1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// isVectorIntrinsicWithScalarOpAtArg).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::abs:   // Begin integer bit-manipulation.
47   case Intrinsic::bswap:
48   case Intrinsic::bitreverse:
49   case Intrinsic::ctpop:
50   case Intrinsic::ctlz:
51   case Intrinsic::cttz:
52   case Intrinsic::fshl:
53   case Intrinsic::fshr:
54   case Intrinsic::smax:
55   case Intrinsic::smin:
56   case Intrinsic::umax:
57   case Intrinsic::umin:
58   case Intrinsic::sadd_sat:
59   case Intrinsic::ssub_sat:
60   case Intrinsic::uadd_sat:
61   case Intrinsic::usub_sat:
62   case Intrinsic::smul_fix:
63   case Intrinsic::smul_fix_sat:
64   case Intrinsic::umul_fix:
65   case Intrinsic::umul_fix_sat:
66   case Intrinsic::sqrt: // Begin floating-point.
67   case Intrinsic::sin:
68   case Intrinsic::cos:
69   case Intrinsic::exp:
70   case Intrinsic::exp2:
71   case Intrinsic::log:
72   case Intrinsic::log10:
73   case Intrinsic::log2:
74   case Intrinsic::fabs:
75   case Intrinsic::minnum:
76   case Intrinsic::maxnum:
77   case Intrinsic::minimum:
78   case Intrinsic::maximum:
79   case Intrinsic::copysign:
80   case Intrinsic::floor:
81   case Intrinsic::ceil:
82   case Intrinsic::trunc:
83   case Intrinsic::rint:
84   case Intrinsic::nearbyint:
85   case Intrinsic::round:
86   case Intrinsic::roundeven:
87   case Intrinsic::pow:
88   case Intrinsic::fma:
89   case Intrinsic::fmuladd:
90   case Intrinsic::powi:
91   case Intrinsic::canonicalize:
92   case Intrinsic::fptosi_sat:
93   case Intrinsic::fptoui_sat:
94     return true;
95   default:
96     return false;
97   }
98 }
99 
100 /// Identifies if the vector form of the intrinsic has a scalar operand.
101 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
102                                               unsigned ScalarOpdIdx) {
103   switch (ID) {
104   case Intrinsic::abs:
105   case Intrinsic::ctlz:
106   case Intrinsic::cttz:
107   case Intrinsic::powi:
108     return (ScalarOpdIdx == 1);
109   case Intrinsic::smul_fix:
110   case Intrinsic::smul_fix_sat:
111   case Intrinsic::umul_fix:
112   case Intrinsic::umul_fix_sat:
113     return (ScalarOpdIdx == 2);
114   default:
115     return false;
116   }
117 }
118 
119 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
120                                                   unsigned OpdIdx) {
121   switch (ID) {
122   case Intrinsic::fptosi_sat:
123   case Intrinsic::fptoui_sat:
124     return OpdIdx == 0;
125   case Intrinsic::powi:
126     return OpdIdx == 1;
127   default:
128     return false;
129   }
130 }
131 
132 /// Returns intrinsic ID for call.
133 /// For the input call instruction it finds mapping intrinsic and returns
134 /// its ID, in case it does not found it return not_intrinsic.
135 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
136                                                 const TargetLibraryInfo *TLI) {
137   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
138   if (ID == Intrinsic::not_intrinsic)
139     return Intrinsic::not_intrinsic;
140 
141   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
142       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
143       ID == Intrinsic::experimental_noalias_scope_decl ||
144       ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
145     return ID;
146   return Intrinsic::not_intrinsic;
147 }
148 
149 /// Find the operand of the GEP that should be checked for consecutive
150 /// stores. This ignores trailing indices that have no effect on the final
151 /// pointer.
152 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
153   const DataLayout &DL = Gep->getModule()->getDataLayout();
154   unsigned LastOperand = Gep->getNumOperands() - 1;
155   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
156 
157   // Walk backwards and try to peel off zeros.
158   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
159     // Find the type we're currently indexing into.
160     gep_type_iterator GEPTI = gep_type_begin(Gep);
161     std::advance(GEPTI, LastOperand - 2);
162 
163     // If it's a type with the same allocation size as the result of the GEP we
164     // can peel off the zero index.
165     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
166       break;
167     --LastOperand;
168   }
169 
170   return LastOperand;
171 }
172 
173 /// If the argument is a GEP, then returns the operand identified by
174 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
175 /// operand, it returns that instead.
176 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
177   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
178   if (!GEP)
179     return Ptr;
180 
181   unsigned InductionOperand = getGEPInductionOperand(GEP);
182 
183   // Check that all of the gep indices are uniform except for our induction
184   // operand.
185   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
186     if (i != InductionOperand &&
187         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
188       return Ptr;
189   return GEP->getOperand(InductionOperand);
190 }
191 
192 /// If a value has only one user that is a CastInst, return it.
193 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
194   Value *UniqueCast = nullptr;
195   for (User *U : Ptr->users()) {
196     CastInst *CI = dyn_cast<CastInst>(U);
197     if (CI && CI->getType() == Ty) {
198       if (!UniqueCast)
199         UniqueCast = CI;
200       else
201         return nullptr;
202     }
203   }
204   return UniqueCast;
205 }
206 
207 /// Get the stride of a pointer access in a loop. Looks for symbolic
208 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
209 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
210   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
211   if (!PtrTy || PtrTy->isAggregateType())
212     return nullptr;
213 
214   // Try to remove a gep instruction to make the pointer (actually index at this
215   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
216   // pointer, otherwise, we are analyzing the index.
217   Value *OrigPtr = Ptr;
218 
219   // The size of the pointer access.
220   int64_t PtrAccessSize = 1;
221 
222   Ptr = stripGetElementPtr(Ptr, SE, Lp);
223   const SCEV *V = SE->getSCEV(Ptr);
224 
225   if (Ptr != OrigPtr)
226     // Strip off casts.
227     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
228       V = C->getOperand();
229 
230   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
231   if (!S)
232     return nullptr;
233 
234   V = S->getStepRecurrence(*SE);
235   if (!V)
236     return nullptr;
237 
238   // Strip off the size of access multiplication if we are still analyzing the
239   // pointer.
240   if (OrigPtr == Ptr) {
241     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
242       if (M->getOperand(0)->getSCEVType() != scConstant)
243         return nullptr;
244 
245       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
246 
247       // Huge step value - give up.
248       if (APStepVal.getBitWidth() > 64)
249         return nullptr;
250 
251       int64_t StepVal = APStepVal.getSExtValue();
252       if (PtrAccessSize != StepVal)
253         return nullptr;
254       V = M->getOperand(1);
255     }
256   }
257 
258   // Strip off casts.
259   Type *StripedOffRecurrenceCast = nullptr;
260   if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
261     StripedOffRecurrenceCast = C->getType();
262     V = C->getOperand();
263   }
264 
265   // Look for the loop invariant symbolic value.
266   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
267   if (!U)
268     return nullptr;
269 
270   Value *Stride = U->getValue();
271   if (!Lp->isLoopInvariant(Stride))
272     return nullptr;
273 
274   // If we have stripped off the recurrence cast we have to make sure that we
275   // return the value that is used in this loop so that we can replace it later.
276   if (StripedOffRecurrenceCast)
277     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
278 
279   return Stride;
280 }
281 
282 /// Given a vector and an element number, see if the scalar value is
283 /// already around as a register, for example if it were inserted then extracted
284 /// from the vector.
285 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
286   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
287   VectorType *VTy = cast<VectorType>(V->getType());
288   // For fixed-length vector, return undef for out of range access.
289   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
290     unsigned Width = FVTy->getNumElements();
291     if (EltNo >= Width)
292       return UndefValue::get(FVTy->getElementType());
293   }
294 
295   if (Constant *C = dyn_cast<Constant>(V))
296     return C->getAggregateElement(EltNo);
297 
298   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
299     // If this is an insert to a variable element, we don't know what it is.
300     if (!isa<ConstantInt>(III->getOperand(2)))
301       return nullptr;
302     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
303 
304     // If this is an insert to the element we are looking for, return the
305     // inserted value.
306     if (EltNo == IIElt)
307       return III->getOperand(1);
308 
309     // Guard against infinite loop on malformed, unreachable IR.
310     if (III == III->getOperand(0))
311       return nullptr;
312 
313     // Otherwise, the insertelement doesn't modify the value, recurse on its
314     // vector input.
315     return findScalarElement(III->getOperand(0), EltNo);
316   }
317 
318   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
319   // Restrict the following transformation to fixed-length vector.
320   if (SVI && isa<FixedVectorType>(SVI->getType())) {
321     unsigned LHSWidth =
322         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
323     int InEl = SVI->getMaskValue(EltNo);
324     if (InEl < 0)
325       return UndefValue::get(VTy->getElementType());
326     if (InEl < (int)LHSWidth)
327       return findScalarElement(SVI->getOperand(0), InEl);
328     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
329   }
330 
331   // Extract a value from a vector add operation with a constant zero.
332   // TODO: Use getBinOpIdentity() to generalize this.
333   Value *Val; Constant *C;
334   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
335     if (Constant *Elt = C->getAggregateElement(EltNo))
336       if (Elt->isNullValue())
337         return findScalarElement(Val, EltNo);
338 
339   // If the vector is a splat then we can trivially find the scalar element.
340   if (isa<ScalableVectorType>(VTy))
341     if (Value *Splat = getSplatValue(V))
342       if (EltNo < VTy->getElementCount().getKnownMinValue())
343         return Splat;
344 
345   // Otherwise, we don't know.
346   return nullptr;
347 }
348 
349 int llvm::getSplatIndex(ArrayRef<int> Mask) {
350   int SplatIndex = -1;
351   for (int M : Mask) {
352     // Ignore invalid (undefined) mask elements.
353     if (M < 0)
354       continue;
355 
356     // There can be only 1 non-negative mask element value if this is a splat.
357     if (SplatIndex != -1 && SplatIndex != M)
358       return -1;
359 
360     // Initialize the splat index to the 1st non-negative mask element.
361     SplatIndex = M;
362   }
363   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
364   return SplatIndex;
365 }
366 
367 /// Get splat value if the input is a splat vector or return nullptr.
368 /// This function is not fully general. It checks only 2 cases:
369 /// the input value is (1) a splat constant vector or (2) a sequence
370 /// of instructions that broadcasts a scalar at element 0.
371 Value *llvm::getSplatValue(const Value *V) {
372   if (isa<VectorType>(V->getType()))
373     if (auto *C = dyn_cast<Constant>(V))
374       return C->getSplatValue();
375 
376   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
377   Value *Splat;
378   if (match(V,
379             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
380                       m_Value(), m_ZeroMask())))
381     return Splat;
382 
383   return nullptr;
384 }
385 
386 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
387   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
388 
389   if (isa<VectorType>(V->getType())) {
390     if (isa<UndefValue>(V))
391       return true;
392     // FIXME: We can allow undefs, but if Index was specified, we may want to
393     //        check that the constant is defined at that index.
394     if (auto *C = dyn_cast<Constant>(V))
395       return C->getSplatValue() != nullptr;
396   }
397 
398   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
399     // FIXME: We can safely allow undefs here. If Index was specified, we will
400     //        check that the mask elt is defined at the required index.
401     if (!all_equal(Shuf->getShuffleMask()))
402       return false;
403 
404     // Match any index.
405     if (Index == -1)
406       return true;
407 
408     // Match a specific element. The mask should be defined at and match the
409     // specified index.
410     return Shuf->getMaskValue(Index) == Index;
411   }
412 
413   // The remaining tests are all recursive, so bail out if we hit the limit.
414   if (Depth++ == MaxAnalysisRecursionDepth)
415     return false;
416 
417   // If both operands of a binop are splats, the result is a splat.
418   Value *X, *Y, *Z;
419   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
420     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
421 
422   // If all operands of a select are splats, the result is a splat.
423   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
424     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
425            isSplatValue(Z, Index, Depth);
426 
427   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
428 
429   return false;
430 }
431 
432 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
433                                   const APInt &DemandedElts, APInt &DemandedLHS,
434                                   APInt &DemandedRHS, bool AllowUndefElts) {
435   DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
436 
437   // Early out if we don't demand any elements.
438   if (DemandedElts.isZero())
439     return true;
440 
441   // Simple case of a shuffle with zeroinitializer.
442   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
443     DemandedLHS.setBit(0);
444     return true;
445   }
446 
447   for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
448     int M = Mask[I];
449     assert((-1 <= M) && (M < (SrcWidth * 2)) &&
450            "Invalid shuffle mask constant");
451 
452     if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
453       continue;
454 
455     // For undef elements, we don't know anything about the common state of
456     // the shuffle result.
457     if (M < 0)
458       return false;
459 
460     if (M < SrcWidth)
461       DemandedLHS.setBit(M);
462     else
463       DemandedRHS.setBit(M - SrcWidth);
464   }
465 
466   return true;
467 }
468 
469 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
470                                  SmallVectorImpl<int> &ScaledMask) {
471   assert(Scale > 0 && "Unexpected scaling factor");
472 
473   // Fast-path: if no scaling, then it is just a copy.
474   if (Scale == 1) {
475     ScaledMask.assign(Mask.begin(), Mask.end());
476     return;
477   }
478 
479   ScaledMask.clear();
480   for (int MaskElt : Mask) {
481     if (MaskElt >= 0) {
482       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
483              "Overflowed 32-bits");
484     }
485     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
486       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
487   }
488 }
489 
490 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
491                                 SmallVectorImpl<int> &ScaledMask) {
492   assert(Scale > 0 && "Unexpected scaling factor");
493 
494   // Fast-path: if no scaling, then it is just a copy.
495   if (Scale == 1) {
496     ScaledMask.assign(Mask.begin(), Mask.end());
497     return true;
498   }
499 
500   // We must map the original elements down evenly to a type with less elements.
501   int NumElts = Mask.size();
502   if (NumElts % Scale != 0)
503     return false;
504 
505   ScaledMask.clear();
506   ScaledMask.reserve(NumElts / Scale);
507 
508   // Step through the input mask by splitting into Scale-sized slices.
509   do {
510     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
511     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
512 
513     // The first element of the slice determines how we evaluate this slice.
514     int SliceFront = MaskSlice.front();
515     if (SliceFront < 0) {
516       // Negative values (undef or other "sentinel" values) must be equal across
517       // the entire slice.
518       if (!all_equal(MaskSlice))
519         return false;
520       ScaledMask.push_back(SliceFront);
521     } else {
522       // A positive mask element must be cleanly divisible.
523       if (SliceFront % Scale != 0)
524         return false;
525       // Elements of the slice must be consecutive.
526       for (int i = 1; i < Scale; ++i)
527         if (MaskSlice[i] != SliceFront + i)
528           return false;
529       ScaledMask.push_back(SliceFront / Scale);
530     }
531     Mask = Mask.drop_front(Scale);
532   } while (!Mask.empty());
533 
534   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
535 
536   // All elements of the original mask can be scaled down to map to the elements
537   // of a mask with wider elements.
538   return true;
539 }
540 
541 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
542                                         SmallVectorImpl<int> &ScaledMask) {
543   std::array<SmallVector<int, 16>, 2> TmpMasks;
544   SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
545   ArrayRef<int> InputMask = Mask;
546   for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
547     while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
548       InputMask = *Output;
549       std::swap(Output, Tmp);
550     }
551   }
552   ScaledMask.assign(InputMask.begin(), InputMask.end());
553 }
554 
555 void llvm::processShuffleMasks(
556     ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
557     unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
558     function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
559     function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
560   SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
561   // Try to perform better estimation of the permutation.
562   // 1. Split the source/destination vectors into real registers.
563   // 2. Do the mask analysis to identify which real registers are
564   // permuted.
565   int Sz = Mask.size();
566   unsigned SzDest = Sz / NumOfDestRegs;
567   unsigned SzSrc = Sz / NumOfSrcRegs;
568   for (unsigned I = 0; I < NumOfDestRegs; ++I) {
569     auto &RegMasks = Res[I];
570     RegMasks.assign(NumOfSrcRegs, {});
571     // Check that the values in dest registers are in the one src
572     // register.
573     for (unsigned K = 0; K < SzDest; ++K) {
574       int Idx = I * SzDest + K;
575       if (Idx == Sz)
576         break;
577       if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem)
578         continue;
579       int SrcRegIdx = Mask[Idx] / SzSrc;
580       // Add a cost of PermuteTwoSrc for each new source register permute,
581       // if we have more than one source registers.
582       if (RegMasks[SrcRegIdx].empty())
583         RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem);
584       RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
585     }
586   }
587   // Process split mask.
588   for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
589     auto &Dest = Res[I];
590     int NumSrcRegs =
591         count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
592     switch (NumSrcRegs) {
593     case 0:
594       // No input vectors were used!
595       NoInputAction();
596       break;
597     case 1: {
598       // Find the only mask with at least single undef mask elem.
599       auto *It =
600           find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
601       unsigned SrcReg = std::distance(Dest.begin(), It);
602       SingleInputAction(*It, SrcReg, I);
603       break;
604     }
605     default: {
606       // The first mask is a permutation of a single register. Since we have >2
607       // input registers to shuffle, we merge the masks for 2 first registers
608       // and generate a shuffle of 2 registers rather than the reordering of the
609       // first register and then shuffle with the second register. Next,
610       // generate the shuffles of the resulting register + the remaining
611       // registers from the list.
612       auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
613                                ArrayRef<int> SecondMask) {
614         for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
615           if (SecondMask[Idx] != UndefMaskElem) {
616             assert(FirstMask[Idx] == UndefMaskElem &&
617                    "Expected undefined mask element.");
618             FirstMask[Idx] = SecondMask[Idx] + VF;
619           }
620         }
621       };
622       auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
623         for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
624           if (Mask[Idx] != UndefMaskElem)
625             Mask[Idx] = Idx;
626         }
627       };
628       int SecondIdx;
629       do {
630         int FirstIdx = -1;
631         SecondIdx = -1;
632         MutableArrayRef<int> FirstMask, SecondMask;
633         for (unsigned I = 0; I < NumOfDestRegs; ++I) {
634           SmallVectorImpl<int> &RegMask = Dest[I];
635           if (RegMask.empty())
636             continue;
637 
638           if (FirstIdx == SecondIdx) {
639             FirstIdx = I;
640             FirstMask = RegMask;
641             continue;
642           }
643           SecondIdx = I;
644           SecondMask = RegMask;
645           CombineMasks(FirstMask, SecondMask);
646           ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
647           NormalizeMask(FirstMask);
648           RegMask.clear();
649           SecondMask = FirstMask;
650           SecondIdx = FirstIdx;
651         }
652         if (FirstIdx != SecondIdx && SecondIdx >= 0) {
653           CombineMasks(SecondMask, FirstMask);
654           ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
655           Dest[FirstIdx].clear();
656           NormalizeMask(SecondMask);
657         }
658       } while (SecondIdx >= 0);
659       break;
660     }
661     }
662   }
663 }
664 
665 MapVector<Instruction *, uint64_t>
666 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
667                                const TargetTransformInfo *TTI) {
668 
669   // DemandedBits will give us every value's live-out bits. But we want
670   // to ensure no extra casts would need to be inserted, so every DAG
671   // of connected values must have the same minimum bitwidth.
672   EquivalenceClasses<Value *> ECs;
673   SmallVector<Value *, 16> Worklist;
674   SmallPtrSet<Value *, 4> Roots;
675   SmallPtrSet<Value *, 16> Visited;
676   DenseMap<Value *, uint64_t> DBits;
677   SmallPtrSet<Instruction *, 4> InstructionSet;
678   MapVector<Instruction *, uint64_t> MinBWs;
679 
680   // Determine the roots. We work bottom-up, from truncs or icmps.
681   bool SeenExtFromIllegalType = false;
682   for (auto *BB : Blocks)
683     for (auto &I : *BB) {
684       InstructionSet.insert(&I);
685 
686       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
687           !TTI->isTypeLegal(I.getOperand(0)->getType()))
688         SeenExtFromIllegalType = true;
689 
690       // Only deal with non-vector integers up to 64-bits wide.
691       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
692           !I.getType()->isVectorTy() &&
693           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
694         // Don't make work for ourselves. If we know the loaded type is legal,
695         // don't add it to the worklist.
696         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
697           continue;
698 
699         Worklist.push_back(&I);
700         Roots.insert(&I);
701       }
702     }
703   // Early exit.
704   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
705     return MinBWs;
706 
707   // Now proceed breadth-first, unioning values together.
708   while (!Worklist.empty()) {
709     Value *Val = Worklist.pop_back_val();
710     Value *Leader = ECs.getOrInsertLeaderValue(Val);
711 
712     if (!Visited.insert(Val).second)
713       continue;
714 
715     // Non-instructions terminate a chain successfully.
716     if (!isa<Instruction>(Val))
717       continue;
718     Instruction *I = cast<Instruction>(Val);
719 
720     // If we encounter a type that is larger than 64 bits, we can't represent
721     // it so bail out.
722     if (DB.getDemandedBits(I).getBitWidth() > 64)
723       return MapVector<Instruction *, uint64_t>();
724 
725     uint64_t V = DB.getDemandedBits(I).getZExtValue();
726     DBits[Leader] |= V;
727     DBits[I] = V;
728 
729     // Casts, loads and instructions outside of our range terminate a chain
730     // successfully.
731     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
732         !InstructionSet.count(I))
733       continue;
734 
735     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
736     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
737     // transform anything that relies on them.
738     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
739         !I->getType()->isIntegerTy()) {
740       DBits[Leader] |= ~0ULL;
741       continue;
742     }
743 
744     // We don't modify the types of PHIs. Reductions will already have been
745     // truncated if possible, and inductions' sizes will have been chosen by
746     // indvars.
747     if (isa<PHINode>(I))
748       continue;
749 
750     if (DBits[Leader] == ~0ULL)
751       // All bits demanded, no point continuing.
752       continue;
753 
754     for (Value *O : cast<User>(I)->operands()) {
755       ECs.unionSets(Leader, O);
756       Worklist.push_back(O);
757     }
758   }
759 
760   // Now we've discovered all values, walk them to see if there are
761   // any users we didn't see. If there are, we can't optimize that
762   // chain.
763   for (auto &I : DBits)
764     for (auto *U : I.first->users())
765       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
766         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
767 
768   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
769     uint64_t LeaderDemandedBits = 0;
770     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
771       LeaderDemandedBits |= DBits[M];
772 
773     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
774                      llvm::countLeadingZeros(LeaderDemandedBits);
775     // Round up to a power of 2
776     if (!isPowerOf2_64((uint64_t)MinBW))
777       MinBW = NextPowerOf2(MinBW);
778 
779     // We don't modify the types of PHIs. Reductions will already have been
780     // truncated if possible, and inductions' sizes will have been chosen by
781     // indvars.
782     // If we are required to shrink a PHI, abandon this entire equivalence class.
783     bool Abort = false;
784     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
785       if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
786         Abort = true;
787         break;
788       }
789     if (Abort)
790       continue;
791 
792     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
793       if (!isa<Instruction>(M))
794         continue;
795       Type *Ty = M->getType();
796       if (Roots.count(M))
797         Ty = cast<Instruction>(M)->getOperand(0)->getType();
798       if (MinBW < Ty->getScalarSizeInBits())
799         MinBWs[cast<Instruction>(M)] = MinBW;
800     }
801   }
802 
803   return MinBWs;
804 }
805 
806 /// Add all access groups in @p AccGroups to @p List.
807 template <typename ListT>
808 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
809   // Interpret an access group as a list containing itself.
810   if (AccGroups->getNumOperands() == 0) {
811     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
812     List.insert(AccGroups);
813     return;
814   }
815 
816   for (const auto &AccGroupListOp : AccGroups->operands()) {
817     auto *Item = cast<MDNode>(AccGroupListOp.get());
818     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
819     List.insert(Item);
820   }
821 }
822 
823 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
824   if (!AccGroups1)
825     return AccGroups2;
826   if (!AccGroups2)
827     return AccGroups1;
828   if (AccGroups1 == AccGroups2)
829     return AccGroups1;
830 
831   SmallSetVector<Metadata *, 4> Union;
832   addToAccessGroupList(Union, AccGroups1);
833   addToAccessGroupList(Union, AccGroups2);
834 
835   if (Union.size() == 0)
836     return nullptr;
837   if (Union.size() == 1)
838     return cast<MDNode>(Union.front());
839 
840   LLVMContext &Ctx = AccGroups1->getContext();
841   return MDNode::get(Ctx, Union.getArrayRef());
842 }
843 
844 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
845                                     const Instruction *Inst2) {
846   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
847   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
848 
849   if (!MayAccessMem1 && !MayAccessMem2)
850     return nullptr;
851   if (!MayAccessMem1)
852     return Inst2->getMetadata(LLVMContext::MD_access_group);
853   if (!MayAccessMem2)
854     return Inst1->getMetadata(LLVMContext::MD_access_group);
855 
856   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
857   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
858   if (!MD1 || !MD2)
859     return nullptr;
860   if (MD1 == MD2)
861     return MD1;
862 
863   // Use set for scalable 'contains' check.
864   SmallPtrSet<Metadata *, 4> AccGroupSet2;
865   addToAccessGroupList(AccGroupSet2, MD2);
866 
867   SmallVector<Metadata *, 4> Intersection;
868   if (MD1->getNumOperands() == 0) {
869     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
870     if (AccGroupSet2.count(MD1))
871       Intersection.push_back(MD1);
872   } else {
873     for (const MDOperand &Node : MD1->operands()) {
874       auto *Item = cast<MDNode>(Node.get());
875       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
876       if (AccGroupSet2.count(Item))
877         Intersection.push_back(Item);
878     }
879   }
880 
881   if (Intersection.size() == 0)
882     return nullptr;
883   if (Intersection.size() == 1)
884     return cast<MDNode>(Intersection.front());
885 
886   LLVMContext &Ctx = Inst1->getContext();
887   return MDNode::get(Ctx, Intersection);
888 }
889 
890 /// \returns \p I after propagating metadata from \p VL.
891 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
892   if (VL.empty())
893     return Inst;
894   Instruction *I0 = cast<Instruction>(VL[0]);
895   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
896   I0->getAllMetadataOtherThanDebugLoc(Metadata);
897 
898   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
899                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
900                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
901                     LLVMContext::MD_access_group}) {
902     MDNode *MD = I0->getMetadata(Kind);
903 
904     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
905       const Instruction *IJ = cast<Instruction>(VL[J]);
906       MDNode *IMD = IJ->getMetadata(Kind);
907       switch (Kind) {
908       case LLVMContext::MD_tbaa:
909         MD = MDNode::getMostGenericTBAA(MD, IMD);
910         break;
911       case LLVMContext::MD_alias_scope:
912         MD = MDNode::getMostGenericAliasScope(MD, IMD);
913         break;
914       case LLVMContext::MD_fpmath:
915         MD = MDNode::getMostGenericFPMath(MD, IMD);
916         break;
917       case LLVMContext::MD_noalias:
918       case LLVMContext::MD_nontemporal:
919       case LLVMContext::MD_invariant_load:
920         MD = MDNode::intersect(MD, IMD);
921         break;
922       case LLVMContext::MD_access_group:
923         MD = intersectAccessGroups(Inst, IJ);
924         break;
925       default:
926         llvm_unreachable("unhandled metadata");
927       }
928     }
929 
930     Inst->setMetadata(Kind, MD);
931   }
932 
933   return Inst;
934 }
935 
936 Constant *
937 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
938                            const InterleaveGroup<Instruction> &Group) {
939   // All 1's means mask is not needed.
940   if (Group.getNumMembers() == Group.getFactor())
941     return nullptr;
942 
943   // TODO: support reversed access.
944   assert(!Group.isReverse() && "Reversed group not supported.");
945 
946   SmallVector<Constant *, 16> Mask;
947   for (unsigned i = 0; i < VF; i++)
948     for (unsigned j = 0; j < Group.getFactor(); ++j) {
949       unsigned HasMember = Group.getMember(j) ? 1 : 0;
950       Mask.push_back(Builder.getInt1(HasMember));
951     }
952 
953   return ConstantVector::get(Mask);
954 }
955 
956 llvm::SmallVector<int, 16>
957 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
958   SmallVector<int, 16> MaskVec;
959   for (unsigned i = 0; i < VF; i++)
960     for (unsigned j = 0; j < ReplicationFactor; j++)
961       MaskVec.push_back(i);
962 
963   return MaskVec;
964 }
965 
966 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
967                                                       unsigned NumVecs) {
968   SmallVector<int, 16> Mask;
969   for (unsigned i = 0; i < VF; i++)
970     for (unsigned j = 0; j < NumVecs; j++)
971       Mask.push_back(j * VF + i);
972 
973   return Mask;
974 }
975 
976 llvm::SmallVector<int, 16>
977 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
978   SmallVector<int, 16> Mask;
979   for (unsigned i = 0; i < VF; i++)
980     Mask.push_back(Start + i * Stride);
981 
982   return Mask;
983 }
984 
985 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
986                                                       unsigned NumInts,
987                                                       unsigned NumUndefs) {
988   SmallVector<int, 16> Mask;
989   for (unsigned i = 0; i < NumInts; i++)
990     Mask.push_back(Start + i);
991 
992   for (unsigned i = 0; i < NumUndefs; i++)
993     Mask.push_back(-1);
994 
995   return Mask;
996 }
997 
998 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
999                                                  unsigned NumElts) {
1000   // Avoid casts in the loop and make sure we have a reasonable number.
1001   int NumEltsSigned = NumElts;
1002   assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
1003 
1004   // If the mask chooses an element from operand 1, reduce it to choose from the
1005   // corresponding element of operand 0. Undef mask elements are unchanged.
1006   SmallVector<int, 16> UnaryMask;
1007   for (int MaskElt : Mask) {
1008     assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
1009     int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
1010     UnaryMask.push_back(UnaryElt);
1011   }
1012   return UnaryMask;
1013 }
1014 
1015 /// A helper function for concatenating vectors. This function concatenates two
1016 /// vectors having the same element type. If the second vector has fewer
1017 /// elements than the first, it is padded with undefs.
1018 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
1019                                     Value *V2) {
1020   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
1021   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
1022   assert(VecTy1 && VecTy2 &&
1023          VecTy1->getScalarType() == VecTy2->getScalarType() &&
1024          "Expect two vectors with the same element type");
1025 
1026   unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
1027   unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
1028   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
1029 
1030   if (NumElts1 > NumElts2) {
1031     // Extend with UNDEFs.
1032     V2 = Builder.CreateShuffleVector(
1033         V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
1034   }
1035 
1036   return Builder.CreateShuffleVector(
1037       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
1038 }
1039 
1040 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
1041                                 ArrayRef<Value *> Vecs) {
1042   unsigned NumVecs = Vecs.size();
1043   assert(NumVecs > 1 && "Should be at least two vectors");
1044 
1045   SmallVector<Value *, 8> ResList;
1046   ResList.append(Vecs.begin(), Vecs.end());
1047   do {
1048     SmallVector<Value *, 8> TmpList;
1049     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
1050       Value *V0 = ResList[i], *V1 = ResList[i + 1];
1051       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
1052              "Only the last vector may have a different type");
1053 
1054       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
1055     }
1056 
1057     // Push the last vector if the total number of vectors is odd.
1058     if (NumVecs % 2 != 0)
1059       TmpList.push_back(ResList[NumVecs - 1]);
1060 
1061     ResList = TmpList;
1062     NumVecs = ResList.size();
1063   } while (NumVecs > 1);
1064 
1065   return ResList[0];
1066 }
1067 
1068 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
1069   assert(isa<VectorType>(Mask->getType()) &&
1070          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1071          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1072              1 &&
1073          "Mask must be a vector of i1");
1074 
1075   auto *ConstMask = dyn_cast<Constant>(Mask);
1076   if (!ConstMask)
1077     return false;
1078   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1079     return true;
1080   if (isa<ScalableVectorType>(ConstMask->getType()))
1081     return false;
1082   for (unsigned
1083            I = 0,
1084            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1085        I != E; ++I) {
1086     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1087       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1088         continue;
1089     return false;
1090   }
1091   return true;
1092 }
1093 
1094 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
1095   assert(isa<VectorType>(Mask->getType()) &&
1096          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1097          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1098              1 &&
1099          "Mask must be a vector of i1");
1100 
1101   auto *ConstMask = dyn_cast<Constant>(Mask);
1102   if (!ConstMask)
1103     return false;
1104   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1105     return true;
1106   if (isa<ScalableVectorType>(ConstMask->getType()))
1107     return false;
1108   for (unsigned
1109            I = 0,
1110            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1111        I != E; ++I) {
1112     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1113       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1114         continue;
1115     return false;
1116   }
1117   return true;
1118 }
1119 
1120 /// TODO: This is a lot like known bits, but for
1121 /// vectors.  Is there something we can common this with?
1122 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1123   assert(isa<FixedVectorType>(Mask->getType()) &&
1124          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1125          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1126              1 &&
1127          "Mask must be a fixed width vector of i1");
1128 
1129   const unsigned VWidth =
1130       cast<FixedVectorType>(Mask->getType())->getNumElements();
1131   APInt DemandedElts = APInt::getAllOnes(VWidth);
1132   if (auto *CV = dyn_cast<ConstantVector>(Mask))
1133     for (unsigned i = 0; i < VWidth; i++)
1134       if (CV->getAggregateElement(i)->isNullValue())
1135         DemandedElts.clearBit(i);
1136   return DemandedElts;
1137 }
1138 
1139 bool InterleavedAccessInfo::isStrided(int Stride) {
1140   unsigned Factor = std::abs(Stride);
1141   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1142 }
1143 
1144 void InterleavedAccessInfo::collectConstStrideAccesses(
1145     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1146     const ValueToValueMap &Strides) {
1147   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1148 
1149   // Since it's desired that the load/store instructions be maintained in
1150   // "program order" for the interleaved access analysis, we have to visit the
1151   // blocks in the loop in reverse postorder (i.e., in a topological order).
1152   // Such an ordering will ensure that any load/store that may be executed
1153   // before a second load/store will precede the second load/store in
1154   // AccessStrideInfo.
1155   LoopBlocksDFS DFS(TheLoop);
1156   DFS.perform(LI);
1157   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1158     for (auto &I : *BB) {
1159       Value *Ptr = getLoadStorePointerOperand(&I);
1160       if (!Ptr)
1161         continue;
1162       Type *ElementTy = getLoadStoreType(&I);
1163 
1164       // Currently, codegen doesn't support cases where the type size doesn't
1165       // match the alloc size. Skip them for now.
1166       uint64_t Size = DL.getTypeAllocSize(ElementTy);
1167       if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1168         continue;
1169 
1170       // We don't check wrapping here because we don't know yet if Ptr will be
1171       // part of a full group or a group with gaps. Checking wrapping for all
1172       // pointers (even those that end up in groups with no gaps) will be overly
1173       // conservative. For full groups, wrapping should be ok since if we would
1174       // wrap around the address space we would do a memory access at nullptr
1175       // even without the transformation. The wrapping checks are therefore
1176       // deferred until after we've formed the interleaved groups.
1177       int64_t Stride =
1178         getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1179                      /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1180 
1181       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1182       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1183                                               getLoadStoreAlignment(&I));
1184     }
1185 }
1186 
1187 // Analyze interleaved accesses and collect them into interleaved load and
1188 // store groups.
1189 //
1190 // When generating code for an interleaved load group, we effectively hoist all
1191 // loads in the group to the location of the first load in program order. When
1192 // generating code for an interleaved store group, we sink all stores to the
1193 // location of the last store. This code motion can change the order of load
1194 // and store instructions and may break dependences.
1195 //
1196 // The code generation strategy mentioned above ensures that we won't violate
1197 // any write-after-read (WAR) dependences.
1198 //
1199 // E.g., for the WAR dependence:  a = A[i];      // (1)
1200 //                                A[i] = b;      // (2)
1201 //
1202 // The store group of (2) is always inserted at or below (2), and the load
1203 // group of (1) is always inserted at or above (1). Thus, the instructions will
1204 // never be reordered. All other dependences are checked to ensure the
1205 // correctness of the instruction reordering.
1206 //
1207 // The algorithm visits all memory accesses in the loop in bottom-up program
1208 // order. Program order is established by traversing the blocks in the loop in
1209 // reverse postorder when collecting the accesses.
1210 //
1211 // We visit the memory accesses in bottom-up order because it can simplify the
1212 // construction of store groups in the presence of write-after-write (WAW)
1213 // dependences.
1214 //
1215 // E.g., for the WAW dependence:  A[i] = a;      // (1)
1216 //                                A[i] = b;      // (2)
1217 //                                A[i + 1] = c;  // (3)
1218 //
1219 // We will first create a store group with (3) and (2). (1) can't be added to
1220 // this group because it and (2) are dependent. However, (1) can be grouped
1221 // with other accesses that may precede it in program order. Note that a
1222 // bottom-up order does not imply that WAW dependences should not be checked.
1223 void InterleavedAccessInfo::analyzeInterleaving(
1224                                  bool EnablePredicatedInterleavedMemAccesses) {
1225   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1226   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
1227 
1228   // Holds all accesses with a constant stride.
1229   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1230   collectConstStrideAccesses(AccessStrideInfo, Strides);
1231 
1232   if (AccessStrideInfo.empty())
1233     return;
1234 
1235   // Collect the dependences in the loop.
1236   collectDependences();
1237 
1238   // Holds all interleaved store groups temporarily.
1239   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1240   // Holds all interleaved load groups temporarily.
1241   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1242 
1243   // Search in bottom-up program order for pairs of accesses (A and B) that can
1244   // form interleaved load or store groups. In the algorithm below, access A
1245   // precedes access B in program order. We initialize a group for B in the
1246   // outer loop of the algorithm, and then in the inner loop, we attempt to
1247   // insert each A into B's group if:
1248   //
1249   //  1. A and B have the same stride,
1250   //  2. A and B have the same memory object size, and
1251   //  3. A belongs in B's group according to its distance from B.
1252   //
1253   // Special care is taken to ensure group formation will not break any
1254   // dependences.
1255   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1256        BI != E; ++BI) {
1257     Instruction *B = BI->first;
1258     StrideDescriptor DesB = BI->second;
1259 
1260     // Initialize a group for B if it has an allowable stride. Even if we don't
1261     // create a group for B, we continue with the bottom-up algorithm to ensure
1262     // we don't break any of B's dependences.
1263     InterleaveGroup<Instruction> *Group = nullptr;
1264     if (isStrided(DesB.Stride) &&
1265         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1266       Group = getInterleaveGroup(B);
1267       if (!Group) {
1268         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1269                           << '\n');
1270         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1271       }
1272       if (B->mayWriteToMemory())
1273         StoreGroups.insert(Group);
1274       else
1275         LoadGroups.insert(Group);
1276     }
1277 
1278     for (auto AI = std::next(BI); AI != E; ++AI) {
1279       Instruction *A = AI->first;
1280       StrideDescriptor DesA = AI->second;
1281 
1282       // Our code motion strategy implies that we can't have dependences
1283       // between accesses in an interleaved group and other accesses located
1284       // between the first and last member of the group. Note that this also
1285       // means that a group can't have more than one member at a given offset.
1286       // The accesses in a group can have dependences with other accesses, but
1287       // we must ensure we don't extend the boundaries of the group such that
1288       // we encompass those dependent accesses.
1289       //
1290       // For example, assume we have the sequence of accesses shown below in a
1291       // stride-2 loop:
1292       //
1293       //  (1, 2) is a group | A[i]   = a;  // (1)
1294       //                    | A[i-1] = b;  // (2) |
1295       //                      A[i-3] = c;  // (3)
1296       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1297       //
1298       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1299       // but not with (4). If we did, the dependent access (3) would be within
1300       // the boundaries of the (2, 4) group.
1301       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1302         // If a dependence exists and A is already in a group, we know that A
1303         // must be a store since A precedes B and WAR dependences are allowed.
1304         // Thus, A would be sunk below B. We release A's group to prevent this
1305         // illegal code motion. A will then be free to form another group with
1306         // instructions that precede it.
1307         if (isInterleaved(A)) {
1308           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1309 
1310           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1311                                "dependence between " << *A << " and "<< *B << '\n');
1312 
1313           StoreGroups.remove(StoreGroup);
1314           releaseGroup(StoreGroup);
1315         }
1316 
1317         // If a dependence exists and A is not already in a group (or it was
1318         // and we just released it), B might be hoisted above A (if B is a
1319         // load) or another store might be sunk below A (if B is a store). In
1320         // either case, we can't add additional instructions to B's group. B
1321         // will only form a group with instructions that it precedes.
1322         break;
1323       }
1324 
1325       // At this point, we've checked for illegal code motion. If either A or B
1326       // isn't strided, there's nothing left to do.
1327       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1328         continue;
1329 
1330       // Ignore A if it's already in a group or isn't the same kind of memory
1331       // operation as B.
1332       // Note that mayReadFromMemory() isn't mutually exclusive to
1333       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1334       // here, canVectorizeMemory() should have returned false - except for the
1335       // case we asked for optimization remarks.
1336       if (isInterleaved(A) ||
1337           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1338           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1339         continue;
1340 
1341       // Check rules 1 and 2. Ignore A if its stride or size is different from
1342       // that of B.
1343       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1344         continue;
1345 
1346       // Ignore A if the memory object of A and B don't belong to the same
1347       // address space
1348       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1349         continue;
1350 
1351       // Calculate the distance from A to B.
1352       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1353           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1354       if (!DistToB)
1355         continue;
1356       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1357 
1358       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1359       // size.
1360       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1361         continue;
1362 
1363       // All members of a predicated interleave-group must have the same predicate,
1364       // and currently must reside in the same BB.
1365       BasicBlock *BlockA = A->getParent();
1366       BasicBlock *BlockB = B->getParent();
1367       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1368           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1369         continue;
1370 
1371       // The index of A is the index of B plus A's distance to B in multiples
1372       // of the size.
1373       int IndexA =
1374           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1375 
1376       // Try to insert A into B's group.
1377       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1378         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1379                           << "    into the interleave group with" << *B
1380                           << '\n');
1381         InterleaveGroupMap[A] = Group;
1382 
1383         // Set the first load in program order as the insert position.
1384         if (A->mayReadFromMemory())
1385           Group->setInsertPos(A);
1386       }
1387     } // Iteration over A accesses.
1388   }   // Iteration over B accesses.
1389 
1390   auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1391                                             int Index,
1392                                             std::string FirstOrLast) -> bool {
1393     Instruction *Member = Group->getMember(Index);
1394     assert(Member && "Group member does not exist");
1395     Value *MemberPtr = getLoadStorePointerOperand(Member);
1396     Type *AccessTy = getLoadStoreType(Member);
1397     if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1398                      /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1399       return false;
1400     LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1401                       << FirstOrLast
1402                       << " group member potentially pointer-wrapping.\n");
1403     releaseGroup(Group);
1404     return true;
1405   };
1406 
1407   // Remove interleaved groups with gaps whose memory
1408   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1409   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1410   // not check wrapping (see documentation there).
1411   // FORNOW we use Assume=false;
1412   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1413   // of runtime SCEV assumptions checks (thereby potentially failing to
1414   // vectorize altogether).
1415   // Additional optional optimizations:
1416   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1417   // wrap then we can deduce that all pointers in the group don't wrap.
1418   // This means that we can forcefully peel the loop in order to only have to
1419   // check the first pointer for no-wrap. When we'll change to use Assume=true
1420   // we'll only need at most one runtime check per interleaved group.
1421   for (auto *Group : LoadGroups) {
1422     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1423     // load would wrap around the address space we would do a memory access at
1424     // nullptr even without the transformation.
1425     if (Group->getNumMembers() == Group->getFactor())
1426       continue;
1427 
1428     // Case 2: If first and last members of the group don't wrap this implies
1429     // that all the pointers in the group don't wrap.
1430     // So we check only group member 0 (which is always guaranteed to exist),
1431     // and group member Factor - 1; If the latter doesn't exist we rely on
1432     // peeling (if it is a non-reversed accsess -- see Case 3).
1433     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1434       continue;
1435     if (Group->getMember(Group->getFactor() - 1))
1436       InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1437                                      std::string("last"));
1438     else {
1439       // Case 3: A non-reversed interleaved load group with gaps: We need
1440       // to execute at least one scalar epilogue iteration. This will ensure
1441       // we don't speculatively access memory out-of-bounds. We only need
1442       // to look for a member at index factor - 1, since every group must have
1443       // a member at index zero.
1444       if (Group->isReverse()) {
1445         LLVM_DEBUG(
1446             dbgs() << "LV: Invalidate candidate interleaved group due to "
1447                       "a reverse access with gaps.\n");
1448         releaseGroup(Group);
1449         continue;
1450       }
1451       LLVM_DEBUG(
1452           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1453       RequiresScalarEpilogue = true;
1454     }
1455   }
1456 
1457   for (auto *Group : StoreGroups) {
1458     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1459     // store would wrap around the address space we would do a memory access at
1460     // nullptr even without the transformation.
1461     if (Group->getNumMembers() == Group->getFactor())
1462       continue;
1463 
1464     // Interleave-store-group with gaps is implemented using masked wide store.
1465     // Remove interleaved store groups with gaps if
1466     // masked-interleaved-accesses are not enabled by the target.
1467     if (!EnablePredicatedInterleavedMemAccesses) {
1468       LLVM_DEBUG(
1469           dbgs() << "LV: Invalidate candidate interleaved store group due "
1470                     "to gaps.\n");
1471       releaseGroup(Group);
1472       continue;
1473     }
1474 
1475     // Case 2: If first and last members of the group don't wrap this implies
1476     // that all the pointers in the group don't wrap.
1477     // So we check only group member 0 (which is always guaranteed to exist),
1478     // and the last group member. Case 3 (scalar epilog) is not relevant for
1479     // stores with gaps, which are implemented with masked-store (rather than
1480     // speculative access, as in loads).
1481     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1482       continue;
1483     for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1484       if (Group->getMember(Index)) {
1485         InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1486         break;
1487       }
1488   }
1489 }
1490 
1491 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1492   // If no group had triggered the requirement to create an epilogue loop,
1493   // there is nothing to do.
1494   if (!requiresScalarEpilogue())
1495     return;
1496 
1497   bool ReleasedGroup = false;
1498   // Release groups requiring scalar epilogues. Note that this also removes them
1499   // from InterleaveGroups.
1500   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1501     if (!Group->requiresScalarEpilogue())
1502       continue;
1503     LLVM_DEBUG(
1504         dbgs()
1505         << "LV: Invalidate candidate interleaved group due to gaps that "
1506            "require a scalar epilogue (not allowed under optsize) and cannot "
1507            "be masked (not enabled). \n");
1508     releaseGroup(Group);
1509     ReleasedGroup = true;
1510   }
1511   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1512                           "scalar epilogue was required");
1513   (void)ReleasedGroup;
1514   RequiresScalarEpilogue = false;
1515 }
1516 
1517 template <typename InstT>
1518 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1519   llvm_unreachable("addMetadata can only be used for Instruction");
1520 }
1521 
1522 namespace llvm {
1523 template <>
1524 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1525   SmallVector<Value *, 4> VL;
1526   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1527                  [](std::pair<int, Instruction *> p) { return p.second; });
1528   propagateMetadata(NewInst, VL);
1529 }
1530 }
1531 
1532 std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1533                                        StringRef ScalarName, unsigned numArgs,
1534                                        ElementCount VF) {
1535   SmallString<256> Buffer;
1536   llvm::raw_svector_ostream Out(Buffer);
1537   Out << "_ZGV" << VFABI::_LLVM_ << "N";
1538   if (VF.isScalable())
1539     Out << 'x';
1540   else
1541     Out << VF.getFixedValue();
1542   for (unsigned I = 0; I < numArgs; ++I)
1543     Out << "v";
1544   Out << "_" << ScalarName << "(" << VectorName << ")";
1545   return std::string(Out.str());
1546 }
1547 
1548 void VFABI::getVectorVariantNames(
1549     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1550   const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
1551   if (S.empty())
1552     return;
1553 
1554   SmallVector<StringRef, 8> ListAttr;
1555   S.split(ListAttr, ",");
1556 
1557   for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1558 #ifndef NDEBUG
1559     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1560     std::optional<VFInfo> Info =
1561         VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1562     assert(Info && "Invalid name for a VFABI variant.");
1563     assert(CI.getModule()->getFunction(Info->VectorName) &&
1564            "Vector function is missing.");
1565 #endif
1566     VariantMappings.push_back(std::string(S));
1567   }
1568 }
1569 
1570 bool VFShape::hasValidParameterList() const {
1571   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1572        ++Pos) {
1573     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1574 
1575     switch (Parameters[Pos].ParamKind) {
1576     default: // Nothing to check.
1577       break;
1578     case VFParamKind::OMP_Linear:
1579     case VFParamKind::OMP_LinearRef:
1580     case VFParamKind::OMP_LinearVal:
1581     case VFParamKind::OMP_LinearUVal:
1582       // Compile time linear steps must be non-zero.
1583       if (Parameters[Pos].LinearStepOrPos == 0)
1584         return false;
1585       break;
1586     case VFParamKind::OMP_LinearPos:
1587     case VFParamKind::OMP_LinearRefPos:
1588     case VFParamKind::OMP_LinearValPos:
1589     case VFParamKind::OMP_LinearUValPos:
1590       // The runtime linear step must be referring to some other
1591       // parameters in the signature.
1592       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1593         return false;
1594       // The linear step parameter must be marked as uniform.
1595       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1596           VFParamKind::OMP_Uniform)
1597         return false;
1598       // The linear step parameter can't point at itself.
1599       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1600         return false;
1601       break;
1602     case VFParamKind::GlobalPredicate:
1603       // The global predicate must be the unique. Can be placed anywhere in the
1604       // signature.
1605       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1606         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1607           return false;
1608       break;
1609     }
1610   }
1611   return true;
1612 }
1613