1 //===- BranchRelaxation.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/SmallVector.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/CodeGen/LivePhysRegs.h"
12 #include "llvm/CodeGen/MachineBasicBlock.h"
13 #include "llvm/CodeGen/MachineFunction.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstr.h"
16 #include "llvm/CodeGen/RegisterScavenging.h"
17 #include "llvm/CodeGen/TargetInstrInfo.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/DebugLoc.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/Format.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstdint>
31 #include <iterator>
32 #include <memory>
33 
34 using namespace llvm;
35 
36 #define DEBUG_TYPE "branch-relaxation"
37 
38 STATISTIC(NumSplit, "Number of basic blocks split");
39 STATISTIC(NumConditionalRelaxed, "Number of conditional branches relaxed");
40 STATISTIC(NumUnconditionalRelaxed, "Number of unconditional branches relaxed");
41 
42 #define BRANCH_RELAX_NAME "Branch relaxation pass"
43 
44 namespace {
45 
46 class BranchRelaxation : public MachineFunctionPass {
47   /// BasicBlockInfo - Information about the offset and size of a single
48   /// basic block.
49   struct BasicBlockInfo {
50     /// Offset - Distance from the beginning of the function to the beginning
51     /// of this basic block.
52     ///
53     /// The offset is always aligned as required by the basic block.
54     unsigned Offset = 0;
55 
56     /// Size - Size of the basic block in bytes.  If the block contains
57     /// inline assembly, this is a worst case estimate.
58     ///
59     /// The size does not include any alignment padding whether from the
60     /// beginning of the block, or from an aligned jump table at the end.
61     unsigned Size = 0;
62 
63     BasicBlockInfo() = default;
64 
65     /// Compute the offset immediately following this block. \p MBB is the next
66     /// block.
67     unsigned postOffset(const MachineBasicBlock &MBB) const {
68       const unsigned PO = Offset + Size;
69       const Align Alignment = MBB.getAlignment();
70       if (Alignment == 1)
71         return PO;
72 
73       const Align ParentAlign = MBB.getParent()->getAlignment();
74       if (Alignment <= ParentAlign)
75         return PO + offsetToAlignment(PO, Alignment);
76 
77       // The alignment of this MBB is larger than the function's alignment, so we
78       // can't tell whether or not it will insert nops. Assume that it will.
79       return PO + Alignment.value() + offsetToAlignment(PO, Alignment);
80     }
81   };
82 
83   SmallVector<BasicBlockInfo, 16> BlockInfo;
84   std::unique_ptr<RegScavenger> RS;
85   LivePhysRegs LiveRegs;
86 
87   MachineFunction *MF;
88   const TargetRegisterInfo *TRI;
89   const TargetInstrInfo *TII;
90 
91   bool relaxBranchInstructions();
92   void scanFunction();
93 
94   MachineBasicBlock *createNewBlockAfter(MachineBasicBlock &BB);
95 
96   MachineBasicBlock *splitBlockBeforeInstr(MachineInstr &MI,
97                                            MachineBasicBlock *DestBB);
98   void adjustBlockOffsets(MachineBasicBlock &Start);
99   bool isBlockInRange(const MachineInstr &MI, const MachineBasicBlock &BB) const;
100 
101   bool fixupConditionalBranch(MachineInstr &MI);
102   bool fixupUnconditionalBranch(MachineInstr &MI);
103   uint64_t computeBlockSize(const MachineBasicBlock &MBB) const;
104   unsigned getInstrOffset(const MachineInstr &MI) const;
105   void dumpBBs();
106   void verify();
107 
108 public:
109   static char ID;
110 
111   BranchRelaxation() : MachineFunctionPass(ID) {}
112 
113   bool runOnMachineFunction(MachineFunction &MF) override;
114 
115   StringRef getPassName() const override { return BRANCH_RELAX_NAME; }
116 };
117 
118 } // end anonymous namespace
119 
120 char BranchRelaxation::ID = 0;
121 
122 char &llvm::BranchRelaxationPassID = BranchRelaxation::ID;
123 
124 INITIALIZE_PASS(BranchRelaxation, DEBUG_TYPE, BRANCH_RELAX_NAME, false, false)
125 
126 /// verify - check BBOffsets, BBSizes, alignment of islands
127 void BranchRelaxation::verify() {
128 #ifndef NDEBUG
129   unsigned PrevNum = MF->begin()->getNumber();
130   for (MachineBasicBlock &MBB : *MF) {
131     const unsigned Num = MBB.getNumber();
132     assert(isAligned(MBB.getAlignment(), BlockInfo[Num].Offset));
133     assert(!Num || BlockInfo[PrevNum].postOffset(MBB) <= BlockInfo[Num].Offset);
134     assert(BlockInfo[Num].Size == computeBlockSize(MBB));
135     PrevNum = Num;
136   }
137 #endif
138 }
139 
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 /// print block size and offset information - debugging
142 LLVM_DUMP_METHOD void BranchRelaxation::dumpBBs() {
143   for (auto &MBB : *MF) {
144     const BasicBlockInfo &BBI = BlockInfo[MBB.getNumber()];
145     dbgs() << format("%%bb.%u\toffset=%08x\t", MBB.getNumber(), BBI.Offset)
146            << format("size=%#x\n", BBI.Size);
147   }
148 }
149 #endif
150 
151 /// scanFunction - Do the initial scan of the function, building up
152 /// information about each block.
153 void BranchRelaxation::scanFunction() {
154   BlockInfo.clear();
155   BlockInfo.resize(MF->getNumBlockIDs());
156 
157   // First thing, compute the size of all basic blocks, and see if the function
158   // has any inline assembly in it. If so, we have to be conservative about
159   // alignment assumptions, as we don't know for sure the size of any
160   // instructions in the inline assembly.
161   for (MachineBasicBlock &MBB : *MF)
162     BlockInfo[MBB.getNumber()].Size = computeBlockSize(MBB);
163 
164   // Compute block offsets and known bits.
165   adjustBlockOffsets(*MF->begin());
166 }
167 
168 /// computeBlockSize - Compute the size for MBB.
169 uint64_t BranchRelaxation::computeBlockSize(const MachineBasicBlock &MBB) const {
170   uint64_t Size = 0;
171   for (const MachineInstr &MI : MBB)
172     Size += TII->getInstSizeInBytes(MI);
173   return Size;
174 }
175 
176 /// getInstrOffset - Return the current offset of the specified machine
177 /// instruction from the start of the function.  This offset changes as stuff is
178 /// moved around inside the function.
179 unsigned BranchRelaxation::getInstrOffset(const MachineInstr &MI) const {
180   const MachineBasicBlock *MBB = MI.getParent();
181 
182   // The offset is composed of two things: the sum of the sizes of all MBB's
183   // before this instruction's block, and the offset from the start of the block
184   // it is in.
185   unsigned Offset = BlockInfo[MBB->getNumber()].Offset;
186 
187   // Sum instructions before MI in MBB.
188   for (MachineBasicBlock::const_iterator I = MBB->begin(); &*I != &MI; ++I) {
189     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
190     Offset += TII->getInstSizeInBytes(*I);
191   }
192 
193   return Offset;
194 }
195 
196 void BranchRelaxation::adjustBlockOffsets(MachineBasicBlock &Start) {
197   unsigned PrevNum = Start.getNumber();
198   for (auto &MBB : make_range(MachineFunction::iterator(Start), MF->end())) {
199     unsigned Num = MBB.getNumber();
200     if (!Num) // block zero is never changed from offset zero.
201       continue;
202     // Get the offset and known bits at the end of the layout predecessor.
203     // Include the alignment of the current block.
204     BlockInfo[Num].Offset = BlockInfo[PrevNum].postOffset(MBB);
205 
206     PrevNum = Num;
207   }
208 }
209 
210 /// Insert a new empty basic block and insert it after \BB
211 MachineBasicBlock *BranchRelaxation::createNewBlockAfter(MachineBasicBlock &BB) {
212   // Create a new MBB for the code after the OrigBB.
213   MachineBasicBlock *NewBB =
214       MF->CreateMachineBasicBlock(BB.getBasicBlock());
215   MF->insert(++BB.getIterator(), NewBB);
216 
217   // Insert an entry into BlockInfo to align it properly with the block numbers.
218   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
219 
220   return NewBB;
221 }
222 
223 /// Split the basic block containing MI into two blocks, which are joined by
224 /// an unconditional branch.  Update data structures and renumber blocks to
225 /// account for this change and returns the newly created block.
226 MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
227                                                            MachineBasicBlock *DestBB) {
228   MachineBasicBlock *OrigBB = MI.getParent();
229 
230   // Create a new MBB for the code after the OrigBB.
231   MachineBasicBlock *NewBB =
232       MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
233   MF->insert(++OrigBB->getIterator(), NewBB);
234 
235   // Splice the instructions starting with MI over to NewBB.
236   NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
237 
238   // Add an unconditional branch from OrigBB to NewBB.
239   // Note the new unconditional branch is not being recorded.
240   // There doesn't seem to be meaningful DebugInfo available; this doesn't
241   // correspond to anything in the source.
242   TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
243 
244   // Insert an entry into BlockInfo to align it properly with the block numbers.
245   BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
246 
247   NewBB->transferSuccessors(OrigBB);
248   OrigBB->addSuccessor(NewBB);
249   OrigBB->addSuccessor(DestBB);
250 
251   // Cleanup potential unconditional branch to successor block.
252   // Note that updateTerminator may change the size of the blocks.
253   NewBB->updateTerminator();
254   OrigBB->updateTerminator();
255 
256   // Figure out how large the OrigBB is.  As the first half of the original
257   // block, it cannot contain a tablejump.  The size includes
258   // the new jump we added.  (It should be possible to do this without
259   // recounting everything, but it's very confusing, and this is rarely
260   // executed.)
261   BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
262 
263   // Figure out how large the NewMBB is. As the second half of the original
264   // block, it may contain a tablejump.
265   BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
266 
267   // All BBOffsets following these blocks must be modified.
268   adjustBlockOffsets(*OrigBB);
269 
270   // Need to fix live-in lists if we track liveness.
271   if (TRI->trackLivenessAfterRegAlloc(*MF))
272     computeAndAddLiveIns(LiveRegs, *NewBB);
273 
274   ++NumSplit;
275 
276   return NewBB;
277 }
278 
279 /// isBlockInRange - Returns true if the distance between specific MI and
280 /// specific BB can fit in MI's displacement field.
281 bool BranchRelaxation::isBlockInRange(
282   const MachineInstr &MI, const MachineBasicBlock &DestBB) const {
283   int64_t BrOffset = getInstrOffset(MI);
284   int64_t DestOffset = BlockInfo[DestBB.getNumber()].Offset;
285 
286   if (TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - BrOffset))
287     return true;
288 
289   LLVM_DEBUG(dbgs() << "Out of range branch to destination "
290                     << printMBBReference(DestBB) << " from "
291                     << printMBBReference(*MI.getParent()) << " to "
292                     << DestOffset << " offset " << DestOffset - BrOffset << '\t'
293                     << MI);
294 
295   return false;
296 }
297 
298 /// fixupConditionalBranch - Fix up a conditional branch whose destination is
299 /// too far away to fit in its displacement field. It is converted to an inverse
300 /// conditional branch + an unconditional branch to the destination.
301 bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
302   DebugLoc DL = MI.getDebugLoc();
303   MachineBasicBlock *MBB = MI.getParent();
304   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
305   MachineBasicBlock *NewBB = nullptr;
306   SmallVector<MachineOperand, 4> Cond;
307 
308   auto insertUncondBranch = [&](MachineBasicBlock *MBB,
309                                 MachineBasicBlock *DestBB) {
310     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
311     int NewBrSize = 0;
312     TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
313     BBSize += NewBrSize;
314   };
315   auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
316                           MachineBasicBlock *FBB,
317                           SmallVectorImpl<MachineOperand>& Cond) {
318     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
319     int NewBrSize = 0;
320     TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
321     BBSize += NewBrSize;
322   };
323   auto removeBranch = [&](MachineBasicBlock *MBB) {
324     unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
325     int RemovedSize = 0;
326     TII->removeBranch(*MBB, &RemovedSize);
327     BBSize -= RemovedSize;
328   };
329 
330   auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
331                                   MachineBasicBlock *NewBB) {
332     // Keep the block offsets up to date.
333     adjustBlockOffsets(*MBB);
334 
335     // Need to fix live-in lists if we track liveness.
336     if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
337       computeAndAddLiveIns(LiveRegs, *NewBB);
338   };
339 
340   bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
341   assert(!Fail && "branches to be relaxed must be analyzable");
342   (void)Fail;
343 
344   // Add an unconditional branch to the destination and invert the branch
345   // condition to jump over it:
346   // tbz L1
347   // =>
348   // tbnz L2
349   // b   L1
350   // L2:
351 
352   bool ReversedCond = !TII->reverseBranchCondition(Cond);
353   if (ReversedCond) {
354     if (FBB && isBlockInRange(MI, *FBB)) {
355       // Last MI in the BB is an unconditional branch. We can simply invert the
356       // condition and swap destinations:
357       // beq L1
358       // b   L2
359       // =>
360       // bne L2
361       // b   L1
362       LLVM_DEBUG(dbgs() << "  Invert condition and swap "
363                            "its destination with "
364                         << MBB->back());
365 
366       removeBranch(MBB);
367       insertBranch(MBB, FBB, TBB, Cond);
368       finalizeBlockChanges(MBB, nullptr);
369       return true;
370     }
371     if (FBB) {
372       // We need to split the basic block here to obtain two long-range
373       // unconditional branches.
374       NewBB = createNewBlockAfter(*MBB);
375 
376       insertUncondBranch(NewBB, FBB);
377       // Update the succesor lists according to the transformation to follow.
378       // Do it here since if there's no split, no update is needed.
379       MBB->replaceSuccessor(FBB, NewBB);
380       NewBB->addSuccessor(FBB);
381     }
382 
383     // We now have an appropriate fall-through block in place (either naturally or
384     // just created), so we can use the inverted the condition.
385     MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
386 
387     LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*TBB)
388                       << ", invert condition and change dest. to "
389                       << printMBBReference(NextBB) << '\n');
390 
391     removeBranch(MBB);
392     // Insert a new conditional branch and a new unconditional branch.
393     insertBranch(MBB, &NextBB, TBB, Cond);
394 
395     finalizeBlockChanges(MBB, NewBB);
396     return true;
397   }
398   // Branch cond can't be inverted.
399   // In this case we always add a block after the MBB.
400   LLVM_DEBUG(dbgs() << "  The branch condition can't be inverted. "
401                     << "  Insert a new BB after " << MBB->back());
402 
403   if (!FBB)
404     FBB = &(*std::next(MachineFunction::iterator(MBB)));
405 
406   // This is the block with cond. branch and the distance to TBB is too long.
407   //    beq L1
408   // L2:
409 
410   // We do the following transformation:
411   //    beq NewBB
412   //    b L2
413   // NewBB:
414   //    b L1
415   // L2:
416 
417   NewBB = createNewBlockAfter(*MBB);
418   insertUncondBranch(NewBB, TBB);
419 
420   LLVM_DEBUG(dbgs() << "  Insert cond B to the new BB "
421                     << printMBBReference(*NewBB)
422                     << "  Keep the exiting condition.\n"
423                     << "  Insert B to " << printMBBReference(*FBB) << ".\n"
424                     << "  In the new BB: Insert B to "
425                     << printMBBReference(*TBB) << ".\n");
426 
427   // Update the successor lists according to the transformation to follow.
428   MBB->replaceSuccessor(TBB, NewBB);
429   NewBB->addSuccessor(TBB);
430 
431   // Replace branch in the current (MBB) block.
432   removeBranch(MBB);
433   insertBranch(MBB, NewBB, FBB, Cond);
434 
435   finalizeBlockChanges(MBB, NewBB);
436   return true;
437 }
438 
439 bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
440   MachineBasicBlock *MBB = MI.getParent();
441 
442   unsigned OldBrSize = TII->getInstSizeInBytes(MI);
443   MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
444 
445   int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
446   int64_t SrcOffset = getInstrOffset(MI);
447 
448   assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
449 
450   BlockInfo[MBB->getNumber()].Size -= OldBrSize;
451 
452   MachineBasicBlock *BranchBB = MBB;
453 
454   // If this was an expanded conditional branch, there is already a single
455   // unconditional branch in a block.
456   if (!MBB->empty()) {
457     BranchBB = createNewBlockAfter(*MBB);
458 
459     // Add live outs.
460     for (const MachineBasicBlock *Succ : MBB->successors()) {
461       for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
462         BranchBB->addLiveIn(LiveIn);
463     }
464 
465     BranchBB->sortUniqueLiveIns();
466     BranchBB->addSuccessor(DestBB);
467     MBB->replaceSuccessor(DestBB, BranchBB);
468   }
469 
470   DebugLoc DL = MI.getDebugLoc();
471   MI.eraseFromParent();
472   BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
473     *BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());
474 
475   adjustBlockOffsets(*MBB);
476   return true;
477 }
478 
479 bool BranchRelaxation::relaxBranchInstructions() {
480   bool Changed = false;
481 
482   // Relaxing branches involves creating new basic blocks, so re-eval
483   // end() for termination.
484   for (MachineFunction::iterator I = MF->begin(); I != MF->end(); ++I) {
485     MachineBasicBlock &MBB = *I;
486 
487     // Empty block?
488     MachineBasicBlock::iterator Last = MBB.getLastNonDebugInstr();
489     if (Last == MBB.end())
490       continue;
491 
492     // Expand the unconditional branch first if necessary. If there is a
493     // conditional branch, this will end up changing the branch destination of
494     // it to be over the newly inserted indirect branch block, which may avoid
495     // the need to try expanding the conditional branch first, saving an extra
496     // jump.
497     if (Last->isUnconditionalBranch()) {
498       // Unconditional branch destination might be unanalyzable, assume these
499       // are OK.
500       if (MachineBasicBlock *DestBB = TII->getBranchDestBlock(*Last)) {
501         if (!isBlockInRange(*Last, *DestBB)) {
502           fixupUnconditionalBranch(*Last);
503           ++NumUnconditionalRelaxed;
504           Changed = true;
505         }
506       }
507     }
508 
509     // Loop over the conditional branches.
510     MachineBasicBlock::iterator Next;
511     for (MachineBasicBlock::iterator J = MBB.getFirstTerminator();
512          J != MBB.end(); J = Next) {
513       Next = std::next(J);
514       MachineInstr &MI = *J;
515 
516       if (MI.isConditionalBranch()) {
517         MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
518         if (!isBlockInRange(MI, *DestBB)) {
519           if (Next != MBB.end() && Next->isConditionalBranch()) {
520             // If there are multiple conditional branches, this isn't an
521             // analyzable block. Split later terminators into a new block so
522             // each one will be analyzable.
523 
524             splitBlockBeforeInstr(*Next, DestBB);
525           } else {
526             fixupConditionalBranch(MI);
527             ++NumConditionalRelaxed;
528           }
529 
530           Changed = true;
531 
532           // This may have modified all of the terminators, so start over.
533           Next = MBB.getFirstTerminator();
534         }
535       }
536     }
537   }
538 
539   return Changed;
540 }
541 
542 bool BranchRelaxation::runOnMachineFunction(MachineFunction &mf) {
543   MF = &mf;
544 
545   LLVM_DEBUG(dbgs() << "***** BranchRelaxation *****\n");
546 
547   const TargetSubtargetInfo &ST = MF->getSubtarget();
548   TII = ST.getInstrInfo();
549 
550   TRI = ST.getRegisterInfo();
551   if (TRI->trackLivenessAfterRegAlloc(*MF))
552     RS.reset(new RegScavenger());
553 
554   // Renumber all of the machine basic blocks in the function, guaranteeing that
555   // the numbers agree with the position of the block in the function.
556   MF->RenumberBlocks();
557 
558   // Do the initial scan of the function, building up information about the
559   // sizes of each block.
560   scanFunction();
561 
562   LLVM_DEBUG(dbgs() << "  Basic blocks before relaxation\n"; dumpBBs(););
563 
564   bool MadeChange = false;
565   while (relaxBranchInstructions())
566     MadeChange = true;
567 
568   // After a while, this might be made debug-only, but it is not expensive.
569   verify();
570 
571   LLVM_DEBUG(dbgs() << "  Basic blocks after relaxation\n\n"; dumpBBs());
572 
573   BlockInfo.clear();
574 
575   return MadeChange;
576 }
577