1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for DWARF4 hashing of DIEs.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DIEHash.h"
14 #include "ByteStreamer.h"
15 #include "DwarfCompileUnit.h"
16 #include "DwarfDebug.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/CodeGen/AsmPrinter.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "dwarfdebug"
27 
28 /// Grabs the string in whichever attribute is passed in and returns
29 /// a reference to it.
30 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
31   // Iterate through all the attributes until we find the one we're
32   // looking for, if we can't find it return an empty string.
33   for (const auto &V : Die.values())
34     if (V.getAttribute() == Attr)
35       return V.getDIEString().getString();
36 
37   return StringRef("");
38 }
39 
40 /// Adds the string in \p Str to the hash. This also hashes
41 /// a trailing NULL with the string.
42 void DIEHash::addString(StringRef Str) {
43   LLVM_DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
44   Hash.update(Str);
45   Hash.update(ArrayRef((uint8_t)'\0'));
46 }
47 
48 // FIXME: The LEB128 routines are copied and only slightly modified out of
49 // LEB128.h.
50 
51 /// Adds the unsigned in \p Value to the hash encoded as a ULEB128.
52 void DIEHash::addULEB128(uint64_t Value) {
53   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
54   do {
55     uint8_t Byte = Value & 0x7f;
56     Value >>= 7;
57     if (Value != 0)
58       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
59     Hash.update(Byte);
60   } while (Value != 0);
61 }
62 
63 void DIEHash::addSLEB128(int64_t Value) {
64   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
65   bool More;
66   do {
67     uint8_t Byte = Value & 0x7f;
68     Value >>= 7;
69     More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
70               ((Value == -1) && ((Byte & 0x40) != 0))));
71     if (More)
72       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
73     Hash.update(Byte);
74   } while (More);
75 }
76 
77 /// Including \p Parent adds the context of Parent to the hash..
78 void DIEHash::addParentContext(const DIE &Parent) {
79 
80   LLVM_DEBUG(dbgs() << "Adding parent context to hash...\n");
81 
82   // [7.27.2] For each surrounding type or namespace beginning with the
83   // outermost such construct...
84   SmallVector<const DIE *, 1> Parents;
85   const DIE *Cur = &Parent;
86   while (Cur->getParent()) {
87     Parents.push_back(Cur);
88     Cur = Cur->getParent();
89   }
90   assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
91          Cur->getTag() == dwarf::DW_TAG_type_unit);
92 
93   // Reverse iterate over our list to go from the outermost construct to the
94   // innermost.
95   for (const DIE *Die : llvm::reverse(Parents)) {
96     // ... Append the letter "C" to the sequence...
97     addULEB128('C');
98 
99     // ... Followed by the DWARF tag of the construct...
100     addULEB128(Die->getTag());
101 
102     // ... Then the name, taken from the DW_AT_name attribute.
103     StringRef Name = getDIEStringAttr(*Die, dwarf::DW_AT_name);
104     LLVM_DEBUG(dbgs() << "... adding context: " << Name << "\n");
105     if (!Name.empty())
106       addString(Name);
107   }
108 }
109 
110 // Collect all of the attributes for a particular DIE in single structure.
111 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
112 
113   for (const auto &V : Die.values()) {
114     LLVM_DEBUG(dbgs() << "Attribute: "
115                       << dwarf::AttributeString(V.getAttribute())
116                       << " added.\n");
117     switch (V.getAttribute()) {
118 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
119   case dwarf::NAME:                                                            \
120     Attrs.NAME = V;                                                            \
121     break;
122 #include "DIEHashAttributes.def"
123     default:
124       break;
125     }
126   }
127 }
128 
129 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
130                                        const DIE &Entry, StringRef Name) {
131   // append the letter 'N'
132   addULEB128('N');
133 
134   // the DWARF attribute code (DW_AT_type or DW_AT_friend),
135   addULEB128(Attribute);
136 
137   // the context of the tag,
138   if (const DIE *Parent = Entry.getParent())
139     addParentContext(*Parent);
140 
141   // the letter 'E',
142   addULEB128('E');
143 
144   // and the name of the type.
145   addString(Name);
146 
147   // Currently DW_TAG_friends are not used by Clang, but if they do become so,
148   // here's the relevant spec text to implement:
149   //
150   // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
151   // the context is omitted and the name to be used is the ABI-specific name
152   // of the subprogram (e.g., the mangled linker name).
153 }
154 
155 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
156                                         unsigned DieNumber) {
157   // a) If T is in the list of [previously hashed types], use the letter
158   // 'R' as the marker
159   addULEB128('R');
160 
161   addULEB128(Attribute);
162 
163   // and use the unsigned LEB128 encoding of [the index of T in the
164   // list] as the attribute value;
165   addULEB128(DieNumber);
166 }
167 
168 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
169                            const DIE &Entry) {
170   assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
171                                         "tags. Add support here when there's "
172                                         "a use case");
173   // Step 5
174   // If the tag in Step 3 is one of [the below tags]
175   if ((Tag == dwarf::DW_TAG_pointer_type ||
176        Tag == dwarf::DW_TAG_reference_type ||
177        Tag == dwarf::DW_TAG_rvalue_reference_type ||
178        Tag == dwarf::DW_TAG_ptr_to_member_type) &&
179       // and the referenced type (via the [below attributes])
180       // FIXME: This seems overly restrictive, and causes hash mismatches
181       // there's a decl/def difference in the containing type of a
182       // ptr_to_member_type, but it's what DWARF says, for some reason.
183       Attribute == dwarf::DW_AT_type) {
184     // ... has a DW_AT_name attribute,
185     StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
186     if (!Name.empty()) {
187       hashShallowTypeReference(Attribute, Entry, Name);
188       return;
189     }
190   }
191 
192   unsigned &DieNumber = Numbering[&Entry];
193   if (DieNumber) {
194     hashRepeatedTypeReference(Attribute, DieNumber);
195     return;
196   }
197 
198   // otherwise, b) use the letter 'T' as the marker, ...
199   addULEB128('T');
200 
201   addULEB128(Attribute);
202 
203   // ... process the type T recursively by performing Steps 2 through 7, and
204   // use the result as the attribute value.
205   DieNumber = Numbering.size();
206   computeHash(Entry);
207 }
208 
209 void DIEHash::hashRawTypeReference(const DIE &Entry) {
210   unsigned &DieNumber = Numbering[&Entry];
211   if (DieNumber) {
212     addULEB128('R');
213     addULEB128(DieNumber);
214     return;
215   }
216   DieNumber = Numbering.size();
217   addULEB128('T');
218   computeHash(Entry);
219 }
220 
221 // Hash all of the values in a block like set of values. This assumes that
222 // all of the data is going to be added as integers.
223 void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
224   for (const auto &V : Values)
225     if (V.getType() == DIEValue::isBaseTypeRef) {
226       const DIE &C =
227           *CU->ExprRefedBaseTypes[V.getDIEBaseTypeRef().getIndex()].Die;
228       StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
229       assert(!Name.empty() &&
230              "Base types referenced from DW_OP_convert should have a name");
231       hashNestedType(C, Name);
232     } else
233       Hash.update((uint64_t)V.getDIEInteger().getValue());
234 }
235 
236 // Hash the contents of a loclistptr class.
237 void DIEHash::hashLocList(const DIELocList &LocList) {
238   HashingByteStreamer Streamer(*this);
239   DwarfDebug &DD = *AP->getDwarfDebug();
240   const DebugLocStream &Locs = DD.getDebugLocs();
241   const DebugLocStream::List &List = Locs.getList(LocList.getValue());
242   for (const DebugLocStream::Entry &Entry : Locs.getEntries(List))
243     DD.emitDebugLocEntry(Streamer, Entry, List.CU);
244 }
245 
246 // Hash an individual attribute \param Attr based on the type of attribute and
247 // the form.
248 void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) {
249   dwarf::Attribute Attribute = Value.getAttribute();
250 
251   // Other attribute values use the letter 'A' as the marker, and the value
252   // consists of the form code (encoded as an unsigned LEB128 value) followed by
253   // the encoding of the value according to the form code. To ensure
254   // reproducibility of the signature, the set of forms used in the signature
255   // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
256   // DW_FORM_string, and DW_FORM_block.
257 
258   switch (Value.getType()) {
259   case DIEValue::isNone:
260     llvm_unreachable("Expected valid DIEValue");
261 
262     // 7.27 Step 3
263     // ... An attribute that refers to another type entry T is processed as
264     // follows:
265   case DIEValue::isEntry:
266     hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
267     break;
268   case DIEValue::isInteger: {
269     addULEB128('A');
270     addULEB128(Attribute);
271     switch (Value.getForm()) {
272     case dwarf::DW_FORM_data1:
273     case dwarf::DW_FORM_data2:
274     case dwarf::DW_FORM_data4:
275     case dwarf::DW_FORM_data8:
276     case dwarf::DW_FORM_udata:
277     case dwarf::DW_FORM_sdata:
278       addULEB128(dwarf::DW_FORM_sdata);
279       addSLEB128((int64_t)Value.getDIEInteger().getValue());
280       break;
281     // DW_FORM_flag_present is just flag with a value of one. We still give it a
282     // value so just use the value.
283     case dwarf::DW_FORM_flag_present:
284     case dwarf::DW_FORM_flag:
285       addULEB128(dwarf::DW_FORM_flag);
286       addULEB128((int64_t)Value.getDIEInteger().getValue());
287       break;
288     default:
289       llvm_unreachable("Unknown integer form!");
290     }
291     break;
292   }
293   case DIEValue::isString:
294     addULEB128('A');
295     addULEB128(Attribute);
296     addULEB128(dwarf::DW_FORM_string);
297     addString(Value.getDIEString().getString());
298     break;
299   case DIEValue::isInlineString:
300     addULEB128('A');
301     addULEB128(Attribute);
302     addULEB128(dwarf::DW_FORM_string);
303     addString(Value.getDIEInlineString().getString());
304     break;
305   case DIEValue::isBlock:
306   case DIEValue::isLoc:
307   case DIEValue::isLocList:
308     addULEB128('A');
309     addULEB128(Attribute);
310     addULEB128(dwarf::DW_FORM_block);
311     if (Value.getType() == DIEValue::isBlock) {
312       addULEB128(Value.getDIEBlock().computeSize(AP->getDwarfFormParams()));
313       hashBlockData(Value.getDIEBlock().values());
314     } else if (Value.getType() == DIEValue::isLoc) {
315       addULEB128(Value.getDIELoc().computeSize(AP->getDwarfFormParams()));
316       hashBlockData(Value.getDIELoc().values());
317     } else {
318       // We could add the block length, but that would take
319       // a bit of work and not add a lot of uniqueness
320       // to the hash in some way we could test.
321       hashLocList(Value.getDIELocList());
322     }
323     break;
324     // FIXME: It's uncertain whether or not we should handle this at the moment.
325   case DIEValue::isExpr:
326   case DIEValue::isLabel:
327   case DIEValue::isBaseTypeRef:
328   case DIEValue::isDelta:
329   case DIEValue::isAddrOffset:
330     llvm_unreachable("Add support for additional value types.");
331   }
332 }
333 
334 // Go through the attributes from \param Attrs in the order specified in 7.27.4
335 // and hash them.
336 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
337 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
338   {                                                                            \
339     if (Attrs.NAME)                                                           \
340       hashAttribute(Attrs.NAME, Tag);                                         \
341   }
342 #include "DIEHashAttributes.def"
343   // FIXME: Add the extended attributes.
344 }
345 
346 // Add all of the attributes for \param Die to the hash.
347 void DIEHash::addAttributes(const DIE &Die) {
348   DIEAttrs Attrs = {};
349   collectAttributes(Die, Attrs);
350   hashAttributes(Attrs, Die.getTag());
351 }
352 
353 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
354   // 7.27 Step 7
355   // ... append the letter 'S',
356   addULEB128('S');
357 
358   // the tag of C,
359   addULEB128(Die.getTag());
360 
361   // and the name.
362   addString(Name);
363 }
364 
365 // Compute the hash of a DIE. This is based on the type signature computation
366 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
367 // flattened description of the DIE.
368 void DIEHash::computeHash(const DIE &Die) {
369   // Append the letter 'D', followed by the DWARF tag of the DIE.
370   addULEB128('D');
371   addULEB128(Die.getTag());
372 
373   // Add each of the attributes of the DIE.
374   addAttributes(Die);
375 
376   // Then hash each of the children of the DIE.
377   for (const auto &C : Die.children()) {
378     // 7.27 Step 7
379     // If C is a nested type entry or a member function entry, ...
380     if (isType(C.getTag()) || (C.getTag() == dwarf::DW_TAG_subprogram && isType(C.getParent()->getTag()))) {
381       StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
382       // ... and has a DW_AT_name attribute
383       if (!Name.empty()) {
384         hashNestedType(C, Name);
385         continue;
386       }
387     }
388     computeHash(C);
389   }
390 
391   // Following the last (or if there are no children), append a zero byte.
392   Hash.update(ArrayRef((uint8_t)'\0'));
393 }
394 
395 /// This is based on the type signature computation given in section 7.27 of the
396 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
397 /// with the inclusion of the full CU and all top level CU entities.
398 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
399 uint64_t DIEHash::computeCUSignature(StringRef DWOName, const DIE &Die) {
400   Numbering.clear();
401   Numbering[&Die] = 1;
402 
403   if (!DWOName.empty())
404     Hash.update(DWOName);
405   // Hash the DIE.
406   computeHash(Die);
407 
408   // Now return the result.
409   MD5::MD5Result Result;
410   Hash.final(Result);
411 
412   // ... take the least significant 8 bytes and return those. Our MD5
413   // implementation always returns its results in little endian, so we actually
414   // need the "high" word.
415   return Result.high();
416 }
417 
418 /// This is based on the type signature computation given in section 7.27 of the
419 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
420 /// with the inclusion of additional forms not specifically called out in the
421 /// standard.
422 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
423   Numbering.clear();
424   Numbering[&Die] = 1;
425 
426   if (const DIE *Parent = Die.getParent())
427     addParentContext(*Parent);
428 
429   // Hash the DIE.
430   computeHash(Die);
431 
432   // Now return the result.
433   MD5::MD5Result Result;
434   Hash.final(Result);
435 
436   // ... take the least significant 8 bytes and return those. Our MD5
437   // implementation always returns its results in little endian, so we actually
438   // need the "high" word.
439   return Result.high();
440 }
441