp1,
6534                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6535   // Bail out when we hit the limit.
6536   if (Depth == MaxAnalysisRecursionDepth)
6537     return None;
6538 
6539   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6540   // example.
6541   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6542     return None;
6543 
6544   Type *OpTy = LHS->getType();
6545   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6546 
6547   // FIXME: Extending the code below to handle vectors.
6548   if (OpTy->isVectorTy())
6549     return None;
6550 
6551   assert(OpTy->isIntegerTy(1) && "implied by above");
6552 
6553   // Both LHS and RHS are icmps.
6554   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6555   if (LHSCmp)
6556     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6557                               Depth);
6558 
6559   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6560   /// the RHS to be an icmp.
6561   /// FIXME: Add support for and/or/select on the RHS.
6562   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6563     if ((LHSI->getOpcode() == Instruction::And ||
6564          LHSI->getOpcode() == Instruction::Or ||
6565          LHSI->getOpcode() == Instruction::Select))
6566       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6567                                 Depth);
6568   }
6569   return None;
6570 }
6571 
6572 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6573                                         const DataLayout &DL, bool LHSIsTrue,
6574                                         unsigned Depth) {
6575   // LHS ==> RHS by definition
6576   if (LHS == RHS)
6577     return LHSIsTrue;
6578 
6579   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6580   if (RHSCmp)
6581     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6582                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6583                               LHSIsTrue, Depth);
6584   return None;
6585 }
6586 
6587 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6588 // condition dominating ContextI or nullptr, if no condition is found.
6589 static std::pair<Value *, bool>
6590 getDomPredecessorCondition(const Instruction *ContextI) {
6591   if (!ContextI || !ContextI->getParent())
6592     return {nullptr, false};
6593 
6594   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6595   // dominator tree (eg, from a SimplifyQuery) instead?
6596   const BasicBlock *ContextBB = ContextI->getParent();
6597   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6598   if (!PredBB)
6599     return {nullptr, false};
6600 
6601   // We need a conditional branch in the predecessor.
6602   Value *PredCond;
6603   BasicBlock *TrueBB, *FalseBB;
6604   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6605     return {nullptr, false};
6606 
6607   // The branch should get simplified. Don't bother simplifying this condition.
6608   if (TrueBB == FalseBB)
6609     return {nullptr, false};
6610 
6611   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6612          "Predecessor block does not point to successor?");
6613 
6614   // Is this condition implied by the predecessor condition?
6615   return {PredCond, TrueBB == ContextBB};
6616 }
6617 
6618 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6619                                              const Instruction *ContextI,
6620                                              const DataLayout &DL) {
6621   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6622   auto PredCond = getDomPredecessorCondition(ContextI);
6623   if (PredCond.first)
6624     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6625   return None;
6626 }
6627 
6628 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6629                                              const Value *LHS, const Value *RHS,
6630                                              const Instruction *ContextI,
6631                                              const DataLayout &DL) {
6632   auto PredCond = getDomPredecessorCondition(ContextI);
6633   if (PredCond.first)
6634     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6635                               PredCond.second);
6636   return None;
6637 }
6638 
6639 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6640                               APInt &Upper, const InstrInfoQuery &IIQ,
6641                               bool PreferSignedRange) {
6642   unsigned Width = Lower.getBitWidth();
6643   const APInt *C;
6644   switch (BO.getOpcode()) {
6645   case Instruction::Add:
6646     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6647       bool HasNSW = IIQ.hasNoSignedWrap(&BO);
6648       bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
6649 
6650       // If the caller expects a signed compare, then try to use a signed range.
6651       // Otherwise if both no-wraps are set, use the unsigned range because it
6652       // is never larger than the signed range. Example:
6653       // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
6654       if (PreferSignedRange && HasNSW && HasNUW)
6655         HasNUW = false;
6656 
6657       if (HasNUW) {
6658         // 'add nuw x, C' produces [C, UINT_MAX].
6659         Lower = *C;
6660       } else if (HasNSW) {
6661         if (C->isNegative()) {
6662           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6663           Lower = APInt::getSignedMinValue(Width);
6664           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6665         } else {
6666           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6667           Lower = APInt::getSignedMinValue(Width) + *C;
6668           Upper = APInt::getSignedMaxValue(Width) + 1;
6669         }
6670       }
6671     }
6672     break;
6673 
6674   case Instruction::And:
6675     if (match(BO.getOperand(1), m_APInt(C)))
6676       // 'and x, C' produces [0, C].
6677       Upper = *C + 1;
6678     break;
6679 
6680   case Instruction::Or:
6681     if (match(BO.getOperand(1), m_APInt(C)))
6682       // 'or x, C' produces [C, UINT_MAX].
6683       Lower = *C;
6684     break;
6685 
6686   case Instruction::AShr:
6687     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6688       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6689       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6690       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6691     } else if (match(BO.getOperand(0), m_APInt(C))) {
6692       unsigned ShiftAmount = Width - 1;
6693       if (!C->isZero() && IIQ.isExact(&BO))
6694         ShiftAmount = C->countTrailingZeros();
6695       if (C->isNegative()) {
6696         // 'ashr C, x' produces [C, C >> (Width-1)]
6697         Lower = *C;
6698         Upper = C->ashr(ShiftAmount) + 1;
6699       } else {
6700         // 'ashr C, x' produces [C >> (Width-1), C]
6701         Lower = C->ashr(ShiftAmount);
6702         Upper = *C + 1;
6703       }
6704     }
6705     break;
6706 
6707   case Instruction::LShr:
6708     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6709       // 'lshr x, C' produces [0, UINT_MAX >> C].
6710       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6711     } else if (match(BO.getOperand(0), m_APInt(C))) {
6712       // 'lshr C, x' produces [C >> (Width-1), C].
6713       unsigned ShiftAmount = Width - 1;
6714       if (!C->isZero() && IIQ.isExact(&BO))
6715         ShiftAmount = C->countTrailingZeros();
6716       Lower = C->lshr(ShiftAmount);
6717       Upper = *C + 1;
6718     }
6719     break;
6720 
6721   case Instruction::Shl:
6722     if (match(BO.getOperand(0), m_APInt(C))) {
6723       if (IIQ.hasNoUnsignedWrap(&BO)) {
6724         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6725         Lower = *C;
6726         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6727       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6728         if (C->isNegative()) {
6729           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6730           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6731           Lower = C->shl(ShiftAmount);
6732           Upper = *C + 1;
6733         } else {
6734           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6735           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6736           Lower = *C;
6737           Upper = C->shl(ShiftAmount) + 1;
6738         }
6739       }
6740     }
6741     break;
6742 
6743   case Instruction::SDiv:
6744     if (match(BO.getOperand(1), m_APInt(C))) {
6745       APInt IntMin = APInt::getSignedMinValue(Width);
6746       APInt IntMax = APInt::getSignedMaxValue(Width);
6747       if (C->isAllOnes()) {
6748         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6749         //    where C != -1 and C != 0 and C != 1
6750         Lower = IntMin + 1;
6751         Upper = IntMax + 1;
6752       } else if (C->countLeadingZeros() < Width - 1) {
6753         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6754         //    where C != -1 and C != 0 and C != 1
6755         Lower = IntMin.sdiv(*C);
6756         Upper = IntMax.sdiv(*C);
6757         if (Lower.sgt(Upper))
6758           std::swap(Lower, Upper);
6759         Upper = Upper + 1;
6760         assert(Upper != Lower && "Upper part of range has wrapped!");
6761       }
6762     } else if (match(BO.getOperand(0), m_APInt(C))) {
6763       if (C->isMinSignedValue()) {
6764         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6765         Lower = *C;
6766         Upper = Lower.lshr(1) + 1;
6767       } else {
6768         // 'sdiv C, x' produces [-|C|, |C|].
6769         Upper = C->abs() + 1;
6770         Lower = (-Upper) + 1;
6771       }
6772     }
6773     break;
6774 
6775   case Instruction::UDiv:
6776     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6777       // 'udiv x, C' produces [0, UINT_MAX / C].
6778       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6779     } else if (match(BO.getOperand(0), m_APInt(C))) {
6780       // 'udiv C, x' produces [0, C].
6781       Upper = *C + 1;
6782     }
6783     break;
6784 
6785   case Instruction::SRem:
6786     if (match(BO.getOperand(1), m_APInt(C))) {
6787       // 'srem x, C' produces (-|C|, |C|).
6788       Upper = C->abs();
6789       Lower = (-Upper) + 1;
6790     }
6791     break;
6792 
6793   case Instruction::URem:
6794     if (match(BO.getOperand(1), m_APInt(C)))
6795       // 'urem x, C' produces [0, C).
6796       Upper = *C;
6797     break;
6798 
6799   default:
6800     break;
6801   }
6802 }
6803 
6804 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6805                                   APInt &Upper) {
6806   unsigned Width = Lower.getBitWidth();
6807   const APInt *C;
6808   switch (II.getIntrinsicID()) {
6809   case Intrinsic::ctpop:
6810   case Intrinsic::ctlz:
6811   case Intrinsic::cttz:
6812     // Maximum of set/clear bits is the bit width.
6813     assert(Lower == 0 && "Expected lower bound to be zero");
6814     Upper = Width + 1;
6815     break;
6816   case Intrinsic::uadd_sat:
6817     // uadd.sat(x, C) produces [C, UINT_MAX].
6818     if (match(II.getOperand(0), m_APInt(C)) ||
6819         match(II.getOperand(1), m_APInt(C)))
6820       Lower = *C;
6821     break;
6822   case Intrinsic::sadd_sat:
6823     if (match(II.getOperand(0), m_APInt(C)) ||
6824         match(II.getOperand(1), m_APInt(C))) {
6825       if (C->isNegative()) {
6826         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6827         Lower = APInt::getSignedMinValue(Width);
6828         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6829       } else {
6830         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6831         Lower = APInt::getSignedMinValue(Width) + *C;
6832         Upper = APInt::getSignedMaxValue(Width) + 1;
6833       }
6834     }
6835     break;
6836   case Intrinsic::usub_sat:
6837     // usub.sat(C, x) produces [0, C].
6838     if (match(II.getOperand(0), m_APInt(C)))
6839       Upper = *C + 1;
6840     // usub.sat(x, C) produces [0, UINT_MAX - C].
6841     else if (match(II.getOperand(1), m_APInt(C)))
6842       Upper = APInt::getMaxValue(Width) - *C + 1;
6843     break;
6844   case Intrinsic::ssub_sat:
6845     if (match(II.getOperand(0), m_APInt(C))) {
6846       if (C->isNegative()) {
6847         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6848         Lower = APInt::getSignedMinValue(Width);
6849         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6850       } else {
6851         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6852         Lower = *C - APInt::getSignedMaxValue(Width);
6853         Upper = APInt::getSignedMaxValue(Width) + 1;
6854       }
6855     } else if (match(II.getOperand(1), m_APInt(C))) {
6856       if (C->isNegative()) {
6857         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6858         Lower = APInt::getSignedMinValue(Width) - *C;
6859         Upper = APInt::getSignedMaxValue(Width) + 1;
6860       } else {
6861         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6862         Lower = APInt::getSignedMinValue(Width);
6863         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6864       }
6865     }
6866     break;
6867   case Intrinsic::umin:
6868   case Intrinsic::umax:
6869   case Intrinsic::smin:
6870   case Intrinsic::smax:
6871     if (!match(II.getOperand(0), m_APInt(C)) &&
6872         !match(II.getOperand(1), m_APInt(C)))
6873       break;
6874 
6875     switch (II.getIntrinsicID()) {
6876     case Intrinsic::umin:
6877       Upper = *C + 1;
6878       break;
6879     case Intrinsic::umax:
6880       Lower = *C;
6881       break;
6882     case Intrinsic::smin:
6883       Lower = APInt::getSignedMinValue(Width);
6884       Upper = *C + 1;
6885       break;
6886     case Intrinsic::smax:
6887       Lower = *C;
6888       Upper = APInt::getSignedMaxValue(Width) + 1;
6889       break;
6890     default:
6891       llvm_unreachable("Must be min/max intrinsic");
6892     }
6893     break;
6894   case Intrinsic::abs:
6895     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6896     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6897     if (match(II.getOperand(1), m_One()))
6898       Upper = APInt::getSignedMaxValue(Width) + 1;
6899     else
6900       Upper = APInt::getSignedMinValue(Width) + 1;
6901     break;
6902   default:
6903     break;
6904   }
6905 }
6906 
6907 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6908                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6909   const Value *LHS = nullptr, *RHS = nullptr;
6910   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6911   if (R.Flavor == SPF_UNKNOWN)
6912     return;
6913 
6914   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6915 
6916   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6917     // If the negation part of the abs (in RHS) has the NSW flag,
6918     // then the result of abs(X) is [0..SIGNED_MAX],
6919     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6920     Lower = APInt::getZero(BitWidth);
6921     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6922         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6923       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6924     else
6925       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6926     return;
6927   }
6928 
6929   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6930     // The result of -abs(X) is <= 0.
6931     Lower = APInt::getSignedMinValue(BitWidth);
6932     Upper = APInt(BitWidth, 1);
6933     return;
6934   }
6935 
6936   const APInt *C;
6937   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6938     return;
6939 
6940   switch (R.Flavor) {
6941     case SPF_UMIN:
6942       Upper = *C + 1;
6943       break;
6944     case SPF_UMAX:
6945       Lower = *C;
6946       break;
6947     case SPF_SMIN:
6948       Lower = APInt::getSignedMinValue(BitWidth);
6949       Upper = *C + 1;
6950       break;
6951     case SPF_SMAX:
6952       Lower = *C;
6953       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6954       break;
6955     default:
6956       break;
6957   }
6958 }
6959 
6960 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
6961   // The maximum representable value of a half is 65504. For floats the maximum
6962   // value is 3.4e38 which requires roughly 129 bits.
6963   unsigned BitWidth = I->getType()->getScalarSizeInBits();
6964   if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
6965     return;
6966   if (isa<FPToSIInst>(I) && BitWidth >= 17) {
6967     Lower = APInt(BitWidth, -65504);
6968     Upper = APInt(BitWidth, 65505);
6969   }
6970 
6971   if (isa<FPToUIInst>(I) && BitWidth >= 16) {
6972     // For a fptoui the lower limit is left as 0.
6973     Upper = APInt(BitWidth, 65505);
6974   }
6975 }
6976 
6977 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
6978                                          bool UseInstrInfo, AssumptionCache *AC,
6979                                          const Instruction *CtxI,
6980                                          const DominatorTree *DT,
6981                                          unsigned Depth) {
6982   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6983 
6984   if (Depth == MaxAnalysisRecursionDepth)
6985     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6986 
6987   const APInt *C;
6988   if (match(V, m_APInt(C)))
6989     return ConstantRange(*C);
6990 
6991   InstrInfoQuery IIQ(UseInstrInfo);
6992   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6993   APInt Lower = APInt(BitWidth, 0);
6994   APInt Upper = APInt(BitWidth, 0);
6995   if (auto *BO = dyn_cast<BinaryOperator>(V))
6996     setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
6997   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6998     setLimitsForIntrinsic(*II, Lower, Upper);
6999   else if (auto *SI = dyn_cast<SelectInst>(V))
7000     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7001   else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7002     setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7003 
7004   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7005 
7006   if (auto *I = dyn_cast<Instruction>(V))
7007     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7008       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7009 
7010   if (CtxI && AC) {
7011     // Try to restrict the range based on information from assumptions.
7012     for (auto &AssumeVH : AC->assumptionsFor(V)) {
7013       if (!AssumeVH)
7014         continue;
7015       CallInst *I = cast<CallInst>(AssumeVH);
7016       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7017              "Got assumption for the wrong function!");
7018       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
7019              "must be an assume intrinsic");
7020 
7021       if (!isValidAssumeForContext(I, CtxI, DT))
7022         continue;
7023       Value *Arg = I->getArgOperand(0);
7024       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7025       // Currently we just use information from comparisons.
7026       if (!Cmp || Cmp->getOperand(0) != V)
7027         continue;
7028       // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7029       ConstantRange RHS =
7030           computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7031                                UseInstrInfo, AC, I, DT, Depth + 1);
7032       CR = CR.intersectWith(
7033           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7034     }
7035   }
7036 
7037   return CR;
7038 }
7039 
7040 static Optional<int64_t>
7041 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7042   // Skip over the first indices.
7043   gep_type_iterator GTI = gep_type_begin(GEP);
7044   for (unsigned i = 1; i != Idx; ++i, ++GTI)
7045     /*skip along*/;
7046 
7047   // Compute the offset implied by the rest of the indices.
7048   int64_t Offset = 0;
7049   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7050     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7051     if (!OpC)
7052       return None;
7053     if (OpC->isZero())
7054       continue; // No offset.
7055 
7056     // Handle struct indices, which add their field offset to the pointer.
7057     if (StructType *STy = GTI.getStructTypeOrNull()) {
7058       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7059       continue;
7060     }
7061 
7062     // Otherwise, we have a sequential type like an array or fixed-length
7063     // vector. Multiply the index by the ElementSize.
7064     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7065     if (Size.isScalable())
7066       return None;
7067     Offset += Size.getFixedSize() * OpC->getSExtValue();
7068   }
7069 
7070   return Offset;
7071 }
7072 
7073 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7074                                         const DataLayout &DL) {
7075   Ptr1 = Ptr1->stripPointerCasts();
7076   Ptr2 = Ptr2->stripPointerCasts();
7077 
7078   // Handle the trivial case first.
7079   if (Ptr1 == Ptr2) {
7080     return 0;
7081   }
7082 
7083   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7084   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7085 
7086   // If one pointer is a GEP see if the GEP is a constant offset from the base,
7087   // as in "P" and "gep P, 1".
7088   // Also do this iteratively to handle the the following case:
7089   //   Ptr_t1 = GEP Ptr1, c1
7090   //   Ptr_t2 = GEP Ptr_t1, c2
7091   //   Ptr2 = GEP Ptr_t2, c3
7092   // where we will return c1+c2+c3.
7093   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
7094   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
7095   // are the same, and return the difference between offsets.
7096   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
7097                                  const Value *Ptr) -> Optional<int64_t> {
7098     const GEPOperator *GEP_T = GEP;
7099     int64_t OffsetVal = 0;
7100     bool HasSameBase = false;
7101     while (GEP_T) {
7102       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
7103       if (!Offset)
7104         return None;
7105       OffsetVal += *Offset;
7106       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
7107       if (Op0 == Ptr) {
7108         HasSameBase = true;
7109         break;
7110       }
7111       GEP_T = dyn_cast<GEPOperator>(Op0);
7112     }
7113     if (!HasSameBase)
7114       return None;
7115     return OffsetVal;
7116   };
7117 
7118   if (GEP1) {
7119     auto Offset = getOffsetFromBase(GEP1, Ptr2);
7120     if (Offset)
7121       return -*Offset;
7122   }
7123   if (GEP2) {
7124     auto Offset = getOffsetFromBase(GEP2, Ptr1);
7125     if (Offset)
7126       return Offset;
7127   }
7128 
7129   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7130   // base.  After that base, they may have some number of common (and
7131   // potentially variable) indices.  After that they handle some constant
7132   // offset, which determines their offset from each other.  At this point, we
7133   // handle no other case.
7134   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
7135     return None;
7136 
7137   // Skip any common indices and track the GEP types.
7138   unsigned Idx = 1;
7139   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7140     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7141       break;
7142 
7143   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
7144   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
7145   if (!Offset1 || !Offset2)
7146     return None;
7147   return *Offset2 - *Offset1;
7148 }
7149