1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/TinyPtrVector.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/ConstantFolding.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/Config/config.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/Comdat.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugInfoMetadata.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/EHPersonalities.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GCStrategy.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalIFunc.h"
76 #include "llvm/IR/GlobalObject.h"
77 #include "llvm/IR/GlobalValue.h"
78 #include "llvm/IR/GlobalVariable.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Mangler.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PseudoProbe.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/MC/MCAsmInfo.h"
89 #include "llvm/MC/MCContext.h"
90 #include "llvm/MC/MCDirectives.h"
91 #include "llvm/MC/MCExpr.h"
92 #include "llvm/MC/MCInst.h"
93 #include "llvm/MC/MCSection.h"
94 #include "llvm/MC/MCSectionCOFF.h"
95 #include "llvm/MC/MCSectionELF.h"
96 #include "llvm/MC/MCSectionMachO.h"
97 #include "llvm/MC/MCSectionXCOFF.h"
98 #include "llvm/MC/MCStreamer.h"
99 #include "llvm/MC/MCSubtargetInfo.h"
100 #include "llvm/MC/MCSymbol.h"
101 #include "llvm/MC/MCSymbolELF.h"
102 #include "llvm/MC/MCTargetOptions.h"
103 #include "llvm/MC/MCValue.h"
104 #include "llvm/MC/SectionKind.h"
105 #include "llvm/Object/ELFTypes.h"
106 #include "llvm/Pass.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Support/Casting.h"
109 #include "llvm/Support/Compiler.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/FileSystem.h"
112 #include "llvm/Support/Format.h"
113 #include "llvm/Support/MathExtras.h"
114 #include "llvm/Support/Path.h"
115 #include "llvm/Support/Timer.h"
116 #include "llvm/Support/raw_ostream.h"
117 #include "llvm/Target/TargetLoweringObjectFile.h"
118 #include "llvm/Target/TargetMachine.h"
119 #include "llvm/Target/TargetOptions.h"
120 #include "llvm/TargetParser/Triple.h"
121 #include <algorithm>
122 #include <cassert>
123 #include <cinttypes>
124 #include <cstdint>
125 #include <iterator>
126 #include <memory>
127 #include <optional>
128 #include <string>
129 #include <utility>
130 #include <vector>
131 
132 using namespace llvm;
133 
134 #define DEBUG_TYPE "asm-printer"
135 
136 static cl::opt<std::string> BasicBlockProfileDump(
137     "mbb-profile-dump", cl::Hidden,
138     cl::desc("Basic block profile dump for external cost modelling. If "
139              "matching up BBs with afterwards, the compilation must be "
140              "performed with -basic-block-sections=labels. Enabling this "
141              "flag during in-process ThinLTO is not supported."));
142 
143 const char DWARFGroupName[] = "dwarf";
144 const char DWARFGroupDescription[] = "DWARF Emission";
145 const char DbgTimerName[] = "emit";
146 const char DbgTimerDescription[] = "Debug Info Emission";
147 const char EHTimerName[] = "write_exception";
148 const char EHTimerDescription[] = "DWARF Exception Writer";
149 const char CFGuardName[] = "Control Flow Guard";
150 const char CFGuardDescription[] = "Control Flow Guard";
151 const char CodeViewLineTablesGroupName[] = "linetables";
152 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
153 const char PPTimerName[] = "emit";
154 const char PPTimerDescription[] = "Pseudo Probe Emission";
155 const char PPGroupName[] = "pseudo probe";
156 const char PPGroupDescription[] = "Pseudo Probe Emission";
157 
158 STATISTIC(EmittedInsts, "Number of machine instrs printed");
159 
160 char AsmPrinter::ID = 0;
161 
162 namespace {
163 class AddrLabelMapCallbackPtr final : CallbackVH {
164   AddrLabelMap *Map = nullptr;
165 
166 public:
167   AddrLabelMapCallbackPtr() = default;
168   AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
169 
170   void setPtr(BasicBlock *BB) {
171     ValueHandleBase::operator=(BB);
172   }
173 
174   void setMap(AddrLabelMap *map) { Map = map; }
175 
176   void deleted() override;
177   void allUsesReplacedWith(Value *V2) override;
178 };
179 } // namespace
180 
181 class llvm::AddrLabelMap {
182   MCContext &Context;
183   struct AddrLabelSymEntry {
184     /// The symbols for the label.
185     TinyPtrVector<MCSymbol *> Symbols;
186 
187     Function *Fn;   // The containing function of the BasicBlock.
188     unsigned Index; // The index in BBCallbacks for the BasicBlock.
189   };
190 
191   DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
192 
193   /// Callbacks for the BasicBlock's that we have entries for.  We use this so
194   /// we get notified if a block is deleted or RAUWd.
195   std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
196 
197   /// This is a per-function list of symbols whose corresponding BasicBlock got
198   /// deleted.  These symbols need to be emitted at some point in the file, so
199   /// AsmPrinter emits them after the function body.
200   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
201       DeletedAddrLabelsNeedingEmission;
202 
203 public:
204   AddrLabelMap(MCContext &context) : Context(context) {}
205 
206   ~AddrLabelMap() {
207     assert(DeletedAddrLabelsNeedingEmission.empty() &&
208            "Some labels for deleted blocks never got emitted");
209   }
210 
211   ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB);
212 
213   void takeDeletedSymbolsForFunction(Function *F,
214                                      std::vector<MCSymbol *> &Result);
215 
216   void UpdateForDeletedBlock(BasicBlock *BB);
217   void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New);
218 };
219 
220 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
221   assert(BB->hasAddressTaken() &&
222          "Shouldn't get label for block without address taken");
223   AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
224 
225   // If we already had an entry for this block, just return it.
226   if (!Entry.Symbols.empty()) {
227     assert(BB->getParent() == Entry.Fn && "Parent changed");
228     return Entry.Symbols;
229   }
230 
231   // Otherwise, this is a new entry, create a new symbol for it and add an
232   // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
233   BBCallbacks.emplace_back(BB);
234   BBCallbacks.back().setMap(this);
235   Entry.Index = BBCallbacks.size() - 1;
236   Entry.Fn = BB->getParent();
237   MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
238                                         : Context.createTempSymbol();
239   Entry.Symbols.push_back(Sym);
240   return Entry.Symbols;
241 }
242 
243 /// If we have any deleted symbols for F, return them.
244 void AddrLabelMap::takeDeletedSymbolsForFunction(
245     Function *F, std::vector<MCSymbol *> &Result) {
246   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
247       DeletedAddrLabelsNeedingEmission.find(F);
248 
249   // If there are no entries for the function, just return.
250   if (I == DeletedAddrLabelsNeedingEmission.end())
251     return;
252 
253   // Otherwise, take the list.
254   std::swap(Result, I->second);
255   DeletedAddrLabelsNeedingEmission.erase(I);
256 }
257 
258 //===- Address of Block Management ----------------------------------------===//
259 
260 ArrayRef<MCSymbol *>
261 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
262   // Lazily create AddrLabelSymbols.
263   if (!AddrLabelSymbols)
264     AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
265   return AddrLabelSymbols->getAddrLabelSymbolToEmit(
266       const_cast<BasicBlock *>(BB));
267 }
268 
269 void AsmPrinter::takeDeletedSymbolsForFunction(
270     const Function *F, std::vector<MCSymbol *> &Result) {
271   // If no blocks have had their addresses taken, we're done.
272   if (!AddrLabelSymbols)
273     return;
274   return AddrLabelSymbols->takeDeletedSymbolsForFunction(
275       const_cast<Function *>(F), Result);
276 }
277 
278 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) {
279   // If the block got deleted, there is no need for the symbol.  If the symbol
280   // was already emitted, we can just forget about it, otherwise we need to
281   // queue it up for later emission when the function is output.
282   AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
283   AddrLabelSymbols.erase(BB);
284   assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
285   BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
286 
287 #if !LLVM_MEMORY_SANITIZER_BUILD
288   // BasicBlock is destroyed already, so this access is UB detectable by msan.
289   assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
290          "Block/parent mismatch");
291 #endif
292 
293   for (MCSymbol *Sym : Entry.Symbols) {
294     if (Sym->isDefined())
295       return;
296 
297     // If the block is not yet defined, we need to emit it at the end of the
298     // function.  Add the symbol to the DeletedAddrLabelsNeedingEmission list
299     // for the containing Function.  Since the block is being deleted, its
300     // parent may already be removed, we have to get the function from 'Entry'.
301     DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
302   }
303 }
304 
305 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) {
306   // Get the entry for the RAUW'd block and remove it from our map.
307   AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
308   AddrLabelSymbols.erase(Old);
309   assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
310 
311   AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
312 
313   // If New is not address taken, just move our symbol over to it.
314   if (NewEntry.Symbols.empty()) {
315     BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
316     NewEntry = std::move(OldEntry);          // Set New's entry.
317     return;
318   }
319 
320   BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
321 
322   // Otherwise, we need to add the old symbols to the new block's set.
323   llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
324 }
325 
326 void AddrLabelMapCallbackPtr::deleted() {
327   Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
328 }
329 
330 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
331   Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
332 }
333 
334 /// getGVAlignment - Return the alignment to use for the specified global
335 /// value.  This rounds up to the preferred alignment if possible and legal.
336 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
337                                  Align InAlign) {
338   Align Alignment;
339   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
340     Alignment = DL.getPreferredAlign(GVar);
341 
342   // If InAlign is specified, round it to it.
343   if (InAlign > Alignment)
344     Alignment = InAlign;
345 
346   // If the GV has a specified alignment, take it into account.
347   const MaybeAlign GVAlign(GV->getAlign());
348   if (!GVAlign)
349     return Alignment;
350 
351   assert(GVAlign && "GVAlign must be set");
352 
353   // If the GVAlign is larger than NumBits, or if we are required to obey
354   // NumBits because the GV has an assigned section, obey it.
355   if (*GVAlign > Alignment || GV->hasSection())
356     Alignment = *GVAlign;
357   return Alignment;
358 }
359 
360 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
361     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
362       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
363       SM(*this) {
364   VerboseAsm = OutStreamer->isVerboseAsm();
365   DwarfUsesRelocationsAcrossSections =
366       MAI->doesDwarfUseRelocationsAcrossSections();
367 }
368 
369 AsmPrinter::~AsmPrinter() {
370   assert(!DD && Handlers.size() == NumUserHandlers &&
371          "Debug/EH info didn't get finalized");
372 }
373 
374 bool AsmPrinter::isPositionIndependent() const {
375   return TM.isPositionIndependent();
376 }
377 
378 /// getFunctionNumber - Return a unique ID for the current function.
379 unsigned AsmPrinter::getFunctionNumber() const {
380   return MF->getFunctionNumber();
381 }
382 
383 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
384   return *TM.getObjFileLowering();
385 }
386 
387 const DataLayout &AsmPrinter::getDataLayout() const {
388   assert(MMI && "MMI could not be nullptr!");
389   return MMI->getModule()->getDataLayout();
390 }
391 
392 // Do not use the cached DataLayout because some client use it without a Module
393 // (dsymutil, llvm-dwarfdump).
394 unsigned AsmPrinter::getPointerSize() const {
395   return TM.getPointerSize(0); // FIXME: Default address space
396 }
397 
398 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
399   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
400   return MF->getSubtarget<MCSubtargetInfo>();
401 }
402 
403 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
404   S.emitInstruction(Inst, getSubtargetInfo());
405 }
406 
407 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
408   if (DD) {
409     assert(OutStreamer->hasRawTextSupport() &&
410            "Expected assembly output mode.");
411     // This is NVPTX specific and it's unclear why.
412     // PR51079: If we have code without debug information we need to give up.
413     DISubprogram *MFSP = MF.getFunction().getSubprogram();
414     if (!MFSP)
415       return;
416     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
417   }
418 }
419 
420 /// getCurrentSection() - Return the current section we are emitting to.
421 const MCSection *AsmPrinter::getCurrentSection() const {
422   return OutStreamer->getCurrentSectionOnly();
423 }
424 
425 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
426   AU.setPreservesAll();
427   MachineFunctionPass::getAnalysisUsage(AU);
428   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
429   AU.addRequired<GCModuleInfo>();
430   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
431 }
432 
433 bool AsmPrinter::doInitialization(Module &M) {
434   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
435   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
436   HasSplitStack = false;
437   HasNoSplitStack = false;
438 
439   AddrLabelSymbols = nullptr;
440 
441   // Initialize TargetLoweringObjectFile.
442   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
443     .Initialize(OutContext, TM);
444 
445   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
446       .getModuleMetadata(M);
447 
448   // On AIX, we delay emitting any section information until
449   // after emitting the .file pseudo-op. This allows additional
450   // information (such as the embedded command line) to be associated
451   // with all sections in the object file rather than a single section.
452   if (!TM.getTargetTriple().isOSBinFormatXCOFF())
453     OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
454 
455   // Emit the version-min deployment target directive if needed.
456   //
457   // FIXME: If we end up with a collection of these sorts of Darwin-specific
458   // or ELF-specific things, it may make sense to have a platform helper class
459   // that will work with the target helper class. For now keep it here, as the
460   // alternative is duplicated code in each of the target asm printers that
461   // use the directive, where it would need the same conditionalization
462   // anyway.
463   const Triple &Target = TM.getTargetTriple();
464   Triple TVT(M.getDarwinTargetVariantTriple());
465   OutStreamer->emitVersionForTarget(
466       Target, M.getSDKVersion(),
467       M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
468       M.getDarwinTargetVariantSDKVersion());
469 
470   // Allow the target to emit any magic that it wants at the start of the file.
471   emitStartOfAsmFile(M);
472 
473   // Very minimal debug info. It is ignored if we emit actual debug info. If we
474   // don't, this at least helps the user find where a global came from.
475   if (MAI->hasSingleParameterDotFile()) {
476     // .file "foo.c"
477 
478     SmallString<128> FileName;
479     if (MAI->hasBasenameOnlyForFileDirective())
480       FileName = llvm::sys::path::filename(M.getSourceFileName());
481     else
482       FileName = M.getSourceFileName();
483     if (MAI->hasFourStringsDotFile()) {
484 #ifdef PACKAGE_VENDOR
485       const char VerStr[] =
486           PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION;
487 #else
488       const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION;
489 #endif
490       // TODO: Add timestamp and description.
491       OutStreamer->emitFileDirective(FileName, VerStr, "", "");
492     } else {
493       OutStreamer->emitFileDirective(FileName);
494     }
495   }
496 
497   // On AIX, emit bytes for llvm.commandline metadata after .file so that the
498   // C_INFO symbol is preserved if any csect is kept by the linker.
499   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
500     emitModuleCommandLines(M);
501     // Now we can generate section information.
502     OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
503 
504     // To work around an AIX assembler and/or linker bug, generate
505     // a rename for the default text-section symbol name.  This call has
506     // no effect when generating object code directly.
507     MCSection *TextSection =
508         OutStreamer->getContext().getObjectFileInfo()->getTextSection();
509     MCSymbolXCOFF *XSym =
510         static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol();
511     if (XSym->hasRename())
512       OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName());
513   }
514 
515   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
516   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
517   for (const auto &I : *MI)
518     if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
519       MP->beginAssembly(M, *MI, *this);
520 
521   // Emit module-level inline asm if it exists.
522   if (!M.getModuleInlineAsm().empty()) {
523     OutStreamer->AddComment("Start of file scope inline assembly");
524     OutStreamer->addBlankLine();
525     emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
526                   TM.Options.MCOptions);
527     OutStreamer->AddComment("End of file scope inline assembly");
528     OutStreamer->addBlankLine();
529   }
530 
531   if (MAI->doesSupportDebugInformation()) {
532     bool EmitCodeView = M.getCodeViewFlag();
533     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
534       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
535                             DbgTimerName, DbgTimerDescription,
536                             CodeViewLineTablesGroupName,
537                             CodeViewLineTablesGroupDescription);
538     }
539     if (!EmitCodeView || M.getDwarfVersion()) {
540       assert(MMI && "MMI could not be nullptr here!");
541       if (MMI->hasDebugInfo()) {
542         DD = new DwarfDebug(this);
543         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
544                               DbgTimerDescription, DWARFGroupName,
545                               DWARFGroupDescription);
546       }
547     }
548   }
549 
550   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
551     PP = new PseudoProbeHandler(this);
552     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
553                           PPTimerDescription, PPGroupName, PPGroupDescription);
554   }
555 
556   switch (MAI->getExceptionHandlingType()) {
557   case ExceptionHandling::None:
558     // We may want to emit CFI for debug.
559     [[fallthrough]];
560   case ExceptionHandling::SjLj:
561   case ExceptionHandling::DwarfCFI:
562   case ExceptionHandling::ARM:
563     for (auto &F : M.getFunctionList()) {
564       if (getFunctionCFISectionType(F) != CFISection::None)
565         ModuleCFISection = getFunctionCFISectionType(F);
566       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
567       // the module needs .eh_frame. If we have found that case, we are done.
568       if (ModuleCFISection == CFISection::EH)
569         break;
570     }
571     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
572            usesCFIWithoutEH() || ModuleCFISection != CFISection::EH);
573     break;
574   default:
575     break;
576   }
577 
578   EHStreamer *ES = nullptr;
579   switch (MAI->getExceptionHandlingType()) {
580   case ExceptionHandling::None:
581     if (!usesCFIWithoutEH())
582       break;
583     [[fallthrough]];
584   case ExceptionHandling::SjLj:
585   case ExceptionHandling::DwarfCFI:
586   case ExceptionHandling::ZOS:
587     ES = new DwarfCFIException(this);
588     break;
589   case ExceptionHandling::ARM:
590     ES = new ARMException(this);
591     break;
592   case ExceptionHandling::WinEH:
593     switch (MAI->getWinEHEncodingType()) {
594     default: llvm_unreachable("unsupported unwinding information encoding");
595     case WinEH::EncodingType::Invalid:
596       break;
597     case WinEH::EncodingType::X86:
598     case WinEH::EncodingType::Itanium:
599       ES = new WinException(this);
600       break;
601     }
602     break;
603   case ExceptionHandling::Wasm:
604     ES = new WasmException(this);
605     break;
606   case ExceptionHandling::AIX:
607     ES = new AIXException(this);
608     break;
609   }
610   if (ES)
611     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
612                           EHTimerDescription, DWARFGroupName,
613                           DWARFGroupDescription);
614 
615   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
616   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
617     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
618                           CFGuardDescription, DWARFGroupName,
619                           DWARFGroupDescription);
620 
621   for (const HandlerInfo &HI : Handlers) {
622     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
623                        HI.TimerGroupDescription, TimePassesIsEnabled);
624     HI.Handler->beginModule(&M);
625   }
626 
627   if (!BasicBlockProfileDump.empty()) {
628     std::error_code PossibleFileError;
629     MBBProfileDumpFileOutput = std::make_unique<raw_fd_ostream>(
630         BasicBlockProfileDump, PossibleFileError);
631     if (PossibleFileError) {
632       M.getContext().emitError("Failed to open file for MBB Profile Dump: " +
633                                PossibleFileError.message() + "\n");
634     }
635   }
636 
637   return false;
638 }
639 
640 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
641   if (!MAI.hasWeakDefCanBeHiddenDirective())
642     return false;
643 
644   return GV->canBeOmittedFromSymbolTable();
645 }
646 
647 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
648   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
649   switch (Linkage) {
650   case GlobalValue::CommonLinkage:
651   case GlobalValue::LinkOnceAnyLinkage:
652   case GlobalValue::LinkOnceODRLinkage:
653   case GlobalValue::WeakAnyLinkage:
654   case GlobalValue::WeakODRLinkage:
655     if (MAI->hasWeakDefDirective()) {
656       // .globl _foo
657       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
658 
659       if (!canBeHidden(GV, *MAI))
660         // .weak_definition _foo
661         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
662       else
663         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
664     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
665       // .globl _foo
666       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
667       //NOTE: linkonce is handled by the section the symbol was assigned to.
668     } else {
669       // .weak _foo
670       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
671     }
672     return;
673   case GlobalValue::ExternalLinkage:
674     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
675     return;
676   case GlobalValue::PrivateLinkage:
677   case GlobalValue::InternalLinkage:
678     return;
679   case GlobalValue::ExternalWeakLinkage:
680   case GlobalValue::AvailableExternallyLinkage:
681   case GlobalValue::AppendingLinkage:
682     llvm_unreachable("Should never emit this");
683   }
684   llvm_unreachable("Unknown linkage type!");
685 }
686 
687 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
688                                    const GlobalValue *GV) const {
689   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
690 }
691 
692 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
693   return TM.getSymbol(GV);
694 }
695 
696 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
697   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
698   // exact definion (intersection of GlobalValue::hasExactDefinition() and
699   // !isInterposable()). These linkages include: external, appending, internal,
700   // private. It may be profitable to use a local alias for external. The
701   // assembler would otherwise be conservative and assume a global default
702   // visibility symbol can be interposable, even if the code generator already
703   // assumed it.
704   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
705     const Module &M = *GV.getParent();
706     if (TM.getRelocationModel() != Reloc::Static &&
707         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
708       return getSymbolWithGlobalValueBase(&GV, "$local");
709   }
710   return TM.getSymbol(&GV);
711 }
712 
713 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
714 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
715   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
716   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
717          "No emulated TLS variables in the common section");
718 
719   // Never emit TLS variable xyz in emulated TLS model.
720   // The initialization value is in __emutls_t.xyz instead of xyz.
721   if (IsEmuTLSVar)
722     return;
723 
724   if (GV->hasInitializer()) {
725     // Check to see if this is a special global used by LLVM, if so, emit it.
726     if (emitSpecialLLVMGlobal(GV))
727       return;
728 
729     // Skip the emission of global equivalents. The symbol can be emitted later
730     // on by emitGlobalGOTEquivs in case it turns out to be needed.
731     if (GlobalGOTEquivs.count(getSymbol(GV)))
732       return;
733 
734     if (isVerbose()) {
735       // When printing the control variable __emutls_v.*,
736       // we don't need to print the original TLS variable name.
737       GV->printAsOperand(OutStreamer->getCommentOS(),
738                          /*PrintType=*/false, GV->getParent());
739       OutStreamer->getCommentOS() << '\n';
740     }
741   }
742 
743   MCSymbol *GVSym = getSymbol(GV);
744   MCSymbol *EmittedSym = GVSym;
745 
746   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
747   // attributes.
748   // GV's or GVSym's attributes will be used for the EmittedSym.
749   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
750 
751   if (GV->isTagged()) {
752     Triple T = TM.getTargetTriple();
753 
754     if (T.getArch() != Triple::aarch64 || !T.isAndroid())
755       OutContext.reportError(SMLoc(),
756                              "tagged symbols (-fsanitize=memtag-globals) are "
757                              "only supported on AArch64 Android");
758     OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr());
759   }
760 
761   if (!GV->hasInitializer())   // External globals require no extra code.
762     return;
763 
764   GVSym->redefineIfPossible();
765   if (GVSym->isDefined() || GVSym->isVariable())
766     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
767                                         "' is already defined");
768 
769   if (MAI->hasDotTypeDotSizeDirective())
770     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
771 
772   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
773 
774   const DataLayout &DL = GV->getParent()->getDataLayout();
775   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
776 
777   // If the alignment is specified, we *must* obey it.  Overaligning a global
778   // with a specified alignment is a prompt way to break globals emitted to
779   // sections and expected to be contiguous (e.g. ObjC metadata).
780   const Align Alignment = getGVAlignment(GV, DL);
781 
782   for (const HandlerInfo &HI : Handlers) {
783     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
784                        HI.TimerGroupName, HI.TimerGroupDescription,
785                        TimePassesIsEnabled);
786     HI.Handler->setSymbolSize(GVSym, Size);
787   }
788 
789   // Handle common symbols
790   if (GVKind.isCommon()) {
791     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
792     // .comm _foo, 42, 4
793     OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
794     return;
795   }
796 
797   // Determine to which section this global should be emitted.
798   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
799 
800   // If we have a bss global going to a section that supports the
801   // zerofill directive, do so here.
802   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
803       TheSection->isVirtualSection()) {
804     if (Size == 0)
805       Size = 1; // zerofill of 0 bytes is undefined.
806     emitLinkage(GV, GVSym);
807     // .zerofill __DATA, __bss, _foo, 400, 5
808     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment);
809     return;
810   }
811 
812   // If this is a BSS local symbol and we are emitting in the BSS
813   // section use .lcomm/.comm directive.
814   if (GVKind.isBSSLocal() &&
815       getObjFileLowering().getBSSSection() == TheSection) {
816     if (Size == 0)
817       Size = 1; // .comm Foo, 0 is undefined, avoid it.
818 
819     // Use .lcomm only if it supports user-specified alignment.
820     // Otherwise, while it would still be correct to use .lcomm in some
821     // cases (e.g. when Align == 1), the external assembler might enfore
822     // some -unknown- default alignment behavior, which could cause
823     // spurious differences between external and integrated assembler.
824     // Prefer to simply fall back to .local / .comm in this case.
825     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
826       // .lcomm _foo, 42
827       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment);
828       return;
829     }
830 
831     // .local _foo
832     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
833     // .comm _foo, 42, 4
834     OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
835     return;
836   }
837 
838   // Handle thread local data for mach-o which requires us to output an
839   // additional structure of data and mangle the original symbol so that we
840   // can reference it later.
841   //
842   // TODO: This should become an "emit thread local global" method on TLOF.
843   // All of this macho specific stuff should be sunk down into TLOFMachO and
844   // stuff like "TLSExtraDataSection" should no longer be part of the parent
845   // TLOF class.  This will also make it more obvious that stuff like
846   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
847   // specific code.
848   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
849     // Emit the .tbss symbol
850     MCSymbol *MangSym =
851         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
852 
853     if (GVKind.isThreadBSS()) {
854       TheSection = getObjFileLowering().getTLSBSSSection();
855       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment);
856     } else if (GVKind.isThreadData()) {
857       OutStreamer->switchSection(TheSection);
858 
859       emitAlignment(Alignment, GV);
860       OutStreamer->emitLabel(MangSym);
861 
862       emitGlobalConstant(GV->getParent()->getDataLayout(),
863                          GV->getInitializer());
864     }
865 
866     OutStreamer->addBlankLine();
867 
868     // Emit the variable struct for the runtime.
869     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
870 
871     OutStreamer->switchSection(TLVSect);
872     // Emit the linkage here.
873     emitLinkage(GV, GVSym);
874     OutStreamer->emitLabel(GVSym);
875 
876     // Three pointers in size:
877     //   - __tlv_bootstrap - used to make sure support exists
878     //   - spare pointer, used when mapped by the runtime
879     //   - pointer to mangled symbol above with initializer
880     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
881     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
882                                 PtrSize);
883     OutStreamer->emitIntValue(0, PtrSize);
884     OutStreamer->emitSymbolValue(MangSym, PtrSize);
885 
886     OutStreamer->addBlankLine();
887     return;
888   }
889 
890   MCSymbol *EmittedInitSym = GVSym;
891 
892   OutStreamer->switchSection(TheSection);
893 
894   emitLinkage(GV, EmittedInitSym);
895   emitAlignment(Alignment, GV);
896 
897   OutStreamer->emitLabel(EmittedInitSym);
898   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
899   if (LocalAlias != EmittedInitSym)
900     OutStreamer->emitLabel(LocalAlias);
901 
902   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
903 
904   if (MAI->hasDotTypeDotSizeDirective())
905     // .size foo, 42
906     OutStreamer->emitELFSize(EmittedInitSym,
907                              MCConstantExpr::create(Size, OutContext));
908 
909   OutStreamer->addBlankLine();
910 }
911 
912 /// Emit the directive and value for debug thread local expression
913 ///
914 /// \p Value - The value to emit.
915 /// \p Size - The size of the integer (in bytes) to emit.
916 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
917   OutStreamer->emitValue(Value, Size);
918 }
919 
920 void AsmPrinter::emitFunctionHeaderComment() {}
921 
922 /// EmitFunctionHeader - This method emits the header for the current
923 /// function.
924 void AsmPrinter::emitFunctionHeader() {
925   const Function &F = MF->getFunction();
926 
927   if (isVerbose())
928     OutStreamer->getCommentOS()
929         << "-- Begin function "
930         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
931 
932   // Print out constants referenced by the function
933   emitConstantPool();
934 
935   // Print the 'header' of function.
936   // If basic block sections are desired, explicitly request a unique section
937   // for this function's entry block.
938   if (MF->front().isBeginSection())
939     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
940   else
941     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
942   OutStreamer->switchSection(MF->getSection());
943 
944   if (!MAI->hasVisibilityOnlyWithLinkage())
945     emitVisibility(CurrentFnSym, F.getVisibility());
946 
947   if (MAI->needsFunctionDescriptors())
948     emitLinkage(&F, CurrentFnDescSym);
949 
950   emitLinkage(&F, CurrentFnSym);
951   if (MAI->hasFunctionAlignment())
952     emitAlignment(MF->getAlignment(), &F);
953 
954   if (MAI->hasDotTypeDotSizeDirective())
955     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
956 
957   if (F.hasFnAttribute(Attribute::Cold))
958     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
959 
960   // Emit the prefix data.
961   if (F.hasPrefixData()) {
962     if (MAI->hasSubsectionsViaSymbols()) {
963       // Preserving prefix data on platforms which use subsections-via-symbols
964       // is a bit tricky. Here we introduce a symbol for the prefix data
965       // and use the .alt_entry attribute to mark the function's real entry point
966       // as an alternative entry point to the prefix-data symbol.
967       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
968       OutStreamer->emitLabel(PrefixSym);
969 
970       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
971 
972       // Emit an .alt_entry directive for the actual function symbol.
973       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
974     } else {
975       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
976     }
977   }
978 
979   // Emit KCFI type information before patchable-function-prefix nops.
980   emitKCFITypeId(*MF);
981 
982   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
983   // place prefix data before NOPs.
984   unsigned PatchableFunctionPrefix = 0;
985   unsigned PatchableFunctionEntry = 0;
986   (void)F.getFnAttribute("patchable-function-prefix")
987       .getValueAsString()
988       .getAsInteger(10, PatchableFunctionPrefix);
989   (void)F.getFnAttribute("patchable-function-entry")
990       .getValueAsString()
991       .getAsInteger(10, PatchableFunctionEntry);
992   if (PatchableFunctionPrefix) {
993     CurrentPatchableFunctionEntrySym =
994         OutContext.createLinkerPrivateTempSymbol();
995     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
996     emitNops(PatchableFunctionPrefix);
997   } else if (PatchableFunctionEntry) {
998     // May be reassigned when emitting the body, to reference the label after
999     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
1000     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
1001   }
1002 
1003   // Emit the function prologue data for the indirect call sanitizer.
1004   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) {
1005     assert(MD->getNumOperands() == 2);
1006 
1007     auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0));
1008     auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1));
1009     emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig);
1010     emitGlobalConstant(F.getParent()->getDataLayout(), TypeHash);
1011   }
1012 
1013   if (isVerbose()) {
1014     F.printAsOperand(OutStreamer->getCommentOS(),
1015                      /*PrintType=*/false, F.getParent());
1016     emitFunctionHeaderComment();
1017     OutStreamer->getCommentOS() << '\n';
1018   }
1019 
1020   // Emit the function descriptor. This is a virtual function to allow targets
1021   // to emit their specific function descriptor. Right now it is only used by
1022   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
1023   // descriptors and should be converted to use this hook as well.
1024   if (MAI->needsFunctionDescriptors())
1025     emitFunctionDescriptor();
1026 
1027   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
1028   // their wild and crazy things as required.
1029   emitFunctionEntryLabel();
1030 
1031   // If the function had address-taken blocks that got deleted, then we have
1032   // references to the dangling symbols.  Emit them at the start of the function
1033   // so that we don't get references to undefined symbols.
1034   std::vector<MCSymbol*> DeadBlockSyms;
1035   takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
1036   for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
1037     OutStreamer->AddComment("Address taken block that was later removed");
1038     OutStreamer->emitLabel(DeadBlockSym);
1039   }
1040 
1041   if (CurrentFnBegin) {
1042     if (MAI->useAssignmentForEHBegin()) {
1043       MCSymbol *CurPos = OutContext.createTempSymbol();
1044       OutStreamer->emitLabel(CurPos);
1045       OutStreamer->emitAssignment(CurrentFnBegin,
1046                                  MCSymbolRefExpr::create(CurPos, OutContext));
1047     } else {
1048       OutStreamer->emitLabel(CurrentFnBegin);
1049     }
1050   }
1051 
1052   // Emit pre-function debug and/or EH information.
1053   for (const HandlerInfo &HI : Handlers) {
1054     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1055                        HI.TimerGroupDescription, TimePassesIsEnabled);
1056     HI.Handler->beginFunction(MF);
1057   }
1058   for (const HandlerInfo &HI : Handlers) {
1059     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1060                        HI.TimerGroupDescription, TimePassesIsEnabled);
1061     HI.Handler->beginBasicBlockSection(MF->front());
1062   }
1063 
1064   // Emit the prologue data.
1065   if (F.hasPrologueData())
1066     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
1067 }
1068 
1069 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1070 /// function.  This can be overridden by targets as required to do custom stuff.
1071 void AsmPrinter::emitFunctionEntryLabel() {
1072   CurrentFnSym->redefineIfPossible();
1073 
1074   // The function label could have already been emitted if two symbols end up
1075   // conflicting due to asm renaming.  Detect this and emit an error.
1076   if (CurrentFnSym->isVariable())
1077     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
1078                        "' is a protected alias");
1079 
1080   OutStreamer->emitLabel(CurrentFnSym);
1081 
1082   if (TM.getTargetTriple().isOSBinFormatELF()) {
1083     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
1084     if (Sym != CurrentFnSym) {
1085       cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC);
1086       CurrentFnBeginLocal = Sym;
1087       OutStreamer->emitLabel(Sym);
1088       if (MAI->hasDotTypeDotSizeDirective())
1089         OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction);
1090     }
1091   }
1092 }
1093 
1094 /// emitComments - Pretty-print comments for instructions.
1095 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
1096   const MachineFunction *MF = MI.getMF();
1097   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1098 
1099   // Check for spills and reloads
1100 
1101   // We assume a single instruction only has a spill or reload, not
1102   // both.
1103   std::optional<unsigned> Size;
1104   if ((Size = MI.getRestoreSize(TII))) {
1105     CommentOS << *Size << "-byte Reload\n";
1106   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
1107     if (*Size) {
1108       if (*Size == unsigned(MemoryLocation::UnknownSize))
1109         CommentOS << "Unknown-size Folded Reload\n";
1110       else
1111         CommentOS << *Size << "-byte Folded Reload\n";
1112     }
1113   } else if ((Size = MI.getSpillSize(TII))) {
1114     CommentOS << *Size << "-byte Spill\n";
1115   } else if ((Size = MI.getFoldedSpillSize(TII))) {
1116     if (*Size) {
1117       if (*Size == unsigned(MemoryLocation::UnknownSize))
1118         CommentOS << "Unknown-size Folded Spill\n";
1119       else
1120         CommentOS << *Size << "-byte Folded Spill\n";
1121     }
1122   }
1123 
1124   // Check for spill-induced copies
1125   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
1126     CommentOS << " Reload Reuse\n";
1127 }
1128 
1129 /// emitImplicitDef - This method emits the specified machine instruction
1130 /// that is an implicit def.
1131 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
1132   Register RegNo = MI->getOperand(0).getReg();
1133 
1134   SmallString<128> Str;
1135   raw_svector_ostream OS(Str);
1136   OS << "implicit-def: "
1137      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
1138 
1139   OutStreamer->AddComment(OS.str());
1140   OutStreamer->addBlankLine();
1141 }
1142 
1143 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
1144   std::string Str;
1145   raw_string_ostream OS(Str);
1146   OS << "kill:";
1147   for (const MachineOperand &Op : MI->operands()) {
1148     assert(Op.isReg() && "KILL instruction must have only register operands");
1149     OS << ' ' << (Op.isDef() ? "def " : "killed ")
1150        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1151   }
1152   AP.OutStreamer->AddComment(OS.str());
1153   AP.OutStreamer->addBlankLine();
1154 }
1155 
1156 /// emitDebugValueComment - This method handles the target-independent form
1157 /// of DBG_VALUE, returning true if it was able to do so.  A false return
1158 /// means the target will need to handle MI in EmitInstruction.
1159 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
1160   // This code handles only the 4-operand target-independent form.
1161   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
1162     return false;
1163 
1164   SmallString<128> Str;
1165   raw_svector_ostream OS(Str);
1166   OS << "DEBUG_VALUE: ";
1167 
1168   const DILocalVariable *V = MI->getDebugVariable();
1169   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
1170     StringRef Name = SP->getName();
1171     if (!Name.empty())
1172       OS << Name << ":";
1173   }
1174   OS << V->getName();
1175   OS << " <- ";
1176 
1177   const DIExpression *Expr = MI->getDebugExpression();
1178   // First convert this to a non-variadic expression if possible, to simplify
1179   // the output.
1180   if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr))
1181     Expr = *NonVariadicExpr;
1182   // Then, output the possibly-simplified expression.
1183   if (Expr->getNumElements()) {
1184     OS << '[';
1185     ListSeparator LS;
1186     for (auto &Op : Expr->expr_ops()) {
1187       OS << LS << dwarf::OperationEncodingString(Op.getOp());
1188       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
1189         OS << ' ' << Op.getArg(I);
1190     }
1191     OS << "] ";
1192   }
1193 
1194   // Register or immediate value. Register 0 means undef.
1195   for (const MachineOperand &Op : MI->debug_operands()) {
1196     if (&Op != MI->debug_operands().begin())
1197       OS << ", ";
1198     switch (Op.getType()) {
1199     case MachineOperand::MO_FPImmediate: {
1200       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
1201       Type *ImmTy = Op.getFPImm()->getType();
1202       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
1203           ImmTy->isDoubleTy()) {
1204         OS << APF.convertToDouble();
1205       } else {
1206         // There is no good way to print long double.  Convert a copy to
1207         // double.  Ah well, it's only a comment.
1208         bool ignored;
1209         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1210                     &ignored);
1211         OS << "(long double) " << APF.convertToDouble();
1212       }
1213       break;
1214     }
1215     case MachineOperand::MO_Immediate: {
1216       OS << Op.getImm();
1217       break;
1218     }
1219     case MachineOperand::MO_CImmediate: {
1220       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
1221       break;
1222     }
1223     case MachineOperand::MO_TargetIndex: {
1224       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
1225       break;
1226     }
1227     case MachineOperand::MO_Register:
1228     case MachineOperand::MO_FrameIndex: {
1229       Register Reg;
1230       std::optional<StackOffset> Offset;
1231       if (Op.isReg()) {
1232         Reg = Op.getReg();
1233       } else {
1234         const TargetFrameLowering *TFI =
1235             AP.MF->getSubtarget().getFrameLowering();
1236         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1237       }
1238       if (!Reg) {
1239         // Suppress offset, it is not meaningful here.
1240         OS << "undef";
1241         break;
1242       }
1243       // The second operand is only an offset if it's an immediate.
1244       if (MI->isIndirectDebugValue())
1245         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1246       if (Offset)
1247         OS << '[';
1248       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1249       if (Offset)
1250         OS << '+' << Offset->getFixed() << ']';
1251       break;
1252     }
1253     default:
1254       llvm_unreachable("Unknown operand type");
1255     }
1256   }
1257 
1258   // NOTE: Want this comment at start of line, don't emit with AddComment.
1259   AP.OutStreamer->emitRawComment(OS.str());
1260   return true;
1261 }
1262 
1263 /// This method handles the target-independent form of DBG_LABEL, returning
1264 /// true if it was able to do so.  A false return means the target will need
1265 /// to handle MI in EmitInstruction.
1266 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1267   if (MI->getNumOperands() != 1)
1268     return false;
1269 
1270   SmallString<128> Str;
1271   raw_svector_ostream OS(Str);
1272   OS << "DEBUG_LABEL: ";
1273 
1274   const DILabel *V = MI->getDebugLabel();
1275   if (auto *SP = dyn_cast<DISubprogram>(
1276           V->getScope()->getNonLexicalBlockFileScope())) {
1277     StringRef Name = SP->getName();
1278     if (!Name.empty())
1279       OS << Name << ":";
1280   }
1281   OS << V->getName();
1282 
1283   // NOTE: Want this comment at start of line, don't emit with AddComment.
1284   AP.OutStreamer->emitRawComment(OS.str());
1285   return true;
1286 }
1287 
1288 AsmPrinter::CFISection
1289 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1290   // Ignore functions that won't get emitted.
1291   if (F.isDeclarationForLinker())
1292     return CFISection::None;
1293 
1294   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1295       F.needsUnwindTableEntry())
1296     return CFISection::EH;
1297 
1298   if (MAI->usesCFIWithoutEH() && F.hasUWTable())
1299     return CFISection::EH;
1300 
1301   assert(MMI != nullptr && "Invalid machine module info");
1302   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1303     return CFISection::Debug;
1304 
1305   return CFISection::None;
1306 }
1307 
1308 AsmPrinter::CFISection
1309 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1310   return getFunctionCFISectionType(MF.getFunction());
1311 }
1312 
1313 bool AsmPrinter::needsSEHMoves() {
1314   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1315 }
1316 
1317 bool AsmPrinter::usesCFIWithoutEH() const {
1318   return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None;
1319 }
1320 
1321 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1322   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1323   if (!usesCFIWithoutEH() &&
1324       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1325       ExceptionHandlingType != ExceptionHandling::ARM)
1326     return;
1327 
1328   if (getFunctionCFISectionType(*MF) == CFISection::None)
1329     return;
1330 
1331   // If there is no "real" instruction following this CFI instruction, skip
1332   // emitting it; it would be beyond the end of the function's FDE range.
1333   auto *MBB = MI.getParent();
1334   auto I = std::next(MI.getIterator());
1335   while (I != MBB->end() && I->isTransient())
1336     ++I;
1337   if (I == MBB->instr_end() &&
1338       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1339     return;
1340 
1341   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1342   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1343   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1344   emitCFIInstruction(CFI);
1345 }
1346 
1347 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1348   // The operands are the MCSymbol and the frame offset of the allocation.
1349   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1350   int FrameOffset = MI.getOperand(1).getImm();
1351 
1352   // Emit a symbol assignment.
1353   OutStreamer->emitAssignment(FrameAllocSym,
1354                              MCConstantExpr::create(FrameOffset, OutContext));
1355 }
1356 
1357 /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section
1358 /// for a given basic block. This can be used to capture more precise profile
1359 /// information.
1360 static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1361   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1362   return object::BBAddrMap::BBEntry::Metadata{
1363       MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()),
1364       MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(),
1365       !MBB.empty() && MBB.rbegin()->isIndirectBranch()}
1366       .encode();
1367 }
1368 
1369 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1370   MCSection *BBAddrMapSection =
1371       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1372   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1373 
1374   const MCSymbol *FunctionSymbol = getFunctionBegin();
1375 
1376   OutStreamer->pushSection();
1377   OutStreamer->switchSection(BBAddrMapSection);
1378   OutStreamer->AddComment("version");
1379   uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion();
1380   OutStreamer->emitInt8(BBAddrMapVersion);
1381   OutStreamer->AddComment("feature");
1382   OutStreamer->emitInt8(0);
1383   OutStreamer->AddComment("function address");
1384   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1385   OutStreamer->AddComment("number of basic blocks");
1386   OutStreamer->emitULEB128IntValue(MF.size());
1387   const MCSymbol *PrevMBBEndSymbol = FunctionSymbol;
1388   // Emit BB Information for each basic block in the function.
1389   for (const MachineBasicBlock &MBB : MF) {
1390     const MCSymbol *MBBSymbol =
1391         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1392     // TODO: Remove this check when version 1 is deprecated.
1393     if (BBAddrMapVersion > 1) {
1394       OutStreamer->AddComment("BB id");
1395       // Emit the BB ID for this basic block.
1396       // We only emit BaseID since CloneID is unset for
1397       // basic-block-sections=labels.
1398       // TODO: Emit the full BBID when labels and sections can be mixed
1399       // together.
1400       OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID);
1401     }
1402     // Emit the basic block offset relative to the end of the previous block.
1403     // This is zero unless the block is padded due to alignment.
1404     emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol);
1405     // Emit the basic block size. When BBs have alignments, their size cannot
1406     // always be computed from their offsets.
1407     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1408     // Emit the Metadata.
1409     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1410     PrevMBBEndSymbol = MBB.getEndSymbol();
1411   }
1412   OutStreamer->popSection();
1413 }
1414 
1415 void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF,
1416                                    const MCSymbol *Symbol) {
1417   MCSection *Section =
1418       getObjFileLowering().getKCFITrapSection(*MF.getSection());
1419   if (!Section)
1420     return;
1421 
1422   OutStreamer->pushSection();
1423   OutStreamer->switchSection(Section);
1424 
1425   MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol();
1426   OutStreamer->emitLabel(Loc);
1427   OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4);
1428 
1429   OutStreamer->popSection();
1430 }
1431 
1432 void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) {
1433   const Function &F = MF.getFunction();
1434   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type))
1435     emitGlobalConstant(F.getParent()->getDataLayout(),
1436                        mdconst::extract<ConstantInt>(MD->getOperand(0)));
1437 }
1438 
1439 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1440   if (PP) {
1441     auto GUID = MI.getOperand(0).getImm();
1442     auto Index = MI.getOperand(1).getImm();
1443     auto Type = MI.getOperand(2).getImm();
1444     auto Attr = MI.getOperand(3).getImm();
1445     DILocation *DebugLoc = MI.getDebugLoc();
1446     PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1447   }
1448 }
1449 
1450 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1451   if (!MF.getTarget().Options.EmitStackSizeSection)
1452     return;
1453 
1454   MCSection *StackSizeSection =
1455       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1456   if (!StackSizeSection)
1457     return;
1458 
1459   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1460   // Don't emit functions with dynamic stack allocations.
1461   if (FrameInfo.hasVarSizedObjects())
1462     return;
1463 
1464   OutStreamer->pushSection();
1465   OutStreamer->switchSection(StackSizeSection);
1466 
1467   const MCSymbol *FunctionSymbol = getFunctionBegin();
1468   uint64_t StackSize =
1469       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1470   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1471   OutStreamer->emitULEB128IntValue(StackSize);
1472 
1473   OutStreamer->popSection();
1474 }
1475 
1476 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1477   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1478 
1479   // OutputFilename empty implies -fstack-usage is not passed.
1480   if (OutputFilename.empty())
1481     return;
1482 
1483   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1484   uint64_t StackSize =
1485       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1486 
1487   if (StackUsageStream == nullptr) {
1488     std::error_code EC;
1489     StackUsageStream =
1490         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1491     if (EC) {
1492       errs() << "Could not open file: " << EC.message();
1493       return;
1494     }
1495   }
1496 
1497   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1498     *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine();
1499   else
1500     *StackUsageStream << MF.getFunction().getParent()->getName();
1501 
1502   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1503   if (FrameInfo.hasVarSizedObjects())
1504     *StackUsageStream << "dynamic\n";
1505   else
1506     *StackUsageStream << "static\n";
1507 }
1508 
1509 void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF,
1510                                      const MDNode &MD) {
1511   MCSymbol *S = MF.getContext().createTempSymbol("pcsection");
1512   OutStreamer->emitLabel(S);
1513   PCSectionsSymbols[&MD].emplace_back(S);
1514 }
1515 
1516 void AsmPrinter::emitPCSections(const MachineFunction &MF) {
1517   const Function &F = MF.getFunction();
1518   if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections))
1519     return;
1520 
1521   const CodeModel::Model CM = MF.getTarget().getCodeModel();
1522   const unsigned RelativeRelocSize =
1523       (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize()
1524                                                           : 4;
1525 
1526   // Switch to PCSection, short-circuiting the common case where the current
1527   // section is still valid (assume most MD_pcsections contain just 1 section).
1528   auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable {
1529     if (Sec == Prev)
1530       return;
1531     MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection());
1532     assert(S && "PC section is not initialized");
1533     OutStreamer->switchSection(S);
1534     Prev = Sec;
1535   };
1536   // Emit symbols into sections and data as specified in the pcsections MDNode.
1537   auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms,
1538                        bool Deltas) {
1539     // Expect the first operand to be a section name. After that, a tuple of
1540     // constants may appear, which will simply be emitted into the current
1541     // section (the user of MD_pcsections decides the format of encoded data).
1542     assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string");
1543     bool ConstULEB128 = false;
1544     for (const MDOperand &MDO : MD.operands()) {
1545       if (auto *S = dyn_cast<MDString>(MDO)) {
1546         // Found string, start of new section!
1547         // Find options for this section "<section>!<opts>" - supported options:
1548         //   C = Compress constant integers of size 2-8 bytes as ULEB128.
1549         const StringRef SecWithOpt = S->getString();
1550         const size_t OptStart = SecWithOpt.find('!'); // likely npos
1551         const StringRef Sec = SecWithOpt.substr(0, OptStart);
1552         const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty
1553         ConstULEB128 = Opts.contains('C');
1554 #ifndef NDEBUG
1555         for (char O : Opts)
1556           assert((O == '!' || O == 'C') && "Invalid !pcsections options");
1557 #endif
1558         SwitchSection(Sec);
1559         const MCSymbol *Prev = Syms.front();
1560         for (const MCSymbol *Sym : Syms) {
1561           if (Sym == Prev || !Deltas) {
1562             // Use the entry itself as the base of the relative offset.
1563             MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base");
1564             OutStreamer->emitLabel(Base);
1565             // Emit relative relocation `addr - base`, which avoids a dynamic
1566             // relocation in the final binary. User will get the address with
1567             // `base + addr`.
1568             emitLabelDifference(Sym, Base, RelativeRelocSize);
1569           } else {
1570             // Emit delta between symbol and previous symbol.
1571             if (ConstULEB128)
1572               emitLabelDifferenceAsULEB128(Sym, Prev);
1573             else
1574               emitLabelDifference(Sym, Prev, 4);
1575           }
1576           Prev = Sym;
1577         }
1578       } else {
1579         // Emit auxiliary data after PC.
1580         assert(isa<MDNode>(MDO) && "expecting either string or tuple");
1581         const auto *AuxMDs = cast<MDNode>(MDO);
1582         for (const MDOperand &AuxMDO : AuxMDs->operands()) {
1583           assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant");
1584           const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue();
1585           const DataLayout &DL = F.getParent()->getDataLayout();
1586           const uint64_t Size = DL.getTypeStoreSize(C->getType());
1587 
1588           if (auto *CI = dyn_cast<ConstantInt>(C);
1589               CI && ConstULEB128 && Size > 1 && Size <= 8) {
1590             emitULEB128(CI->getZExtValue());
1591           } else {
1592             emitGlobalConstant(DL, C);
1593           }
1594         }
1595       }
1596     }
1597   };
1598 
1599   OutStreamer->pushSection();
1600   // Emit PCs for function start and function size.
1601   if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections))
1602     EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true);
1603   // Emit PCs for instructions collected.
1604   for (const auto &MS : PCSectionsSymbols)
1605     EmitForMD(*MS.first, MS.second, false);
1606   OutStreamer->popSection();
1607   PCSectionsSymbols.clear();
1608 }
1609 
1610 /// Returns true if function begin and end labels should be emitted.
1611 static bool needFuncLabels(const MachineFunction &MF) {
1612   MachineModuleInfo &MMI = MF.getMMI();
1613   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() ||
1614       MMI.hasDebugInfo() ||
1615       MF.getFunction().hasMetadata(LLVMContext::MD_pcsections))
1616     return true;
1617 
1618   // We might emit an EH table that uses function begin and end labels even if
1619   // we don't have any landingpads.
1620   if (!MF.getFunction().hasPersonalityFn())
1621     return false;
1622   return !isNoOpWithoutInvoke(
1623       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1624 }
1625 
1626 /// EmitFunctionBody - This method emits the body and trailer for a
1627 /// function.
1628 void AsmPrinter::emitFunctionBody() {
1629   emitFunctionHeader();
1630 
1631   // Emit target-specific gunk before the function body.
1632   emitFunctionBodyStart();
1633 
1634   if (isVerbose()) {
1635     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1636     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1637     if (!MDT) {
1638       OwnedMDT = std::make_unique<MachineDominatorTree>();
1639       OwnedMDT->getBase().recalculate(*MF);
1640       MDT = OwnedMDT.get();
1641     }
1642 
1643     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1644     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1645     if (!MLI) {
1646       OwnedMLI = std::make_unique<MachineLoopInfo>();
1647       OwnedMLI->getBase().analyze(MDT->getBase());
1648       MLI = OwnedMLI.get();
1649     }
1650   }
1651 
1652   // Print out code for the function.
1653   bool HasAnyRealCode = false;
1654   int NumInstsInFunction = 0;
1655   bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch");
1656 
1657   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1658   for (auto &MBB : *MF) {
1659     // Print a label for the basic block.
1660     emitBasicBlockStart(MBB);
1661     DenseMap<StringRef, unsigned> MnemonicCounts;
1662     for (auto &MI : MBB) {
1663       // Print the assembly for the instruction.
1664       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1665           !MI.isDebugInstr()) {
1666         HasAnyRealCode = true;
1667         ++NumInstsInFunction;
1668       }
1669 
1670       // If there is a pre-instruction symbol, emit a label for it here.
1671       if (MCSymbol *S = MI.getPreInstrSymbol())
1672         OutStreamer->emitLabel(S);
1673 
1674       if (MDNode *MD = MI.getPCSections())
1675         emitPCSectionsLabel(*MF, *MD);
1676 
1677       for (const HandlerInfo &HI : Handlers) {
1678         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1679                            HI.TimerGroupDescription, TimePassesIsEnabled);
1680         HI.Handler->beginInstruction(&MI);
1681       }
1682 
1683       if (isVerbose())
1684         emitComments(MI, OutStreamer->getCommentOS());
1685 
1686       switch (MI.getOpcode()) {
1687       case TargetOpcode::CFI_INSTRUCTION:
1688         emitCFIInstruction(MI);
1689         break;
1690       case TargetOpcode::LOCAL_ESCAPE:
1691         emitFrameAlloc(MI);
1692         break;
1693       case TargetOpcode::ANNOTATION_LABEL:
1694       case TargetOpcode::GC_LABEL:
1695         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1696         break;
1697       case TargetOpcode::EH_LABEL:
1698         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1699         // For AsynchEH, insert a Nop if followed by a trap inst
1700         //   Or the exception won't be caught.
1701         //   (see MCConstantExpr::create(1,..) in WinException.cpp)
1702         //  Ignore SDiv/UDiv because a DIV with Const-0 divisor
1703         //    must have being turned into an UndefValue.
1704         //  Div with variable opnds won't be the first instruction in
1705         //  an EH region as it must be led by at least a Load
1706         {
1707           auto MI2 = std::next(MI.getIterator());
1708           if (IsEHa && MI2 != MBB.end() &&
1709               (MI2->mayLoadOrStore() || MI2->mayRaiseFPException()))
1710             emitNops(1);
1711         }
1712         break;
1713       case TargetOpcode::INLINEASM:
1714       case TargetOpcode::INLINEASM_BR:
1715         emitInlineAsm(&MI);
1716         break;
1717       case TargetOpcode::DBG_VALUE:
1718       case TargetOpcode::DBG_VALUE_LIST:
1719         if (isVerbose()) {
1720           if (!emitDebugValueComment(&MI, *this))
1721             emitInstruction(&MI);
1722         }
1723         break;
1724       case TargetOpcode::DBG_INSTR_REF:
1725         // This instruction reference will have been resolved to a machine
1726         // location, and a nearby DBG_VALUE created. We can safely ignore
1727         // the instruction reference.
1728         break;
1729       case TargetOpcode::DBG_PHI:
1730         // This instruction is only used to label a program point, it's purely
1731         // meta information.
1732         break;
1733       case TargetOpcode::DBG_LABEL:
1734         if (isVerbose()) {
1735           if (!emitDebugLabelComment(&MI, *this))
1736             emitInstruction(&MI);
1737         }
1738         break;
1739       case TargetOpcode::IMPLICIT_DEF:
1740         if (isVerbose()) emitImplicitDef(&MI);
1741         break;
1742       case TargetOpcode::KILL:
1743         if (isVerbose()) emitKill(&MI, *this);
1744         break;
1745       case TargetOpcode::PSEUDO_PROBE:
1746         emitPseudoProbe(MI);
1747         break;
1748       case TargetOpcode::ARITH_FENCE:
1749         if (isVerbose())
1750           OutStreamer->emitRawComment("ARITH_FENCE");
1751         break;
1752       case TargetOpcode::MEMBARRIER:
1753         OutStreamer->emitRawComment("MEMBARRIER");
1754         break;
1755       case TargetOpcode::JUMP_TABLE_DEBUG_INFO:
1756         // This instruction is only used to note jump table debug info, it's
1757         // purely meta information.
1758         break;
1759       default:
1760         emitInstruction(&MI);
1761         if (CanDoExtraAnalysis) {
1762           MCInst MCI;
1763           MCI.setOpcode(MI.getOpcode());
1764           auto Name = OutStreamer->getMnemonic(MCI);
1765           auto I = MnemonicCounts.insert({Name, 0u});
1766           I.first->second++;
1767         }
1768         break;
1769       }
1770 
1771       // If there is a post-instruction symbol, emit a label for it here.
1772       if (MCSymbol *S = MI.getPostInstrSymbol())
1773         OutStreamer->emitLabel(S);
1774 
1775       for (const HandlerInfo &HI : Handlers) {
1776         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1777                            HI.TimerGroupDescription, TimePassesIsEnabled);
1778         HI.Handler->endInstruction();
1779       }
1780     }
1781 
1782     // We must emit temporary symbol for the end of this basic block, if either
1783     // we have BBLabels enabled or if this basic blocks marks the end of a
1784     // section.
1785     if (MF->hasBBLabels() ||
1786         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1787       OutStreamer->emitLabel(MBB.getEndSymbol());
1788 
1789     if (MBB.isEndSection()) {
1790       // The size directive for the section containing the entry block is
1791       // handled separately by the function section.
1792       if (!MBB.sameSection(&MF->front())) {
1793         if (MAI->hasDotTypeDotSizeDirective()) {
1794           // Emit the size directive for the basic block section.
1795           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1796               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1797               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1798               OutContext);
1799           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1800         }
1801         MBBSectionRanges[MBB.getSectionIDNum()] =
1802             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1803       }
1804     }
1805     emitBasicBlockEnd(MBB);
1806 
1807     if (CanDoExtraAnalysis) {
1808       // Skip empty blocks.
1809       if (MBB.empty())
1810         continue;
1811 
1812       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1813                                           MBB.begin()->getDebugLoc(), &MBB);
1814 
1815       // Generate instruction mix remark. First, sort counts in descending order
1816       // by count and name.
1817       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1818       for (auto &KV : MnemonicCounts)
1819         MnemonicVec.emplace_back(KV.first, KV.second);
1820 
1821       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1822                            const std::pair<StringRef, unsigned> &B) {
1823         if (A.second > B.second)
1824           return true;
1825         if (A.second == B.second)
1826           return StringRef(A.first) < StringRef(B.first);
1827         return false;
1828       });
1829       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1830       for (auto &KV : MnemonicVec) {
1831         auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
1832         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1833       }
1834       ORE->emit(R);
1835     }
1836   }
1837 
1838   EmittedInsts += NumInstsInFunction;
1839   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1840                                       MF->getFunction().getSubprogram(),
1841                                       &MF->front());
1842   R << ore::NV("NumInstructions", NumInstsInFunction)
1843     << " instructions in function";
1844   ORE->emit(R);
1845 
1846   // If the function is empty and the object file uses .subsections_via_symbols,
1847   // then we need to emit *something* to the function body to prevent the
1848   // labels from collapsing together.  Just emit a noop.
1849   // Similarly, don't emit empty functions on Windows either. It can lead to
1850   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1851   // after linking, causing the kernel not to load the binary:
1852   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1853   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1854   const Triple &TT = TM.getTargetTriple();
1855   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1856                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1857     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1858 
1859     // Targets can opt-out of emitting the noop here by leaving the opcode
1860     // unspecified.
1861     if (Noop.getOpcode()) {
1862       OutStreamer->AddComment("avoids zero-length function");
1863       emitNops(1);
1864     }
1865   }
1866 
1867   // Switch to the original section in case basic block sections was used.
1868   OutStreamer->switchSection(MF->getSection());
1869 
1870   const Function &F = MF->getFunction();
1871   for (const auto &BB : F) {
1872     if (!BB.hasAddressTaken())
1873       continue;
1874     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1875     if (Sym->isDefined())
1876       continue;
1877     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1878     OutStreamer->emitLabel(Sym);
1879   }
1880 
1881   // Emit target-specific gunk after the function body.
1882   emitFunctionBodyEnd();
1883 
1884   // Even though wasm supports .type and .size in general, function symbols
1885   // are automatically sized.
1886   bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm();
1887 
1888   if (needFuncLabels(*MF) || EmitFunctionSize) {
1889     // Create a symbol for the end of function.
1890     CurrentFnEnd = createTempSymbol("func_end");
1891     OutStreamer->emitLabel(CurrentFnEnd);
1892   }
1893 
1894   // If the target wants a .size directive for the size of the function, emit
1895   // it.
1896   if (EmitFunctionSize) {
1897     // We can get the size as difference between the function label and the
1898     // temp label.
1899     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1900         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1901         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1902     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1903     if (CurrentFnBeginLocal)
1904       OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp);
1905   }
1906 
1907   // Call endBasicBlockSection on the last block now, if it wasn't already
1908   // called.
1909   if (!MF->back().isEndSection()) {
1910     for (const HandlerInfo &HI : Handlers) {
1911       NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1912                          HI.TimerGroupDescription, TimePassesIsEnabled);
1913       HI.Handler->endBasicBlockSection(MF->back());
1914     }
1915   }
1916   for (const HandlerInfo &HI : Handlers) {
1917     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1918                        HI.TimerGroupDescription, TimePassesIsEnabled);
1919     HI.Handler->markFunctionEnd();
1920   }
1921 
1922   MBBSectionRanges[MF->front().getSectionIDNum()] =
1923       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1924 
1925   // Print out jump tables referenced by the function.
1926   emitJumpTableInfo();
1927 
1928   // Emit post-function debug and/or EH information.
1929   for (const HandlerInfo &HI : Handlers) {
1930     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1931                        HI.TimerGroupDescription, TimePassesIsEnabled);
1932     HI.Handler->endFunction(MF);
1933   }
1934 
1935   // Emit section containing BB address offsets and their metadata, when
1936   // BB labels are requested for this function. Skip empty functions.
1937   if (MF->hasBBLabels() && HasAnyRealCode)
1938     emitBBAddrMapSection(*MF);
1939 
1940   // Emit sections containing instruction and function PCs.
1941   emitPCSections(*MF);
1942 
1943   // Emit section containing stack size metadata.
1944   emitStackSizeSection(*MF);
1945 
1946   // Emit .su file containing function stack size information.
1947   emitStackUsage(*MF);
1948 
1949   emitPatchableFunctionEntries();
1950 
1951   if (isVerbose())
1952     OutStreamer->getCommentOS() << "-- End function\n";
1953 
1954   OutStreamer->addBlankLine();
1955 
1956   // Output MBB ids, function names, and frequencies if the flag to dump
1957   // MBB profile information has been set
1958   if (MBBProfileDumpFileOutput && !MF->empty() &&
1959       MF->getFunction().getEntryCount()) {
1960     if (!MF->hasBBLabels()) {
1961       MF->getContext().reportError(
1962           SMLoc(),
1963           "Unable to find BB labels for MBB profile dump. -mbb-profile-dump "
1964           "must be called with -basic-block-sections=labels");
1965     } else {
1966       MachineBlockFrequencyInfo &MBFI =
1967           getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI();
1968       // The entry count and the entry basic block frequency aren't the same. We
1969       // want to capture "absolute" frequencies, i.e. the frequency with which a
1970       // MBB is executed when the program is executed. From there, we can derive
1971       // Function-relative frequencies (divide by the value for the first MBB).
1972       // We also have the information about frequency with which functions
1973       // were called. This helps, for example, in a type of integration tests
1974       // where we want to cross-validate the compiler's profile with a real
1975       // profile.
1976       // Using double precision because uint64 values used to encode mbb
1977       // "frequencies" may be quite large.
1978       const double EntryCount =
1979           static_cast<double>(MF->getFunction().getEntryCount()->getCount());
1980       for (const auto &MBB : *MF) {
1981         const double MBBRelFreq = MBFI.getBlockFreqRelativeToEntryBlock(&MBB);
1982         const double AbsMBBFreq = MBBRelFreq * EntryCount;
1983         *MBBProfileDumpFileOutput.get()
1984             << MF->getName() << "," << MBB.getBBID()->BaseID << ","
1985             << AbsMBBFreq << "\n";
1986       }
1987     }
1988   }
1989 }
1990 
1991 /// Compute the number of Global Variables that uses a Constant.
1992 static unsigned getNumGlobalVariableUses(const Constant *C) {
1993   if (!C)
1994     return 0;
1995 
1996   if (isa<GlobalVariable>(C))
1997     return 1;
1998 
1999   unsigned NumUses = 0;
2000   for (const auto *CU : C->users())
2001     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
2002 
2003   return NumUses;
2004 }
2005 
2006 /// Only consider global GOT equivalents if at least one user is a
2007 /// cstexpr inside an initializer of another global variables. Also, don't
2008 /// handle cstexpr inside instructions. During global variable emission,
2009 /// candidates are skipped and are emitted later in case at least one cstexpr
2010 /// isn't replaced by a PC relative GOT entry access.
2011 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
2012                                      unsigned &NumGOTEquivUsers) {
2013   // Global GOT equivalents are unnamed private globals with a constant
2014   // pointer initializer to another global symbol. They must point to a
2015   // GlobalVariable or Function, i.e., as GlobalValue.
2016   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
2017       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
2018       !isa<GlobalValue>(GV->getOperand(0)))
2019     return false;
2020 
2021   // To be a got equivalent, at least one of its users need to be a constant
2022   // expression used by another global variable.
2023   for (const auto *U : GV->users())
2024     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
2025 
2026   return NumGOTEquivUsers > 0;
2027 }
2028 
2029 /// Unnamed constant global variables solely contaning a pointer to
2030 /// another globals variable is equivalent to a GOT table entry; it contains the
2031 /// the address of another symbol. Optimize it and replace accesses to these
2032 /// "GOT equivalents" by using the GOT entry for the final global instead.
2033 /// Compute GOT equivalent candidates among all global variables to avoid
2034 /// emitting them if possible later on, after it use is replaced by a GOT entry
2035 /// access.
2036 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
2037   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2038     return;
2039 
2040   for (const auto &G : M.globals()) {
2041     unsigned NumGOTEquivUsers = 0;
2042     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
2043       continue;
2044 
2045     const MCSymbol *GOTEquivSym = getSymbol(&G);
2046     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
2047   }
2048 }
2049 
2050 /// Constant expressions using GOT equivalent globals may not be eligible
2051 /// for PC relative GOT entry conversion, in such cases we need to emit such
2052 /// globals we previously omitted in EmitGlobalVariable.
2053 void AsmPrinter::emitGlobalGOTEquivs() {
2054   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2055     return;
2056 
2057   SmallVector<const GlobalVariable *, 8> FailedCandidates;
2058   for (auto &I : GlobalGOTEquivs) {
2059     const GlobalVariable *GV = I.second.first;
2060     unsigned Cnt = I.second.second;
2061     if (Cnt)
2062       FailedCandidates.push_back(GV);
2063   }
2064   GlobalGOTEquivs.clear();
2065 
2066   for (const auto *GV : FailedCandidates)
2067     emitGlobalVariable(GV);
2068 }
2069 
2070 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) {
2071   MCSymbol *Name = getSymbol(&GA);
2072   bool IsFunction = GA.getValueType()->isFunctionTy();
2073   // Treat bitcasts of functions as functions also. This is important at least
2074   // on WebAssembly where object and function addresses can't alias each other.
2075   if (!IsFunction)
2076     IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
2077 
2078   // AIX's assembly directive `.set` is not usable for aliasing purpose,
2079   // so AIX has to use the extra-label-at-definition strategy. At this
2080   // point, all the extra label is emitted, we just have to emit linkage for
2081   // those labels.
2082   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
2083     assert(MAI->hasVisibilityOnlyWithLinkage() &&
2084            "Visibility should be handled with emitLinkage() on AIX.");
2085 
2086     // Linkage for alias of global variable has been emitted.
2087     if (isa<GlobalVariable>(GA.getAliaseeObject()))
2088       return;
2089 
2090     emitLinkage(&GA, Name);
2091     // If it's a function, also emit linkage for aliases of function entry
2092     // point.
2093     if (IsFunction)
2094       emitLinkage(&GA,
2095                   getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
2096     return;
2097   }
2098 
2099   if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
2100     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
2101   else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
2102     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
2103   else
2104     assert(GA.hasLocalLinkage() && "Invalid alias linkage");
2105 
2106   // Set the symbol type to function if the alias has a function type.
2107   // This affects codegen when the aliasee is not a function.
2108   if (IsFunction) {
2109     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
2110     if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2111       OutStreamer->beginCOFFSymbolDef(Name);
2112       OutStreamer->emitCOFFSymbolStorageClass(
2113           GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC
2114                                : COFF::IMAGE_SYM_CLASS_EXTERNAL);
2115       OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
2116                                       << COFF::SCT_COMPLEX_TYPE_SHIFT);
2117       OutStreamer->endCOFFSymbolDef();
2118     }
2119   }
2120 
2121   emitVisibility(Name, GA.getVisibility());
2122 
2123   const MCExpr *Expr = lowerConstant(GA.getAliasee());
2124 
2125   if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
2126     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
2127 
2128   // Emit the directives as assignments aka .set:
2129   OutStreamer->emitAssignment(Name, Expr);
2130   MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
2131   if (LocalAlias != Name)
2132     OutStreamer->emitAssignment(LocalAlias, Expr);
2133 
2134   // If the aliasee does not correspond to a symbol in the output, i.e. the
2135   // alias is not of an object or the aliased object is private, then set the
2136   // size of the alias symbol from the type of the alias. We don't do this in
2137   // other situations as the alias and aliasee having differing types but same
2138   // size may be intentional.
2139   const GlobalObject *BaseObject = GA.getAliaseeObject();
2140   if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
2141       (!BaseObject || BaseObject->hasPrivateLinkage())) {
2142     const DataLayout &DL = M.getDataLayout();
2143     uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
2144     OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
2145   }
2146 }
2147 
2148 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
2149   assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
2150          "IFunc is not supported on AIX.");
2151 
2152   auto EmitLinkage = [&](MCSymbol *Sym) {
2153     if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective())
2154       OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2155     else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
2156       OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference);
2157     else
2158       assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
2159   };
2160 
2161   if (TM.getTargetTriple().isOSBinFormatELF()) {
2162     MCSymbol *Name = getSymbol(&GI);
2163     EmitLinkage(Name);
2164     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
2165     emitVisibility(Name, GI.getVisibility());
2166 
2167     // Emit the directives as assignments aka .set:
2168     const MCExpr *Expr = lowerConstant(GI.getResolver());
2169     OutStreamer->emitAssignment(Name, Expr);
2170     MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
2171     if (LocalAlias != Name)
2172       OutStreamer->emitAssignment(LocalAlias, Expr);
2173 
2174     return;
2175   }
2176 
2177   if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo())
2178     llvm::report_fatal_error("IFuncs are not supported on this platform");
2179 
2180   // On Darwin platforms, emit a manually-constructed .symbol_resolver that
2181   // implements the symbol resolution duties of the IFunc.
2182   //
2183   // Normally, this would be handled by linker magic, but unfortunately there
2184   // are a few limitations in ld64 and ld-prime's implementation of
2185   // .symbol_resolver that mean we can't always use them:
2186   //
2187   //    *  resolvers cannot be the target of an alias
2188   //    *  resolvers cannot have private linkage
2189   //    *  resolvers cannot have linkonce linkage
2190   //    *  resolvers cannot appear in executables
2191   //    *  resolvers cannot appear in bundles
2192   //
2193   // This works around that by emitting a close approximation of what the
2194   // linker would have done.
2195 
2196   MCSymbol *LazyPointer =
2197       GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer");
2198   MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper");
2199 
2200   OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection());
2201 
2202   const DataLayout &DL = M.getDataLayout();
2203   emitAlignment(Align(DL.getPointerSize()));
2204   OutStreamer->emitLabel(LazyPointer);
2205   emitVisibility(LazyPointer, GI.getVisibility());
2206   OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8);
2207 
2208   OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection());
2209 
2210   const TargetSubtargetInfo *STI =
2211       TM.getSubtargetImpl(*GI.getResolverFunction());
2212   const TargetLowering *TLI = STI->getTargetLowering();
2213   Align TextAlign(TLI->getMinFunctionAlignment());
2214 
2215   MCSymbol *Stub = getSymbol(&GI);
2216   EmitLinkage(Stub);
2217   OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2218   OutStreamer->emitLabel(Stub);
2219   emitVisibility(Stub, GI.getVisibility());
2220   emitMachOIFuncStubBody(M, GI, LazyPointer);
2221 
2222   OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2223   OutStreamer->emitLabel(StubHelper);
2224   emitVisibility(StubHelper, GI.getVisibility());
2225   emitMachOIFuncStubHelperBody(M, GI, LazyPointer);
2226 }
2227 
2228 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
2229   if (!RS.needsSection())
2230     return;
2231 
2232   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
2233 
2234   std::optional<SmallString<128>> Filename;
2235   if (std::optional<StringRef> FilenameRef = RS.getFilename()) {
2236     Filename = *FilenameRef;
2237     sys::fs::make_absolute(*Filename);
2238     assert(!Filename->empty() && "The filename can't be empty.");
2239   }
2240 
2241   std::string Buf;
2242   raw_string_ostream OS(Buf);
2243   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
2244       Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
2245                : RemarkSerializer.metaSerializer(OS);
2246   MetaSerializer->emit();
2247 
2248   // Switch to the remarks section.
2249   MCSection *RemarksSection =
2250       OutContext.getObjectFileInfo()->getRemarksSection();
2251   OutStreamer->switchSection(RemarksSection);
2252 
2253   OutStreamer->emitBinaryData(OS.str());
2254 }
2255 
2256 bool AsmPrinter::doFinalization(Module &M) {
2257   // Set the MachineFunction to nullptr so that we can catch attempted
2258   // accesses to MF specific features at the module level and so that
2259   // we can conditionalize accesses based on whether or not it is nullptr.
2260   MF = nullptr;
2261 
2262   // Gather all GOT equivalent globals in the module. We really need two
2263   // passes over the globals: one to compute and another to avoid its emission
2264   // in EmitGlobalVariable, otherwise we would not be able to handle cases
2265   // where the got equivalent shows up before its use.
2266   computeGlobalGOTEquivs(M);
2267 
2268   // Emit global variables.
2269   for (const auto &G : M.globals())
2270     emitGlobalVariable(&G);
2271 
2272   // Emit remaining GOT equivalent globals.
2273   emitGlobalGOTEquivs();
2274 
2275   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2276 
2277   // Emit linkage(XCOFF) and visibility info for declarations
2278   for (const Function &F : M) {
2279     if (!F.isDeclarationForLinker())
2280       continue;
2281 
2282     MCSymbol *Name = getSymbol(&F);
2283     // Function getSymbol gives us the function descriptor symbol for XCOFF.
2284 
2285     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
2286       GlobalValue::VisibilityTypes V = F.getVisibility();
2287       if (V == GlobalValue::DefaultVisibility)
2288         continue;
2289 
2290       emitVisibility(Name, V, false);
2291       continue;
2292     }
2293 
2294     if (F.isIntrinsic())
2295       continue;
2296 
2297     // Handle the XCOFF case.
2298     // Variable `Name` is the function descriptor symbol (see above). Get the
2299     // function entry point symbol.
2300     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
2301     // Emit linkage for the function entry point.
2302     emitLinkage(&F, FnEntryPointSym);
2303 
2304     // Emit linkage for the function descriptor.
2305     emitLinkage(&F, Name);
2306   }
2307 
2308   // Emit the remarks section contents.
2309   // FIXME: Figure out when is the safest time to emit this section. It should
2310   // not come after debug info.
2311   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
2312     emitRemarksSection(*RS);
2313 
2314   TLOF.emitModuleMetadata(*OutStreamer, M);
2315 
2316   if (TM.getTargetTriple().isOSBinFormatELF()) {
2317     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
2318 
2319     // Output stubs for external and common global variables.
2320     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
2321     if (!Stubs.empty()) {
2322       OutStreamer->switchSection(TLOF.getDataSection());
2323       const DataLayout &DL = M.getDataLayout();
2324 
2325       emitAlignment(Align(DL.getPointerSize()));
2326       for (const auto &Stub : Stubs) {
2327         OutStreamer->emitLabel(Stub.first);
2328         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2329                                      DL.getPointerSize());
2330       }
2331     }
2332   }
2333 
2334   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2335     MachineModuleInfoCOFF &MMICOFF =
2336         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
2337 
2338     // Output stubs for external and common global variables.
2339     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
2340     if (!Stubs.empty()) {
2341       const DataLayout &DL = M.getDataLayout();
2342 
2343       for (const auto &Stub : Stubs) {
2344         SmallString<256> SectionName = StringRef(".rdata$");
2345         SectionName += Stub.first->getName();
2346         OutStreamer->switchSection(OutContext.getCOFFSection(
2347             SectionName,
2348             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
2349                 COFF::IMAGE_SCN_LNK_COMDAT,
2350             SectionKind::getReadOnly(), Stub.first->getName(),
2351             COFF::IMAGE_COMDAT_SELECT_ANY));
2352         emitAlignment(Align(DL.getPointerSize()));
2353         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
2354         OutStreamer->emitLabel(Stub.first);
2355         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2356                                      DL.getPointerSize());
2357       }
2358     }
2359   }
2360 
2361   // This needs to happen before emitting debug information since that can end
2362   // arbitrary sections.
2363   if (auto *TS = OutStreamer->getTargetStreamer())
2364     TS->emitConstantPools();
2365 
2366   // Emit Stack maps before any debug info. Mach-O requires that no data or
2367   // text sections come after debug info has been emitted. This matters for
2368   // stack maps as they are arbitrary data, and may even have a custom format
2369   // through user plugins.
2370   emitStackMaps();
2371 
2372   // Print aliases in topological order, that is, for each alias a = b,
2373   // b must be printed before a.
2374   // This is because on some targets (e.g. PowerPC) linker expects aliases in
2375   // such an order to generate correct TOC information.
2376   SmallVector<const GlobalAlias *, 16> AliasStack;
2377   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
2378   for (const auto &Alias : M.aliases()) {
2379     if (Alias.hasAvailableExternallyLinkage())
2380       continue;
2381     for (const GlobalAlias *Cur = &Alias; Cur;
2382          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
2383       if (!AliasVisited.insert(Cur).second)
2384         break;
2385       AliasStack.push_back(Cur);
2386     }
2387     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
2388       emitGlobalAlias(M, *AncestorAlias);
2389     AliasStack.clear();
2390   }
2391 
2392   // IFuncs must come before deubginfo in case the backend decides to emit them
2393   // as actual functions, since on Mach-O targets, we cannot create regular
2394   // sections after DWARF.
2395   for (const auto &IFunc : M.ifuncs())
2396     emitGlobalIFunc(M, IFunc);
2397 
2398   // Finalize debug and EH information.
2399   for (const HandlerInfo &HI : Handlers) {
2400     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
2401                        HI.TimerGroupDescription, TimePassesIsEnabled);
2402     HI.Handler->endModule();
2403   }
2404 
2405   // This deletes all the ephemeral handlers that AsmPrinter added, while
2406   // keeping all the user-added handlers alive until the AsmPrinter is
2407   // destroyed.
2408   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
2409   DD = nullptr;
2410 
2411   // If the target wants to know about weak references, print them all.
2412   if (MAI->getWeakRefDirective()) {
2413     // FIXME: This is not lazy, it would be nice to only print weak references
2414     // to stuff that is actually used.  Note that doing so would require targets
2415     // to notice uses in operands (due to constant exprs etc).  This should
2416     // happen with the MC stuff eventually.
2417 
2418     // Print out module-level global objects here.
2419     for (const auto &GO : M.global_objects()) {
2420       if (!GO.hasExternalWeakLinkage())
2421         continue;
2422       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
2423     }
2424     if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) {
2425       auto SymbolName = "swift_async_extendedFramePointerFlags";
2426       auto Global = M.getGlobalVariable(SymbolName);
2427       if (!Global) {
2428         auto Int8PtrTy = PointerType::getUnqual(M.getContext());
2429         Global = new GlobalVariable(M, Int8PtrTy, false,
2430                                     GlobalValue::ExternalWeakLinkage, nullptr,
2431                                     SymbolName);
2432         OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
2433       }
2434     }
2435   }
2436 
2437   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
2438   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2439   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
2440     if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I))
2441       MP->finishAssembly(M, *MI, *this);
2442 
2443   // Emit llvm.ident metadata in an '.ident' directive.
2444   emitModuleIdents(M);
2445 
2446   // Emit bytes for llvm.commandline metadata.
2447   // The command line metadata is emitted earlier on XCOFF.
2448   if (!TM.getTargetTriple().isOSBinFormatXCOFF())
2449     emitModuleCommandLines(M);
2450 
2451   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2452   // split-stack is used.
2453   if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
2454     OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack",
2455                                                         ELF::SHT_PROGBITS, 0));
2456     if (HasNoSplitStack)
2457       OutStreamer->switchSection(OutContext.getELFSection(
2458           ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
2459   }
2460 
2461   // If we don't have any trampolines, then we don't require stack memory
2462   // to be executable. Some targets have a directive to declare this.
2463   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
2464   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
2465     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
2466       OutStreamer->switchSection(S);
2467 
2468   if (TM.Options.EmitAddrsig) {
2469     // Emit address-significance attributes for all globals.
2470     OutStreamer->emitAddrsig();
2471     for (const GlobalValue &GV : M.global_values()) {
2472       if (!GV.use_empty() && !GV.isThreadLocal() &&
2473           !GV.hasDLLImportStorageClass() &&
2474           !GV.getName().starts_with("llvm.") &&
2475           !GV.hasAtLeastLocalUnnamedAddr())
2476         OutStreamer->emitAddrsigSym(getSymbol(&GV));
2477     }
2478   }
2479 
2480   // Emit symbol partition specifications (ELF only).
2481   if (TM.getTargetTriple().isOSBinFormatELF()) {
2482     unsigned UniqueID = 0;
2483     for (const GlobalValue &GV : M.global_values()) {
2484       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
2485           GV.getVisibility() != GlobalValue::DefaultVisibility)
2486         continue;
2487 
2488       OutStreamer->switchSection(
2489           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
2490                                    "", false, ++UniqueID, nullptr));
2491       OutStreamer->emitBytes(GV.getPartition());
2492       OutStreamer->emitZeros(1);
2493       OutStreamer->emitValue(
2494           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
2495           MAI->getCodePointerSize());
2496     }
2497   }
2498 
2499   // Allow the target to emit any magic that it wants at the end of the file,
2500   // after everything else has gone out.
2501   emitEndOfAsmFile(M);
2502 
2503   MMI = nullptr;
2504   AddrLabelSymbols = nullptr;
2505 
2506   OutStreamer->finish();
2507   OutStreamer->reset();
2508   OwnedMLI.reset();
2509   OwnedMDT.reset();
2510 
2511   return false;
2512 }
2513 
2514 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
2515   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
2516   if (Res.second)
2517     Res.first->second = createTempSymbol("exception");
2518   return Res.first->second;
2519 }
2520 
2521 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2522   this->MF = &MF;
2523   const Function &F = MF.getFunction();
2524 
2525   // Record that there are split-stack functions, so we will emit a special
2526   // section to tell the linker.
2527   if (MF.shouldSplitStack()) {
2528     HasSplitStack = true;
2529 
2530     if (!MF.getFrameInfo().needsSplitStackProlog())
2531       HasNoSplitStack = true;
2532   } else
2533     HasNoSplitStack = true;
2534 
2535   // Get the function symbol.
2536   if (!MAI->needsFunctionDescriptors()) {
2537     CurrentFnSym = getSymbol(&MF.getFunction());
2538   } else {
2539     assert(TM.getTargetTriple().isOSAIX() &&
2540            "Only AIX uses the function descriptor hooks.");
2541     // AIX is unique here in that the name of the symbol emitted for the
2542     // function body does not have the same name as the source function's
2543     // C-linkage name.
2544     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
2545                                " initalized first.");
2546 
2547     // Get the function entry point symbol.
2548     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
2549   }
2550 
2551   CurrentFnSymForSize = CurrentFnSym;
2552   CurrentFnBegin = nullptr;
2553   CurrentFnBeginLocal = nullptr;
2554   CurrentSectionBeginSym = nullptr;
2555   MBBSectionRanges.clear();
2556   MBBSectionExceptionSyms.clear();
2557   bool NeedsLocalForSize = MAI->needsLocalForSize();
2558   if (F.hasFnAttribute("patchable-function-entry") ||
2559       F.hasFnAttribute("function-instrument") ||
2560       F.hasFnAttribute("xray-instruction-threshold") ||
2561       needFuncLabels(MF) || NeedsLocalForSize ||
2562       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
2563     CurrentFnBegin = createTempSymbol("func_begin");
2564     if (NeedsLocalForSize)
2565       CurrentFnSymForSize = CurrentFnBegin;
2566   }
2567 
2568   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2569 }
2570 
2571 namespace {
2572 
2573 // Keep track the alignment, constpool entries per Section.
2574   struct SectionCPs {
2575     MCSection *S;
2576     Align Alignment;
2577     SmallVector<unsigned, 4> CPEs;
2578 
2579     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
2580   };
2581 
2582 } // end anonymous namespace
2583 
2584 /// EmitConstantPool - Print to the current output stream assembly
2585 /// representations of the constants in the constant pool MCP. This is
2586 /// used to print out constants which have been "spilled to memory" by
2587 /// the code generator.
2588 void AsmPrinter::emitConstantPool() {
2589   const MachineConstantPool *MCP = MF->getConstantPool();
2590   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2591   if (CP.empty()) return;
2592 
2593   // Calculate sections for constant pool entries. We collect entries to go into
2594   // the same section together to reduce amount of section switch statements.
2595   SmallVector<SectionCPs, 4> CPSections;
2596   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2597     const MachineConstantPoolEntry &CPE = CP[i];
2598     Align Alignment = CPE.getAlign();
2599 
2600     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2601 
2602     const Constant *C = nullptr;
2603     if (!CPE.isMachineConstantPoolEntry())
2604       C = CPE.Val.ConstVal;
2605 
2606     MCSection *S = getObjFileLowering().getSectionForConstant(
2607         getDataLayout(), Kind, C, Alignment);
2608 
2609     // The number of sections are small, just do a linear search from the
2610     // last section to the first.
2611     bool Found = false;
2612     unsigned SecIdx = CPSections.size();
2613     while (SecIdx != 0) {
2614       if (CPSections[--SecIdx].S == S) {
2615         Found = true;
2616         break;
2617       }
2618     }
2619     if (!Found) {
2620       SecIdx = CPSections.size();
2621       CPSections.push_back(SectionCPs(S, Alignment));
2622     }
2623 
2624     if (Alignment > CPSections[SecIdx].Alignment)
2625       CPSections[SecIdx].Alignment = Alignment;
2626     CPSections[SecIdx].CPEs.push_back(i);
2627   }
2628 
2629   // Now print stuff into the calculated sections.
2630   const MCSection *CurSection = nullptr;
2631   unsigned Offset = 0;
2632   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2633     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2634       unsigned CPI = CPSections[i].CPEs[j];
2635       MCSymbol *Sym = GetCPISymbol(CPI);
2636       if (!Sym->isUndefined())
2637         continue;
2638 
2639       if (CurSection != CPSections[i].S) {
2640         OutStreamer->switchSection(CPSections[i].S);
2641         emitAlignment(Align(CPSections[i].Alignment));
2642         CurSection = CPSections[i].S;
2643         Offset = 0;
2644       }
2645 
2646       MachineConstantPoolEntry CPE = CP[CPI];
2647 
2648       // Emit inter-object padding for alignment.
2649       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2650       OutStreamer->emitZeros(NewOffset - Offset);
2651 
2652       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2653 
2654       OutStreamer->emitLabel(Sym);
2655       if (CPE.isMachineConstantPoolEntry())
2656         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2657       else
2658         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2659     }
2660   }
2661 }
2662 
2663 // Print assembly representations of the jump tables used by the current
2664 // function.
2665 void AsmPrinter::emitJumpTableInfo() {
2666   const DataLayout &DL = MF->getDataLayout();
2667   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2668   if (!MJTI) return;
2669   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2670   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2671   if (JT.empty()) return;
2672 
2673   // Pick the directive to use to print the jump table entries, and switch to
2674   // the appropriate section.
2675   const Function &F = MF->getFunction();
2676   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2677   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2678       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
2679           MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64,
2680       F);
2681   if (JTInDiffSection) {
2682     // Drop it in the readonly section.
2683     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2684     OutStreamer->switchSection(ReadOnlySection);
2685   }
2686 
2687   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2688 
2689   // Jump tables in code sections are marked with a data_region directive
2690   // where that's supported.
2691   if (!JTInDiffSection)
2692     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2693 
2694   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2695     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2696 
2697     // If this jump table was deleted, ignore it.
2698     if (JTBBs.empty()) continue;
2699 
2700     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2701     /// emit a .set directive for each unique entry.
2702     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2703         MAI->doesSetDirectiveSuppressReloc()) {
2704       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2705       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2706       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2707       for (const MachineBasicBlock *MBB : JTBBs) {
2708         if (!EmittedSets.insert(MBB).second)
2709           continue;
2710 
2711         // .set LJTSet, LBB32-base
2712         const MCExpr *LHS =
2713           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2714         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2715                                     MCBinaryExpr::createSub(LHS, Base,
2716                                                             OutContext));
2717       }
2718     }
2719 
2720     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2721     // before each jump table.  The first label is never referenced, but tells
2722     // the assembler and linker the extents of the jump table object.  The
2723     // second label is actually referenced by the code.
2724     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2725       // FIXME: This doesn't have to have any specific name, just any randomly
2726       // named and numbered local label started with 'l' would work.  Simplify
2727       // GetJTISymbol.
2728       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2729 
2730     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2731     OutStreamer->emitLabel(JTISymbol);
2732 
2733     for (const MachineBasicBlock *MBB : JTBBs)
2734       emitJumpTableEntry(MJTI, MBB, JTI);
2735   }
2736   if (!JTInDiffSection)
2737     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2738 }
2739 
2740 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2741 /// current stream.
2742 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2743                                     const MachineBasicBlock *MBB,
2744                                     unsigned UID) const {
2745   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2746   const MCExpr *Value = nullptr;
2747   switch (MJTI->getEntryKind()) {
2748   case MachineJumpTableInfo::EK_Inline:
2749     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2750   case MachineJumpTableInfo::EK_Custom32:
2751     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2752         MJTI, MBB, UID, OutContext);
2753     break;
2754   case MachineJumpTableInfo::EK_BlockAddress:
2755     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2756     //     .word LBB123
2757     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2758     break;
2759   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2760     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2761     // with a relocation as gp-relative, e.g.:
2762     //     .gprel32 LBB123
2763     MCSymbol *MBBSym = MBB->getSymbol();
2764     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2765     return;
2766   }
2767 
2768   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2769     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2770     // with a relocation as gp-relative, e.g.:
2771     //     .gpdword LBB123
2772     MCSymbol *MBBSym = MBB->getSymbol();
2773     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2774     return;
2775   }
2776 
2777   case MachineJumpTableInfo::EK_LabelDifference32:
2778   case MachineJumpTableInfo::EK_LabelDifference64: {
2779     // Each entry is the address of the block minus the address of the jump
2780     // table. This is used for PIC jump tables where gprel32 is not supported.
2781     // e.g.:
2782     //      .word LBB123 - LJTI1_2
2783     // If the .set directive avoids relocations, this is emitted as:
2784     //      .set L4_5_set_123, LBB123 - LJTI1_2
2785     //      .word L4_5_set_123
2786     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2787         MAI->doesSetDirectiveSuppressReloc()) {
2788       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2789                                       OutContext);
2790       break;
2791     }
2792     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2793     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2794     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2795     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2796     break;
2797   }
2798   }
2799 
2800   assert(Value && "Unknown entry kind!");
2801 
2802   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2803   OutStreamer->emitValue(Value, EntrySize);
2804 }
2805 
2806 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2807 /// special global used by LLVM.  If so, emit it and return true, otherwise
2808 /// do nothing and return false.
2809 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2810   if (GV->getName() == "llvm.used") {
2811     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2812       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2813     return true;
2814   }
2815 
2816   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2817   if (GV->getSection() == "llvm.metadata" ||
2818       GV->hasAvailableExternallyLinkage())
2819     return true;
2820 
2821   if (!GV->hasAppendingLinkage()) return false;
2822 
2823   assert(GV->hasInitializer() && "Not a special LLVM global!");
2824 
2825   if (GV->getName() == "llvm.global_ctors") {
2826     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2827                        /* isCtor */ true);
2828 
2829     return true;
2830   }
2831 
2832   if (GV->getName() == "llvm.global_dtors") {
2833     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2834                        /* isCtor */ false);
2835 
2836     return true;
2837   }
2838 
2839   report_fatal_error("unknown special variable");
2840 }
2841 
2842 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2843 /// global in the specified llvm.used list.
2844 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2845   // Should be an array of 'i8*'.
2846   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2847     const GlobalValue *GV =
2848       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2849     if (GV)
2850       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2851   }
2852 }
2853 
2854 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2855                                           const Constant *List,
2856                                           SmallVector<Structor, 8> &Structors) {
2857   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2858   // the init priority.
2859   if (!isa<ConstantArray>(List))
2860     return;
2861 
2862   // Gather the structors in a form that's convenient for sorting by priority.
2863   for (Value *O : cast<ConstantArray>(List)->operands()) {
2864     auto *CS = cast<ConstantStruct>(O);
2865     if (CS->getOperand(1)->isNullValue())
2866       break; // Found a null terminator, skip the rest.
2867     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2868     if (!Priority)
2869       continue; // Malformed.
2870     Structors.push_back(Structor());
2871     Structor &S = Structors.back();
2872     S.Priority = Priority->getLimitedValue(65535);
2873     S.Func = CS->getOperand(1);
2874     if (!CS->getOperand(2)->isNullValue()) {
2875       if (TM.getTargetTriple().isOSAIX())
2876         llvm::report_fatal_error(
2877             "associated data of XXStructor list is not yet supported on AIX");
2878       S.ComdatKey =
2879           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2880     }
2881   }
2882 
2883   // Emit the function pointers in the target-specific order
2884   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2885     return L.Priority < R.Priority;
2886   });
2887 }
2888 
2889 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2890 /// priority.
2891 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2892                                     bool IsCtor) {
2893   SmallVector<Structor, 8> Structors;
2894   preprocessXXStructorList(DL, List, Structors);
2895   if (Structors.empty())
2896     return;
2897 
2898   // Emit the structors in reverse order if we are using the .ctor/.dtor
2899   // initialization scheme.
2900   if (!TM.Options.UseInitArray)
2901     std::reverse(Structors.begin(), Structors.end());
2902 
2903   const Align Align = DL.getPointerPrefAlignment();
2904   for (Structor &S : Structors) {
2905     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2906     const MCSymbol *KeySym = nullptr;
2907     if (GlobalValue *GV = S.ComdatKey) {
2908       if (GV->isDeclarationForLinker())
2909         // If the associated variable is not defined in this module
2910         // (it might be available_externally, or have been an
2911         // available_externally definition that was dropped by the
2912         // EliminateAvailableExternally pass), some other TU
2913         // will provide its dynamic initializer.
2914         continue;
2915 
2916       KeySym = getSymbol(GV);
2917     }
2918 
2919     MCSection *OutputSection =
2920         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2921                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2922     OutStreamer->switchSection(OutputSection);
2923     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2924       emitAlignment(Align);
2925     emitXXStructor(DL, S.Func);
2926   }
2927 }
2928 
2929 void AsmPrinter::emitModuleIdents(Module &M) {
2930   if (!MAI->hasIdentDirective())
2931     return;
2932 
2933   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2934     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2935       const MDNode *N = NMD->getOperand(i);
2936       assert(N->getNumOperands() == 1 &&
2937              "llvm.ident metadata entry can have only one operand");
2938       const MDString *S = cast<MDString>(N->getOperand(0));
2939       OutStreamer->emitIdent(S->getString());
2940     }
2941   }
2942 }
2943 
2944 void AsmPrinter::emitModuleCommandLines(Module &M) {
2945   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2946   if (!CommandLine)
2947     return;
2948 
2949   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2950   if (!NMD || !NMD->getNumOperands())
2951     return;
2952 
2953   OutStreamer->pushSection();
2954   OutStreamer->switchSection(CommandLine);
2955   OutStreamer->emitZeros(1);
2956   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2957     const MDNode *N = NMD->getOperand(i);
2958     assert(N->getNumOperands() == 1 &&
2959            "llvm.commandline metadata entry can have only one operand");
2960     const MDString *S = cast<MDString>(N->getOperand(0));
2961     OutStreamer->emitBytes(S->getString());
2962     OutStreamer->emitZeros(1);
2963   }
2964   OutStreamer->popSection();
2965 }
2966 
2967 //===--------------------------------------------------------------------===//
2968 // Emission and print routines
2969 //
2970 
2971 /// Emit a byte directive and value.
2972 ///
2973 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2974 
2975 /// Emit a short directive and value.
2976 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2977 
2978 /// Emit a long directive and value.
2979 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2980 
2981 /// EmitSLEB128 - emit the specified signed leb128 value.
2982 void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const {
2983   if (isVerbose() && Desc)
2984     OutStreamer->AddComment(Desc);
2985 
2986   OutStreamer->emitSLEB128IntValue(Value);
2987 }
2988 
2989 void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc,
2990                              unsigned PadTo) const {
2991   if (isVerbose() && Desc)
2992     OutStreamer->AddComment(Desc);
2993 
2994   OutStreamer->emitULEB128IntValue(Value, PadTo);
2995 }
2996 
2997 /// Emit a long long directive and value.
2998 void AsmPrinter::emitInt64(uint64_t Value) const {
2999   OutStreamer->emitInt64(Value);
3000 }
3001 
3002 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
3003 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
3004 /// .set if it avoids relocations.
3005 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
3006                                      unsigned Size) const {
3007   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
3008 }
3009 
3010 /// Emit something like ".uleb128 Hi-Lo".
3011 void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi,
3012                                               const MCSymbol *Lo) const {
3013   OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo);
3014 }
3015 
3016 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
3017 /// where the size in bytes of the directive is specified by Size and Label
3018 /// specifies the label.  This implicitly uses .set if it is available.
3019 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
3020                                      unsigned Size,
3021                                      bool IsSectionRelative) const {
3022   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
3023     OutStreamer->emitCOFFSecRel32(Label, Offset);
3024     if (Size > 4)
3025       OutStreamer->emitZeros(Size - 4);
3026     return;
3027   }
3028 
3029   // Emit Label+Offset (or just Label if Offset is zero)
3030   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
3031   if (Offset)
3032     Expr = MCBinaryExpr::createAdd(
3033         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
3034 
3035   OutStreamer->emitValue(Expr, Size);
3036 }
3037 
3038 //===----------------------------------------------------------------------===//
3039 
3040 // EmitAlignment - Emit an alignment directive to the specified power of
3041 // two boundary.  If a global value is specified, and if that global has
3042 // an explicit alignment requested, it will override the alignment request
3043 // if required for correctness.
3044 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV,
3045                                unsigned MaxBytesToEmit) const {
3046   if (GV)
3047     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
3048 
3049   if (Alignment == Align(1))
3050     return; // 1-byte aligned: no need to emit alignment.
3051 
3052   if (getCurrentSection()->getKind().isText()) {
3053     const MCSubtargetInfo *STI = nullptr;
3054     if (this->MF)
3055       STI = &getSubtargetInfo();
3056     else
3057       STI = TM.getMCSubtargetInfo();
3058     OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit);
3059   } else
3060     OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit);
3061 }
3062 
3063 //===----------------------------------------------------------------------===//
3064 // Constant emission.
3065 //===----------------------------------------------------------------------===//
3066 
3067 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
3068   MCContext &Ctx = OutContext;
3069 
3070   if (CV->isNullValue() || isa<UndefValue>(CV))
3071     return MCConstantExpr::create(0, Ctx);
3072 
3073   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
3074     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
3075 
3076   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
3077     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
3078 
3079   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
3080     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
3081 
3082   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
3083     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
3084 
3085   if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
3086     return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
3087 
3088   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
3089   if (!CE) {
3090     llvm_unreachable("Unknown constant value to lower!");
3091   }
3092 
3093   // The constant expression opcodes are limited to those that are necessary
3094   // to represent relocations on supported targets. Expressions involving only
3095   // constant addresses are constant folded instead.
3096   switch (CE->getOpcode()) {
3097   default:
3098     break; // Error
3099   case Instruction::AddrSpaceCast: {
3100     const Constant *Op = CE->getOperand(0);
3101     unsigned DstAS = CE->getType()->getPointerAddressSpace();
3102     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
3103     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
3104       return lowerConstant(Op);
3105 
3106     break; // Error
3107   }
3108   case Instruction::GetElementPtr: {
3109     // Generate a symbolic expression for the byte address
3110     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
3111     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
3112 
3113     const MCExpr *Base = lowerConstant(CE->getOperand(0));
3114     if (!OffsetAI)
3115       return Base;
3116 
3117     int64_t Offset = OffsetAI.getSExtValue();
3118     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
3119                                    Ctx);
3120   }
3121 
3122   case Instruction::Trunc:
3123     // We emit the value and depend on the assembler to truncate the generated
3124     // expression properly.  This is important for differences between
3125     // blockaddress labels.  Since the two labels are in the same function, it
3126     // is reasonable to treat their delta as a 32-bit value.
3127     [[fallthrough]];
3128   case Instruction::BitCast:
3129     return lowerConstant(CE->getOperand(0));
3130 
3131   case Instruction::IntToPtr: {
3132     const DataLayout &DL = getDataLayout();
3133 
3134     // Handle casts to pointers by changing them into casts to the appropriate
3135     // integer type.  This promotes constant folding and simplifies this code.
3136     Constant *Op = CE->getOperand(0);
3137     Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()),
3138                                  /*IsSigned*/ false, DL);
3139     if (Op)
3140       return lowerConstant(Op);
3141 
3142     break; // Error
3143   }
3144 
3145   case Instruction::PtrToInt: {
3146     const DataLayout &DL = getDataLayout();
3147 
3148     // Support only foldable casts to/from pointers that can be eliminated by
3149     // changing the pointer to the appropriately sized integer type.
3150     Constant *Op = CE->getOperand(0);
3151     Type *Ty = CE->getType();
3152 
3153     const MCExpr *OpExpr = lowerConstant(Op);
3154 
3155     // We can emit the pointer value into this slot if the slot is an
3156     // integer slot equal to the size of the pointer.
3157     //
3158     // If the pointer is larger than the resultant integer, then
3159     // as with Trunc just depend on the assembler to truncate it.
3160     if (DL.getTypeAllocSize(Ty).getFixedValue() <=
3161         DL.getTypeAllocSize(Op->getType()).getFixedValue())
3162       return OpExpr;
3163 
3164     break; // Error
3165   }
3166 
3167   case Instruction::Sub: {
3168     GlobalValue *LHSGV;
3169     APInt LHSOffset;
3170     DSOLocalEquivalent *DSOEquiv;
3171     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
3172                                    getDataLayout(), &DSOEquiv)) {
3173       GlobalValue *RHSGV;
3174       APInt RHSOffset;
3175       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
3176                                      getDataLayout())) {
3177         const MCExpr *RelocExpr =
3178             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
3179         if (!RelocExpr) {
3180           const MCExpr *LHSExpr =
3181               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
3182           if (DSOEquiv &&
3183               getObjFileLowering().supportDSOLocalEquivalentLowering())
3184             LHSExpr =
3185                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
3186           RelocExpr = MCBinaryExpr::createSub(
3187               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
3188         }
3189         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
3190         if (Addend != 0)
3191           RelocExpr = MCBinaryExpr::createAdd(
3192               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
3193         return RelocExpr;
3194       }
3195     }
3196 
3197     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3198     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3199     return MCBinaryExpr::createSub(LHS, RHS, Ctx);
3200     break;
3201   }
3202 
3203   case Instruction::Add: {
3204     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3205     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3206     return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
3207   }
3208   }
3209 
3210   // If the code isn't optimized, there may be outstanding folding
3211   // opportunities. Attempt to fold the expression using DataLayout as a
3212   // last resort before giving up.
3213   Constant *C = ConstantFoldConstant(CE, getDataLayout());
3214   if (C != CE)
3215     return lowerConstant(C);
3216 
3217   // Otherwise report the problem to the user.
3218   std::string S;
3219   raw_string_ostream OS(S);
3220   OS << "Unsupported expression in static initializer: ";
3221   CE->printAsOperand(OS, /*PrintType=*/false,
3222                      !MF ? nullptr : MF->getFunction().getParent());
3223   report_fatal_error(Twine(OS.str()));
3224 }
3225 
3226 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
3227                                    AsmPrinter &AP,
3228                                    const Constant *BaseCV = nullptr,
3229                                    uint64_t Offset = 0,
3230                                    AsmPrinter::AliasMapTy *AliasList = nullptr);
3231 
3232 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
3233 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
3234 
3235 /// isRepeatedByteSequence - Determine whether the given value is
3236 /// composed of a repeated sequence of identical bytes and return the
3237 /// byte value.  If it is not a repeated sequence, return -1.
3238 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
3239   StringRef Data = V->getRawDataValues();
3240   assert(!Data.empty() && "Empty aggregates should be CAZ node");
3241   char C = Data[0];
3242   for (unsigned i = 1, e = Data.size(); i != e; ++i)
3243     if (Data[i] != C) return -1;
3244   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
3245 }
3246 
3247 /// isRepeatedByteSequence - Determine whether the given value is
3248 /// composed of a repeated sequence of identical bytes and return the
3249 /// byte value.  If it is not a repeated sequence, return -1.
3250 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
3251   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3252     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
3253     assert(Size % 8 == 0);
3254 
3255     // Extend the element to take zero padding into account.
3256     APInt Value = CI->getValue().zext(Size);
3257     if (!Value.isSplat(8))
3258       return -1;
3259 
3260     return Value.zextOrTrunc(8).getZExtValue();
3261   }
3262   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
3263     // Make sure all array elements are sequences of the same repeated
3264     // byte.
3265     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
3266     Constant *Op0 = CA->getOperand(0);
3267     int Byte = isRepeatedByteSequence(Op0, DL);
3268     if (Byte == -1)
3269       return -1;
3270 
3271     // All array elements must be equal.
3272     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
3273       if (CA->getOperand(i) != Op0)
3274         return -1;
3275     return Byte;
3276   }
3277 
3278   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
3279     return isRepeatedByteSequence(CDS);
3280 
3281   return -1;
3282 }
3283 
3284 static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset,
3285                                   AsmPrinter::AliasMapTy *AliasList) {
3286   if (AliasList) {
3287     auto AliasIt = AliasList->find(Offset);
3288     if (AliasIt != AliasList->end()) {
3289       for (const GlobalAlias *GA : AliasIt->second)
3290         AP.OutStreamer->emitLabel(AP.getSymbol(GA));
3291       AliasList->erase(Offset);
3292     }
3293   }
3294 }
3295 
3296 static void emitGlobalConstantDataSequential(
3297     const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP,
3298     AsmPrinter::AliasMapTy *AliasList) {
3299   // See if we can aggregate this into a .fill, if so, emit it as such.
3300   int Value = isRepeatedByteSequence(CDS, DL);
3301   if (Value != -1) {
3302     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
3303     // Don't emit a 1-byte object as a .fill.
3304     if (Bytes > 1)
3305       return AP.OutStreamer->emitFill(Bytes, Value);
3306   }
3307 
3308   // If this can be emitted with .ascii/.asciz, emit it as such.
3309   if (CDS->isString())
3310     return AP.OutStreamer->emitBytes(CDS->getAsString());
3311 
3312   // Otherwise, emit the values in successive locations.
3313   unsigned ElementByteSize = CDS->getElementByteSize();
3314   if (isa<IntegerType>(CDS->getElementType())) {
3315     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
3316       emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3317       if (AP.isVerbose())
3318         AP.OutStreamer->getCommentOS()
3319             << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I));
3320       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I),
3321                                    ElementByteSize);
3322     }
3323   } else {
3324     Type *ET = CDS->getElementType();
3325     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
3326       emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3327       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
3328     }
3329   }
3330 
3331   unsigned Size = DL.getTypeAllocSize(CDS->getType());
3332   unsigned EmittedSize =
3333       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
3334   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
3335   if (unsigned Padding = Size - EmittedSize)
3336     AP.OutStreamer->emitZeros(Padding);
3337 }
3338 
3339 static void emitGlobalConstantArray(const DataLayout &DL,
3340                                     const ConstantArray *CA, AsmPrinter &AP,
3341                                     const Constant *BaseCV, uint64_t Offset,
3342                                     AsmPrinter::AliasMapTy *AliasList) {
3343   // See if we can aggregate some values.  Make sure it can be
3344   // represented as a series of bytes of the constant value.
3345   int Value = isRepeatedByteSequence(CA, DL);
3346 
3347   if (Value != -1) {
3348     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
3349     AP.OutStreamer->emitFill(Bytes, Value);
3350   } else {
3351     for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) {
3352       emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset,
3353                              AliasList);
3354       Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType());
3355     }
3356   }
3357 }
3358 
3359 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP);
3360 
3361 static void emitGlobalConstantVector(const DataLayout &DL,
3362                                      const ConstantVector *CV, AsmPrinter &AP,
3363                                      AsmPrinter::AliasMapTy *AliasList) {
3364   Type *ElementType = CV->getType()->getElementType();
3365   uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType);
3366   uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType);
3367   uint64_t EmittedSize;
3368   if (ElementSizeInBits != ElementAllocSizeInBits) {
3369     // If the allocation size of an element is different from the size in bits,
3370     // printing each element separately will insert incorrect padding.
3371     //
3372     // The general algorithm here is complicated; instead of writing it out
3373     // here, just use the existing code in ConstantFolding.
3374     Type *IntT =
3375         IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType()));
3376     ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant(
3377         ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL));
3378     if (!CI) {
3379       report_fatal_error(
3380           "Cannot lower vector global with unusual element type");
3381     }
3382     emitGlobalAliasInline(AP, 0, AliasList);
3383     emitGlobalConstantLargeInt(CI, AP);
3384     EmittedSize = DL.getTypeStoreSize(CV->getType());
3385   } else {
3386     for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) {
3387       emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList);
3388       emitGlobalConstantImpl(DL, CV->getOperand(I), AP);
3389     }
3390     EmittedSize =
3391         DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements();
3392   }
3393 
3394   unsigned Size = DL.getTypeAllocSize(CV->getType());
3395   if (unsigned Padding = Size - EmittedSize)
3396     AP.OutStreamer->emitZeros(Padding);
3397 }
3398 
3399 static void emitGlobalConstantStruct(const DataLayout &DL,
3400                                      const ConstantStruct *CS, AsmPrinter &AP,
3401                                      const Constant *BaseCV, uint64_t Offset,
3402                                      AsmPrinter::AliasMapTy *AliasList) {
3403   // Print the fields in successive locations. Pad to align if needed!
3404   unsigned Size = DL.getTypeAllocSize(CS->getType());
3405   const StructLayout *Layout = DL.getStructLayout(CS->getType());
3406   uint64_t SizeSoFar = 0;
3407   for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) {
3408     const Constant *Field = CS->getOperand(I);
3409 
3410     // Print the actual field value.
3411     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar,
3412                            AliasList);
3413 
3414     // Check if padding is needed and insert one or more 0s.
3415     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
3416     uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) -
3417                         Layout->getElementOffset(I)) -
3418                        FieldSize;
3419     SizeSoFar += FieldSize + PadSize;
3420 
3421     // Insert padding - this may include padding to increase the size of the
3422     // current field up to the ABI size (if the struct is not packed) as well
3423     // as padding to ensure that the next field starts at the right offset.
3424     AP.OutStreamer->emitZeros(PadSize);
3425   }
3426   assert(SizeSoFar == Layout->getSizeInBytes() &&
3427          "Layout of constant struct may be incorrect!");
3428 }
3429 
3430 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
3431   assert(ET && "Unknown float type");
3432   APInt API = APF.bitcastToAPInt();
3433 
3434   // First print a comment with what we think the original floating-point value
3435   // should have been.
3436   if (AP.isVerbose()) {
3437     SmallString<8> StrVal;
3438     APF.toString(StrVal);
3439     ET->print(AP.OutStreamer->getCommentOS());
3440     AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n';
3441   }
3442 
3443   // Now iterate through the APInt chunks, emitting them in endian-correct
3444   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
3445   // floats).
3446   unsigned NumBytes = API.getBitWidth() / 8;
3447   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
3448   const uint64_t *p = API.getRawData();
3449 
3450   // PPC's long double has odd notions of endianness compared to how LLVM
3451   // handles it: p[0] goes first for *big* endian on PPC.
3452   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
3453     int Chunk = API.getNumWords() - 1;
3454 
3455     if (TrailingBytes)
3456       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
3457 
3458     for (; Chunk >= 0; --Chunk)
3459       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3460   } else {
3461     unsigned Chunk;
3462     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
3463       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3464 
3465     if (TrailingBytes)
3466       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
3467   }
3468 
3469   // Emit the tail padding for the long double.
3470   const DataLayout &DL = AP.getDataLayout();
3471   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
3472 }
3473 
3474 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
3475   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
3476 }
3477 
3478 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
3479   const DataLayout &DL = AP.getDataLayout();
3480   unsigned BitWidth = CI->getBitWidth();
3481 
3482   // Copy the value as we may massage the layout for constants whose bit width
3483   // is not a multiple of 64-bits.
3484   APInt Realigned(CI->getValue());
3485   uint64_t ExtraBits = 0;
3486   unsigned ExtraBitsSize = BitWidth & 63;
3487 
3488   if (ExtraBitsSize) {
3489     // The bit width of the data is not a multiple of 64-bits.
3490     // The extra bits are expected to be at the end of the chunk of the memory.
3491     // Little endian:
3492     // * Nothing to be done, just record the extra bits to emit.
3493     // Big endian:
3494     // * Record the extra bits to emit.
3495     // * Realign the raw data to emit the chunks of 64-bits.
3496     if (DL.isBigEndian()) {
3497       // Basically the structure of the raw data is a chunk of 64-bits cells:
3498       //    0        1         BitWidth / 64
3499       // [chunk1][chunk2] ... [chunkN].
3500       // The most significant chunk is chunkN and it should be emitted first.
3501       // However, due to the alignment issue chunkN contains useless bits.
3502       // Realign the chunks so that they contain only useful information:
3503       // ExtraBits     0       1       (BitWidth / 64) - 1
3504       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
3505       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
3506       ExtraBits = Realigned.getRawData()[0] &
3507         (((uint64_t)-1) >> (64 - ExtraBitsSize));
3508       if (BitWidth >= 64)
3509         Realigned.lshrInPlace(ExtraBitsSize);
3510     } else
3511       ExtraBits = Realigned.getRawData()[BitWidth / 64];
3512   }
3513 
3514   // We don't expect assemblers to support integer data directives
3515   // for more than 64 bits, so we emit the data in at most 64-bit
3516   // quantities at a time.
3517   const uint64_t *RawData = Realigned.getRawData();
3518   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
3519     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
3520     AP.OutStreamer->emitIntValue(Val, 8);
3521   }
3522 
3523   if (ExtraBitsSize) {
3524     // Emit the extra bits after the 64-bits chunks.
3525 
3526     // Emit a directive that fills the expected size.
3527     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
3528     Size -= (BitWidth / 64) * 8;
3529     assert(Size && Size * 8 >= ExtraBitsSize &&
3530            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
3531            == ExtraBits && "Directive too small for extra bits.");
3532     AP.OutStreamer->emitIntValue(ExtraBits, Size);
3533   }
3534 }
3535 
3536 /// Transform a not absolute MCExpr containing a reference to a GOT
3537 /// equivalent global, by a target specific GOT pc relative access to the
3538 /// final symbol.
3539 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
3540                                          const Constant *BaseCst,
3541                                          uint64_t Offset) {
3542   // The global @foo below illustrates a global that uses a got equivalent.
3543   //
3544   //  @bar = global i32 42
3545   //  @gotequiv = private unnamed_addr constant i32* @bar
3546   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
3547   //                             i64 ptrtoint (i32* @foo to i64))
3548   //                        to i32)
3549   //
3550   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
3551   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
3552   // form:
3553   //
3554   //  foo = cstexpr, where
3555   //    cstexpr := <gotequiv> - "." + <cst>
3556   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
3557   //
3558   // After canonicalization by evaluateAsRelocatable `ME` turns into:
3559   //
3560   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
3561   //    gotpcrelcst := <offset from @foo base> + <cst>
3562   MCValue MV;
3563   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
3564     return;
3565   const MCSymbolRefExpr *SymA = MV.getSymA();
3566   if (!SymA)
3567     return;
3568 
3569   // Check that GOT equivalent symbol is cached.
3570   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
3571   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
3572     return;
3573 
3574   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
3575   if (!BaseGV)
3576     return;
3577 
3578   // Check for a valid base symbol
3579   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
3580   const MCSymbolRefExpr *SymB = MV.getSymB();
3581 
3582   if (!SymB || BaseSym != &SymB->getSymbol())
3583     return;
3584 
3585   // Make sure to match:
3586   //
3587   //    gotpcrelcst := <offset from @foo base> + <cst>
3588   //
3589   int64_t GOTPCRelCst = Offset + MV.getConstant();
3590   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
3591     return;
3592 
3593   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
3594   //
3595   //  bar:
3596   //    .long 42
3597   //  gotequiv:
3598   //    .quad bar
3599   //  foo:
3600   //    .long gotequiv - "." + <cst>
3601   //
3602   // is replaced by the target specific equivalent to:
3603   //
3604   //  bar:
3605   //    .long 42
3606   //  foo:
3607   //    .long bar@GOTPCREL+<gotpcrelcst>
3608   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
3609   const GlobalVariable *GV = Result.first;
3610   int NumUses = (int)Result.second;
3611   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
3612   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
3613   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
3614       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
3615 
3616   // Update GOT equivalent usage information
3617   --NumUses;
3618   if (NumUses >= 0)
3619     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
3620 }
3621 
3622 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
3623                                    AsmPrinter &AP, const Constant *BaseCV,
3624                                    uint64_t Offset,
3625                                    AsmPrinter::AliasMapTy *AliasList) {
3626   emitGlobalAliasInline(AP, Offset, AliasList);
3627   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3628 
3629   // Globals with sub-elements such as combinations of arrays and structs
3630   // are handled recursively by emitGlobalConstantImpl. Keep track of the
3631   // constant symbol base and the current position with BaseCV and Offset.
3632   if (!BaseCV && CV->hasOneUse())
3633     BaseCV = dyn_cast<Constant>(CV->user_back());
3634 
3635   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
3636     return AP.OutStreamer->emitZeros(Size);
3637 
3638   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
3639     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
3640 
3641     if (StoreSize <= 8) {
3642       if (AP.isVerbose())
3643         AP.OutStreamer->getCommentOS()
3644             << format("0x%" PRIx64 "\n", CI->getZExtValue());
3645       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3646     } else {
3647       emitGlobalConstantLargeInt(CI, AP);
3648     }
3649 
3650     // Emit tail padding if needed
3651     if (Size != StoreSize)
3652       AP.OutStreamer->emitZeros(Size - StoreSize);
3653 
3654     return;
3655   }
3656 
3657   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3658     return emitGlobalConstantFP(CFP, AP);
3659 
3660   if (isa<ConstantPointerNull>(CV)) {
3661     AP.OutStreamer->emitIntValue(0, Size);
3662     return;
3663   }
3664 
3665   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3666     return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList);
3667 
3668   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3669     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList);
3670 
3671   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3672     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList);
3673 
3674   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3675     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3676     // vectors).
3677     if (CE->getOpcode() == Instruction::BitCast)
3678       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3679 
3680     if (Size > 8) {
3681       // If the constant expression's size is greater than 64-bits, then we have
3682       // to emit the value in chunks. Try to constant fold the value and emit it
3683       // that way.
3684       Constant *New = ConstantFoldConstant(CE, DL);
3685       if (New != CE)
3686         return emitGlobalConstantImpl(DL, New, AP);
3687     }
3688   }
3689 
3690   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3691     return emitGlobalConstantVector(DL, V, AP, AliasList);
3692 
3693   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
3694   // thread the streamer with EmitValue.
3695   const MCExpr *ME = AP.lowerConstant(CV);
3696 
3697   // Since lowerConstant already folded and got rid of all IR pointer and
3698   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3699   // directly.
3700   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3701     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3702 
3703   AP.OutStreamer->emitValue(ME, Size);
3704 }
3705 
3706 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3707 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV,
3708                                     AliasMapTy *AliasList) {
3709   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3710   if (Size)
3711     emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList);
3712   else if (MAI->hasSubsectionsViaSymbols()) {
3713     // If the global has zero size, emit a single byte so that two labels don't
3714     // look like they are at the same location.
3715     OutStreamer->emitIntValue(0, 1);
3716   }
3717   if (!AliasList)
3718     return;
3719   // TODO: These remaining aliases are not emitted in the correct location. Need
3720   // to handle the case where the alias offset doesn't refer to any sub-element.
3721   for (auto &AliasPair : *AliasList) {
3722     for (const GlobalAlias *GA : AliasPair.second)
3723       OutStreamer->emitLabel(getSymbol(GA));
3724   }
3725 }
3726 
3727 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3728   // Target doesn't support this yet!
3729   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3730 }
3731 
3732 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3733   if (Offset > 0)
3734     OS << '+' << Offset;
3735   else if (Offset < 0)
3736     OS << Offset;
3737 }
3738 
3739 void AsmPrinter::emitNops(unsigned N) {
3740   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3741   for (; N; --N)
3742     EmitToStreamer(*OutStreamer, Nop);
3743 }
3744 
3745 //===----------------------------------------------------------------------===//
3746 // Symbol Lowering Routines.
3747 //===----------------------------------------------------------------------===//
3748 
3749 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3750   return OutContext.createTempSymbol(Name, true);
3751 }
3752 
3753 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3754   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
3755       BA->getBasicBlock());
3756 }
3757 
3758 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3759   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
3760 }
3761 
3762 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3763 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3764   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3765     const MachineConstantPoolEntry &CPE =
3766         MF->getConstantPool()->getConstants()[CPID];
3767     if (!CPE.isMachineConstantPoolEntry()) {
3768       const DataLayout &DL = MF->getDataLayout();
3769       SectionKind Kind = CPE.getSectionKind(&DL);
3770       const Constant *C = CPE.Val.ConstVal;
3771       Align Alignment = CPE.Alignment;
3772       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3773               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3774                                                          Alignment))) {
3775         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3776           if (Sym->isUndefined())
3777             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3778           return Sym;
3779         }
3780       }
3781     }
3782   }
3783 
3784   const DataLayout &DL = getDataLayout();
3785   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3786                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3787                                       Twine(CPID));
3788 }
3789 
3790 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3791 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3792   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3793 }
3794 
3795 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3796 /// FIXME: privatize to AsmPrinter.
3797 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3798   const DataLayout &DL = getDataLayout();
3799   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3800                                       Twine(getFunctionNumber()) + "_" +
3801                                       Twine(UID) + "_set_" + Twine(MBBID));
3802 }
3803 
3804 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3805                                                    StringRef Suffix) const {
3806   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3807 }
3808 
3809 /// Return the MCSymbol for the specified ExternalSymbol.
3810 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(Twine Sym) const {
3811   SmallString<60> NameStr;
3812   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3813   return OutContext.getOrCreateSymbol(NameStr);
3814 }
3815 
3816 /// PrintParentLoopComment - Print comments about parent loops of this one.
3817 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3818                                    unsigned FunctionNumber) {
3819   if (!Loop) return;
3820   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3821   OS.indent(Loop->getLoopDepth()*2)
3822     << "Parent Loop BB" << FunctionNumber << "_"
3823     << Loop->getHeader()->getNumber()
3824     << " Depth=" << Loop->getLoopDepth() << '\n';
3825 }
3826 
3827 /// PrintChildLoopComment - Print comments about child loops within
3828 /// the loop for this basic block, with nesting.
3829 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3830                                   unsigned FunctionNumber) {
3831   // Add child loop information
3832   for (const MachineLoop *CL : *Loop) {
3833     OS.indent(CL->getLoopDepth()*2)
3834       << "Child Loop BB" << FunctionNumber << "_"
3835       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3836       << '\n';
3837     PrintChildLoopComment(OS, CL, FunctionNumber);
3838   }
3839 }
3840 
3841 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3842 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3843                                        const MachineLoopInfo *LI,
3844                                        const AsmPrinter &AP) {
3845   // Add loop depth information
3846   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3847   if (!Loop) return;
3848 
3849   MachineBasicBlock *Header = Loop->getHeader();
3850   assert(Header && "No header for loop");
3851 
3852   // If this block is not a loop header, just print out what is the loop header
3853   // and return.
3854   if (Header != &MBB) {
3855     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3856                                Twine(AP.getFunctionNumber())+"_" +
3857                                Twine(Loop->getHeader()->getNumber())+
3858                                " Depth="+Twine(Loop->getLoopDepth()));
3859     return;
3860   }
3861 
3862   // Otherwise, it is a loop header.  Print out information about child and
3863   // parent loops.
3864   raw_ostream &OS = AP.OutStreamer->getCommentOS();
3865 
3866   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3867 
3868   OS << "=>";
3869   OS.indent(Loop->getLoopDepth()*2-2);
3870 
3871   OS << "This ";
3872   if (Loop->isInnermost())
3873     OS << "Inner ";
3874   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3875 
3876   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3877 }
3878 
3879 /// emitBasicBlockStart - This method prints the label for the specified
3880 /// MachineBasicBlock, an alignment (if present) and a comment describing
3881 /// it if appropriate.
3882 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3883   // End the previous funclet and start a new one.
3884   if (MBB.isEHFuncletEntry()) {
3885     for (const HandlerInfo &HI : Handlers) {
3886       HI.Handler->endFunclet();
3887       HI.Handler->beginFunclet(MBB);
3888     }
3889   }
3890 
3891   // Switch to a new section if this basic block must begin a section. The
3892   // entry block is always placed in the function section and is handled
3893   // separately.
3894   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3895     OutStreamer->switchSection(
3896         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3897                                                             MBB, TM));
3898     CurrentSectionBeginSym = MBB.getSymbol();
3899   }
3900 
3901   // Emit an alignment directive for this block, if needed.
3902   const Align Alignment = MBB.getAlignment();
3903   if (Alignment != Align(1))
3904     emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
3905 
3906   // If the block has its address taken, emit any labels that were used to
3907   // reference the block.  It is possible that there is more than one label
3908   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3909   // the references were generated.
3910   if (MBB.isIRBlockAddressTaken()) {
3911     if (isVerbose())
3912       OutStreamer->AddComment("Block address taken");
3913 
3914     BasicBlock *BB = MBB.getAddressTakenIRBlock();
3915     assert(BB && BB->hasAddressTaken() && "Missing BB");
3916     for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
3917       OutStreamer->emitLabel(Sym);
3918   } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) {
3919     OutStreamer->AddComment("Block address taken");
3920   }
3921 
3922   // Print some verbose block comments.
3923   if (isVerbose()) {
3924     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3925       if (BB->hasName()) {
3926         BB->printAsOperand(OutStreamer->getCommentOS(),
3927                            /*PrintType=*/false, BB->getModule());
3928         OutStreamer->getCommentOS() << '\n';
3929       }
3930     }
3931 
3932     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3933     emitBasicBlockLoopComments(MBB, MLI, *this);
3934   }
3935 
3936   // Print the main label for the block.
3937   if (shouldEmitLabelForBasicBlock(MBB)) {
3938     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3939       OutStreamer->AddComment("Label of block must be emitted");
3940     OutStreamer->emitLabel(MBB.getSymbol());
3941   } else {
3942     if (isVerbose()) {
3943       // NOTE: Want this comment at start of line, don't emit with AddComment.
3944       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3945                                   false);
3946     }
3947   }
3948 
3949   if (MBB.isEHCatchretTarget() &&
3950       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3951     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3952   }
3953 
3954   // With BB sections, each basic block must handle CFI information on its own
3955   // if it begins a section (Entry block call is handled separately, next to
3956   // beginFunction).
3957   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3958     for (const HandlerInfo &HI : Handlers)
3959       HI.Handler->beginBasicBlockSection(MBB);
3960 }
3961 
3962 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3963   // Check if CFI information needs to be updated for this MBB with basic block
3964   // sections.
3965   if (MBB.isEndSection())
3966     for (const HandlerInfo &HI : Handlers)
3967       HI.Handler->endBasicBlockSection(MBB);
3968 }
3969 
3970 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3971                                 bool IsDefinition) const {
3972   MCSymbolAttr Attr = MCSA_Invalid;
3973 
3974   switch (Visibility) {
3975   default: break;
3976   case GlobalValue::HiddenVisibility:
3977     if (IsDefinition)
3978       Attr = MAI->getHiddenVisibilityAttr();
3979     else
3980       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3981     break;
3982   case GlobalValue::ProtectedVisibility:
3983     Attr = MAI->getProtectedVisibilityAttr();
3984     break;
3985   }
3986 
3987   if (Attr != MCSA_Invalid)
3988     OutStreamer->emitSymbolAttribute(Sym, Attr);
3989 }
3990 
3991 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3992     const MachineBasicBlock &MBB) const {
3993   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3994   // in the labels mode (option `=labels`) and every section beginning in the
3995   // sections mode (`=all` and `=list=`).
3996   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3997     return true;
3998   // A label is needed for any block with at least one predecessor (when that
3999   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
4000   // entry, or if a label is forced).
4001   return !MBB.pred_empty() &&
4002          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
4003           MBB.hasLabelMustBeEmitted());
4004 }
4005 
4006 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
4007 /// exactly one predecessor and the control transfer mechanism between
4008 /// the predecessor and this block is a fall-through.
4009 bool AsmPrinter::
4010 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
4011   // If this is a landing pad, it isn't a fall through.  If it has no preds,
4012   // then nothing falls through to it.
4013   if (MBB->isEHPad() || MBB->pred_empty())
4014     return false;
4015 
4016   // If there isn't exactly one predecessor, it can't be a fall through.
4017   if (MBB->pred_size() > 1)
4018     return false;
4019 
4020   // The predecessor has to be immediately before this block.
4021   MachineBasicBlock *Pred = *MBB->pred_begin();
4022   if (!Pred->isLayoutSuccessor(MBB))
4023     return false;
4024 
4025   // If the block is completely empty, then it definitely does fall through.
4026   if (Pred->empty())
4027     return true;
4028 
4029   // Check the terminators in the previous blocks
4030   for (const auto &MI : Pred->terminators()) {
4031     // If it is not a simple branch, we are in a table somewhere.
4032     if (!MI.isBranch() || MI.isIndirectBranch())
4033       return false;
4034 
4035     // If we are the operands of one of the branches, this is not a fall
4036     // through. Note that targets with delay slots will usually bundle
4037     // terminators with the delay slot instruction.
4038     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
4039       if (OP->isJTI())
4040         return false;
4041       if (OP->isMBB() && OP->getMBB() == MBB)
4042         return false;
4043     }
4044   }
4045 
4046   return true;
4047 }
4048 
4049 GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) {
4050   if (!S.usesMetadata())
4051     return nullptr;
4052 
4053   auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr});
4054   if (!Inserted)
4055     return GCPI->second.get();
4056 
4057   auto Name = S.getName();
4058 
4059   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
4060        GCMetadataPrinterRegistry::entries())
4061     if (Name == GCMetaPrinter.getName()) {
4062       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
4063       GMP->S = &S;
4064       GCPI->second = std::move(GMP);
4065       return GCPI->second.get();
4066     }
4067 
4068   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
4069 }
4070 
4071 void AsmPrinter::emitStackMaps() {
4072   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
4073   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
4074   bool NeedsDefault = false;
4075   if (MI->begin() == MI->end())
4076     // No GC strategy, use the default format.
4077     NeedsDefault = true;
4078   else
4079     for (const auto &I : *MI) {
4080       if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
4081         if (MP->emitStackMaps(SM, *this))
4082           continue;
4083       // The strategy doesn't have printer or doesn't emit custom stack maps.
4084       // Use the default format.
4085       NeedsDefault = true;
4086     }
4087 
4088   if (NeedsDefault)
4089     SM.serializeToStackMapSection();
4090 }
4091 
4092 /// Pin vtable to this file.
4093 AsmPrinterHandler::~AsmPrinterHandler() = default;
4094 
4095 void AsmPrinterHandler::markFunctionEnd() {}
4096 
4097 // In the binary's "xray_instr_map" section, an array of these function entries
4098 // describes each instrumentation point.  When XRay patches your code, the index
4099 // into this table will be given to your handler as a patch point identifier.
4100 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
4101   auto Kind8 = static_cast<uint8_t>(Kind);
4102   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
4103   Out->emitBinaryData(
4104       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
4105   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
4106   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
4107   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
4108   Out->emitZeros(Padding);
4109 }
4110 
4111 void AsmPrinter::emitXRayTable() {
4112   if (Sleds.empty())
4113     return;
4114 
4115   auto PrevSection = OutStreamer->getCurrentSectionOnly();
4116   const Function &F = MF->getFunction();
4117   MCSection *InstMap = nullptr;
4118   MCSection *FnSledIndex = nullptr;
4119   const Triple &TT = TM.getTargetTriple();
4120   // Use PC-relative addresses on all targets.
4121   if (TT.isOSBinFormatELF()) {
4122     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
4123     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
4124     StringRef GroupName;
4125     if (F.hasComdat()) {
4126       Flags |= ELF::SHF_GROUP;
4127       GroupName = F.getComdat()->getName();
4128     }
4129     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
4130                                        Flags, 0, GroupName, F.hasComdat(),
4131                                        MCSection::NonUniqueID, LinkedToSym);
4132 
4133     if (TM.Options.XRayFunctionIndex)
4134       FnSledIndex = OutContext.getELFSection(
4135           "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(),
4136           MCSection::NonUniqueID, LinkedToSym);
4137   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
4138     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map",
4139                                          MachO::S_ATTR_LIVE_SUPPORT,
4140                                          SectionKind::getReadOnlyWithRel());
4141     if (TM.Options.XRayFunctionIndex)
4142       FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx",
4143                                                MachO::S_ATTR_LIVE_SUPPORT,
4144                                                SectionKind::getReadOnly());
4145   } else {
4146     llvm_unreachable("Unsupported target");
4147   }
4148 
4149   auto WordSizeBytes = MAI->getCodePointerSize();
4150 
4151   // Now we switch to the instrumentation map section. Because this is done
4152   // per-function, we are able to create an index entry that will represent the
4153   // range of sleds associated with a function.
4154   auto &Ctx = OutContext;
4155   MCSymbol *SledsStart =
4156       OutContext.createLinkerPrivateSymbol("xray_sleds_start");
4157   OutStreamer->switchSection(InstMap);
4158   OutStreamer->emitLabel(SledsStart);
4159   for (const auto &Sled : Sleds) {
4160     MCSymbol *Dot = Ctx.createTempSymbol();
4161     OutStreamer->emitLabel(Dot);
4162     OutStreamer->emitValueImpl(
4163         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
4164                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4165         WordSizeBytes);
4166     OutStreamer->emitValueImpl(
4167         MCBinaryExpr::createSub(
4168             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
4169             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
4170                                     MCConstantExpr::create(WordSizeBytes, Ctx),
4171                                     Ctx),
4172             Ctx),
4173         WordSizeBytes);
4174     Sled.emit(WordSizeBytes, OutStreamer.get());
4175   }
4176   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
4177   OutStreamer->emitLabel(SledsEnd);
4178 
4179   // We then emit a single entry in the index per function. We use the symbols
4180   // that bound the instrumentation map as the range for a specific function.
4181   // Each entry here will be 2 * word size aligned, as we're writing down two
4182   // pointers. This should work for both 32-bit and 64-bit platforms.
4183   if (FnSledIndex) {
4184     OutStreamer->switchSection(FnSledIndex);
4185     OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes),
4186                                    &getSubtargetInfo());
4187     // For Mach-O, use an "l" symbol as the atom of this subsection. The label
4188     // difference uses a SUBTRACTOR external relocation which references the
4189     // symbol.
4190     MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx");
4191     OutStreamer->emitLabel(Dot);
4192     OutStreamer->emitValueImpl(
4193         MCBinaryExpr::createSub(MCSymbolRefExpr::create(SledsStart, Ctx),
4194                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4195         WordSizeBytes);
4196     OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx),
4197                                WordSizeBytes);
4198     OutStreamer->switchSection(PrevSection);
4199   }
4200   Sleds.clear();
4201 }
4202 
4203 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
4204                             SledKind Kind, uint8_t Version) {
4205   const Function &F = MI.getMF()->getFunction();
4206   auto Attr = F.getFnAttribute("function-instrument");
4207   bool LogArgs = F.hasFnAttribute("xray-log-args");
4208   bool AlwaysInstrument =
4209     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
4210   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
4211     Kind = SledKind::LOG_ARGS_ENTER;
4212   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
4213                                        AlwaysInstrument, &F, Version});
4214 }
4215 
4216 void AsmPrinter::emitPatchableFunctionEntries() {
4217   const Function &F = MF->getFunction();
4218   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
4219   (void)F.getFnAttribute("patchable-function-prefix")
4220       .getValueAsString()
4221       .getAsInteger(10, PatchableFunctionPrefix);
4222   (void)F.getFnAttribute("patchable-function-entry")
4223       .getValueAsString()
4224       .getAsInteger(10, PatchableFunctionEntry);
4225   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
4226     return;
4227   const unsigned PointerSize = getPointerSize();
4228   if (TM.getTargetTriple().isOSBinFormatELF()) {
4229     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
4230     const MCSymbolELF *LinkedToSym = nullptr;
4231     StringRef GroupName;
4232 
4233     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
4234     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
4235     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
4236       Flags |= ELF::SHF_LINK_ORDER;
4237       if (F.hasComdat()) {
4238         Flags |= ELF::SHF_GROUP;
4239         GroupName = F.getComdat()->getName();
4240       }
4241       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
4242     }
4243     OutStreamer->switchSection(OutContext.getELFSection(
4244         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
4245         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
4246     emitAlignment(Align(PointerSize));
4247     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
4248   }
4249 }
4250 
4251 uint16_t AsmPrinter::getDwarfVersion() const {
4252   return OutStreamer->getContext().getDwarfVersion();
4253 }
4254 
4255 void AsmPrinter::setDwarfVersion(uint16_t Version) {
4256   OutStreamer->getContext().setDwarfVersion(Version);
4257 }
4258 
4259 bool AsmPrinter::isDwarf64() const {
4260   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
4261 }
4262 
4263 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
4264   return dwarf::getDwarfOffsetByteSize(
4265       OutStreamer->getContext().getDwarfFormat());
4266 }
4267 
4268 dwarf::FormParams AsmPrinter::getDwarfFormParams() const {
4269   return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()),
4270           OutStreamer->getContext().getDwarfFormat(),
4271           doesDwarfUseRelocationsAcrossSections()};
4272 }
4273 
4274 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
4275   return dwarf::getUnitLengthFieldByteSize(
4276       OutStreamer->getContext().getDwarfFormat());
4277 }
4278 
4279 std::tuple<const MCSymbol *, uint64_t, const MCSymbol *,
4280            codeview::JumpTableEntrySize>
4281 AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr,
4282                                      const MCSymbol *BranchLabel) const {
4283   const auto TLI = MF->getSubtarget().getTargetLowering();
4284   const auto BaseExpr =
4285       TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext());
4286   const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol();
4287 
4288   // By default, for the architectures that support CodeView,
4289   // EK_LabelDifference32 is implemented as an Int32 from the base address.
4290   return std::make_tuple(Base, 0, BranchLabel,
4291                          codeview::JumpTableEntrySize::Int32);
4292 }
4293