1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "atomic-expand"
56 
57 namespace {
58 
59   class AtomicExpand: public FunctionPass {
60     const TargetLowering *TLI = nullptr;
61 
62   public:
63     static char ID; // Pass identification, replacement for typeid
64 
65     AtomicExpand() : FunctionPass(ID) {
66       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67     }
68 
69     bool runOnFunction(Function &F) override;
70 
71   private:
72     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75     bool tryExpandAtomicLoad(LoadInst *LI);
76     bool expandAtomicLoadToLL(LoadInst *LI);
77     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79     bool expandAtomicStore(StoreInst *SI);
80     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81     Value *
82     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83                       AtomicOrdering MemOpOrder,
84                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85     void expandAtomicOpToLLSC(
86         Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
87         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
88     void expandPartwordAtomicRMW(
89         AtomicRMWInst *I,
90         TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91     AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92     bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93     void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94     void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95 
96     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97     static Value *insertRMWCmpXchgLoop(
98         IRBuilder<> &Builder, Type *ResultType, Value *Addr,
99         AtomicOrdering MemOpOrder,
100         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
101         CreateCmpXchgInstFun CreateCmpXchg);
102     bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103 
104     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105     bool isIdempotentRMW(AtomicRMWInst *RMWI);
106     bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107 
108     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
109                                  Value *PointerOperand, Value *ValueOperand,
110                                  Value *CASExpected, AtomicOrdering Ordering,
111                                  AtomicOrdering Ordering2,
112                                  ArrayRef<RTLIB::Libcall> Libcalls);
113     void expandAtomicLoadToLibcall(LoadInst *LI);
114     void expandAtomicStoreToLibcall(StoreInst *LI);
115     void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117 
118     friend bool
119     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120                                    CreateCmpXchgInstFun CreateCmpXchg);
121   };
122 
123 } // end anonymous namespace
124 
125 char AtomicExpand::ID = 0;
126 
127 char &llvm::AtomicExpandID = AtomicExpand::ID;
128 
129 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
130                 false, false)
131 
132 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133 
134 // Helper functions to retrieve the size of atomic instructions.
135 static unsigned getAtomicOpSize(LoadInst *LI) {
136   const DataLayout &DL = LI->getModule()->getDataLayout();
137   return DL.getTypeStoreSize(LI->getType());
138 }
139 
140 static unsigned getAtomicOpSize(StoreInst *SI) {
141   const DataLayout &DL = SI->getModule()->getDataLayout();
142   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
143 }
144 
145 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
146   const DataLayout &DL = RMWI->getModule()->getDataLayout();
147   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
148 }
149 
150 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
151   const DataLayout &DL = CASI->getModule()->getDataLayout();
152   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
153 }
154 
155 // Determine if a particular atomic operation has a supported size,
156 // and is of appropriate alignment, to be passed through for target
157 // lowering. (Versus turning into a __atomic libcall)
158 template <typename Inst>
159 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
160   unsigned Size = getAtomicOpSize(I);
161   Align Alignment = I->getAlign();
162   return Alignment >= Size &&
163          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
164 }
165 
166 bool AtomicExpand::runOnFunction(Function &F) {
167   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
168   if (!TPC)
169     return false;
170 
171   auto &TM = TPC->getTM<TargetMachine>();
172   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
173     return false;
174   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
175 
176   SmallVector<Instruction *, 1> AtomicInsts;
177 
178   // Changing control-flow while iterating through it is a bad idea, so gather a
179   // list of all atomic instructions before we start.
180   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
181     Instruction *I = &*II;
182     if (I->isAtomic() && !isa<FenceInst>(I))
183       AtomicInsts.push_back(I);
184   }
185 
186   bool MadeChange = false;
187   for (auto I : AtomicInsts) {
188     auto LI = dyn_cast<LoadInst>(I);
189     auto SI = dyn_cast<StoreInst>(I);
190     auto RMWI = dyn_cast<AtomicRMWInst>(I);
191     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
192     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
193 
194     // If the Size/Alignment is not supported, replace with a libcall.
195     if (LI) {
196       if (!atomicSizeSupported(TLI, LI)) {
197         expandAtomicLoadToLibcall(LI);
198         MadeChange = true;
199         continue;
200       }
201     } else if (SI) {
202       if (!atomicSizeSupported(TLI, SI)) {
203         expandAtomicStoreToLibcall(SI);
204         MadeChange = true;
205         continue;
206       }
207     } else if (RMWI) {
208       if (!atomicSizeSupported(TLI, RMWI)) {
209         expandAtomicRMWToLibcall(RMWI);
210         MadeChange = true;
211         continue;
212       }
213     } else if (CASI) {
214       if (!atomicSizeSupported(TLI, CASI)) {
215         expandAtomicCASToLibcall(CASI);
216         MadeChange = true;
217         continue;
218       }
219     }
220 
221     if (TLI->shouldInsertFencesForAtomic(I)) {
222       auto FenceOrdering = AtomicOrdering::Monotonic;
223       if (LI && isAcquireOrStronger(LI->getOrdering())) {
224         FenceOrdering = LI->getOrdering();
225         LI->setOrdering(AtomicOrdering::Monotonic);
226       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
227         FenceOrdering = SI->getOrdering();
228         SI->setOrdering(AtomicOrdering::Monotonic);
229       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
230                           isAcquireOrStronger(RMWI->getOrdering()))) {
231         FenceOrdering = RMWI->getOrdering();
232         RMWI->setOrdering(AtomicOrdering::Monotonic);
233       } else if (CASI &&
234                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
235                      TargetLoweringBase::AtomicExpansionKind::None &&
236                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
237                   isAcquireOrStronger(CASI->getSuccessOrdering()))) {
238         // If a compare and swap is lowered to LL/SC, we can do smarter fence
239         // insertion, with a stronger one on the success path than on the
240         // failure path. As a result, fence insertion is directly done by
241         // expandAtomicCmpXchg in that case.
242         FenceOrdering = CASI->getSuccessOrdering();
243         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
244         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
245       }
246 
247       if (FenceOrdering != AtomicOrdering::Monotonic) {
248         MadeChange |= bracketInstWithFences(I, FenceOrdering);
249       }
250     }
251 
252     if (LI) {
253       if (LI->getType()->isFloatingPointTy()) {
254         // TODO: add a TLI hook to control this so that each target can
255         // convert to lowering the original type one at a time.
256         LI = convertAtomicLoadToIntegerType(LI);
257         assert(LI->getType()->isIntegerTy() && "invariant broken");
258         MadeChange = true;
259       }
260 
261       MadeChange |= tryExpandAtomicLoad(LI);
262     } else if (SI) {
263       if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
264         // TODO: add a TLI hook to control this so that each target can
265         // convert to lowering the original type one at a time.
266         SI = convertAtomicStoreToIntegerType(SI);
267         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
268                "invariant broken");
269         MadeChange = true;
270       }
271 
272       if (TLI->shouldExpandAtomicStoreInIR(SI))
273         MadeChange |= expandAtomicStore(SI);
274     } else if (RMWI) {
275       // There are two different ways of expanding RMW instructions:
276       // - into a load if it is idempotent
277       // - into a Cmpxchg/LL-SC loop otherwise
278       // we try them in that order.
279 
280       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
281         MadeChange = true;
282       } else {
283         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
284         unsigned ValueSize = getAtomicOpSize(RMWI);
285         AtomicRMWInst::BinOp Op = RMWI->getOperation();
286         if (ValueSize < MinCASSize &&
287             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
288              Op == AtomicRMWInst::And)) {
289           RMWI = widenPartwordAtomicRMW(RMWI);
290           MadeChange = true;
291         }
292 
293         MadeChange |= tryExpandAtomicRMW(RMWI);
294       }
295     } else if (CASI) {
296       // TODO: when we're ready to make the change at the IR level, we can
297       // extend convertCmpXchgToInteger for floating point too.
298       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
299              "unimplemented - floating point not legal at IR level");
300       if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
301         // TODO: add a TLI hook to control this so that each target can
302         // convert to lowering the original type one at a time.
303         CASI = convertCmpXchgToIntegerType(CASI);
304         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
305                "invariant broken");
306         MadeChange = true;
307       }
308 
309       MadeChange |= tryExpandAtomicCmpXchg(CASI);
310     }
311   }
312   return MadeChange;
313 }
314 
315 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
316   IRBuilder<> Builder(I);
317 
318   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
319 
320   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
321   // We have a guard here because not every atomic operation generates a
322   // trailing fence.
323   if (TrailingFence)
324     TrailingFence->moveAfter(I);
325 
326   return (LeadingFence || TrailingFence);
327 }
328 
329 /// Get the iX type with the same bitwidth as T.
330 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
331                                                        const DataLayout &DL) {
332   EVT VT = TLI->getMemValueType(DL, T);
333   unsigned BitWidth = VT.getStoreSizeInBits();
334   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
335   return IntegerType::get(T->getContext(), BitWidth);
336 }
337 
338 /// Convert an atomic load of a non-integral type to an integer load of the
339 /// equivalent bitwidth.  See the function comment on
340 /// convertAtomicStoreToIntegerType for background.
341 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
342   auto *M = LI->getModule();
343   Type *NewTy = getCorrespondingIntegerType(LI->getType(),
344                                             M->getDataLayout());
345 
346   IRBuilder<> Builder(LI);
347 
348   Value *Addr = LI->getPointerOperand();
349   Type *PT = PointerType::get(NewTy,
350                               Addr->getType()->getPointerAddressSpace());
351   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
352 
353   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
354   NewLI->setAlignment(LI->getAlign());
355   NewLI->setVolatile(LI->isVolatile());
356   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
357   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
358 
359   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
360   LI->replaceAllUsesWith(NewVal);
361   LI->eraseFromParent();
362   return NewLI;
363 }
364 
365 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
366   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
367   case TargetLoweringBase::AtomicExpansionKind::None:
368     return false;
369   case TargetLoweringBase::AtomicExpansionKind::LLSC:
370     expandAtomicOpToLLSC(
371         LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
372         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
373     return true;
374   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
375     return expandAtomicLoadToLL(LI);
376   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
377     return expandAtomicLoadToCmpXchg(LI);
378   default:
379     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
380   }
381 }
382 
383 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
384   IRBuilder<> Builder(LI);
385 
386   // On some architectures, load-linked instructions are atomic for larger
387   // sizes than normal loads. For example, the only 64-bit load guaranteed
388   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
389   Value *Val =
390       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
391   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
392 
393   LI->replaceAllUsesWith(Val);
394   LI->eraseFromParent();
395 
396   return true;
397 }
398 
399 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
400   IRBuilder<> Builder(LI);
401   AtomicOrdering Order = LI->getOrdering();
402   if (Order == AtomicOrdering::Unordered)
403     Order = AtomicOrdering::Monotonic;
404 
405   Value *Addr = LI->getPointerOperand();
406   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
407   Constant *DummyVal = Constant::getNullValue(Ty);
408 
409   Value *Pair = Builder.CreateAtomicCmpXchg(
410       Addr, DummyVal, DummyVal, Order,
411       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
412   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
413 
414   LI->replaceAllUsesWith(Loaded);
415   LI->eraseFromParent();
416 
417   return true;
418 }
419 
420 /// Convert an atomic store of a non-integral type to an integer store of the
421 /// equivalent bitwidth.  We used to not support floating point or vector
422 /// atomics in the IR at all.  The backends learned to deal with the bitcast
423 /// idiom because that was the only way of expressing the notion of a atomic
424 /// float or vector store.  The long term plan is to teach each backend to
425 /// instruction select from the original atomic store, but as a migration
426 /// mechanism, we convert back to the old format which the backends understand.
427 /// Each backend will need individual work to recognize the new format.
428 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
429   IRBuilder<> Builder(SI);
430   auto *M = SI->getModule();
431   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
432                                             M->getDataLayout());
433   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
434 
435   Value *Addr = SI->getPointerOperand();
436   Type *PT = PointerType::get(NewTy,
437                               Addr->getType()->getPointerAddressSpace());
438   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
439 
440   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
441   NewSI->setAlignment(SI->getAlign());
442   NewSI->setVolatile(SI->isVolatile());
443   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
444   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
445   SI->eraseFromParent();
446   return NewSI;
447 }
448 
449 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
450   // This function is only called on atomic stores that are too large to be
451   // atomic if implemented as a native store. So we replace them by an
452   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
453   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
454   // It is the responsibility of the target to only signal expansion via
455   // shouldExpandAtomicRMW in cases where this is required and possible.
456   IRBuilder<> Builder(SI);
457   AtomicRMWInst *AI =
458       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
459                               SI->getValueOperand(), SI->getOrdering());
460   SI->eraseFromParent();
461 
462   // Now we have an appropriate swap instruction, lower it as usual.
463   return tryExpandAtomicRMW(AI);
464 }
465 
466 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
467                                  Value *Loaded, Value *NewVal,
468                                  AtomicOrdering MemOpOrder,
469                                  Value *&Success, Value *&NewLoaded) {
470   Type *OrigTy = NewVal->getType();
471 
472   // This code can go away when cmpxchg supports FP types.
473   bool NeedBitcast = OrigTy->isFloatingPointTy();
474   if (NeedBitcast) {
475     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
476     unsigned AS = Addr->getType()->getPointerAddressSpace();
477     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
478     NewVal = Builder.CreateBitCast(NewVal, IntTy);
479     Loaded = Builder.CreateBitCast(Loaded, IntTy);
480   }
481 
482   Value* Pair = Builder.CreateAtomicCmpXchg(
483       Addr, Loaded, NewVal, MemOpOrder,
484       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
485   Success = Builder.CreateExtractValue(Pair, 1, "success");
486   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
487 
488   if (NeedBitcast)
489     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
490 }
491 
492 /// Emit IR to implement the given atomicrmw operation on values in registers,
493 /// returning the new value.
494 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
495                               Value *Loaded, Value *Inc) {
496   Value *NewVal;
497   switch (Op) {
498   case AtomicRMWInst::Xchg:
499     return Inc;
500   case AtomicRMWInst::Add:
501     return Builder.CreateAdd(Loaded, Inc, "new");
502   case AtomicRMWInst::Sub:
503     return Builder.CreateSub(Loaded, Inc, "new");
504   case AtomicRMWInst::And:
505     return Builder.CreateAnd(Loaded, Inc, "new");
506   case AtomicRMWInst::Nand:
507     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
508   case AtomicRMWInst::Or:
509     return Builder.CreateOr(Loaded, Inc, "new");
510   case AtomicRMWInst::Xor:
511     return Builder.CreateXor(Loaded, Inc, "new");
512   case AtomicRMWInst::Max:
513     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
514     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
515   case AtomicRMWInst::Min:
516     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
517     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
518   case AtomicRMWInst::UMax:
519     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
520     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
521   case AtomicRMWInst::UMin:
522     NewVal = Builder.CreateICmpULE(Loaded, Inc);
523     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
524   case AtomicRMWInst::FAdd:
525     return Builder.CreateFAdd(Loaded, Inc, "new");
526   case AtomicRMWInst::FSub:
527     return Builder.CreateFSub(Loaded, Inc, "new");
528   default:
529     llvm_unreachable("Unknown atomic op");
530   }
531 }
532 
533 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
534   switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
535   case TargetLoweringBase::AtomicExpansionKind::None:
536     return false;
537   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
538     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
539     unsigned ValueSize = getAtomicOpSize(AI);
540     if (ValueSize < MinCASSize) {
541       expandPartwordAtomicRMW(AI,
542                               TargetLoweringBase::AtomicExpansionKind::LLSC);
543     } else {
544       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
545         return performAtomicOp(AI->getOperation(), Builder, Loaded,
546                                AI->getValOperand());
547       };
548       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
549                            AI->getOrdering(), PerformOp);
550     }
551     return true;
552   }
553   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
554     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
555     unsigned ValueSize = getAtomicOpSize(AI);
556     if (ValueSize < MinCASSize) {
557       // TODO: Handle atomicrmw fadd/fsub
558       if (AI->getType()->isFloatingPointTy())
559         return false;
560 
561       expandPartwordAtomicRMW(AI,
562                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
563     } else {
564       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
565     }
566     return true;
567   }
568   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
569     expandAtomicRMWToMaskedIntrinsic(AI);
570     return true;
571   }
572   default:
573     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
574   }
575 }
576 
577 namespace {
578 
579 struct PartwordMaskValues {
580   // These three fields are guaranteed to be set by createMaskInstrs.
581   Type *WordType = nullptr;
582   Type *ValueType = nullptr;
583   Value *AlignedAddr = nullptr;
584   // The remaining fields can be null.
585   Value *ShiftAmt = nullptr;
586   Value *Mask = nullptr;
587   Value *Inv_Mask = nullptr;
588 };
589 
590 LLVM_ATTRIBUTE_UNUSED
591 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
592   auto PrintObj = [&O](auto *V) {
593     if (V)
594       O << *V;
595     else
596       O << "nullptr";
597     O << '\n';
598   };
599   O << "PartwordMaskValues {\n";
600   O << "  WordType: ";
601   PrintObj(PMV.WordType);
602   O << "  ValueType: ";
603   PrintObj(PMV.ValueType);
604   O << "  AlignedAddr: ";
605   PrintObj(PMV.AlignedAddr);
606   O << "  ShiftAmt: ";
607   PrintObj(PMV.ShiftAmt);
608   O << "  Mask: ";
609   PrintObj(PMV.Mask);
610   O << "  Inv_Mask: ";
611   PrintObj(PMV.Inv_Mask);
612   O << "}\n";
613   return O;
614 }
615 
616 } // end anonymous namespace
617 
618 /// This is a helper function which builds instructions to provide
619 /// values necessary for partword atomic operations. It takes an
620 /// incoming address, Addr, and ValueType, and constructs the address,
621 /// shift-amounts and masks needed to work with a larger value of size
622 /// WordSize.
623 ///
624 /// AlignedAddr: Addr rounded down to a multiple of WordSize
625 ///
626 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
627 ///           from AlignAddr for it to have the same value as if
628 ///           ValueType was loaded from Addr.
629 ///
630 /// Mask: Value to mask with the value loaded from AlignAddr to
631 ///       include only the part that would've been loaded from Addr.
632 ///
633 /// Inv_Mask: The inverse of Mask.
634 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
635                                            Type *ValueType, Value *Addr,
636                                            unsigned MinWordSize) {
637   PartwordMaskValues PMV;
638 
639   Module *M = I->getModule();
640   LLVMContext &Ctx = M->getContext();
641   const DataLayout &DL = M->getDataLayout();
642   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
643 
644   PMV.ValueType = ValueType;
645   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
646                                          : ValueType;
647   if (PMV.ValueType == PMV.WordType) {
648     PMV.AlignedAddr = Addr;
649     return PMV;
650   }
651 
652   assert(ValueSize < MinWordSize);
653 
654   Type *WordPtrType =
655       PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
656 
657   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
658   PMV.AlignedAddr = Builder.CreateIntToPtr(
659       Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
660       "AlignedAddr");
661 
662   Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
663   if (DL.isLittleEndian()) {
664     // turn bytes into bits
665     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
666   } else {
667     // turn bytes into bits, and count from the other side.
668     PMV.ShiftAmt = Builder.CreateShl(
669         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
670   }
671 
672   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
673   PMV.Mask = Builder.CreateShl(
674       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
675       "Mask");
676   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
677   return PMV;
678 }
679 
680 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
681                                  const PartwordMaskValues &PMV) {
682   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
683   if (PMV.WordType == PMV.ValueType)
684     return WideWord;
685 
686   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
687   Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
688   return Trunc;
689 }
690 
691 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
692                                 Value *Updated, const PartwordMaskValues &PMV) {
693   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
694   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
695   if (PMV.WordType == PMV.ValueType)
696     return Updated;
697 
698   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
699   Value *Shift =
700       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
701   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
702   Value *Or = Builder.CreateOr(And, Shift, "inserted");
703   return Or;
704 }
705 
706 /// Emit IR to implement a masked version of a given atomicrmw
707 /// operation. (That is, only the bits under the Mask should be
708 /// affected by the operation)
709 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
710                                     IRBuilder<> &Builder, Value *Loaded,
711                                     Value *Shifted_Inc, Value *Inc,
712                                     const PartwordMaskValues &PMV) {
713   // TODO: update to use
714   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
715   // to merge bits from two values without requiring PMV.Inv_Mask.
716   switch (Op) {
717   case AtomicRMWInst::Xchg: {
718     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
719     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
720     return FinalVal;
721   }
722   case AtomicRMWInst::Or:
723   case AtomicRMWInst::Xor:
724   case AtomicRMWInst::And:
725     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
726   case AtomicRMWInst::Add:
727   case AtomicRMWInst::Sub:
728   case AtomicRMWInst::Nand: {
729     // The other arithmetic ops need to be masked into place.
730     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
731     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
732     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
733     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
734     return FinalVal;
735   }
736   case AtomicRMWInst::Max:
737   case AtomicRMWInst::Min:
738   case AtomicRMWInst::UMax:
739   case AtomicRMWInst::UMin: {
740     // Finally, comparison ops will operate on the full value, so
741     // truncate down to the original size, and expand out again after
742     // doing the operation.
743     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
744     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc);
745     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
746     return FinalVal;
747   }
748   default:
749     llvm_unreachable("Unknown atomic op");
750   }
751 }
752 
753 /// Expand a sub-word atomicrmw operation into an appropriate
754 /// word-sized operation.
755 ///
756 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
757 /// way as a typical atomicrmw expansion. The only difference here is
758 /// that the operation inside of the loop may operate upon only a
759 /// part of the value.
760 void AtomicExpand::expandPartwordAtomicRMW(
761     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
762   AtomicOrdering MemOpOrder = AI->getOrdering();
763 
764   IRBuilder<> Builder(AI);
765 
766   PartwordMaskValues PMV =
767       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
768                        TLI->getMinCmpXchgSizeInBits() / 8);
769 
770   Value *ValOperand_Shifted =
771       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
772                         PMV.ShiftAmt, "ValOperand_Shifted");
773 
774   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
775     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
776                                  ValOperand_Shifted, AI->getValOperand(), PMV);
777   };
778 
779   Value *OldResult;
780   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
781     OldResult =
782         insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
783                              PerformPartwordOp, createCmpXchgInstFun);
784   } else {
785     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
786     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
787                                   MemOpOrder, PerformPartwordOp);
788   }
789 
790   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
791   AI->replaceAllUsesWith(FinalOldResult);
792   AI->eraseFromParent();
793 }
794 
795 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
796 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
797   IRBuilder<> Builder(AI);
798   AtomicRMWInst::BinOp Op = AI->getOperation();
799 
800   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
801           Op == AtomicRMWInst::And) &&
802          "Unable to widen operation");
803 
804   PartwordMaskValues PMV =
805       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
806                        TLI->getMinCmpXchgSizeInBits() / 8);
807 
808   Value *ValOperand_Shifted =
809       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
810                         PMV.ShiftAmt, "ValOperand_Shifted");
811 
812   Value *NewOperand;
813 
814   if (Op == AtomicRMWInst::And)
815     NewOperand =
816         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
817   else
818     NewOperand = ValOperand_Shifted;
819 
820   AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
821                                                  NewOperand, AI->getOrdering());
822 
823   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
824   AI->replaceAllUsesWith(FinalOldResult);
825   AI->eraseFromParent();
826   return NewAI;
827 }
828 
829 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
830   // The basic idea here is that we're expanding a cmpxchg of a
831   // smaller memory size up to a word-sized cmpxchg. To do this, we
832   // need to add a retry-loop for strong cmpxchg, so that
833   // modifications to other parts of the word don't cause a spurious
834   // failure.
835 
836   // This generates code like the following:
837   //     [[Setup mask values PMV.*]]
838   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
839   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
840   //     %InitLoaded = load i32* %addr
841   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
842   //     br partword.cmpxchg.loop
843   // partword.cmpxchg.loop:
844   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
845   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
846   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
847   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
848   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
849   //        i32 %FullWord_NewVal success_ordering failure_ordering
850   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
851   //     %Success = extractvalue { i32, i1 } %NewCI, 1
852   //     br i1 %Success, label %partword.cmpxchg.end,
853   //        label %partword.cmpxchg.failure
854   // partword.cmpxchg.failure:
855   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
856   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
857   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
858   //         label %partword.cmpxchg.end
859   // partword.cmpxchg.end:
860   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
861   //    %FinalOldVal = trunc i32 %tmp1 to i8
862   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
863   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
864 
865   Value *Addr = CI->getPointerOperand();
866   Value *Cmp = CI->getCompareOperand();
867   Value *NewVal = CI->getNewValOperand();
868 
869   BasicBlock *BB = CI->getParent();
870   Function *F = BB->getParent();
871   IRBuilder<> Builder(CI);
872   LLVMContext &Ctx = Builder.getContext();
873 
874   const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
875 
876   BasicBlock *EndBB =
877       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
878   auto FailureBB =
879       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
880   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
881 
882   // The split call above "helpfully" added a branch at the end of BB
883   // (to the wrong place).
884   std::prev(BB->end())->eraseFromParent();
885   Builder.SetInsertPoint(BB);
886 
887   PartwordMaskValues PMV = createMaskInstrs(
888       Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
889 
890   // Shift the incoming values over, into the right location in the word.
891   Value *NewVal_Shifted =
892       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
893   Value *Cmp_Shifted =
894       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
895 
896   // Load the entire current word, and mask into place the expected and new
897   // values
898   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
899   InitLoaded->setVolatile(CI->isVolatile());
900   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
901   Builder.CreateBr(LoopBB);
902 
903   // partword.cmpxchg.loop:
904   Builder.SetInsertPoint(LoopBB);
905   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
906   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
907 
908   // Mask/Or the expected and new values into place in the loaded word.
909   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
910   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
911   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
912       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
913       CI->getFailureOrdering(), CI->getSyncScopeID());
914   NewCI->setVolatile(CI->isVolatile());
915   // When we're building a strong cmpxchg, we need a loop, so you
916   // might think we could use a weak cmpxchg inside. But, using strong
917   // allows the below comparison for ShouldContinue, and we're
918   // expecting the underlying cmpxchg to be a machine instruction,
919   // which is strong anyways.
920   NewCI->setWeak(CI->isWeak());
921 
922   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
923   Value *Success = Builder.CreateExtractValue(NewCI, 1);
924 
925   if (CI->isWeak())
926     Builder.CreateBr(EndBB);
927   else
928     Builder.CreateCondBr(Success, EndBB, FailureBB);
929 
930   // partword.cmpxchg.failure:
931   Builder.SetInsertPoint(FailureBB);
932   // Upon failure, verify that the masked-out part of the loaded value
933   // has been modified.  If it didn't, abort the cmpxchg, since the
934   // masked-in part must've.
935   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
936   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
937   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
938 
939   // Add the second value to the phi from above
940   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
941 
942   // partword.cmpxchg.end:
943   Builder.SetInsertPoint(CI);
944 
945   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
946   Value *Res = UndefValue::get(CI->getType());
947   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
948   Res = Builder.CreateInsertValue(Res, Success, 1);
949 
950   CI->replaceAllUsesWith(Res);
951   CI->eraseFromParent();
952   return true;
953 }
954 
955 void AtomicExpand::expandAtomicOpToLLSC(
956     Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
957     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
958   IRBuilder<> Builder(I);
959   Value *Loaded =
960       insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
961 
962   I->replaceAllUsesWith(Loaded);
963   I->eraseFromParent();
964 }
965 
966 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
967   IRBuilder<> Builder(AI);
968 
969   PartwordMaskValues PMV =
970       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
971                        TLI->getMinCmpXchgSizeInBits() / 8);
972 
973   // The value operand must be sign-extended for signed min/max so that the
974   // target's signed comparison instructions can be used. Otherwise, just
975   // zero-ext.
976   Instruction::CastOps CastOp = Instruction::ZExt;
977   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
978   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
979     CastOp = Instruction::SExt;
980 
981   Value *ValOperand_Shifted = Builder.CreateShl(
982       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
983       PMV.ShiftAmt, "ValOperand_Shifted");
984   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
985       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
986       AI->getOrdering());
987   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
988   AI->replaceAllUsesWith(FinalOldResult);
989   AI->eraseFromParent();
990 }
991 
992 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
993   IRBuilder<> Builder(CI);
994 
995   PartwordMaskValues PMV = createMaskInstrs(
996       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
997       TLI->getMinCmpXchgSizeInBits() / 8);
998 
999   Value *CmpVal_Shifted = Builder.CreateShl(
1000       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1001       "CmpVal_Shifted");
1002   Value *NewVal_Shifted = Builder.CreateShl(
1003       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1004       "NewVal_Shifted");
1005   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1006       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1007       CI->getSuccessOrdering());
1008   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1009   Value *Res = UndefValue::get(CI->getType());
1010   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1011   Value *Success = Builder.CreateICmpEQ(
1012       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1013   Res = Builder.CreateInsertValue(Res, Success, 1);
1014 
1015   CI->replaceAllUsesWith(Res);
1016   CI->eraseFromParent();
1017 }
1018 
1019 Value *AtomicExpand::insertRMWLLSCLoop(
1020     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1021     AtomicOrdering MemOpOrder,
1022     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1023   LLVMContext &Ctx = Builder.getContext();
1024   BasicBlock *BB = Builder.GetInsertBlock();
1025   Function *F = BB->getParent();
1026 
1027   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1028   //
1029   // The standard expansion we produce is:
1030   //     [...]
1031   // atomicrmw.start:
1032   //     %loaded = @load.linked(%addr)
1033   //     %new = some_op iN %loaded, %incr
1034   //     %stored = @store_conditional(%new, %addr)
1035   //     %try_again = icmp i32 ne %stored, 0
1036   //     br i1 %try_again, label %loop, label %atomicrmw.end
1037   // atomicrmw.end:
1038   //     [...]
1039   BasicBlock *ExitBB =
1040       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1041   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1042 
1043   // The split call above "helpfully" added a branch at the end of BB (to the
1044   // wrong place).
1045   std::prev(BB->end())->eraseFromParent();
1046   Builder.SetInsertPoint(BB);
1047   Builder.CreateBr(LoopBB);
1048 
1049   // Start the main loop block now that we've taken care of the preliminaries.
1050   Builder.SetInsertPoint(LoopBB);
1051   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1052 
1053   Value *NewVal = PerformOp(Builder, Loaded);
1054 
1055   Value *StoreSuccess =
1056       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1057   Value *TryAgain = Builder.CreateICmpNE(
1058       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1059   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1060 
1061   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1062   return Loaded;
1063 }
1064 
1065 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1066 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1067 /// IR.  As a migration step, we convert back to what use to be the standard
1068 /// way to represent a pointer cmpxchg so that we can update backends one by
1069 /// one.
1070 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1071   auto *M = CI->getModule();
1072   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1073                                             M->getDataLayout());
1074 
1075   IRBuilder<> Builder(CI);
1076 
1077   Value *Addr = CI->getPointerOperand();
1078   Type *PT = PointerType::get(NewTy,
1079                               Addr->getType()->getPointerAddressSpace());
1080   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1081 
1082   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1083   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1084 
1085 
1086   auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1087                                             CI->getSuccessOrdering(),
1088                                             CI->getFailureOrdering(),
1089                                             CI->getSyncScopeID());
1090   NewCI->setVolatile(CI->isVolatile());
1091   NewCI->setWeak(CI->isWeak());
1092   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1093 
1094   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1095   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1096 
1097   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1098 
1099   Value *Res = UndefValue::get(CI->getType());
1100   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1101   Res = Builder.CreateInsertValue(Res, Succ, 1);
1102 
1103   CI->replaceAllUsesWith(Res);
1104   CI->eraseFromParent();
1105   return NewCI;
1106 }
1107 
1108 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1109   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1110   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1111   Value *Addr = CI->getPointerOperand();
1112   BasicBlock *BB = CI->getParent();
1113   Function *F = BB->getParent();
1114   LLVMContext &Ctx = F->getContext();
1115   // If shouldInsertFencesForAtomic() returns true, then the target does not
1116   // want to deal with memory orders, and emitLeading/TrailingFence should take
1117   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1118   // should preserve the ordering.
1119   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1120   AtomicOrdering MemOpOrder =
1121       ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1122 
1123   // In implementations which use a barrier to achieve release semantics, we can
1124   // delay emitting this barrier until we know a store is actually going to be
1125   // attempted. The cost of this delay is that we need 2 copies of the block
1126   // emitting the load-linked, affecting code size.
1127   //
1128   // Ideally, this logic would be unconditional except for the minsize check
1129   // since in other cases the extra blocks naturally collapse down to the
1130   // minimal loop. Unfortunately, this puts too much stress on later
1131   // optimisations so we avoid emitting the extra logic in those cases too.
1132   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1133                            SuccessOrder != AtomicOrdering::Monotonic &&
1134                            SuccessOrder != AtomicOrdering::Acquire &&
1135                            !F->hasMinSize();
1136 
1137   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1138   // do it even on minsize.
1139   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1140 
1141   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1142   //
1143   // The full expansion we produce is:
1144   //     [...]
1145   // %aligned.addr = ...
1146   // cmpxchg.start:
1147   //     %unreleasedload = @load.linked(%aligned.addr)
1148   //     %unreleasedload.extract = extract value from %unreleasedload
1149   //     %should_store = icmp eq %unreleasedload.extract, %desired
1150   //     br i1 %should_store, label %cmpxchg.releasingstore,
1151   //                          label %cmpxchg.nostore
1152   // cmpxchg.releasingstore:
1153   //     fence?
1154   //     br label cmpxchg.trystore
1155   // cmpxchg.trystore:
1156   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1157   //                            [%releasedload, %cmpxchg.releasedload]
1158   //     %updated.new = insert %new into %loaded.trystore
1159   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1160   //     %success = icmp eq i32 %stored, 0
1161   //     br i1 %success, label %cmpxchg.success,
1162   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1163   // cmpxchg.releasedload:
1164   //     %releasedload = @load.linked(%aligned.addr)
1165   //     %releasedload.extract = extract value from %releasedload
1166   //     %should_store = icmp eq %releasedload.extract, %desired
1167   //     br i1 %should_store, label %cmpxchg.trystore,
1168   //                          label %cmpxchg.failure
1169   // cmpxchg.success:
1170   //     fence?
1171   //     br label %cmpxchg.end
1172   // cmpxchg.nostore:
1173   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1174   //                           [%releasedload,
1175   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1176   //     @load_linked_fail_balance()?
1177   //     br label %cmpxchg.failure
1178   // cmpxchg.failure:
1179   //     fence?
1180   //     br label %cmpxchg.end
1181   // cmpxchg.end:
1182   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1183   //                        [%loaded.trystore, %cmpxchg.trystore]
1184   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1185   //     %loaded = extract value from %loaded.exit
1186   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1187   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1188   //     [...]
1189   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1190   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1191   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1192   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1193   auto ReleasedLoadBB =
1194       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1195   auto TryStoreBB =
1196       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1197   auto ReleasingStoreBB =
1198       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1199   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1200 
1201   // This grabs the DebugLoc from CI
1202   IRBuilder<> Builder(CI);
1203 
1204   // The split call above "helpfully" added a branch at the end of BB (to the
1205   // wrong place), but we might want a fence too. It's easiest to just remove
1206   // the branch entirely.
1207   std::prev(BB->end())->eraseFromParent();
1208   Builder.SetInsertPoint(BB);
1209   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1210     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1211 
1212   PartwordMaskValues PMV =
1213       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1214                        TLI->getMinCmpXchgSizeInBits() / 8);
1215   Builder.CreateBr(StartBB);
1216 
1217   // Start the main loop block now that we've taken care of the preliminaries.
1218   Builder.SetInsertPoint(StartBB);
1219   Value *UnreleasedLoad =
1220       TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1221   Value *UnreleasedLoadExtract =
1222       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1223   Value *ShouldStore = Builder.CreateICmpEQ(
1224       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1225 
1226   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1227   // jump straight past that fence instruction (if it exists).
1228   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1229 
1230   Builder.SetInsertPoint(ReleasingStoreBB);
1231   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1232     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1233   Builder.CreateBr(TryStoreBB);
1234 
1235   Builder.SetInsertPoint(TryStoreBB);
1236   PHINode *LoadedTryStore =
1237       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1238   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1239   Value *NewValueInsert =
1240       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1241   Value *StoreSuccess =
1242       TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr,
1243                                 MemOpOrder);
1244   StoreSuccess = Builder.CreateICmpEQ(
1245       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1246   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1247   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1248                        CI->isWeak() ? FailureBB : RetryBB);
1249 
1250   Builder.SetInsertPoint(ReleasedLoadBB);
1251   Value *SecondLoad;
1252   if (HasReleasedLoadBB) {
1253     SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1254     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1255     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1256                                        CI->getCompareOperand(), "should_store");
1257 
1258     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1259     // jump straight past that fence instruction (if it exists).
1260     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1261     // Update PHI node in TryStoreBB.
1262     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1263   } else
1264     Builder.CreateUnreachable();
1265 
1266   // Make sure later instructions don't get reordered with a fence if
1267   // necessary.
1268   Builder.SetInsertPoint(SuccessBB);
1269   if (ShouldInsertFencesForAtomic)
1270     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1271   Builder.CreateBr(ExitBB);
1272 
1273   Builder.SetInsertPoint(NoStoreBB);
1274   PHINode *LoadedNoStore =
1275       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1276   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1277   if (HasReleasedLoadBB)
1278     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1279 
1280   // In the failing case, where we don't execute the store-conditional, the
1281   // target might want to balance out the load-linked with a dedicated
1282   // instruction (e.g., on ARM, clearing the exclusive monitor).
1283   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1284   Builder.CreateBr(FailureBB);
1285 
1286   Builder.SetInsertPoint(FailureBB);
1287   PHINode *LoadedFailure =
1288       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1289   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1290   if (CI->isWeak())
1291     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1292   if (ShouldInsertFencesForAtomic)
1293     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1294   Builder.CreateBr(ExitBB);
1295 
1296   // Finally, we have control-flow based knowledge of whether the cmpxchg
1297   // succeeded or not. We expose this to later passes by converting any
1298   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1299   // PHI.
1300   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1301   PHINode *LoadedExit =
1302       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1303   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1304   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1305   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1306   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1307   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1308 
1309   // This is the "exit value" from the cmpxchg expansion. It may be of
1310   // a type wider than the one in the cmpxchg instruction.
1311   Value *LoadedFull = LoadedExit;
1312 
1313   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1314   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1315 
1316   // Look for any users of the cmpxchg that are just comparing the loaded value
1317   // against the desired one, and replace them with the CFG-derived version.
1318   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1319   for (auto User : CI->users()) {
1320     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1321     if (!EV)
1322       continue;
1323 
1324     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1325            "weird extraction from { iN, i1 }");
1326 
1327     if (EV->getIndices()[0] == 0)
1328       EV->replaceAllUsesWith(Loaded);
1329     else
1330       EV->replaceAllUsesWith(Success);
1331 
1332     PrunedInsts.push_back(EV);
1333   }
1334 
1335   // We can remove the instructions now we're no longer iterating through them.
1336   for (auto EV : PrunedInsts)
1337     EV->eraseFromParent();
1338 
1339   if (!CI->use_empty()) {
1340     // Some use of the full struct return that we don't understand has happened,
1341     // so we've got to reconstruct it properly.
1342     Value *Res;
1343     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1344     Res = Builder.CreateInsertValue(Res, Success, 1);
1345 
1346     CI->replaceAllUsesWith(Res);
1347   }
1348 
1349   CI->eraseFromParent();
1350   return true;
1351 }
1352 
1353 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1354   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1355   if(!C)
1356     return false;
1357 
1358   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1359   switch(Op) {
1360     case AtomicRMWInst::Add:
1361     case AtomicRMWInst::Sub:
1362     case AtomicRMWInst::Or:
1363     case AtomicRMWInst::Xor:
1364       return C->isZero();
1365     case AtomicRMWInst::And:
1366       return C->isMinusOne();
1367     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1368     default:
1369       return false;
1370   }
1371 }
1372 
1373 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1374   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1375     tryExpandAtomicLoad(ResultingLoad);
1376     return true;
1377   }
1378   return false;
1379 }
1380 
1381 Value *AtomicExpand::insertRMWCmpXchgLoop(
1382     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1383     AtomicOrdering MemOpOrder,
1384     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1385     CreateCmpXchgInstFun CreateCmpXchg) {
1386   LLVMContext &Ctx = Builder.getContext();
1387   BasicBlock *BB = Builder.GetInsertBlock();
1388   Function *F = BB->getParent();
1389 
1390   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1391   //
1392   // The standard expansion we produce is:
1393   //     [...]
1394   //     %init_loaded = load atomic iN* %addr
1395   //     br label %loop
1396   // loop:
1397   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1398   //     %new = some_op iN %loaded, %incr
1399   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1400   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1401   //     %success = extractvalue { iN, i1 } %pair, 1
1402   //     br i1 %success, label %atomicrmw.end, label %loop
1403   // atomicrmw.end:
1404   //     [...]
1405   BasicBlock *ExitBB =
1406       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1407   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1408 
1409   // The split call above "helpfully" added a branch at the end of BB (to the
1410   // wrong place), but we want a load. It's easiest to just remove
1411   // the branch entirely.
1412   std::prev(BB->end())->eraseFromParent();
1413   Builder.SetInsertPoint(BB);
1414   LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1415   // Atomics require at least natural alignment.
1416   InitLoaded->setAlignment(Align(ResultTy->getPrimitiveSizeInBits() / 8));
1417   Builder.CreateBr(LoopBB);
1418 
1419   // Start the main loop block now that we've taken care of the preliminaries.
1420   Builder.SetInsertPoint(LoopBB);
1421   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1422   Loaded->addIncoming(InitLoaded, BB);
1423 
1424   Value *NewVal = PerformOp(Builder, Loaded);
1425 
1426   Value *NewLoaded = nullptr;
1427   Value *Success = nullptr;
1428 
1429   CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1430                 MemOpOrder == AtomicOrdering::Unordered
1431                     ? AtomicOrdering::Monotonic
1432                     : MemOpOrder,
1433                 Success, NewLoaded);
1434   assert(Success && NewLoaded);
1435 
1436   Loaded->addIncoming(NewLoaded, LoopBB);
1437 
1438   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1439 
1440   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1441   return NewLoaded;
1442 }
1443 
1444 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1445   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1446   unsigned ValueSize = getAtomicOpSize(CI);
1447 
1448   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1449   default:
1450     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1451   case TargetLoweringBase::AtomicExpansionKind::None:
1452     if (ValueSize < MinCASSize)
1453       return expandPartwordCmpXchg(CI);
1454     return false;
1455   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1456     return expandAtomicCmpXchg(CI);
1457   }
1458   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1459     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1460     return true;
1461   }
1462 }
1463 
1464 // Note: This function is exposed externally by AtomicExpandUtils.h
1465 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1466                                     CreateCmpXchgInstFun CreateCmpXchg) {
1467   IRBuilder<> Builder(AI);
1468   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1469       Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1470       [&](IRBuilder<> &Builder, Value *Loaded) {
1471         return performAtomicOp(AI->getOperation(), Builder, Loaded,
1472                                AI->getValOperand());
1473       },
1474       CreateCmpXchg);
1475 
1476   AI->replaceAllUsesWith(Loaded);
1477   AI->eraseFromParent();
1478   return true;
1479 }
1480 
1481 // In order to use one of the sized library calls such as
1482 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1483 // must be one of the potentially-specialized sizes, and the value
1484 // type must actually exist in C on the target (otherwise, the
1485 // function wouldn't actually be defined.)
1486 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1487                                   const DataLayout &DL) {
1488   // TODO: "LargestSize" is an approximation for "largest type that
1489   // you can express in C". It seems to be the case that int128 is
1490   // supported on all 64-bit platforms, otherwise only up to 64-bit
1491   // integers are supported. If we get this wrong, then we'll try to
1492   // call a sized libcall that doesn't actually exist. There should
1493   // really be some more reliable way in LLVM of determining integer
1494   // sizes which are valid in the target's C ABI...
1495   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1496   return Alignment >= Size &&
1497          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1498          Size <= LargestSize;
1499 }
1500 
1501 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1502   static const RTLIB::Libcall Libcalls[6] = {
1503       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1504       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1505   unsigned Size = getAtomicOpSize(I);
1506 
1507   bool expanded = expandAtomicOpToLibcall(
1508       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1509       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1510   if (!expanded)
1511     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1512 }
1513 
1514 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1515   static const RTLIB::Libcall Libcalls[6] = {
1516       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1517       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1518   unsigned Size = getAtomicOpSize(I);
1519 
1520   bool expanded = expandAtomicOpToLibcall(
1521       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1522       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1523   if (!expanded)
1524     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1525 }
1526 
1527 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1528   static const RTLIB::Libcall Libcalls[6] = {
1529       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1530       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1531       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1532   unsigned Size = getAtomicOpSize(I);
1533 
1534   bool expanded = expandAtomicOpToLibcall(
1535       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1536       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1537       Libcalls);
1538   if (!expanded)
1539     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1540 }
1541 
1542 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1543   static const RTLIB::Libcall LibcallsXchg[6] = {
1544       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1545       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1546       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1547   static const RTLIB::Libcall LibcallsAdd[6] = {
1548       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1549       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1550       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1551   static const RTLIB::Libcall LibcallsSub[6] = {
1552       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1553       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1554       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1555   static const RTLIB::Libcall LibcallsAnd[6] = {
1556       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1557       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1558       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1559   static const RTLIB::Libcall LibcallsOr[6] = {
1560       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1561       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1562       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1563   static const RTLIB::Libcall LibcallsXor[6] = {
1564       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1565       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1566       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1567   static const RTLIB::Libcall LibcallsNand[6] = {
1568       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1569       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1570       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1571 
1572   switch (Op) {
1573   case AtomicRMWInst::BAD_BINOP:
1574     llvm_unreachable("Should not have BAD_BINOP.");
1575   case AtomicRMWInst::Xchg:
1576     return makeArrayRef(LibcallsXchg);
1577   case AtomicRMWInst::Add:
1578     return makeArrayRef(LibcallsAdd);
1579   case AtomicRMWInst::Sub:
1580     return makeArrayRef(LibcallsSub);
1581   case AtomicRMWInst::And:
1582     return makeArrayRef(LibcallsAnd);
1583   case AtomicRMWInst::Or:
1584     return makeArrayRef(LibcallsOr);
1585   case AtomicRMWInst::Xor:
1586     return makeArrayRef(LibcallsXor);
1587   case AtomicRMWInst::Nand:
1588     return makeArrayRef(LibcallsNand);
1589   case AtomicRMWInst::Max:
1590   case AtomicRMWInst::Min:
1591   case AtomicRMWInst::UMax:
1592   case AtomicRMWInst::UMin:
1593   case AtomicRMWInst::FAdd:
1594   case AtomicRMWInst::FSub:
1595     // No atomic libcalls are available for max/min/umax/umin.
1596     return {};
1597   }
1598   llvm_unreachable("Unexpected AtomicRMW operation.");
1599 }
1600 
1601 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1602   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1603 
1604   unsigned Size = getAtomicOpSize(I);
1605 
1606   bool Success = false;
1607   if (!Libcalls.empty())
1608     Success = expandAtomicOpToLibcall(
1609         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1610         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1611 
1612   // The expansion failed: either there were no libcalls at all for
1613   // the operation (min/max), or there were only size-specialized
1614   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1615   // CAS libcall, via a CAS loop, instead.
1616   if (!Success) {
1617     expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1618                                        Value *Loaded, Value *NewVal,
1619                                        AtomicOrdering MemOpOrder,
1620                                        Value *&Success, Value *&NewLoaded) {
1621       // Create the CAS instruction normally...
1622       AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1623           Addr, Loaded, NewVal, MemOpOrder,
1624           AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1625       Success = Builder.CreateExtractValue(Pair, 1, "success");
1626       NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1627 
1628       // ...and then expand the CAS into a libcall.
1629       expandAtomicCASToLibcall(Pair);
1630     });
1631   }
1632 }
1633 
1634 // A helper routine for the above expandAtomic*ToLibcall functions.
1635 //
1636 // 'Libcalls' contains an array of enum values for the particular
1637 // ATOMIC libcalls to be emitted. All of the other arguments besides
1638 // 'I' are extracted from the Instruction subclass by the
1639 // caller. Depending on the particular call, some will be null.
1640 bool AtomicExpand::expandAtomicOpToLibcall(
1641     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1642     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1643     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1644   assert(Libcalls.size() == 6);
1645 
1646   LLVMContext &Ctx = I->getContext();
1647   Module *M = I->getModule();
1648   const DataLayout &DL = M->getDataLayout();
1649   IRBuilder<> Builder(I);
1650   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1651 
1652   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1653   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1654 
1655   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1656 
1657   // TODO: the "order" argument type is "int", not int32. So
1658   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1659   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1660   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1661   Constant *OrderingVal =
1662       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1663   Constant *Ordering2Val = nullptr;
1664   if (CASExpected) {
1665     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1666     Ordering2Val =
1667         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1668   }
1669   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1670 
1671   RTLIB::Libcall RTLibType;
1672   if (UseSizedLibcall) {
1673     switch (Size) {
1674     case 1: RTLibType = Libcalls[1]; break;
1675     case 2: RTLibType = Libcalls[2]; break;
1676     case 4: RTLibType = Libcalls[3]; break;
1677     case 8: RTLibType = Libcalls[4]; break;
1678     case 16: RTLibType = Libcalls[5]; break;
1679     }
1680   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1681     RTLibType = Libcalls[0];
1682   } else {
1683     // Can't use sized function, and there's no generic for this
1684     // operation, so give up.
1685     return false;
1686   }
1687 
1688   if (!TLI->getLibcallName(RTLibType)) {
1689     // This target does not implement the requested atomic libcall so give up.
1690     return false;
1691   }
1692 
1693   // Build up the function call. There's two kinds. First, the sized
1694   // variants.  These calls are going to be one of the following (with
1695   // N=1,2,4,8,16):
1696   //  iN    __atomic_load_N(iN *ptr, int ordering)
1697   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1698   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1699   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1700   //                                    int success_order, int failure_order)
1701   //
1702   // Note that these functions can be used for non-integer atomic
1703   // operations, the values just need to be bitcast to integers on the
1704   // way in and out.
1705   //
1706   // And, then, the generic variants. They look like the following:
1707   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1708   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1709   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1710   //                          int ordering)
1711   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1712   //                                  void *desired, int success_order,
1713   //                                  int failure_order)
1714   //
1715   // The different signatures are built up depending on the
1716   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1717   // variables.
1718 
1719   AllocaInst *AllocaCASExpected = nullptr;
1720   Value *AllocaCASExpected_i8 = nullptr;
1721   AllocaInst *AllocaValue = nullptr;
1722   Value *AllocaValue_i8 = nullptr;
1723   AllocaInst *AllocaResult = nullptr;
1724   Value *AllocaResult_i8 = nullptr;
1725 
1726   Type *ResultTy;
1727   SmallVector<Value *, 6> Args;
1728   AttributeList Attr;
1729 
1730   // 'size' argument.
1731   if (!UseSizedLibcall) {
1732     // Note, getIntPtrType is assumed equivalent to size_t.
1733     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1734   }
1735 
1736   // 'ptr' argument.
1737   // note: This assumes all address spaces share a common libfunc
1738   // implementation and that addresses are convertable.  For systems without
1739   // that property, we'd need to extend this mechanism to support AS-specific
1740   // families of atomic intrinsics.
1741   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1742   Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1743                                         Type::getInt8PtrTy(Ctx, PtrTypeAS));
1744   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1745   Args.push_back(PtrVal);
1746 
1747   // 'expected' argument, if present.
1748   if (CASExpected) {
1749     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1750     AllocaCASExpected->setAlignment(AllocaAlignment);
1751     unsigned AllocaAS =  AllocaCASExpected->getType()->getPointerAddressSpace();
1752 
1753     AllocaCASExpected_i8 =
1754       Builder.CreateBitCast(AllocaCASExpected,
1755                             Type::getInt8PtrTy(Ctx, AllocaAS));
1756     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1757     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1758     Args.push_back(AllocaCASExpected_i8);
1759   }
1760 
1761   // 'val' argument ('desired' for cas), if present.
1762   if (ValueOperand) {
1763     if (UseSizedLibcall) {
1764       Value *IntValue =
1765           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1766       Args.push_back(IntValue);
1767     } else {
1768       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1769       AllocaValue->setAlignment(AllocaAlignment);
1770       AllocaValue_i8 =
1771           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1772       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1773       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1774       Args.push_back(AllocaValue_i8);
1775     }
1776   }
1777 
1778   // 'ret' argument.
1779   if (!CASExpected && HasResult && !UseSizedLibcall) {
1780     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1781     AllocaResult->setAlignment(AllocaAlignment);
1782     unsigned AllocaAS =  AllocaResult->getType()->getPointerAddressSpace();
1783     AllocaResult_i8 =
1784       Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1785     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1786     Args.push_back(AllocaResult_i8);
1787   }
1788 
1789   // 'ordering' ('success_order' for cas) argument.
1790   Args.push_back(OrderingVal);
1791 
1792   // 'failure_order' argument, if present.
1793   if (Ordering2Val)
1794     Args.push_back(Ordering2Val);
1795 
1796   // Now, the return type.
1797   if (CASExpected) {
1798     ResultTy = Type::getInt1Ty(Ctx);
1799     Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1800   } else if (HasResult && UseSizedLibcall)
1801     ResultTy = SizedIntTy;
1802   else
1803     ResultTy = Type::getVoidTy(Ctx);
1804 
1805   // Done with setting up arguments and return types, create the call:
1806   SmallVector<Type *, 6> ArgTys;
1807   for (Value *Arg : Args)
1808     ArgTys.push_back(Arg->getType());
1809   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1810   FunctionCallee LibcallFn =
1811       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1812   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1813   Call->setAttributes(Attr);
1814   Value *Result = Call;
1815 
1816   // And then, extract the results...
1817   if (ValueOperand && !UseSizedLibcall)
1818     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1819 
1820   if (CASExpected) {
1821     // The final result from the CAS is {load of 'expected' alloca, bool result
1822     // from call}
1823     Type *FinalResultTy = I->getType();
1824     Value *V = UndefValue::get(FinalResultTy);
1825     Value *ExpectedOut = Builder.CreateAlignedLoad(
1826         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1827     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1828     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1829     V = Builder.CreateInsertValue(V, Result, 1);
1830     I->replaceAllUsesWith(V);
1831   } else if (HasResult) {
1832     Value *V;
1833     if (UseSizedLibcall)
1834       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1835     else {
1836       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1837                                     AllocaAlignment);
1838       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1839     }
1840     I->replaceAllUsesWith(V);
1841   }
1842   I->eraseFromParent();
1843   return true;
1844 }
1845