1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/Support/CommandLine.h"
28 
29 #define DEBUG_TYPE "vectorutils"
30 
31 using namespace llvm;
32 using namespace llvm::PatternMatch;
33 
34 /// Maximum factor for an interleaved memory access.
35 static cl::opt<unsigned> MaxInterleaveGroupFactor(
36     "max-interleave-group-factor", cl::Hidden,
37     cl::desc("Maximum factor for an interleaved access group (default = 8)"),
38     cl::init(8));
39 
40 /// Return true if all of the intrinsic's arguments and return type are scalars
41 /// for the scalar form of the intrinsic, and vectors for the vector form of the
42 /// intrinsic (except operands that are marked as always being scalar by
43 /// isVectorIntrinsicWithScalarOpAtArg).
44 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
45   switch (ID) {
46   case Intrinsic::abs:   // Begin integer bit-manipulation.
47   case Intrinsic::bswap:
48   case Intrinsic::bitreverse:
49   case Intrinsic::ctpop:
50   case Intrinsic::ctlz:
51   case Intrinsic::cttz:
52   case Intrinsic::fshl:
53   case Intrinsic::fshr:
54   case Intrinsic::smax:
55   case Intrinsic::smin:
56   case Intrinsic::umax:
57   case Intrinsic::umin:
58   case Intrinsic::sadd_sat:
59   case Intrinsic::ssub_sat:
60   case Intrinsic::uadd_sat:
61   case Intrinsic::usub_sat:
62   case Intrinsic::smul_fix:
63   case Intrinsic::smul_fix_sat:
64   case Intrinsic::umul_fix:
65   case Intrinsic::umul_fix_sat:
66   case Intrinsic::sqrt: // Begin floating-point.
67   case Intrinsic::sin:
68   case Intrinsic::cos:
69   case Intrinsic::exp:
70   case Intrinsic::exp2:
71   case Intrinsic::log:
72   case Intrinsic::log10:
73   case Intrinsic::log2:
74   case Intrinsic::fabs:
75   case Intrinsic::minnum:
76   case Intrinsic::maxnum:
77   case Intrinsic::minimum:
78   case Intrinsic::maximum:
79   case Intrinsic::copysign:
80   case Intrinsic::floor:
81   case Intrinsic::ceil:
82   case Intrinsic::trunc:
83   case Intrinsic::rint:
84   case Intrinsic::nearbyint:
85   case Intrinsic::round:
86   case Intrinsic::roundeven:
87   case Intrinsic::pow:
88   case Intrinsic::fma:
89   case Intrinsic::fmuladd:
90   case Intrinsic::powi:
91   case Intrinsic::canonicalize:
92   case Intrinsic::fptosi_sat:
93   case Intrinsic::fptoui_sat:
94     return true;
95   default:
96     return false;
97   }
98 }
99 
100 /// Identifies if the vector form of the intrinsic has a scalar operand.
101 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
102                                               unsigned ScalarOpdIdx) {
103   switch (ID) {
104   case Intrinsic::abs:
105   case Intrinsic::ctlz:
106   case Intrinsic::cttz:
107   case Intrinsic::powi:
108     return (ScalarOpdIdx == 1);
109   case Intrinsic::smul_fix:
110   case Intrinsic::smul_fix_sat:
111   case Intrinsic::umul_fix:
112   case Intrinsic::umul_fix_sat:
113     return (ScalarOpdIdx == 2);
114   default:
115     return false;
116   }
117 }
118 
119 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
120                                                   unsigned OpdIdx) {
121   switch (ID) {
122   case Intrinsic::fptosi_sat:
123   case Intrinsic::fptoui_sat:
124     return OpdIdx == 0;
125   case Intrinsic::powi:
126     return OpdIdx == 1;
127   default:
128     return false;
129   }
130 }
131 
132 /// Returns intrinsic ID for call.
133 /// For the input call instruction it finds mapping intrinsic and returns
134 /// its ID, in case it does not found it return not_intrinsic.
135 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
136                                                 const TargetLibraryInfo *TLI) {
137   Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
138   if (ID == Intrinsic::not_intrinsic)
139     return Intrinsic::not_intrinsic;
140 
141   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
142       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
143       ID == Intrinsic::experimental_noalias_scope_decl ||
144       ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
145     return ID;
146   return Intrinsic::not_intrinsic;
147 }
148 
149 /// Find the operand of the GEP that should be checked for consecutive
150 /// stores. This ignores trailing indices that have no effect on the final
151 /// pointer.
152 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
153   const DataLayout &DL = Gep->getModule()->getDataLayout();
154   unsigned LastOperand = Gep->getNumOperands() - 1;
155   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
156 
157   // Walk backwards and try to peel off zeros.
158   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
159     // Find the type we're currently indexing into.
160     gep_type_iterator GEPTI = gep_type_begin(Gep);
161     std::advance(GEPTI, LastOperand - 2);
162 
163     // If it's a type with the same allocation size as the result of the GEP we
164     // can peel off the zero index.
165     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
166       break;
167     --LastOperand;
168   }
169 
170   return LastOperand;
171 }
172 
173 /// If the argument is a GEP, then returns the operand identified by
174 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
175 /// operand, it returns that instead.
176 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
177   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
178   if (!GEP)
179     return Ptr;
180 
181   unsigned InductionOperand = getGEPInductionOperand(GEP);
182 
183   // Check that all of the gep indices are uniform except for our induction
184   // operand.
185   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
186     if (i != InductionOperand &&
187         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
188       return Ptr;
189   return GEP->getOperand(InductionOperand);
190 }
191 
192 /// If a value has only one user that is a CastInst, return it.
193 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
194   Value *UniqueCast = nullptr;
195   for (User *U : Ptr->users()) {
196     CastInst *CI = dyn_cast<CastInst>(U);
197     if (CI && CI->getType() == Ty) {
198       if (!UniqueCast)
199         UniqueCast = CI;
200       else
201         return nullptr;
202     }
203   }
204   return UniqueCast;
205 }
206 
207 /// Get the stride of a pointer access in a loop. Looks for symbolic
208 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
209 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
210   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
211   if (!PtrTy || PtrTy->isAggregateType())
212     return nullptr;
213 
214   // Try to remove a gep instruction to make the pointer (actually index at this
215   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
216   // pointer, otherwise, we are analyzing the index.
217   Value *OrigPtr = Ptr;
218 
219   // The size of the pointer access.
220   int64_t PtrAccessSize = 1;
221 
222   Ptr = stripGetElementPtr(Ptr, SE, Lp);
223   const SCEV *V = SE->getSCEV(Ptr);
224 
225   if (Ptr != OrigPtr)
226     // Strip off casts.
227     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
228       V = C->getOperand();
229 
230   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
231   if (!S)
232     return nullptr;
233 
234   V = S->getStepRecurrence(*SE);
235   if (!V)
236     return nullptr;
237 
238   // Strip off the size of access multiplication if we are still analyzing the
239   // pointer.
240   if (OrigPtr == Ptr) {
241     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
242       if (M->getOperand(0)->getSCEVType() != scConstant)
243         return nullptr;
244 
245       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
246 
247       // Huge step value - give up.
248       if (APStepVal.getBitWidth() > 64)
249         return nullptr;
250 
251       int64_t StepVal = APStepVal.getSExtValue();
252       if (PtrAccessSize != StepVal)
253         return nullptr;
254       V = M->getOperand(1);
255     }
256   }
257 
258   // Strip off casts.
259   Type *StripedOffRecurrenceCast = nullptr;
260   if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) {
261     StripedOffRecurrenceCast = C->getType();
262     V = C->getOperand();
263   }
264 
265   // Look for the loop invariant symbolic value.
266   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
267   if (!U)
268     return nullptr;
269 
270   Value *Stride = U->getValue();
271   if (!Lp->isLoopInvariant(Stride))
272     return nullptr;
273 
274   // If we have stripped off the recurrence cast we have to make sure that we
275   // return the value that is used in this loop so that we can replace it later.
276   if (StripedOffRecurrenceCast)
277     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
278 
279   return Stride;
280 }
281 
282 /// Given a vector and an element number, see if the scalar value is
283 /// already around as a register, for example if it were inserted then extracted
284 /// from the vector.
285 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
286   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
287   VectorType *VTy = cast<VectorType>(V->getType());
288   // For fixed-length vector, return undef for out of range access.
289   if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
290     unsigned Width = FVTy->getNumElements();
291     if (EltNo >= Width)
292       return UndefValue::get(FVTy->getElementType());
293   }
294 
295   if (Constant *C = dyn_cast<Constant>(V))
296     return C->getAggregateElement(EltNo);
297 
298   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
299     // If this is an insert to a variable element, we don't know what it is.
300     if (!isa<ConstantInt>(III->getOperand(2)))
301       return nullptr;
302     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
303 
304     // If this is an insert to the element we are looking for, return the
305     // inserted value.
306     if (EltNo == IIElt)
307       return III->getOperand(1);
308 
309     // Guard against infinite loop on malformed, unreachable IR.
310     if (III == III->getOperand(0))
311       return nullptr;
312 
313     // Otherwise, the insertelement doesn't modify the value, recurse on its
314     // vector input.
315     return findScalarElement(III->getOperand(0), EltNo);
316   }
317 
318   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
319   // Restrict the following transformation to fixed-length vector.
320   if (SVI && isa<FixedVectorType>(SVI->getType())) {
321     unsigned LHSWidth =
322         cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
323     int InEl = SVI->getMaskValue(EltNo);
324     if (InEl < 0)
325       return UndefValue::get(VTy->getElementType());
326     if (InEl < (int)LHSWidth)
327       return findScalarElement(SVI->getOperand(0), InEl);
328     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
329   }
330 
331   // Extract a value from a vector add operation with a constant zero.
332   // TODO: Use getBinOpIdentity() to generalize this.
333   Value *Val; Constant *C;
334   if (match(V, m_Add(m_Value(Val), m_Constant(C))))
335     if (Constant *Elt = C->getAggregateElement(EltNo))
336       if (Elt->isNullValue())
337         return findScalarElement(Val, EltNo);
338 
339   // If the vector is a splat then we can trivially find the scalar element.
340   if (isa<ScalableVectorType>(VTy))
341     if (Value *Splat = getSplatValue(V))
342       if (EltNo < VTy->getElementCount().getKnownMinValue())
343         return Splat;
344 
345   // Otherwise, we don't know.
346   return nullptr;
347 }
348 
349 int llvm::getSplatIndex(ArrayRef<int> Mask) {
350   int SplatIndex = -1;
351   for (int M : Mask) {
352     // Ignore invalid (undefined) mask elements.
353     if (M < 0)
354       continue;
355 
356     // There can be only 1 non-negative mask element value if this is a splat.
357     if (SplatIndex != -1 && SplatIndex != M)
358       return -1;
359 
360     // Initialize the splat index to the 1st non-negative mask element.
361     SplatIndex = M;
362   }
363   assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
364   return SplatIndex;
365 }
366 
367 /// Get splat value if the input is a splat vector or return nullptr.
368 /// This function is not fully general. It checks only 2 cases:
369 /// the input value is (1) a splat constant vector or (2) a sequence
370 /// of instructions that broadcasts a scalar at element 0.
371 Value *llvm::getSplatValue(const Value *V) {
372   if (isa<VectorType>(V->getType()))
373     if (auto *C = dyn_cast<Constant>(V))
374       return C->getSplatValue();
375 
376   // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
377   Value *Splat;
378   if (match(V,
379             m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
380                       m_Value(), m_ZeroMask())))
381     return Splat;
382 
383   return nullptr;
384 }
385 
386 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
387   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
388 
389   if (isa<VectorType>(V->getType())) {
390     if (isa<UndefValue>(V))
391       return true;
392     // FIXME: We can allow undefs, but if Index was specified, we may want to
393     //        check that the constant is defined at that index.
394     if (auto *C = dyn_cast<Constant>(V))
395       return C->getSplatValue() != nullptr;
396   }
397 
398   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
399     // FIXME: We can safely allow undefs here. If Index was specified, we will
400     //        check that the mask elt is defined at the required index.
401     if (!is_splat(Shuf->getShuffleMask()))
402       return false;
403 
404     // Match any index.
405     if (Index == -1)
406       return true;
407 
408     // Match a specific element. The mask should be defined at and match the
409     // specified index.
410     return Shuf->getMaskValue(Index) == Index;
411   }
412 
413   // The remaining tests are all recursive, so bail out if we hit the limit.
414   if (Depth++ == MaxAnalysisRecursionDepth)
415     return false;
416 
417   // If both operands of a binop are splats, the result is a splat.
418   Value *X, *Y, *Z;
419   if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
420     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
421 
422   // If all operands of a select are splats, the result is a splat.
423   if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
424     return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
425            isSplatValue(Z, Index, Depth);
426 
427   // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
428 
429   return false;
430 }
431 
432 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
433                                  SmallVectorImpl<int> &ScaledMask) {
434   assert(Scale > 0 && "Unexpected scaling factor");
435 
436   // Fast-path: if no scaling, then it is just a copy.
437   if (Scale == 1) {
438     ScaledMask.assign(Mask.begin(), Mask.end());
439     return;
440   }
441 
442   ScaledMask.clear();
443   for (int MaskElt : Mask) {
444     if (MaskElt >= 0) {
445       assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
446              "Overflowed 32-bits");
447     }
448     for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
449       ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
450   }
451 }
452 
453 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
454                                 SmallVectorImpl<int> &ScaledMask) {
455   assert(Scale > 0 && "Unexpected scaling factor");
456 
457   // Fast-path: if no scaling, then it is just a copy.
458   if (Scale == 1) {
459     ScaledMask.assign(Mask.begin(), Mask.end());
460     return true;
461   }
462 
463   // We must map the original elements down evenly to a type with less elements.
464   int NumElts = Mask.size();
465   if (NumElts % Scale != 0)
466     return false;
467 
468   ScaledMask.clear();
469   ScaledMask.reserve(NumElts / Scale);
470 
471   // Step through the input mask by splitting into Scale-sized slices.
472   do {
473     ArrayRef<int> MaskSlice = Mask.take_front(Scale);
474     assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
475 
476     // The first element of the slice determines how we evaluate this slice.
477     int SliceFront = MaskSlice.front();
478     if (SliceFront < 0) {
479       // Negative values (undef or other "sentinel" values) must be equal across
480       // the entire slice.
481       if (!is_splat(MaskSlice))
482         return false;
483       ScaledMask.push_back(SliceFront);
484     } else {
485       // A positive mask element must be cleanly divisible.
486       if (SliceFront % Scale != 0)
487         return false;
488       // Elements of the slice must be consecutive.
489       for (int i = 1; i < Scale; ++i)
490         if (MaskSlice[i] != SliceFront + i)
491           return false;
492       ScaledMask.push_back(SliceFront / Scale);
493     }
494     Mask = Mask.drop_front(Scale);
495   } while (!Mask.empty());
496 
497   assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
498 
499   // All elements of the original mask can be scaled down to map to the elements
500   // of a mask with wider elements.
501   return true;
502 }
503 
504 void llvm::processShuffleMasks(
505     ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
506     unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
507     function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
508     function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
509   SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
510   // Try to perform better estimation of the permutation.
511   // 1. Split the source/destination vectors into real registers.
512   // 2. Do the mask analysis to identify which real registers are
513   // permuted.
514   int Sz = Mask.size();
515   unsigned SzDest = Sz / NumOfDestRegs;
516   unsigned SzSrc = Sz / NumOfSrcRegs;
517   for (unsigned I = 0; I < NumOfDestRegs; ++I) {
518     auto &RegMasks = Res[I];
519     RegMasks.assign(NumOfSrcRegs, {});
520     // Check that the values in dest registers are in the one src
521     // register.
522     for (unsigned K = 0; K < SzDest; ++K) {
523       int Idx = I * SzDest + K;
524       if (Idx == Sz)
525         break;
526       if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem)
527         continue;
528       int SrcRegIdx = Mask[Idx] / SzSrc;
529       // Add a cost of PermuteTwoSrc for each new source register permute,
530       // if we have more than one source registers.
531       if (RegMasks[SrcRegIdx].empty())
532         RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem);
533       RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
534     }
535   }
536   // Process split mask.
537   for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
538     auto &Dest = Res[I];
539     int NumSrcRegs =
540         count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
541     switch (NumSrcRegs) {
542     case 0:
543       // No input vectors were used!
544       NoInputAction();
545       break;
546     case 1: {
547       // Find the only mask with at least single undef mask elem.
548       auto *It =
549           find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
550       unsigned SrcReg = std::distance(Dest.begin(), It);
551       SingleInputAction(*It, SrcReg, I);
552       break;
553     }
554     default: {
555       // The first mask is a permutation of a single register. Since we have >2
556       // input registers to shuffle, we merge the masks for 2 first registers
557       // and generate a shuffle of 2 registers rather than the reordering of the
558       // first register and then shuffle with the second register. Next,
559       // generate the shuffles of the resulting register + the remaining
560       // registers from the list.
561       auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
562                                ArrayRef<int> SecondMask) {
563         for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
564           if (SecondMask[Idx] != UndefMaskElem) {
565             assert(FirstMask[Idx] == UndefMaskElem &&
566                    "Expected undefined mask element.");
567             FirstMask[Idx] = SecondMask[Idx] + VF;
568           }
569         }
570       };
571       auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
572         for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
573           if (Mask[Idx] != UndefMaskElem)
574             Mask[Idx] = Idx;
575         }
576       };
577       int SecondIdx;
578       do {
579         int FirstIdx = -1;
580         SecondIdx = -1;
581         MutableArrayRef<int> FirstMask, SecondMask;
582         for (unsigned I = 0; I < NumOfDestRegs; ++I) {
583           SmallVectorImpl<int> &RegMask = Dest[I];
584           if (RegMask.empty())
585             continue;
586 
587           if (FirstIdx == SecondIdx) {
588             FirstIdx = I;
589             FirstMask = RegMask;
590             continue;
591           }
592           SecondIdx = I;
593           SecondMask = RegMask;
594           CombineMasks(FirstMask, SecondMask);
595           ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
596           NormalizeMask(FirstMask);
597           RegMask.clear();
598           SecondMask = FirstMask;
599           SecondIdx = FirstIdx;
600         }
601         if (FirstIdx != SecondIdx && SecondIdx >= 0) {
602           CombineMasks(SecondMask, FirstMask);
603           ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
604           Dest[FirstIdx].clear();
605           NormalizeMask(SecondMask);
606         }
607       } while (SecondIdx >= 0);
608       break;
609     }
610     }
611   }
612 }
613 
614 MapVector<Instruction *, uint64_t>
615 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
616                                const TargetTransformInfo *TTI) {
617 
618   // DemandedBits will give us every value's live-out bits. But we want
619   // to ensure no extra casts would need to be inserted, so every DAG
620   // of connected values must have the same minimum bitwidth.
621   EquivalenceClasses<Value *> ECs;
622   SmallVector<Value *, 16> Worklist;
623   SmallPtrSet<Value *, 4> Roots;
624   SmallPtrSet<Value *, 16> Visited;
625   DenseMap<Value *, uint64_t> DBits;
626   SmallPtrSet<Instruction *, 4> InstructionSet;
627   MapVector<Instruction *, uint64_t> MinBWs;
628 
629   // Determine the roots. We work bottom-up, from truncs or icmps.
630   bool SeenExtFromIllegalType = false;
631   for (auto *BB : Blocks)
632     for (auto &I : *BB) {
633       InstructionSet.insert(&I);
634 
635       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
636           !TTI->isTypeLegal(I.getOperand(0)->getType()))
637         SeenExtFromIllegalType = true;
638 
639       // Only deal with non-vector integers up to 64-bits wide.
640       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
641           !I.getType()->isVectorTy() &&
642           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
643         // Don't make work for ourselves. If we know the loaded type is legal,
644         // don't add it to the worklist.
645         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
646           continue;
647 
648         Worklist.push_back(&I);
649         Roots.insert(&I);
650       }
651     }
652   // Early exit.
653   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
654     return MinBWs;
655 
656   // Now proceed breadth-first, unioning values together.
657   while (!Worklist.empty()) {
658     Value *Val = Worklist.pop_back_val();
659     Value *Leader = ECs.getOrInsertLeaderValue(Val);
660 
661     if (!Visited.insert(Val).second)
662       continue;
663 
664     // Non-instructions terminate a chain successfully.
665     if (!isa<Instruction>(Val))
666       continue;
667     Instruction *I = cast<Instruction>(Val);
668 
669     // If we encounter a type that is larger than 64 bits, we can't represent
670     // it so bail out.
671     if (DB.getDemandedBits(I).getBitWidth() > 64)
672       return MapVector<Instruction *, uint64_t>();
673 
674     uint64_t V = DB.getDemandedBits(I).getZExtValue();
675     DBits[Leader] |= V;
676     DBits[I] = V;
677 
678     // Casts, loads and instructions outside of our range terminate a chain
679     // successfully.
680     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
681         !InstructionSet.count(I))
682       continue;
683 
684     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
685     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
686     // transform anything that relies on them.
687     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
688         !I->getType()->isIntegerTy()) {
689       DBits[Leader] |= ~0ULL;
690       continue;
691     }
692 
693     // We don't modify the types of PHIs. Reductions will already have been
694     // truncated if possible, and inductions' sizes will have been chosen by
695     // indvars.
696     if (isa<PHINode>(I))
697       continue;
698 
699     if (DBits[Leader] == ~0ULL)
700       // All bits demanded, no point continuing.
701       continue;
702 
703     for (Value *O : cast<User>(I)->operands()) {
704       ECs.unionSets(Leader, O);
705       Worklist.push_back(O);
706     }
707   }
708 
709   // Now we've discovered all values, walk them to see if there are
710   // any users we didn't see. If there are, we can't optimize that
711   // chain.
712   for (auto &I : DBits)
713     for (auto *U : I.first->users())
714       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
715         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
716 
717   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
718     uint64_t LeaderDemandedBits = 0;
719     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
720       LeaderDemandedBits |= DBits[M];
721 
722     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
723                      llvm::countLeadingZeros(LeaderDemandedBits);
724     // Round up to a power of 2
725     if (!isPowerOf2_64((uint64_t)MinBW))
726       MinBW = NextPowerOf2(MinBW);
727 
728     // We don't modify the types of PHIs. Reductions will already have been
729     // truncated if possible, and inductions' sizes will have been chosen by
730     // indvars.
731     // If we are required to shrink a PHI, abandon this entire equivalence class.
732     bool Abort = false;
733     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
734       if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
735         Abort = true;
736         break;
737       }
738     if (Abort)
739       continue;
740 
741     for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
742       if (!isa<Instruction>(M))
743         continue;
744       Type *Ty = M->getType();
745       if (Roots.count(M))
746         Ty = cast<Instruction>(M)->getOperand(0)->getType();
747       if (MinBW < Ty->getScalarSizeInBits())
748         MinBWs[cast<Instruction>(M)] = MinBW;
749     }
750   }
751 
752   return MinBWs;
753 }
754 
755 /// Add all access groups in @p AccGroups to @p List.
756 template <typename ListT>
757 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
758   // Interpret an access group as a list containing itself.
759   if (AccGroups->getNumOperands() == 0) {
760     assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
761     List.insert(AccGroups);
762     return;
763   }
764 
765   for (auto &AccGroupListOp : AccGroups->operands()) {
766     auto *Item = cast<MDNode>(AccGroupListOp.get());
767     assert(isValidAsAccessGroup(Item) && "List item must be an access group");
768     List.insert(Item);
769   }
770 }
771 
772 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
773   if (!AccGroups1)
774     return AccGroups2;
775   if (!AccGroups2)
776     return AccGroups1;
777   if (AccGroups1 == AccGroups2)
778     return AccGroups1;
779 
780   SmallSetVector<Metadata *, 4> Union;
781   addToAccessGroupList(Union, AccGroups1);
782   addToAccessGroupList(Union, AccGroups2);
783 
784   if (Union.size() == 0)
785     return nullptr;
786   if (Union.size() == 1)
787     return cast<MDNode>(Union.front());
788 
789   LLVMContext &Ctx = AccGroups1->getContext();
790   return MDNode::get(Ctx, Union.getArrayRef());
791 }
792 
793 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
794                                     const Instruction *Inst2) {
795   bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
796   bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
797 
798   if (!MayAccessMem1 && !MayAccessMem2)
799     return nullptr;
800   if (!MayAccessMem1)
801     return Inst2->getMetadata(LLVMContext::MD_access_group);
802   if (!MayAccessMem2)
803     return Inst1->getMetadata(LLVMContext::MD_access_group);
804 
805   MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
806   MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
807   if (!MD1 || !MD2)
808     return nullptr;
809   if (MD1 == MD2)
810     return MD1;
811 
812   // Use set for scalable 'contains' check.
813   SmallPtrSet<Metadata *, 4> AccGroupSet2;
814   addToAccessGroupList(AccGroupSet2, MD2);
815 
816   SmallVector<Metadata *, 4> Intersection;
817   if (MD1->getNumOperands() == 0) {
818     assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
819     if (AccGroupSet2.count(MD1))
820       Intersection.push_back(MD1);
821   } else {
822     for (const MDOperand &Node : MD1->operands()) {
823       auto *Item = cast<MDNode>(Node.get());
824       assert(isValidAsAccessGroup(Item) && "List item must be an access group");
825       if (AccGroupSet2.count(Item))
826         Intersection.push_back(Item);
827     }
828   }
829 
830   if (Intersection.size() == 0)
831     return nullptr;
832   if (Intersection.size() == 1)
833     return cast<MDNode>(Intersection.front());
834 
835   LLVMContext &Ctx = Inst1->getContext();
836   return MDNode::get(Ctx, Intersection);
837 }
838 
839 /// \returns \p I after propagating metadata from \p VL.
840 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
841   if (VL.empty())
842     return Inst;
843   Instruction *I0 = cast<Instruction>(VL[0]);
844   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
845   I0->getAllMetadataOtherThanDebugLoc(Metadata);
846 
847   for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
848                     LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
849                     LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
850                     LLVMContext::MD_access_group}) {
851     MDNode *MD = I0->getMetadata(Kind);
852 
853     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
854       const Instruction *IJ = cast<Instruction>(VL[J]);
855       MDNode *IMD = IJ->getMetadata(Kind);
856       switch (Kind) {
857       case LLVMContext::MD_tbaa:
858         MD = MDNode::getMostGenericTBAA(MD, IMD);
859         break;
860       case LLVMContext::MD_alias_scope:
861         MD = MDNode::getMostGenericAliasScope(MD, IMD);
862         break;
863       case LLVMContext::MD_fpmath:
864         MD = MDNode::getMostGenericFPMath(MD, IMD);
865         break;
866       case LLVMContext::MD_noalias:
867       case LLVMContext::MD_nontemporal:
868       case LLVMContext::MD_invariant_load:
869         MD = MDNode::intersect(MD, IMD);
870         break;
871       case LLVMContext::MD_access_group:
872         MD = intersectAccessGroups(Inst, IJ);
873         break;
874       default:
875         llvm_unreachable("unhandled metadata");
876       }
877     }
878 
879     Inst->setMetadata(Kind, MD);
880   }
881 
882   return Inst;
883 }
884 
885 Constant *
886 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
887                            const InterleaveGroup<Instruction> &Group) {
888   // All 1's means mask is not needed.
889   if (Group.getNumMembers() == Group.getFactor())
890     return nullptr;
891 
892   // TODO: support reversed access.
893   assert(!Group.isReverse() && "Reversed group not supported.");
894 
895   SmallVector<Constant *, 16> Mask;
896   for (unsigned i = 0; i < VF; i++)
897     for (unsigned j = 0; j < Group.getFactor(); ++j) {
898       unsigned HasMember = Group.getMember(j) ? 1 : 0;
899       Mask.push_back(Builder.getInt1(HasMember));
900     }
901 
902   return ConstantVector::get(Mask);
903 }
904 
905 llvm::SmallVector<int, 16>
906 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
907   SmallVector<int, 16> MaskVec;
908   for (unsigned i = 0; i < VF; i++)
909     for (unsigned j = 0; j < ReplicationFactor; j++)
910       MaskVec.push_back(i);
911 
912   return MaskVec;
913 }
914 
915 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
916                                                       unsigned NumVecs) {
917   SmallVector<int, 16> Mask;
918   for (unsigned i = 0; i < VF; i++)
919     for (unsigned j = 0; j < NumVecs; j++)
920       Mask.push_back(j * VF + i);
921 
922   return Mask;
923 }
924 
925 llvm::SmallVector<int, 16>
926 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
927   SmallVector<int, 16> Mask;
928   for (unsigned i = 0; i < VF; i++)
929     Mask.push_back(Start + i * Stride);
930 
931   return Mask;
932 }
933 
934 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
935                                                       unsigned NumInts,
936                                                       unsigned NumUndefs) {
937   SmallVector<int, 16> Mask;
938   for (unsigned i = 0; i < NumInts; i++)
939     Mask.push_back(Start + i);
940 
941   for (unsigned i = 0; i < NumUndefs; i++)
942     Mask.push_back(-1);
943 
944   return Mask;
945 }
946 
947 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
948                                                  unsigned NumElts) {
949   // Avoid casts in the loop and make sure we have a reasonable number.
950   int NumEltsSigned = NumElts;
951   assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
952 
953   // If the mask chooses an element from operand 1, reduce it to choose from the
954   // corresponding element of operand 0. Undef mask elements are unchanged.
955   SmallVector<int, 16> UnaryMask;
956   for (int MaskElt : Mask) {
957     assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
958     int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
959     UnaryMask.push_back(UnaryElt);
960   }
961   return UnaryMask;
962 }
963 
964 /// A helper function for concatenating vectors. This function concatenates two
965 /// vectors having the same element type. If the second vector has fewer
966 /// elements than the first, it is padded with undefs.
967 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
968                                     Value *V2) {
969   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
970   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
971   assert(VecTy1 && VecTy2 &&
972          VecTy1->getScalarType() == VecTy2->getScalarType() &&
973          "Expect two vectors with the same element type");
974 
975   unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
976   unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
977   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
978 
979   if (NumElts1 > NumElts2) {
980     // Extend with UNDEFs.
981     V2 = Builder.CreateShuffleVector(
982         V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
983   }
984 
985   return Builder.CreateShuffleVector(
986       V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
987 }
988 
989 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
990                                 ArrayRef<Value *> Vecs) {
991   unsigned NumVecs = Vecs.size();
992   assert(NumVecs > 1 && "Should be at least two vectors");
993 
994   SmallVector<Value *, 8> ResList;
995   ResList.append(Vecs.begin(), Vecs.end());
996   do {
997     SmallVector<Value *, 8> TmpList;
998     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
999       Value *V0 = ResList[i], *V1 = ResList[i + 1];
1000       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
1001              "Only the last vector may have a different type");
1002 
1003       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
1004     }
1005 
1006     // Push the last vector if the total number of vectors is odd.
1007     if (NumVecs % 2 != 0)
1008       TmpList.push_back(ResList[NumVecs - 1]);
1009 
1010     ResList = TmpList;
1011     NumVecs = ResList.size();
1012   } while (NumVecs > 1);
1013 
1014   return ResList[0];
1015 }
1016 
1017 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
1018   assert(isa<VectorType>(Mask->getType()) &&
1019          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1020          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1021              1 &&
1022          "Mask must be a vector of i1");
1023 
1024   auto *ConstMask = dyn_cast<Constant>(Mask);
1025   if (!ConstMask)
1026     return false;
1027   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
1028     return true;
1029   if (isa<ScalableVectorType>(ConstMask->getType()))
1030     return false;
1031   for (unsigned
1032            I = 0,
1033            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1034        I != E; ++I) {
1035     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1036       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
1037         continue;
1038     return false;
1039   }
1040   return true;
1041 }
1042 
1043 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
1044   assert(isa<VectorType>(Mask->getType()) &&
1045          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1046          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1047              1 &&
1048          "Mask must be a vector of i1");
1049 
1050   auto *ConstMask = dyn_cast<Constant>(Mask);
1051   if (!ConstMask)
1052     return false;
1053   if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
1054     return true;
1055   if (isa<ScalableVectorType>(ConstMask->getType()))
1056     return false;
1057   for (unsigned
1058            I = 0,
1059            E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
1060        I != E; ++I) {
1061     if (auto *MaskElt = ConstMask->getAggregateElement(I))
1062       if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1063         continue;
1064     return false;
1065   }
1066   return true;
1067 }
1068 
1069 /// TODO: This is a lot like known bits, but for
1070 /// vectors.  Is there something we can common this with?
1071 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1072   assert(isa<FixedVectorType>(Mask->getType()) &&
1073          isa<IntegerType>(Mask->getType()->getScalarType()) &&
1074          cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1075              1 &&
1076          "Mask must be a fixed width vector of i1");
1077 
1078   const unsigned VWidth =
1079       cast<FixedVectorType>(Mask->getType())->getNumElements();
1080   APInt DemandedElts = APInt::getAllOnes(VWidth);
1081   if (auto *CV = dyn_cast<ConstantVector>(Mask))
1082     for (unsigned i = 0; i < VWidth; i++)
1083       if (CV->getAggregateElement(i)->isNullValue())
1084         DemandedElts.clearBit(i);
1085   return DemandedElts;
1086 }
1087 
1088 bool InterleavedAccessInfo::isStrided(int Stride) {
1089   unsigned Factor = std::abs(Stride);
1090   return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1091 }
1092 
1093 void InterleavedAccessInfo::collectConstStrideAccesses(
1094     MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1095     const ValueToValueMap &Strides) {
1096   auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1097 
1098   // Since it's desired that the load/store instructions be maintained in
1099   // "program order" for the interleaved access analysis, we have to visit the
1100   // blocks in the loop in reverse postorder (i.e., in a topological order).
1101   // Such an ordering will ensure that any load/store that may be executed
1102   // before a second load/store will precede the second load/store in
1103   // AccessStrideInfo.
1104   LoopBlocksDFS DFS(TheLoop);
1105   DFS.perform(LI);
1106   for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1107     for (auto &I : *BB) {
1108       Value *Ptr = getLoadStorePointerOperand(&I);
1109       if (!Ptr)
1110         continue;
1111       Type *ElementTy = getLoadStoreType(&I);
1112 
1113       // We don't check wrapping here because we don't know yet if Ptr will be
1114       // part of a full group or a group with gaps. Checking wrapping for all
1115       // pointers (even those that end up in groups with no gaps) will be overly
1116       // conservative. For full groups, wrapping should be ok since if we would
1117       // wrap around the address space we would do a memory access at nullptr
1118       // even without the transformation. The wrapping checks are therefore
1119       // deferred until after we've formed the interleaved groups.
1120       int64_t Stride = getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1121                                     /*Assume=*/true, /*ShouldCheckWrap=*/false);
1122 
1123       const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1124       uint64_t Size = DL.getTypeAllocSize(ElementTy);
1125       AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1126                                               getLoadStoreAlignment(&I));
1127     }
1128 }
1129 
1130 // Analyze interleaved accesses and collect them into interleaved load and
1131 // store groups.
1132 //
1133 // When generating code for an interleaved load group, we effectively hoist all
1134 // loads in the group to the location of the first load in program order. When
1135 // generating code for an interleaved store group, we sink all stores to the
1136 // location of the last store. This code motion can change the order of load
1137 // and store instructions and may break dependences.
1138 //
1139 // The code generation strategy mentioned above ensures that we won't violate
1140 // any write-after-read (WAR) dependences.
1141 //
1142 // E.g., for the WAR dependence:  a = A[i];      // (1)
1143 //                                A[i] = b;      // (2)
1144 //
1145 // The store group of (2) is always inserted at or below (2), and the load
1146 // group of (1) is always inserted at or above (1). Thus, the instructions will
1147 // never be reordered. All other dependences are checked to ensure the
1148 // correctness of the instruction reordering.
1149 //
1150 // The algorithm visits all memory accesses in the loop in bottom-up program
1151 // order. Program order is established by traversing the blocks in the loop in
1152 // reverse postorder when collecting the accesses.
1153 //
1154 // We visit the memory accesses in bottom-up order because it can simplify the
1155 // construction of store groups in the presence of write-after-write (WAW)
1156 // dependences.
1157 //
1158 // E.g., for the WAW dependence:  A[i] = a;      // (1)
1159 //                                A[i] = b;      // (2)
1160 //                                A[i + 1] = c;  // (3)
1161 //
1162 // We will first create a store group with (3) and (2). (1) can't be added to
1163 // this group because it and (2) are dependent. However, (1) can be grouped
1164 // with other accesses that may precede it in program order. Note that a
1165 // bottom-up order does not imply that WAW dependences should not be checked.
1166 void InterleavedAccessInfo::analyzeInterleaving(
1167                                  bool EnablePredicatedInterleavedMemAccesses) {
1168   LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1169   const ValueToValueMap &Strides = LAI->getSymbolicStrides();
1170 
1171   // Holds all accesses with a constant stride.
1172   MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1173   collectConstStrideAccesses(AccessStrideInfo, Strides);
1174 
1175   if (AccessStrideInfo.empty())
1176     return;
1177 
1178   // Collect the dependences in the loop.
1179   collectDependences();
1180 
1181   // Holds all interleaved store groups temporarily.
1182   SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1183   // Holds all interleaved load groups temporarily.
1184   SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1185 
1186   // Search in bottom-up program order for pairs of accesses (A and B) that can
1187   // form interleaved load or store groups. In the algorithm below, access A
1188   // precedes access B in program order. We initialize a group for B in the
1189   // outer loop of the algorithm, and then in the inner loop, we attempt to
1190   // insert each A into B's group if:
1191   //
1192   //  1. A and B have the same stride,
1193   //  2. A and B have the same memory object size, and
1194   //  3. A belongs in B's group according to its distance from B.
1195   //
1196   // Special care is taken to ensure group formation will not break any
1197   // dependences.
1198   for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1199        BI != E; ++BI) {
1200     Instruction *B = BI->first;
1201     StrideDescriptor DesB = BI->second;
1202 
1203     // Initialize a group for B if it has an allowable stride. Even if we don't
1204     // create a group for B, we continue with the bottom-up algorithm to ensure
1205     // we don't break any of B's dependences.
1206     InterleaveGroup<Instruction> *Group = nullptr;
1207     if (isStrided(DesB.Stride) &&
1208         (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1209       Group = getInterleaveGroup(B);
1210       if (!Group) {
1211         LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1212                           << '\n');
1213         Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1214       }
1215       if (B->mayWriteToMemory())
1216         StoreGroups.insert(Group);
1217       else
1218         LoadGroups.insert(Group);
1219     }
1220 
1221     for (auto AI = std::next(BI); AI != E; ++AI) {
1222       Instruction *A = AI->first;
1223       StrideDescriptor DesA = AI->second;
1224 
1225       // Our code motion strategy implies that we can't have dependences
1226       // between accesses in an interleaved group and other accesses located
1227       // between the first and last member of the group. Note that this also
1228       // means that a group can't have more than one member at a given offset.
1229       // The accesses in a group can have dependences with other accesses, but
1230       // we must ensure we don't extend the boundaries of the group such that
1231       // we encompass those dependent accesses.
1232       //
1233       // For example, assume we have the sequence of accesses shown below in a
1234       // stride-2 loop:
1235       //
1236       //  (1, 2) is a group | A[i]   = a;  // (1)
1237       //                    | A[i-1] = b;  // (2) |
1238       //                      A[i-3] = c;  // (3)
1239       //                      A[i]   = d;  // (4) | (2, 4) is not a group
1240       //
1241       // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1242       // but not with (4). If we did, the dependent access (3) would be within
1243       // the boundaries of the (2, 4) group.
1244       if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
1245         // If a dependence exists and A is already in a group, we know that A
1246         // must be a store since A precedes B and WAR dependences are allowed.
1247         // Thus, A would be sunk below B. We release A's group to prevent this
1248         // illegal code motion. A will then be free to form another group with
1249         // instructions that precede it.
1250         if (isInterleaved(A)) {
1251           InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A);
1252 
1253           LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1254                                "dependence between " << *A << " and "<< *B << '\n');
1255 
1256           StoreGroups.remove(StoreGroup);
1257           releaseGroup(StoreGroup);
1258         }
1259 
1260         // If a dependence exists and A is not already in a group (or it was
1261         // and we just released it), B might be hoisted above A (if B is a
1262         // load) or another store might be sunk below A (if B is a store). In
1263         // either case, we can't add additional instructions to B's group. B
1264         // will only form a group with instructions that it precedes.
1265         break;
1266       }
1267 
1268       // At this point, we've checked for illegal code motion. If either A or B
1269       // isn't strided, there's nothing left to do.
1270       if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1271         continue;
1272 
1273       // Ignore A if it's already in a group or isn't the same kind of memory
1274       // operation as B.
1275       // Note that mayReadFromMemory() isn't mutually exclusive to
1276       // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1277       // here, canVectorizeMemory() should have returned false - except for the
1278       // case we asked for optimization remarks.
1279       if (isInterleaved(A) ||
1280           (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1281           (A->mayWriteToMemory() != B->mayWriteToMemory()))
1282         continue;
1283 
1284       // Check rules 1 and 2. Ignore A if its stride or size is different from
1285       // that of B.
1286       if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1287         continue;
1288 
1289       // Ignore A if the memory object of A and B don't belong to the same
1290       // address space
1291       if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1292         continue;
1293 
1294       // Calculate the distance from A to B.
1295       const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1296           PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1297       if (!DistToB)
1298         continue;
1299       int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1300 
1301       // Check rule 3. Ignore A if its distance to B is not a multiple of the
1302       // size.
1303       if (DistanceToB % static_cast<int64_t>(DesB.Size))
1304         continue;
1305 
1306       // All members of a predicated interleave-group must have the same predicate,
1307       // and currently must reside in the same BB.
1308       BasicBlock *BlockA = A->getParent();
1309       BasicBlock *BlockB = B->getParent();
1310       if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1311           (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1312         continue;
1313 
1314       // The index of A is the index of B plus A's distance to B in multiples
1315       // of the size.
1316       int IndexA =
1317           Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1318 
1319       // Try to insert A into B's group.
1320       if (Group->insertMember(A, IndexA, DesA.Alignment)) {
1321         LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1322                           << "    into the interleave group with" << *B
1323                           << '\n');
1324         InterleaveGroupMap[A] = Group;
1325 
1326         // Set the first load in program order as the insert position.
1327         if (A->mayReadFromMemory())
1328           Group->setInsertPos(A);
1329       }
1330     } // Iteration over A accesses.
1331   }   // Iteration over B accesses.
1332 
1333   auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1334                                             int Index,
1335                                             std::string FirstOrLast) -> bool {
1336     Instruction *Member = Group->getMember(Index);
1337     assert(Member && "Group member does not exist");
1338     Value *MemberPtr = getLoadStorePointerOperand(Member);
1339     Type *AccessTy = getLoadStoreType(Member);
1340     if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1341                      /*Assume=*/false, /*ShouldCheckWrap=*/true))
1342       return false;
1343     LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1344                       << FirstOrLast
1345                       << " group member potentially pointer-wrapping.\n");
1346     releaseGroup(Group);
1347     return true;
1348   };
1349 
1350   // Remove interleaved groups with gaps whose memory
1351   // accesses may wrap around. We have to revisit the getPtrStride analysis,
1352   // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1353   // not check wrapping (see documentation there).
1354   // FORNOW we use Assume=false;
1355   // TODO: Change to Assume=true but making sure we don't exceed the threshold
1356   // of runtime SCEV assumptions checks (thereby potentially failing to
1357   // vectorize altogether).
1358   // Additional optional optimizations:
1359   // TODO: If we are peeling the loop and we know that the first pointer doesn't
1360   // wrap then we can deduce that all pointers in the group don't wrap.
1361   // This means that we can forcefully peel the loop in order to only have to
1362   // check the first pointer for no-wrap. When we'll change to use Assume=true
1363   // we'll only need at most one runtime check per interleaved group.
1364   for (auto *Group : LoadGroups) {
1365     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1366     // load would wrap around the address space we would do a memory access at
1367     // nullptr even without the transformation.
1368     if (Group->getNumMembers() == Group->getFactor())
1369       continue;
1370 
1371     // Case 2: If first and last members of the group don't wrap this implies
1372     // that all the pointers in the group don't wrap.
1373     // So we check only group member 0 (which is always guaranteed to exist),
1374     // and group member Factor - 1; If the latter doesn't exist we rely on
1375     // peeling (if it is a non-reversed accsess -- see Case 3).
1376     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1377       continue;
1378     if (Group->getMember(Group->getFactor() - 1))
1379       InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1380                                      std::string("last"));
1381     else {
1382       // Case 3: A non-reversed interleaved load group with gaps: We need
1383       // to execute at least one scalar epilogue iteration. This will ensure
1384       // we don't speculatively access memory out-of-bounds. We only need
1385       // to look for a member at index factor - 1, since every group must have
1386       // a member at index zero.
1387       if (Group->isReverse()) {
1388         LLVM_DEBUG(
1389             dbgs() << "LV: Invalidate candidate interleaved group due to "
1390                       "a reverse access with gaps.\n");
1391         releaseGroup(Group);
1392         continue;
1393       }
1394       LLVM_DEBUG(
1395           dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1396       RequiresScalarEpilogue = true;
1397     }
1398   }
1399 
1400   for (auto *Group : StoreGroups) {
1401     // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1402     // store would wrap around the address space we would do a memory access at
1403     // nullptr even without the transformation.
1404     if (Group->getNumMembers() == Group->getFactor())
1405       continue;
1406 
1407     // Interleave-store-group with gaps is implemented using masked wide store.
1408     // Remove interleaved store groups with gaps if
1409     // masked-interleaved-accesses are not enabled by the target.
1410     if (!EnablePredicatedInterleavedMemAccesses) {
1411       LLVM_DEBUG(
1412           dbgs() << "LV: Invalidate candidate interleaved store group due "
1413                     "to gaps.\n");
1414       releaseGroup(Group);
1415       continue;
1416     }
1417 
1418     // Case 2: If first and last members of the group don't wrap this implies
1419     // that all the pointers in the group don't wrap.
1420     // So we check only group member 0 (which is always guaranteed to exist),
1421     // and the last group member. Case 3 (scalar epilog) is not relevant for
1422     // stores with gaps, which are implemented with masked-store (rather than
1423     // speculative access, as in loads).
1424     if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1425       continue;
1426     for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1427       if (Group->getMember(Index)) {
1428         InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1429         break;
1430       }
1431   }
1432 }
1433 
1434 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1435   // If no group had triggered the requirement to create an epilogue loop,
1436   // there is nothing to do.
1437   if (!requiresScalarEpilogue())
1438     return;
1439 
1440   bool ReleasedGroup = false;
1441   // Release groups requiring scalar epilogues. Note that this also removes them
1442   // from InterleaveGroups.
1443   for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1444     if (!Group->requiresScalarEpilogue())
1445       continue;
1446     LLVM_DEBUG(
1447         dbgs()
1448         << "LV: Invalidate candidate interleaved group due to gaps that "
1449            "require a scalar epilogue (not allowed under optsize) and cannot "
1450            "be masked (not enabled). \n");
1451     releaseGroup(Group);
1452     ReleasedGroup = true;
1453   }
1454   assert(ReleasedGroup && "At least one group must be invalidated, as a "
1455                           "scalar epilogue was required");
1456   (void)ReleasedGroup;
1457   RequiresScalarEpilogue = false;
1458 }
1459 
1460 template <typename InstT>
1461 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1462   llvm_unreachable("addMetadata can only be used for Instruction");
1463 }
1464 
1465 namespace llvm {
1466 template <>
1467 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1468   SmallVector<Value *, 4> VL;
1469   std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1470                  [](std::pair<int, Instruction *> p) { return p.second; });
1471   propagateMetadata(NewInst, VL);
1472 }
1473 }
1474 
1475 std::string VFABI::mangleTLIVectorName(StringRef VectorName,
1476                                        StringRef ScalarName, unsigned numArgs,
1477                                        ElementCount VF) {
1478   SmallString<256> Buffer;
1479   llvm::raw_svector_ostream Out(Buffer);
1480   Out << "_ZGV" << VFABI::_LLVM_ << "N";
1481   if (VF.isScalable())
1482     Out << 'x';
1483   else
1484     Out << VF.getFixedValue();
1485   for (unsigned I = 0; I < numArgs; ++I)
1486     Out << "v";
1487   Out << "_" << ScalarName << "(" << VectorName << ")";
1488   return std::string(Out.str());
1489 }
1490 
1491 void VFABI::getVectorVariantNames(
1492     const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1493   const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
1494   if (S.empty())
1495     return;
1496 
1497   SmallVector<StringRef, 8> ListAttr;
1498   S.split(ListAttr, ",");
1499 
1500   for (auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1501 #ifndef NDEBUG
1502     LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1503     Optional<VFInfo> Info = VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1504     assert(Info && "Invalid name for a VFABI variant.");
1505     assert(CI.getModule()->getFunction(Info.value().VectorName) &&
1506            "Vector function is missing.");
1507 #endif
1508     VariantMappings.push_back(std::string(S));
1509   }
1510 }
1511 
1512 bool VFShape::hasValidParameterList() const {
1513   for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1514        ++Pos) {
1515     assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1516 
1517     switch (Parameters[Pos].ParamKind) {
1518     default: // Nothing to check.
1519       break;
1520     case VFParamKind::OMP_Linear:
1521     case VFParamKind::OMP_LinearRef:
1522     case VFParamKind::OMP_LinearVal:
1523     case VFParamKind::OMP_LinearUVal:
1524       // Compile time linear steps must be non-zero.
1525       if (Parameters[Pos].LinearStepOrPos == 0)
1526         return false;
1527       break;
1528     case VFParamKind::OMP_LinearPos:
1529     case VFParamKind::OMP_LinearRefPos:
1530     case VFParamKind::OMP_LinearValPos:
1531     case VFParamKind::OMP_LinearUValPos:
1532       // The runtime linear step must be referring to some other
1533       // parameters in the signature.
1534       if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1535         return false;
1536       // The linear step parameter must be marked as uniform.
1537       if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1538           VFParamKind::OMP_Uniform)
1539         return false;
1540       // The linear step parameter can't point at itself.
1541       if (Parameters[Pos].LinearStepOrPos == int(Pos))
1542         return false;
1543       break;
1544     case VFParamKind::GlobalPredicate:
1545       // The global predicate must be the unique. Can be placed anywhere in the
1546       // signature.
1547       for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1548         if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1549           return false;
1550       break;
1551     }
1552   }
1553   return true;
1554 }
1555