1 //===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AggressiveAntiDepBreaker class, which
10 // implements register anti-dependence breaking during post-RA
11 // scheduling. It attempts to break all anti-dependencies within a
12 // block.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "AggressiveAntiDepBreaker.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterClassInfo.h"
28 #include "llvm/CodeGen/ScheduleDAG.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MachineValueType.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <cassert>
39 #include <map>
40 #include <set>
41 #include <utility>
42 #include <vector>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "post-RA-sched"
47 
48 // If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
49 static cl::opt<int>
50 DebugDiv("agg-antidep-debugdiv",
51          cl::desc("Debug control for aggressive anti-dep breaker"),
52          cl::init(0), cl::Hidden);
53 
54 static cl::opt<int>
55 DebugMod("agg-antidep-debugmod",
56          cl::desc("Debug control for aggressive anti-dep breaker"),
57          cl::init(0), cl::Hidden);
58 
59 AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
60                                                MachineBasicBlock *BB)
61     : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
62       GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0),
63       DefIndices(TargetRegs, 0) {
64   const unsigned BBSize = BB->size();
65   for (unsigned i = 0; i < NumTargetRegs; ++i) {
66     // Initialize all registers to be in their own group. Initially we
67     // assign the register to the same-indexed GroupNode.
68     GroupNodeIndices[i] = i;
69     // Initialize the indices to indicate that no registers are live.
70     KillIndices[i] = ~0u;
71     DefIndices[i] = BBSize;
72   }
73 }
74 
75 unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
76   unsigned Node = GroupNodeIndices[Reg];
77   while (GroupNodes[Node] != Node)
78     Node = GroupNodes[Node];
79 
80   return Node;
81 }
82 
83 void AggressiveAntiDepState::GetGroupRegs(
84   unsigned Group,
85   std::vector<unsigned> &Regs,
86   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
87 {
88   for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
89     if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
90       Regs.push_back(Reg);
91   }
92 }
93 
94 unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) {
95   assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
96   assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
97 
98   // find group for each register
99   unsigned Group1 = GetGroup(Reg1);
100   unsigned Group2 = GetGroup(Reg2);
101 
102   // if either group is 0, then that must become the parent
103   unsigned Parent = (Group1 == 0) ? Group1 : Group2;
104   unsigned Other = (Parent == Group1) ? Group2 : Group1;
105   GroupNodes.at(Other) = Parent;
106   return Parent;
107 }
108 
109 unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) {
110   // Create a new GroupNode for Reg. Reg's existing GroupNode must
111   // stay as is because there could be other GroupNodes referring to
112   // it.
113   unsigned idx = GroupNodes.size();
114   GroupNodes.push_back(idx);
115   GroupNodeIndices[Reg] = idx;
116   return idx;
117 }
118 
119 bool AggressiveAntiDepState::IsLive(unsigned Reg) {
120   // KillIndex must be defined and DefIndex not defined for a register
121   // to be live.
122   return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
123 }
124 
125 AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
126     MachineFunction &MFi, const RegisterClassInfo &RCI,
127     TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
128     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
129       TII(MF.getSubtarget().getInstrInfo()),
130       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) {
131   /* Collect a bitset of all registers that are only broken if they
132      are on the critical path. */
133   for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
134     BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
135     if (CriticalPathSet.none())
136       CriticalPathSet = CPSet;
137     else
138       CriticalPathSet |= CPSet;
139    }
140 
141    LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
142    LLVM_DEBUG(for (unsigned r
143                    : CriticalPathSet.set_bits()) dbgs()
144               << " " << printReg(r, TRI));
145    LLVM_DEBUG(dbgs() << '\n');
146 }
147 
148 AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
149   delete State;
150 }
151 
152 void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
153   assert(!State);
154   State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
155 
156   bool IsReturnBlock = BB->isReturnBlock();
157   std::vector<unsigned> &KillIndices = State->GetKillIndices();
158   std::vector<unsigned> &DefIndices = State->GetDefIndices();
159 
160   // Examine the live-in regs of all successors.
161   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
162          SE = BB->succ_end(); SI != SE; ++SI)
163     for (const auto &LI : (*SI)->liveins()) {
164       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
165         unsigned Reg = *AI;
166         State->UnionGroups(Reg, 0);
167         KillIndices[Reg] = BB->size();
168         DefIndices[Reg] = ~0u;
169       }
170     }
171 
172   // Mark live-out callee-saved registers. In a return block this is
173   // all callee-saved registers. In non-return this is any
174   // callee-saved register that is not saved in the prolog.
175   const MachineFrameInfo &MFI = MF.getFrameInfo();
176   BitVector Pristine = MFI.getPristineRegs(MF);
177   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
178        ++I) {
179     unsigned Reg = *I;
180     if (!IsReturnBlock && !Pristine.test(Reg))
181       continue;
182     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
183       unsigned AliasReg = *AI;
184       State->UnionGroups(AliasReg, 0);
185       KillIndices[AliasReg] = BB->size();
186       DefIndices[AliasReg] = ~0u;
187     }
188   }
189 }
190 
191 void AggressiveAntiDepBreaker::FinishBlock() {
192   delete State;
193   State = nullptr;
194 }
195 
196 void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
197                                        unsigned InsertPosIndex) {
198   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
199 
200   std::set<unsigned> PassthruRegs;
201   GetPassthruRegs(MI, PassthruRegs);
202   PrescanInstruction(MI, Count, PassthruRegs);
203   ScanInstruction(MI, Count);
204 
205   LLVM_DEBUG(dbgs() << "Observe: ");
206   LLVM_DEBUG(MI.dump());
207   LLVM_DEBUG(dbgs() << "\tRegs:");
208 
209   std::vector<unsigned> &DefIndices = State->GetDefIndices();
210   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
211     // If Reg is current live, then mark that it can't be renamed as
212     // we don't know the extent of its live-range anymore (now that it
213     // has been scheduled). If it is not live but was defined in the
214     // previous schedule region, then set its def index to the most
215     // conservative location (i.e. the beginning of the previous
216     // schedule region).
217     if (State->IsLive(Reg)) {
218       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs()
219                  << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)
220                  << "->g0(region live-out)");
221       State->UnionGroups(Reg, 0);
222     } else if ((DefIndices[Reg] < InsertPosIndex)
223                && (DefIndices[Reg] >= Count)) {
224       DefIndices[Reg] = Count;
225     }
226   }
227   LLVM_DEBUG(dbgs() << '\n');
228 }
229 
230 bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
231                                                 MachineOperand &MO) {
232   if (!MO.isReg() || !MO.isImplicit())
233     return false;
234 
235   Register Reg = MO.getReg();
236   if (Reg == 0)
237     return false;
238 
239   MachineOperand *Op = nullptr;
240   if (MO.isDef())
241     Op = MI.findRegisterUseOperand(Reg, true);
242   else
243     Op = MI.findRegisterDefOperand(Reg);
244 
245   return(Op && Op->isImplicit());
246 }
247 
248 void AggressiveAntiDepBreaker::GetPassthruRegs(
249     MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
250   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
251     MachineOperand &MO = MI.getOperand(i);
252     if (!MO.isReg()) continue;
253     if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
254         IsImplicitDefUse(MI, MO)) {
255       const Register Reg = MO.getReg();
256       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
257            SubRegs.isValid(); ++SubRegs)
258         PassthruRegs.insert(*SubRegs);
259     }
260   }
261 }
262 
263 /// AntiDepEdges - Return in Edges the anti- and output- dependencies
264 /// in SU that we want to consider for breaking.
265 static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) {
266   SmallSet<unsigned, 4> RegSet;
267   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
268        P != PE; ++P) {
269     if ((P->getKind() == SDep::Anti) || (P->getKind() == SDep::Output)) {
270       if (RegSet.insert(P->getReg()).second)
271         Edges.push_back(&*P);
272     }
273   }
274 }
275 
276 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
277 /// critical path.
278 static const SUnit *CriticalPathStep(const SUnit *SU) {
279   const SDep *Next = nullptr;
280   unsigned NextDepth = 0;
281   // Find the predecessor edge with the greatest depth.
282   if (SU) {
283     for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
284          P != PE; ++P) {
285       const SUnit *PredSU = P->getSUnit();
286       unsigned PredLatency = P->getLatency();
287       unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
288       // In the case of a latency tie, prefer an anti-dependency edge over
289       // other types of edges.
290       if (NextDepth < PredTotalLatency ||
291           (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
292         NextDepth = PredTotalLatency;
293         Next = &*P;
294       }
295     }
296   }
297 
298   return (Next) ? Next->getSUnit() : nullptr;
299 }
300 
301 void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
302                                              const char *tag,
303                                              const char *header,
304                                              const char *footer) {
305   std::vector<unsigned> &KillIndices = State->GetKillIndices();
306   std::vector<unsigned> &DefIndices = State->GetDefIndices();
307   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
308     RegRefs = State->GetRegRefs();
309 
310   // FIXME: We must leave subregisters of live super registers as live, so that
311   // we don't clear out the register tracking information for subregisters of
312   // super registers we're still tracking (and with which we're unioning
313   // subregister definitions).
314   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
315     if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
316       LLVM_DEBUG(if (!header && footer) dbgs() << footer);
317       return;
318     }
319 
320   if (!State->IsLive(Reg)) {
321     KillIndices[Reg] = KillIdx;
322     DefIndices[Reg] = ~0u;
323     RegRefs.erase(Reg);
324     State->LeaveGroup(Reg);
325     LLVM_DEBUG(if (header) {
326       dbgs() << header << printReg(Reg, TRI);
327       header = nullptr;
328     });
329     LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
330     // Repeat for subregisters. Note that we only do this if the superregister
331     // was not live because otherwise, regardless whether we have an explicit
332     // use of the subregister, the subregister's contents are needed for the
333     // uses of the superregister.
334     for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
335       unsigned SubregReg = *SubRegs;
336       if (!State->IsLive(SubregReg)) {
337         KillIndices[SubregReg] = KillIdx;
338         DefIndices[SubregReg] = ~0u;
339         RegRefs.erase(SubregReg);
340         State->LeaveGroup(SubregReg);
341         LLVM_DEBUG(if (header) {
342           dbgs() << header << printReg(Reg, TRI);
343           header = nullptr;
344         });
345         LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g"
346                           << State->GetGroup(SubregReg) << tag);
347       }
348     }
349   }
350 
351   LLVM_DEBUG(if (!header && footer) dbgs() << footer);
352 }
353 
354 void AggressiveAntiDepBreaker::PrescanInstruction(
355     MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
356   std::vector<unsigned> &DefIndices = State->GetDefIndices();
357   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
358     RegRefs = State->GetRegRefs();
359 
360   // Handle dead defs by simulating a last-use of the register just
361   // after the def. A dead def can occur because the def is truly
362   // dead, or because only a subregister is live at the def. If we
363   // don't do this the dead def will be incorrectly merged into the
364   // previous def.
365   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
366     MachineOperand &MO = MI.getOperand(i);
367     if (!MO.isReg() || !MO.isDef()) continue;
368     Register Reg = MO.getReg();
369     if (Reg == 0) continue;
370 
371     HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
372   }
373 
374   LLVM_DEBUG(dbgs() << "\tDef Groups:");
375   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
376     MachineOperand &MO = MI.getOperand(i);
377     if (!MO.isReg() || !MO.isDef()) continue;
378     Register Reg = MO.getReg();
379     if (Reg == 0) continue;
380 
381     LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
382                       << State->GetGroup(Reg));
383 
384     // If MI's defs have a special allocation requirement, don't allow
385     // any def registers to be changed. Also assume all registers
386     // defined in a call must not be changed (ABI). Inline assembly may
387     // reference either system calls or the register directly. Skip it until we
388     // can tell user specified registers from compiler-specified.
389     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
390         MI.isInlineAsm()) {
391       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
392       State->UnionGroups(Reg, 0);
393     }
394 
395     // Any aliased that are live at this point are completely or
396     // partially defined here, so group those aliases with Reg.
397     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
398       unsigned AliasReg = *AI;
399       if (State->IsLive(AliasReg)) {
400         State->UnionGroups(Reg, AliasReg);
401         LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via "
402                           << printReg(AliasReg, TRI) << ")");
403       }
404     }
405 
406     // Note register reference...
407     const TargetRegisterClass *RC = nullptr;
408     if (i < MI.getDesc().getNumOperands())
409       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
410     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
411     RegRefs.insert(std::make_pair(Reg, RR));
412   }
413 
414   LLVM_DEBUG(dbgs() << '\n');
415 
416   // Scan the register defs for this instruction and update
417   // live-ranges.
418   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
419     MachineOperand &MO = MI.getOperand(i);
420     if (!MO.isReg() || !MO.isDef()) continue;
421     Register Reg = MO.getReg();
422     if (Reg == 0) continue;
423     // Ignore KILLs and passthru registers for liveness...
424     if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
425       continue;
426 
427     // Update def for Reg and aliases.
428     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
429       // We need to be careful here not to define already-live super registers.
430       // If the super register is already live, then this definition is not
431       // a definition of the whole super register (just a partial insertion
432       // into it). Earlier subregister definitions (which we've not yet visited
433       // because we're iterating bottom-up) need to be linked to the same group
434       // as this definition.
435       if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
436         continue;
437 
438       DefIndices[*AI] = Count;
439     }
440   }
441 }
442 
443 void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
444                                                unsigned Count) {
445   LLVM_DEBUG(dbgs() << "\tUse Groups:");
446   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
447     RegRefs = State->GetRegRefs();
448 
449   // If MI's uses have special allocation requirement, don't allow
450   // any use registers to be changed. Also assume all registers
451   // used in a call must not be changed (ABI).
452   // Inline Assembly register uses also cannot be safely changed.
453   // FIXME: The issue with predicated instruction is more complex. We are being
454   // conservatively here because the kill markers cannot be trusted after
455   // if-conversion:
456   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
457   // ...
458   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
459   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
460   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
461   //
462   // The first R6 kill is not really a kill since it's killed by a predicated
463   // instruction which may not be executed. The second R6 def may or may not
464   // re-define R6 so it's not safe to change it since the last R6 use cannot be
465   // changed.
466   bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
467                  TII->isPredicated(MI) || MI.isInlineAsm();
468 
469   // Scan the register uses for this instruction and update
470   // live-ranges, groups and RegRefs.
471   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
472     MachineOperand &MO = MI.getOperand(i);
473     if (!MO.isReg() || !MO.isUse()) continue;
474     Register Reg = MO.getReg();
475     if (Reg == 0) continue;
476 
477     LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
478                       << State->GetGroup(Reg));
479 
480     // It wasn't previously live but now it is, this is a kill. Forget
481     // the previous live-range information and start a new live-range
482     // for the register.
483     HandleLastUse(Reg, Count, "(last-use)");
484 
485     if (Special) {
486       LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
487       State->UnionGroups(Reg, 0);
488     }
489 
490     // Note register reference...
491     const TargetRegisterClass *RC = nullptr;
492     if (i < MI.getDesc().getNumOperands())
493       RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
494     AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
495     RegRefs.insert(std::make_pair(Reg, RR));
496   }
497 
498   LLVM_DEBUG(dbgs() << '\n');
499 
500   // Form a group of all defs and uses of a KILL instruction to ensure
501   // that all registers are renamed as a group.
502   if (MI.isKill()) {
503     LLVM_DEBUG(dbgs() << "\tKill Group:");
504 
505     unsigned FirstReg = 0;
506     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
507       MachineOperand &MO = MI.getOperand(i);
508       if (!MO.isReg()) continue;
509       Register Reg = MO.getReg();
510       if (Reg == 0) continue;
511 
512       if (FirstReg != 0) {
513         LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI));
514         State->UnionGroups(FirstReg, Reg);
515       } else {
516         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
517         FirstReg = Reg;
518       }
519     }
520 
521     LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
522   }
523 }
524 
525 BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
526   BitVector BV(TRI->getNumRegs(), false);
527   bool first = true;
528 
529   // Check all references that need rewriting for Reg. For each, use
530   // the corresponding register class to narrow the set of registers
531   // that are appropriate for renaming.
532   for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
533     const TargetRegisterClass *RC = Q.second.RC;
534     if (!RC) continue;
535 
536     BitVector RCBV = TRI->getAllocatableSet(MF, RC);
537     if (first) {
538       BV |= RCBV;
539       first = false;
540     } else {
541       BV &= RCBV;
542     }
543 
544     LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
545   }
546 
547   return BV;
548 }
549 
550 bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
551                                 unsigned AntiDepGroupIndex,
552                                 RenameOrderType& RenameOrder,
553                                 std::map<unsigned, unsigned> &RenameMap) {
554   std::vector<unsigned> &KillIndices = State->GetKillIndices();
555   std::vector<unsigned> &DefIndices = State->GetDefIndices();
556   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
557     RegRefs = State->GetRegRefs();
558 
559   // Collect all referenced registers in the same group as
560   // AntiDepReg. These all need to be renamed together if we are to
561   // break the anti-dependence.
562   std::vector<unsigned> Regs;
563   State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
564   assert(!Regs.empty() && "Empty register group!");
565   if (Regs.empty())
566     return false;
567 
568   // Find the "superest" register in the group. At the same time,
569   // collect the BitVector of registers that can be used to rename
570   // each register.
571   LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
572                     << ":\n");
573   std::map<unsigned, BitVector> RenameRegisterMap;
574   unsigned SuperReg = 0;
575   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
576     unsigned Reg = Regs[i];
577     if ((SuperReg == 0) || TRI->isSuperRegister(SuperReg, Reg))
578       SuperReg = Reg;
579 
580     // If Reg has any references, then collect possible rename regs
581     if (RegRefs.count(Reg) > 0) {
582       LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":");
583 
584       BitVector &BV = RenameRegisterMap[Reg];
585       assert(BV.empty());
586       BV = GetRenameRegisters(Reg);
587 
588       LLVM_DEBUG({
589         dbgs() << " ::";
590         for (unsigned r : BV.set_bits())
591           dbgs() << " " << printReg(r, TRI);
592         dbgs() << "\n";
593       });
594     }
595   }
596 
597   // All group registers should be a subreg of SuperReg.
598   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
599     unsigned Reg = Regs[i];
600     if (Reg == SuperReg) continue;
601     bool IsSub = TRI->isSubRegister(SuperReg, Reg);
602     // FIXME: remove this once PR18663 has been properly fixed. For now,
603     // return a conservative answer:
604     // assert(IsSub && "Expecting group subregister");
605     if (!IsSub)
606       return false;
607   }
608 
609 #ifndef NDEBUG
610   // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
611   if (DebugDiv > 0) {
612     static int renamecnt = 0;
613     if (renamecnt++ % DebugDiv != DebugMod)
614       return false;
615 
616     dbgs() << "*** Performing rename " << printReg(SuperReg, TRI)
617            << " for debug ***\n";
618   }
619 #endif
620 
621   // Check each possible rename register for SuperReg in round-robin
622   // order. If that register is available, and the corresponding
623   // registers are available for the other group subregisters, then we
624   // can use those registers to rename.
625 
626   // FIXME: Using getMinimalPhysRegClass is very conservative. We should
627   // check every use of the register and find the largest register class
628   // that can be used in all of them.
629   const TargetRegisterClass *SuperRC =
630     TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
631 
632   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
633   if (Order.empty()) {
634     LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
635     return false;
636   }
637 
638   LLVM_DEBUG(dbgs() << "\tFind Registers:");
639 
640   RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
641 
642   unsigned OrigR = RenameOrder[SuperRC];
643   unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
644   unsigned R = OrigR;
645   do {
646     if (R == 0) R = Order.size();
647     --R;
648     const unsigned NewSuperReg = Order[R];
649     // Don't consider non-allocatable registers
650     if (!MRI.isAllocatable(NewSuperReg)) continue;
651     // Don't replace a register with itself.
652     if (NewSuperReg == SuperReg) continue;
653 
654     LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':');
655     RenameMap.clear();
656 
657     // For each referenced group register (which must be a SuperReg or
658     // a subregister of SuperReg), find the corresponding subregister
659     // of NewSuperReg and make sure it is free to be renamed.
660     for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
661       unsigned Reg = Regs[i];
662       unsigned NewReg = 0;
663       if (Reg == SuperReg) {
664         NewReg = NewSuperReg;
665       } else {
666         unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
667         if (NewSubRegIdx != 0)
668           NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
669       }
670 
671       LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI));
672 
673       // Check if Reg can be renamed to NewReg.
674       if (!RenameRegisterMap[Reg].test(NewReg)) {
675         LLVM_DEBUG(dbgs() << "(no rename)");
676         goto next_super_reg;
677       }
678 
679       // If NewReg is dead and NewReg's most recent def is not before
680       // Regs's kill, it's safe to replace Reg with NewReg. We
681       // must also check all aliases of NewReg, because we can't define a
682       // register when any sub or super is already live.
683       if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
684         LLVM_DEBUG(dbgs() << "(live)");
685         goto next_super_reg;
686       } else {
687         bool found = false;
688         for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
689           unsigned AliasReg = *AI;
690           if (State->IsLive(AliasReg) ||
691               (KillIndices[Reg] > DefIndices[AliasReg])) {
692             LLVM_DEBUG(dbgs()
693                        << "(alias " << printReg(AliasReg, TRI) << " live)");
694             found = true;
695             break;
696           }
697         }
698         if (found)
699           goto next_super_reg;
700       }
701 
702       // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
703       // defines 'NewReg' via an early-clobber operand.
704       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
705         MachineInstr *UseMI = Q.second.Operand->getParent();
706         int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
707         if (Idx == -1)
708           continue;
709 
710         if (UseMI->getOperand(Idx).isEarlyClobber()) {
711           LLVM_DEBUG(dbgs() << "(ec)");
712           goto next_super_reg;
713         }
714       }
715 
716       // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
717       // 'Reg' is an early-clobber define and that instruction also uses
718       // 'NewReg'.
719       for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
720         if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
721           continue;
722 
723         MachineInstr *DefMI = Q.second.Operand->getParent();
724         if (DefMI->readsRegister(NewReg, TRI)) {
725           LLVM_DEBUG(dbgs() << "(ec)");
726           goto next_super_reg;
727         }
728       }
729 
730       // Record that 'Reg' can be renamed to 'NewReg'.
731       RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
732     }
733 
734     // If we fall-out here, then every register in the group can be
735     // renamed, as recorded in RenameMap.
736     RenameOrder.erase(SuperRC);
737     RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
738     LLVM_DEBUG(dbgs() << "]\n");
739     return true;
740 
741   next_super_reg:
742     LLVM_DEBUG(dbgs() << ']');
743   } while (R != EndR);
744 
745   LLVM_DEBUG(dbgs() << '\n');
746 
747   // No registers are free and available!
748   return false;
749 }
750 
751 /// BreakAntiDependencies - Identifiy anti-dependencies within the
752 /// ScheduleDAG and break them by renaming registers.
753 unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
754                               const std::vector<SUnit> &SUnits,
755                               MachineBasicBlock::iterator Begin,
756                               MachineBasicBlock::iterator End,
757                               unsigned InsertPosIndex,
758                               DbgValueVector &DbgValues) {
759   std::vector<unsigned> &KillIndices = State->GetKillIndices();
760   std::vector<unsigned> &DefIndices = State->GetDefIndices();
761   std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
762     RegRefs = State->GetRegRefs();
763 
764   // The code below assumes that there is at least one instruction,
765   // so just duck out immediately if the block is empty.
766   if (SUnits.empty()) return 0;
767 
768   // For each regclass the next register to use for renaming.
769   RenameOrderType RenameOrder;
770 
771   // ...need a map from MI to SUnit.
772   std::map<MachineInstr *, const SUnit *> MISUnitMap;
773   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
774     const SUnit *SU = &SUnits[i];
775     MISUnitMap.insert(std::pair<MachineInstr *, const SUnit *>(SU->getInstr(),
776                                                                SU));
777   }
778 
779   // Track progress along the critical path through the SUnit graph as
780   // we walk the instructions. This is needed for regclasses that only
781   // break critical-path anti-dependencies.
782   const SUnit *CriticalPathSU = nullptr;
783   MachineInstr *CriticalPathMI = nullptr;
784   if (CriticalPathSet.any()) {
785     for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
786       const SUnit *SU = &SUnits[i];
787       if (!CriticalPathSU ||
788           ((SU->getDepth() + SU->Latency) >
789            (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
790         CriticalPathSU = SU;
791       }
792     }
793     assert(CriticalPathSU && "Failed to find SUnit critical path");
794     CriticalPathMI = CriticalPathSU->getInstr();
795   }
796 
797 #ifndef NDEBUG
798   LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
799   LLVM_DEBUG(dbgs() << "Available regs:");
800   for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
801     if (!State->IsLive(Reg))
802       LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
803   }
804   LLVM_DEBUG(dbgs() << '\n');
805 #endif
806 
807   BitVector RegAliases(TRI->getNumRegs());
808 
809   // Attempt to break anti-dependence edges. Walk the instructions
810   // from the bottom up, tracking information about liveness as we go
811   // to help determine which registers are available.
812   unsigned Broken = 0;
813   unsigned Count = InsertPosIndex - 1;
814   for (MachineBasicBlock::iterator I = End, E = Begin;
815        I != E; --Count) {
816     MachineInstr &MI = *--I;
817 
818     if (MI.isDebugInstr())
819       continue;
820 
821     LLVM_DEBUG(dbgs() << "Anti: ");
822     LLVM_DEBUG(MI.dump());
823 
824     std::set<unsigned> PassthruRegs;
825     GetPassthruRegs(MI, PassthruRegs);
826 
827     // Process the defs in MI...
828     PrescanInstruction(MI, Count, PassthruRegs);
829 
830     // The dependence edges that represent anti- and output-
831     // dependencies that are candidates for breaking.
832     std::vector<const SDep *> Edges;
833     const SUnit *PathSU = MISUnitMap[&MI];
834     AntiDepEdges(PathSU, Edges);
835 
836     // If MI is not on the critical path, then we don't rename
837     // registers in the CriticalPathSet.
838     BitVector *ExcludeRegs = nullptr;
839     if (&MI == CriticalPathMI) {
840       CriticalPathSU = CriticalPathStep(CriticalPathSU);
841       CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
842     } else if (CriticalPathSet.any()) {
843       ExcludeRegs = &CriticalPathSet;
844     }
845 
846     // Ignore KILL instructions (they form a group in ScanInstruction
847     // but don't cause any anti-dependence breaking themselves)
848     if (!MI.isKill()) {
849       // Attempt to break each anti-dependency...
850       for (unsigned i = 0, e = Edges.size(); i != e; ++i) {
851         const SDep *Edge = Edges[i];
852         SUnit *NextSU = Edge->getSUnit();
853 
854         if ((Edge->getKind() != SDep::Anti) &&
855             (Edge->getKind() != SDep::Output)) continue;
856 
857         unsigned AntiDepReg = Edge->getReg();
858         LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI));
859         assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
860 
861         if (!MRI.isAllocatable(AntiDepReg)) {
862           // Don't break anti-dependencies on non-allocatable registers.
863           LLVM_DEBUG(dbgs() << " (non-allocatable)\n");
864           continue;
865         } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
866           // Don't break anti-dependencies for critical path registers
867           // if not on the critical path
868           LLVM_DEBUG(dbgs() << " (not critical-path)\n");
869           continue;
870         } else if (PassthruRegs.count(AntiDepReg) != 0) {
871           // If the anti-dep register liveness "passes-thru", then
872           // don't try to change it. It will be changed along with
873           // the use if required to break an earlier antidep.
874           LLVM_DEBUG(dbgs() << " (passthru)\n");
875           continue;
876         } else {
877           // No anti-dep breaking for implicit deps
878           MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
879           assert(AntiDepOp && "Can't find index for defined register operand");
880           if (!AntiDepOp || AntiDepOp->isImplicit()) {
881             LLVM_DEBUG(dbgs() << " (implicit)\n");
882             continue;
883           }
884 
885           // If the SUnit has other dependencies on the SUnit that
886           // it anti-depends on, don't bother breaking the
887           // anti-dependency since those edges would prevent such
888           // units from being scheduled past each other
889           // regardless.
890           //
891           // Also, if there are dependencies on other SUnits with the
892           // same register as the anti-dependency, don't attempt to
893           // break it.
894           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
895                  PE = PathSU->Preds.end(); P != PE; ++P) {
896             if (P->getSUnit() == NextSU ?
897                 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
898                 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
899               AntiDepReg = 0;
900               break;
901             }
902           }
903           for (SUnit::const_pred_iterator P = PathSU->Preds.begin(),
904                  PE = PathSU->Preds.end(); P != PE; ++P) {
905             if ((P->getSUnit() == NextSU) && (P->getKind() != SDep::Anti) &&
906                 (P->getKind() != SDep::Output)) {
907               LLVM_DEBUG(dbgs() << " (real dependency)\n");
908               AntiDepReg = 0;
909               break;
910             } else if ((P->getSUnit() != NextSU) &&
911                        (P->getKind() == SDep::Data) &&
912                        (P->getReg() == AntiDepReg)) {
913               LLVM_DEBUG(dbgs() << " (other dependency)\n");
914               AntiDepReg = 0;
915               break;
916             }
917           }
918 
919           if (AntiDepReg == 0) continue;
920 
921           // If the definition of the anti-dependency register does not start
922           // a new live range, bail out. This can happen if the anti-dep
923           // register is a sub-register of another register whose live range
924           // spans over PathSU. In such case, PathSU defines only a part of
925           // the larger register.
926           RegAliases.reset();
927           for (MCRegAliasIterator AI(AntiDepReg, TRI, true); AI.isValid(); ++AI)
928             RegAliases.set(*AI);
929           for (SDep S : PathSU->Succs) {
930             SDep::Kind K = S.getKind();
931             if (K != SDep::Data && K != SDep::Output && K != SDep::Anti)
932               continue;
933             unsigned R = S.getReg();
934             if (!RegAliases[R])
935               continue;
936             if (R == AntiDepReg || TRI->isSubRegister(AntiDepReg, R))
937               continue;
938             AntiDepReg = 0;
939             break;
940           }
941 
942           if (AntiDepReg == 0) continue;
943         }
944 
945         assert(AntiDepReg != 0);
946         if (AntiDepReg == 0) continue;
947 
948         // Determine AntiDepReg's register group.
949         const unsigned GroupIndex = State->GetGroup(AntiDepReg);
950         if (GroupIndex == 0) {
951           LLVM_DEBUG(dbgs() << " (zero group)\n");
952           continue;
953         }
954 
955         LLVM_DEBUG(dbgs() << '\n');
956 
957         // Look for a suitable register to use to break the anti-dependence.
958         std::map<unsigned, unsigned> RenameMap;
959         if (FindSuitableFreeRegisters(GroupIndex, RenameOrder, RenameMap)) {
960           LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
961                             << printReg(AntiDepReg, TRI) << ":");
962 
963           // Handle each group register...
964           for (std::map<unsigned, unsigned>::iterator
965                  S = RenameMap.begin(), E = RenameMap.end(); S != E; ++S) {
966             unsigned CurrReg = S->first;
967             unsigned NewReg = S->second;
968 
969             LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->"
970                               << printReg(NewReg, TRI) << "("
971                               << RegRefs.count(CurrReg) << " refs)");
972 
973             // Update the references to the old register CurrReg to
974             // refer to the new register NewReg.
975             for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
976               Q.second.Operand->setReg(NewReg);
977               // If the SU for the instruction being updated has debug
978               // information related to the anti-dependency register, make
979               // sure to update that as well.
980               const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
981               if (!SU) continue;
982               UpdateDbgValues(DbgValues, Q.second.Operand->getParent(),
983                               AntiDepReg, NewReg);
984             }
985 
986             // We just went back in time and modified history; the
987             // liveness information for CurrReg is now inconsistent. Set
988             // the state as if it were dead.
989             State->UnionGroups(NewReg, 0);
990             RegRefs.erase(NewReg);
991             DefIndices[NewReg] = DefIndices[CurrReg];
992             KillIndices[NewReg] = KillIndices[CurrReg];
993 
994             State->UnionGroups(CurrReg, 0);
995             RegRefs.erase(CurrReg);
996             DefIndices[CurrReg] = KillIndices[CurrReg];
997             KillIndices[CurrReg] = ~0u;
998             assert(((KillIndices[CurrReg] == ~0u) !=
999                     (DefIndices[CurrReg] == ~0u)) &&
1000                    "Kill and Def maps aren't consistent for AntiDepReg!");
1001           }
1002 
1003           ++Broken;
1004           LLVM_DEBUG(dbgs() << '\n');
1005         }
1006       }
1007     }
1008 
1009     ScanInstruction(MI, Count);
1010   }
1011 
1012   return Broken;
1013 }
1014