1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cstddef>
44 #include <iterator>
45 #include <tuple>
46 
47 using namespace llvm;
48 
49 namespace {
50 
51 struct OrderMap {
52   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
53   unsigned LastGlobalValueID = 0;
54 
55   OrderMap() = default;
56 
57   bool isGlobalValue(unsigned ID) const {
58     return ID <= LastGlobalValueID;
59   }
60 
61   unsigned size() const { return IDs.size(); }
62   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
63 
64   std::pair<unsigned, bool> lookup(const Value *V) const {
65     return IDs.lookup(V);
66   }
67 
68   void index(const Value *V) {
69     // Explicitly sequence get-size and insert-value operations to avoid UB.
70     unsigned ID = IDs.size() + 1;
71     IDs[V].first = ID;
72   }
73 };
74 
75 } // end anonymous namespace
76 
77 static void orderValue(const Value *V, OrderMap &OM) {
78   if (OM.lookup(V).first)
79     return;
80 
81   if (const Constant *C = dyn_cast<Constant>(V)) {
82     if (C->getNumOperands()) {
83       for (const Value *Op : C->operands())
84         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
85           orderValue(Op, OM);
86       if (auto *CE = dyn_cast<ConstantExpr>(C))
87         if (CE->getOpcode() == Instruction::ShuffleVector)
88           orderValue(CE->getShuffleMaskForBitcode(), OM);
89     }
90   }
91 
92   // Note: we cannot cache this lookup above, since inserting into the map
93   // changes the map's size, and thus affects the other IDs.
94   OM.index(V);
95 }
96 
97 static OrderMap orderModule(const Module &M) {
98   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
99   // and ValueEnumerator::incorporateFunction().
100   OrderMap OM;
101 
102   // Initializers of GlobalValues are processed in
103   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
104   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
105   // by giving IDs in reverse order.
106   //
107   // Since GlobalValues never reference each other directly (just through
108   // initializers), their relative IDs only matter for determining order of
109   // uses in their initializers.
110   for (const GlobalVariable &G : reverse(M.globals()))
111     orderValue(&G, OM);
112   for (const GlobalAlias &A : reverse(M.aliases()))
113     orderValue(&A, OM);
114   for (const GlobalIFunc &I : reverse(M.ifuncs()))
115     orderValue(&I, OM);
116   for (const Function &F : reverse(M))
117     orderValue(&F, OM);
118   OM.LastGlobalValueID = OM.size();
119 
120   auto orderConstantValue = [&OM](const Value *V) {
121     if (isa<Constant>(V) || isa<InlineAsm>(V))
122       orderValue(V, OM);
123   };
124 
125   for (const Function &F : M) {
126     if (F.isDeclaration())
127       continue;
128     // Here we need to match the union of ValueEnumerator::incorporateFunction()
129     // and WriteFunction().  Basic blocks are implicitly declared before
130     // anything else (by declaring their size).
131     for (const BasicBlock &BB : F)
132       orderValue(&BB, OM);
133 
134     // Metadata used by instructions is decoded before the actual instructions,
135     // so visit any constants used by it beforehand.
136     for (const BasicBlock &BB : F)
137       for (const Instruction &I : BB)
138         for (const Value *V : I.operands()) {
139           if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
140             if (const auto *VAM =
141                     dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
142               orderConstantValue(VAM->getValue());
143             } else if (const auto *AL =
144                            dyn_cast<DIArgList>(MAV->getMetadata())) {
145               for (const auto *VAM : AL->getArgs())
146                 orderConstantValue(VAM->getValue());
147             }
148           }
149         }
150 
151     for (const Argument &A : F.args())
152       orderValue(&A, OM);
153     for (const BasicBlock &BB : F)
154       for (const Instruction &I : BB) {
155         for (const Value *Op : I.operands())
156           orderConstantValue(Op);
157         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
158           orderValue(SVI->getShuffleMaskForBitcode(), OM);
159         orderValue(&I, OM);
160       }
161   }
162   return OM;
163 }
164 
165 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
166                                          unsigned ID, const OrderMap &OM,
167                                          UseListOrderStack &Stack) {
168   // Predict use-list order for this one.
169   using Entry = std::pair<const Use *, unsigned>;
170   SmallVector<Entry, 64> List;
171   for (const Use &U : V->uses())
172     // Check if this user will be serialized.
173     if (OM.lookup(U.getUser()).first)
174       List.push_back(std::make_pair(&U, List.size()));
175 
176   if (List.size() < 2)
177     // We may have lost some users.
178     return;
179 
180   bool IsGlobalValue = OM.isGlobalValue(ID);
181   llvm::sort(List, [&](const Entry &L, const Entry &R) {
182     const Use *LU = L.first;
183     const Use *RU = R.first;
184     if (LU == RU)
185       return false;
186 
187     auto LID = OM.lookup(LU->getUser()).first;
188     auto RID = OM.lookup(RU->getUser()).first;
189 
190     // If ID is 4, then expect: 7 6 5 1 2 3.
191     if (LID < RID) {
192       if (RID <= ID)
193         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
194           return true;
195       return false;
196     }
197     if (RID < LID) {
198       if (LID <= ID)
199         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
200           return false;
201       return true;
202     }
203 
204     // LID and RID are equal, so we have different operands of the same user.
205     // Assume operands are added in order for all instructions.
206     if (LID <= ID)
207       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
208         return LU->getOperandNo() < RU->getOperandNo();
209     return LU->getOperandNo() > RU->getOperandNo();
210   });
211 
212   if (llvm::is_sorted(List, llvm::less_second()))
213     // Order is already correct.
214     return;
215 
216   // Store the shuffle.
217   Stack.emplace_back(V, F, List.size());
218   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
219   for (size_t I = 0, E = List.size(); I != E; ++I)
220     Stack.back().Shuffle[I] = List[I].second;
221 }
222 
223 static void predictValueUseListOrder(const Value *V, const Function *F,
224                                      OrderMap &OM, UseListOrderStack &Stack) {
225   auto &IDPair = OM[V];
226   assert(IDPair.first && "Unmapped value");
227   if (IDPair.second)
228     // Already predicted.
229     return;
230 
231   // Do the actual prediction.
232   IDPair.second = true;
233   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
234     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
235 
236   // Recursive descent into constants.
237   if (const Constant *C = dyn_cast<Constant>(V)) {
238     if (C->getNumOperands()) { // Visit GlobalValues.
239       for (const Value *Op : C->operands())
240         if (isa<Constant>(Op)) // Visit GlobalValues.
241           predictValueUseListOrder(Op, F, OM, Stack);
242       if (auto *CE = dyn_cast<ConstantExpr>(C))
243         if (CE->getOpcode() == Instruction::ShuffleVector)
244           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
245                                    Stack);
246     }
247   }
248 }
249 
250 static UseListOrderStack predictUseListOrder(const Module &M) {
251   OrderMap OM = orderModule(M);
252 
253   // Use-list orders need to be serialized after all the users have been added
254   // to a value, or else the shuffles will be incomplete.  Store them per
255   // function in a stack.
256   //
257   // Aside from function order, the order of values doesn't matter much here.
258   UseListOrderStack Stack;
259 
260   // We want to visit the functions backward now so we can list function-local
261   // constants in the last Function they're used in.  Module-level constants
262   // have already been visited above.
263   for (const Function &F : llvm::reverse(M)) {
264     if (F.isDeclaration())
265       continue;
266     for (const BasicBlock &BB : F)
267       predictValueUseListOrder(&BB, &F, OM, Stack);
268     for (const Argument &A : F.args())
269       predictValueUseListOrder(&A, &F, OM, Stack);
270     for (const BasicBlock &BB : F)
271       for (const Instruction &I : BB) {
272         for (const Value *Op : I.operands()) {
273           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
274             predictValueUseListOrder(Op, &F, OM, Stack);
275           if (const auto *MAV = dyn_cast<MetadataAsValue>(Op)) {
276             if (const auto *VAM =
277                     dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
278               predictValueUseListOrder(VAM->getValue(), &F, OM, Stack);
279             } else if (const auto *AL =
280                            dyn_cast<DIArgList>(MAV->getMetadata())) {
281               for (const auto *VAM : AL->getArgs())
282                 predictValueUseListOrder(VAM->getValue(), &F, OM, Stack);
283             }
284           }
285         }
286         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
287           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
288                                    Stack);
289         predictValueUseListOrder(&I, &F, OM, Stack);
290       }
291   }
292 
293   // Visit globals last, since the module-level use-list block will be seen
294   // before the function bodies are processed.
295   for (const GlobalVariable &G : M.globals())
296     predictValueUseListOrder(&G, nullptr, OM, Stack);
297   for (const Function &F : M)
298     predictValueUseListOrder(&F, nullptr, OM, Stack);
299   for (const GlobalAlias &A : M.aliases())
300     predictValueUseListOrder(&A, nullptr, OM, Stack);
301   for (const GlobalIFunc &I : M.ifuncs())
302     predictValueUseListOrder(&I, nullptr, OM, Stack);
303   for (const GlobalVariable &G : M.globals())
304     if (G.hasInitializer())
305       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
306   for (const GlobalAlias &A : M.aliases())
307     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
308   for (const GlobalIFunc &I : M.ifuncs())
309     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
310   for (const Function &F : M) {
311     for (const Use &U : F.operands())
312       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
313   }
314 
315   return Stack;
316 }
317 
318 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
319   return V.first->getType()->isIntOrIntVectorTy();
320 }
321 
322 ValueEnumerator::ValueEnumerator(const Module &M,
323                                  bool ShouldPreserveUseListOrder)
324     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
325   if (ShouldPreserveUseListOrder)
326     UseListOrders = predictUseListOrder(M);
327 
328   // Enumerate the global variables.
329   for (const GlobalVariable &GV : M.globals()) {
330     EnumerateValue(&GV);
331     EnumerateType(GV.getValueType());
332   }
333 
334   // Enumerate the functions.
335   for (const Function & F : M) {
336     EnumerateValue(&F);
337     EnumerateType(F.getValueType());
338     EnumerateAttributes(F.getAttributes());
339   }
340 
341   // Enumerate the aliases.
342   for (const GlobalAlias &GA : M.aliases()) {
343     EnumerateValue(&GA);
344     EnumerateType(GA.getValueType());
345   }
346 
347   // Enumerate the ifuncs.
348   for (const GlobalIFunc &GIF : M.ifuncs()) {
349     EnumerateValue(&GIF);
350     EnumerateType(GIF.getValueType());
351   }
352 
353   // Remember what is the cutoff between globalvalue's and other constants.
354   unsigned FirstConstant = Values.size();
355 
356   // Enumerate the global variable initializers and attributes.
357   for (const GlobalVariable &GV : M.globals()) {
358     if (GV.hasInitializer())
359       EnumerateValue(GV.getInitializer());
360     if (GV.hasAttributes())
361       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
362   }
363 
364   // Enumerate the aliasees.
365   for (const GlobalAlias &GA : M.aliases())
366     EnumerateValue(GA.getAliasee());
367 
368   // Enumerate the ifunc resolvers.
369   for (const GlobalIFunc &GIF : M.ifuncs())
370     EnumerateValue(GIF.getResolver());
371 
372   // Enumerate any optional Function data.
373   for (const Function &F : M)
374     for (const Use &U : F.operands())
375       EnumerateValue(U.get());
376 
377   // Enumerate the metadata type.
378   //
379   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
380   // only encodes the metadata type when it's used as a value.
381   EnumerateType(Type::getMetadataTy(M.getContext()));
382 
383   // Insert constants and metadata that are named at module level into the slot
384   // pool so that the module symbol table can refer to them...
385   EnumerateValueSymbolTable(M.getValueSymbolTable());
386   EnumerateNamedMetadata(M);
387 
388   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
389   for (const GlobalVariable &GV : M.globals()) {
390     MDs.clear();
391     GV.getAllMetadata(MDs);
392     for (const auto &I : MDs)
393       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
394       // to write metadata to the global variable's own metadata block
395       // (PR28134).
396       EnumerateMetadata(nullptr, I.second);
397   }
398 
399   // Enumerate types used by function bodies and argument lists.
400   for (const Function &F : M) {
401     for (const Argument &A : F.args())
402       EnumerateType(A.getType());
403 
404     // Enumerate metadata attached to this function.
405     MDs.clear();
406     F.getAllMetadata(MDs);
407     for (const auto &I : MDs)
408       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
409 
410     for (const BasicBlock &BB : F)
411       for (const Instruction &I : BB) {
412         for (const Use &Op : I.operands()) {
413           auto *MD = dyn_cast<MetadataAsValue>(&Op);
414           if (!MD) {
415             EnumerateOperandType(Op);
416             continue;
417           }
418 
419           // Local metadata is enumerated during function-incorporation, but
420           // any ConstantAsMetadata arguments in a DIArgList should be examined
421           // now.
422           if (isa<LocalAsMetadata>(MD->getMetadata()))
423             continue;
424           if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
425             for (auto *VAM : AL->getArgs())
426               if (isa<ConstantAsMetadata>(VAM))
427                 EnumerateMetadata(&F, VAM);
428             continue;
429           }
430 
431           EnumerateMetadata(&F, MD->getMetadata());
432         }
433         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
434           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
435         if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
436           EnumerateType(GEP->getSourceElementType());
437         if (auto *AI = dyn_cast<AllocaInst>(&I))
438           EnumerateType(AI->getAllocatedType());
439         EnumerateType(I.getType());
440         if (const auto *Call = dyn_cast<CallBase>(&I)) {
441           EnumerateAttributes(Call->getAttributes());
442           EnumerateType(Call->getFunctionType());
443         }
444 
445         // Enumerate metadata attached with this instruction.
446         MDs.clear();
447         I.getAllMetadataOtherThanDebugLoc(MDs);
448         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
449           EnumerateMetadata(&F, MDs[i].second);
450 
451         // Don't enumerate the location directly -- it has a special record
452         // type -- but enumerate its operands.
453         if (DILocation *L = I.getDebugLoc())
454           for (const Metadata *Op : L->operands())
455             EnumerateMetadata(&F, Op);
456       }
457   }
458 
459   // Optimize constant ordering.
460   OptimizeConstants(FirstConstant, Values.size());
461 
462   // Organize metadata ordering.
463   organizeMetadata();
464 }
465 
466 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
467   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
468   assert(I != InstructionMap.end() && "Instruction is not mapped!");
469   return I->second;
470 }
471 
472 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
473   unsigned ComdatID = Comdats.idFor(C);
474   assert(ComdatID && "Comdat not found!");
475   return ComdatID;
476 }
477 
478 void ValueEnumerator::setInstructionID(const Instruction *I) {
479   InstructionMap[I] = InstructionCount++;
480 }
481 
482 unsigned ValueEnumerator::getValueID(const Value *V) const {
483   if (auto *MD = dyn_cast<MetadataAsValue>(V))
484     return getMetadataID(MD->getMetadata());
485 
486   ValueMapType::const_iterator I = ValueMap.find(V);
487   assert(I != ValueMap.end() && "Value not in slotcalculator!");
488   return I->second-1;
489 }
490 
491 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
492 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
493   print(dbgs(), ValueMap, "Default");
494   dbgs() << '\n';
495   print(dbgs(), MetadataMap, "MetaData");
496   dbgs() << '\n';
497 }
498 #endif
499 
500 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
501                             const char *Name) const {
502   OS << "Map Name: " << Name << "\n";
503   OS << "Size: " << Map.size() << "\n";
504   for (const auto &I : Map) {
505     const Value *V = I.first;
506     if (V->hasName())
507       OS << "Value: " << V->getName();
508     else
509       OS << "Value: [null]\n";
510     V->print(errs());
511     errs() << '\n';
512 
513     OS << " Uses(" << V->getNumUses() << "):";
514     for (const Use &U : V->uses()) {
515       if (&U != &*V->use_begin())
516         OS << ",";
517       if(U->hasName())
518         OS << " " << U->getName();
519       else
520         OS << " [null]";
521 
522     }
523     OS <<  "\n\n";
524   }
525 }
526 
527 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
528                             const char *Name) const {
529   OS << "Map Name: " << Name << "\n";
530   OS << "Size: " << Map.size() << "\n";
531   for (const auto &I : Map) {
532     const Metadata *MD = I.first;
533     OS << "Metadata: slot = " << I.second.ID << "\n";
534     OS << "Metadata: function = " << I.second.F << "\n";
535     MD->print(OS);
536     OS << "\n";
537   }
538 }
539 
540 /// OptimizeConstants - Reorder constant pool for denser encoding.
541 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
542   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
543 
544   if (ShouldPreserveUseListOrder)
545     // Optimizing constants makes the use-list order difficult to predict.
546     // Disable it for now when trying to preserve the order.
547     return;
548 
549   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
550                    [this](const std::pair<const Value *, unsigned> &LHS,
551                           const std::pair<const Value *, unsigned> &RHS) {
552     // Sort by plane.
553     if (LHS.first->getType() != RHS.first->getType())
554       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
555     // Then by frequency.
556     return LHS.second > RHS.second;
557   });
558 
559   // Ensure that integer and vector of integer constants are at the start of the
560   // constant pool.  This is important so that GEP structure indices come before
561   // gep constant exprs.
562   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
563                         isIntOrIntVectorValue);
564 
565   // Rebuild the modified portion of ValueMap.
566   for (; CstStart != CstEnd; ++CstStart)
567     ValueMap[Values[CstStart].first] = CstStart+1;
568 }
569 
570 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
571 /// table into the values table.
572 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
573   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
574        VI != VE; ++VI)
575     EnumerateValue(VI->getValue());
576 }
577 
578 /// Insert all of the values referenced by named metadata in the specified
579 /// module.
580 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
581   for (const auto &I : M.named_metadata())
582     EnumerateNamedMDNode(&I);
583 }
584 
585 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
586   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
587     EnumerateMetadata(nullptr, MD->getOperand(i));
588 }
589 
590 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
591   return F ? getValueID(F) + 1 : 0;
592 }
593 
594 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
595   EnumerateMetadata(getMetadataFunctionID(F), MD);
596 }
597 
598 void ValueEnumerator::EnumerateFunctionLocalMetadata(
599     const Function &F, const LocalAsMetadata *Local) {
600   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
601 }
602 
603 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
604     const Function &F, const DIArgList *ArgList) {
605   EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
606 }
607 
608 void ValueEnumerator::dropFunctionFromMetadata(
609     MetadataMapType::value_type &FirstMD) {
610   SmallVector<const MDNode *, 64> Worklist;
611   auto push = [&Worklist](MetadataMapType::value_type &MD) {
612     auto &Entry = MD.second;
613 
614     // Nothing to do if this metadata isn't tagged.
615     if (!Entry.F)
616       return;
617 
618     // Drop the function tag.
619     Entry.F = 0;
620 
621     // If this is has an ID and is an MDNode, then its operands have entries as
622     // well.  We need to drop the function from them too.
623     if (Entry.ID)
624       if (auto *N = dyn_cast<MDNode>(MD.first))
625         Worklist.push_back(N);
626   };
627   push(FirstMD);
628   while (!Worklist.empty())
629     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
630       if (!Op)
631         continue;
632       auto MD = MetadataMap.find(Op);
633       if (MD != MetadataMap.end())
634         push(*MD);
635     }
636 }
637 
638 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
639   // It's vital for reader efficiency that uniqued subgraphs are done in
640   // post-order; it's expensive when their operands have forward references.
641   // If a distinct node is referenced from a uniqued node, it'll be delayed
642   // until the uniqued subgraph has been completely traversed.
643   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
644 
645   // Start by enumerating MD, and then work through its transitive operands in
646   // post-order.  This requires a depth-first search.
647   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
648   if (const MDNode *N = enumerateMetadataImpl(F, MD))
649     Worklist.push_back(std::make_pair(N, N->op_begin()));
650 
651   while (!Worklist.empty()) {
652     const MDNode *N = Worklist.back().first;
653 
654     // Enumerate operands until we hit a new node.  We need to traverse these
655     // nodes' operands before visiting the rest of N's operands.
656     MDNode::op_iterator I = std::find_if(
657         Worklist.back().second, N->op_end(),
658         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
659     if (I != N->op_end()) {
660       auto *Op = cast<MDNode>(*I);
661       Worklist.back().second = ++I;
662 
663       // Delay traversing Op if it's a distinct node and N is uniqued.
664       if (Op->isDistinct() && !N->isDistinct())
665         DelayedDistinctNodes.push_back(Op);
666       else
667         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
668       continue;
669     }
670 
671     // All the operands have been visited.  Now assign an ID.
672     Worklist.pop_back();
673     MDs.push_back(N);
674     MetadataMap[N].ID = MDs.size();
675 
676     // Flush out any delayed distinct nodes; these are all the distinct nodes
677     // that are leaves in last uniqued subgraph.
678     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
679       for (const MDNode *N : DelayedDistinctNodes)
680         Worklist.push_back(std::make_pair(N, N->op_begin()));
681       DelayedDistinctNodes.clear();
682     }
683   }
684 }
685 
686 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
687   if (!MD)
688     return nullptr;
689 
690   assert(
691       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
692       "Invalid metadata kind");
693 
694   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
695   MDIndex &Entry = Insertion.first->second;
696   if (!Insertion.second) {
697     // Already mapped.  If F doesn't match the function tag, drop it.
698     if (Entry.hasDifferentFunction(F))
699       dropFunctionFromMetadata(*Insertion.first);
700     return nullptr;
701   }
702 
703   // Don't assign IDs to metadata nodes.
704   if (auto *N = dyn_cast<MDNode>(MD))
705     return N;
706 
707   // Save the metadata.
708   MDs.push_back(MD);
709   Entry.ID = MDs.size();
710 
711   // Enumerate the constant, if any.
712   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
713     EnumerateValue(C->getValue());
714 
715   return nullptr;
716 }
717 
718 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
719 /// information reachable from the metadata.
720 void ValueEnumerator::EnumerateFunctionLocalMetadata(
721     unsigned F, const LocalAsMetadata *Local) {
722   assert(F && "Expected a function");
723 
724   // Check to see if it's already in!
725   MDIndex &Index = MetadataMap[Local];
726   if (Index.ID) {
727     assert(Index.F == F && "Expected the same function");
728     return;
729   }
730 
731   MDs.push_back(Local);
732   Index.F = F;
733   Index.ID = MDs.size();
734 
735   EnumerateValue(Local->getValue());
736 }
737 
738 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
739 /// information reachable from the metadata.
740 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
741     unsigned F, const DIArgList *ArgList) {
742   assert(F && "Expected a function");
743 
744   // Check to see if it's already in!
745   MDIndex &Index = MetadataMap[ArgList];
746   if (Index.ID) {
747     assert(Index.F == F && "Expected the same function");
748     return;
749   }
750 
751   for (ValueAsMetadata *VAM : ArgList->getArgs()) {
752     if (isa<LocalAsMetadata>(VAM)) {
753       assert(MetadataMap.count(VAM) &&
754              "LocalAsMetadata should be enumerated before DIArgList");
755       assert(MetadataMap[VAM].F == F &&
756              "Expected LocalAsMetadata in the same function");
757     } else {
758       assert(isa<ConstantAsMetadata>(VAM) &&
759              "Expected LocalAsMetadata or ConstantAsMetadata");
760       assert(ValueMap.count(VAM->getValue()) &&
761              "Constant should be enumerated beforeDIArgList");
762       EnumerateMetadata(F, VAM);
763     }
764   }
765 
766   MDs.push_back(ArgList);
767   Index.F = F;
768   Index.ID = MDs.size();
769 }
770 
771 static unsigned getMetadataTypeOrder(const Metadata *MD) {
772   // Strings are emitted in bulk and must come first.
773   if (isa<MDString>(MD))
774     return 0;
775 
776   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
777   // to the front since we can detect it.
778   auto *N = dyn_cast<MDNode>(MD);
779   if (!N)
780     return 1;
781 
782   // The reader is fast forward references for distinct node operands, but slow
783   // when uniqued operands are unresolved.
784   return N->isDistinct() ? 2 : 3;
785 }
786 
787 void ValueEnumerator::organizeMetadata() {
788   assert(MetadataMap.size() == MDs.size() &&
789          "Metadata map and vector out of sync");
790 
791   if (MDs.empty())
792     return;
793 
794   // Copy out the index information from MetadataMap in order to choose a new
795   // order.
796   SmallVector<MDIndex, 64> Order;
797   Order.reserve(MetadataMap.size());
798   for (const Metadata *MD : MDs)
799     Order.push_back(MetadataMap.lookup(MD));
800 
801   // Partition:
802   //   - by function, then
803   //   - by isa<MDString>
804   // and then sort by the original/current ID.  Since the IDs are guaranteed to
805   // be unique, the result of llvm::sort will be deterministic.  There's no need
806   // for std::stable_sort.
807   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
808     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
809            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
810   });
811 
812   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
813   // and fix up MetadataMap.
814   std::vector<const Metadata *> OldMDs;
815   MDs.swap(OldMDs);
816   MDs.reserve(OldMDs.size());
817   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
818     auto *MD = Order[I].get(OldMDs);
819     MDs.push_back(MD);
820     MetadataMap[MD].ID = I + 1;
821     if (isa<MDString>(MD))
822       ++NumMDStrings;
823   }
824 
825   // Return early if there's nothing for the functions.
826   if (MDs.size() == Order.size())
827     return;
828 
829   // Build the function metadata ranges.
830   MDRange R;
831   FunctionMDs.reserve(OldMDs.size());
832   unsigned PrevF = 0;
833   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
834        ++I) {
835     unsigned F = Order[I].F;
836     if (!PrevF) {
837       PrevF = F;
838     } else if (PrevF != F) {
839       R.Last = FunctionMDs.size();
840       std::swap(R, FunctionMDInfo[PrevF]);
841       R.First = FunctionMDs.size();
842 
843       ID = MDs.size();
844       PrevF = F;
845     }
846 
847     auto *MD = Order[I].get(OldMDs);
848     FunctionMDs.push_back(MD);
849     MetadataMap[MD].ID = ++ID;
850     if (isa<MDString>(MD))
851       ++R.NumStrings;
852   }
853   R.Last = FunctionMDs.size();
854   FunctionMDInfo[PrevF] = R;
855 }
856 
857 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
858   NumModuleMDs = MDs.size();
859 
860   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
861   NumMDStrings = R.NumStrings;
862   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
863              FunctionMDs.begin() + R.Last);
864 }
865 
866 void ValueEnumerator::EnumerateValue(const Value *V) {
867   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
868   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
869 
870   // Check to see if it's already in!
871   unsigned &ValueID = ValueMap[V];
872   if (ValueID) {
873     // Increment use count.
874     Values[ValueID-1].second++;
875     return;
876   }
877 
878   if (auto *GO = dyn_cast<GlobalObject>(V))
879     if (const Comdat *C = GO->getComdat())
880       Comdats.insert(C);
881 
882   // Enumerate the type of this value.
883   EnumerateType(V->getType());
884 
885   if (const Constant *C = dyn_cast<Constant>(V)) {
886     if (isa<GlobalValue>(C)) {
887       // Initializers for globals are handled explicitly elsewhere.
888     } else if (C->getNumOperands()) {
889       // If a constant has operands, enumerate them.  This makes sure that if a
890       // constant has uses (for example an array of const ints), that they are
891       // inserted also.
892 
893       // We prefer to enumerate them with values before we enumerate the user
894       // itself.  This makes it more likely that we can avoid forward references
895       // in the reader.  We know that there can be no cycles in the constants
896       // graph that don't go through a global variable.
897       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
898            I != E; ++I)
899         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
900           EnumerateValue(*I);
901       if (auto *CE = dyn_cast<ConstantExpr>(C)) {
902         if (CE->getOpcode() == Instruction::ShuffleVector)
903           EnumerateValue(CE->getShuffleMaskForBitcode());
904         if (auto *GEP = dyn_cast<GEPOperator>(CE))
905           EnumerateType(GEP->getSourceElementType());
906       }
907 
908       // Finally, add the value.  Doing this could make the ValueID reference be
909       // dangling, don't reuse it.
910       Values.push_back(std::make_pair(V, 1U));
911       ValueMap[V] = Values.size();
912       return;
913     }
914   }
915 
916   // Add the value.
917   Values.push_back(std::make_pair(V, 1U));
918   ValueID = Values.size();
919 }
920 
921 
922 void ValueEnumerator::EnumerateType(Type *Ty) {
923   unsigned *TypeID = &TypeMap[Ty];
924 
925   // We've already seen this type.
926   if (*TypeID)
927     return;
928 
929   // If it is a non-anonymous struct, mark the type as being visited so that we
930   // don't recursively visit it.  This is safe because we allow forward
931   // references of these in the bitcode reader.
932   if (StructType *STy = dyn_cast<StructType>(Ty))
933     if (!STy->isLiteral())
934       *TypeID = ~0U;
935 
936   // Enumerate all of the subtypes before we enumerate this type.  This ensures
937   // that the type will be enumerated in an order that can be directly built.
938   for (Type *SubTy : Ty->subtypes())
939     EnumerateType(SubTy);
940 
941   // Refresh the TypeID pointer in case the table rehashed.
942   TypeID = &TypeMap[Ty];
943 
944   // Check to see if we got the pointer another way.  This can happen when
945   // enumerating recursive types that hit the base case deeper than they start.
946   //
947   // If this is actually a struct that we are treating as forward ref'able,
948   // then emit the definition now that all of its contents are available.
949   if (*TypeID && *TypeID != ~0U)
950     return;
951 
952   // Add this type now that its contents are all happily enumerated.
953   Types.push_back(Ty);
954 
955   *TypeID = Types.size();
956 }
957 
958 // Enumerate the types for the specified value.  If the value is a constant,
959 // walk through it, enumerating the types of the constant.
960 void ValueEnumerator::EnumerateOperandType(const Value *V) {
961   EnumerateType(V->getType());
962 
963   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
964 
965   const Constant *C = dyn_cast<Constant>(V);
966   if (!C)
967     return;
968 
969   // If this constant is already enumerated, ignore it, we know its type must
970   // be enumerated.
971   if (ValueMap.count(C))
972     return;
973 
974   // This constant may have operands, make sure to enumerate the types in
975   // them.
976   for (const Value *Op : C->operands()) {
977     // Don't enumerate basic blocks here, this happens as operands to
978     // blockaddress.
979     if (isa<BasicBlock>(Op))
980       continue;
981 
982     EnumerateOperandType(Op);
983   }
984   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
985     if (CE->getOpcode() == Instruction::ShuffleVector)
986       EnumerateOperandType(CE->getShuffleMaskForBitcode());
987     if (CE->getOpcode() == Instruction::GetElementPtr)
988       EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
989   }
990 }
991 
992 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
993   if (PAL.isEmpty()) return;  // null is always 0.
994 
995   // Do a lookup.
996   unsigned &Entry = AttributeListMap[PAL];
997   if (Entry == 0) {
998     // Never saw this before, add it.
999     AttributeLists.push_back(PAL);
1000     Entry = AttributeLists.size();
1001   }
1002 
1003   // Do lookups for all attribute groups.
1004   for (unsigned i : PAL.indexes()) {
1005     AttributeSet AS = PAL.getAttributes(i);
1006     if (!AS.hasAttributes())
1007       continue;
1008     IndexAndAttrSet Pair = {i, AS};
1009     unsigned &Entry = AttributeGroupMap[Pair];
1010     if (Entry == 0) {
1011       AttributeGroups.push_back(Pair);
1012       Entry = AttributeGroups.size();
1013 
1014       for (Attribute Attr : AS) {
1015         if (Attr.isTypeAttribute())
1016           EnumerateType(Attr.getValueAsType());
1017       }
1018     }
1019   }
1020 }
1021 
1022 void ValueEnumerator::incorporateFunction(const Function &F) {
1023   InstructionCount = 0;
1024   NumModuleValues = Values.size();
1025 
1026   // Add global metadata to the function block.  This doesn't include
1027   // LocalAsMetadata.
1028   incorporateFunctionMetadata(F);
1029 
1030   // Adding function arguments to the value table.
1031   for (const auto &I : F.args()) {
1032     EnumerateValue(&I);
1033     if (I.hasAttribute(Attribute::ByVal))
1034       EnumerateType(I.getParamByValType());
1035     else if (I.hasAttribute(Attribute::StructRet))
1036       EnumerateType(I.getParamStructRetType());
1037     else if (I.hasAttribute(Attribute::ByRef))
1038       EnumerateType(I.getParamByRefType());
1039   }
1040   FirstFuncConstantID = Values.size();
1041 
1042   // Add all function-level constants to the value table.
1043   for (const BasicBlock &BB : F) {
1044     for (const Instruction &I : BB) {
1045       for (const Use &OI : I.operands()) {
1046         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1047           EnumerateValue(OI);
1048       }
1049       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1050         EnumerateValue(SVI->getShuffleMaskForBitcode());
1051     }
1052     BasicBlocks.push_back(&BB);
1053     ValueMap[&BB] = BasicBlocks.size();
1054   }
1055 
1056   // Optimize the constant layout.
1057   OptimizeConstants(FirstFuncConstantID, Values.size());
1058 
1059   // Add the function's parameter attributes so they are available for use in
1060   // the function's instruction.
1061   EnumerateAttributes(F.getAttributes());
1062 
1063   FirstInstID = Values.size();
1064 
1065   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1066   SmallVector<DIArgList *, 8> ArgListMDVector;
1067   // Add all of the instructions.
1068   for (const BasicBlock &BB : F) {
1069     for (const Instruction &I : BB) {
1070       for (const Use &OI : I.operands()) {
1071         if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1072           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1073             // Enumerate metadata after the instructions they might refer to.
1074             FnLocalMDVector.push_back(Local);
1075           } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1076             ArgListMDVector.push_back(ArgList);
1077             for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1078               if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1079                 // Enumerate metadata after the instructions they might refer
1080                 // to.
1081                 FnLocalMDVector.push_back(Local);
1082               }
1083             }
1084           }
1085         }
1086       }
1087 
1088       if (!I.getType()->isVoidTy())
1089         EnumerateValue(&I);
1090     }
1091   }
1092 
1093   // Add all of the function-local metadata.
1094   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1095     // At this point, every local values have been incorporated, we shouldn't
1096     // have a metadata operand that references a value that hasn't been seen.
1097     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1098            "Missing value for metadata operand");
1099     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1100   }
1101   // DIArgList entries must come after function-local metadata, as it is not
1102   // possible to forward-reference them.
1103   for (const DIArgList *ArgList : ArgListMDVector)
1104     EnumerateFunctionLocalListMetadata(F, ArgList);
1105 }
1106 
1107 void ValueEnumerator::purgeFunction() {
1108   /// Remove purged values from the ValueMap.
1109   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1110     ValueMap.erase(Values[i].first);
1111   for (const Metadata *MD : llvm::drop_begin(MDs, NumModuleMDs))
1112     MetadataMap.erase(MD);
1113   for (const BasicBlock *BB : BasicBlocks)
1114     ValueMap.erase(BB);
1115 
1116   Values.resize(NumModuleValues);
1117   MDs.resize(NumModuleMDs);
1118   BasicBlocks.clear();
1119   NumMDStrings = 0;
1120 }
1121 
1122 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1123                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1124   unsigned Counter = 0;
1125   for (const BasicBlock &BB : *F)
1126     IDMap[&BB] = ++Counter;
1127 }
1128 
1129 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1130 /// specified basic block.  This is relatively expensive information, so it
1131 /// should only be used by rare constructs such as address-of-label.
1132 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1133   unsigned &Idx = GlobalBasicBlockIDs[BB];
1134   if (Idx != 0)
1135     return Idx-1;
1136 
1137   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1138   return getGlobalBasicBlockID(BB);
1139 }
1140 
1141 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1142   return Log2_32_Ceil(getTypes().size() + 1);
1143 }
1144