1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CriticalAntiDepBreaker class, which
10 // implements register anti-dependence breaking along a blocks
11 // critical path during post-RA scheduler.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CriticalAntiDepBreaker.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/RegisterClassInfo.h"
26 #include "llvm/CodeGen/ScheduleDAG.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cassert>
35 #include <utility>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "post-RA-sched"
40 
41 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
42                                                const RegisterClassInfo &RCI)
43     : MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()),
44       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
45       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
46       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
47 
48 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
49 
50 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
51   const unsigned BBSize = BB->size();
52   for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) {
53     // Clear out the register class data.
54     Classes[i] = nullptr;
55 
56     // Initialize the indices to indicate that no registers are live.
57     KillIndices[i] = ~0u;
58     DefIndices[i] = BBSize;
59   }
60 
61   // Clear "do not change" set.
62   KeepRegs.reset();
63 
64   bool IsReturnBlock = BB->isReturnBlock();
65 
66   // Examine the live-in regs of all successors.
67   for (const MachineBasicBlock *Succ : BB->successors())
68     for (const auto &LI : Succ->liveins()) {
69       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
70         unsigned Reg = *AI;
71         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
72         KillIndices[Reg] = BBSize;
73         DefIndices[Reg] = ~0u;
74       }
75     }
76 
77   // Mark live-out callee-saved registers. In a return block this is
78   // all callee-saved registers. In non-return this is any
79   // callee-saved register that is not saved in the prolog.
80   const MachineFrameInfo &MFI = MF.getFrameInfo();
81   BitVector Pristine = MFI.getPristineRegs(MF);
82   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
83        ++I) {
84     unsigned Reg = *I;
85     if (!IsReturnBlock && !Pristine.test(Reg))
86       continue;
87     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
88       unsigned Reg = *AI;
89       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
90       KillIndices[Reg] = BBSize;
91       DefIndices[Reg] = ~0u;
92     }
93   }
94 }
95 
96 void CriticalAntiDepBreaker::FinishBlock() {
97   RegRefs.clear();
98   KeepRegs.reset();
99 }
100 
101 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
102                                      unsigned InsertPosIndex) {
103   // Kill instructions can define registers but are really nops, and there might
104   // be a real definition earlier that needs to be paired with uses dominated by
105   // this kill.
106 
107   // FIXME: It may be possible to remove the isKill() restriction once PR18663
108   // has been properly fixed. There can be value in processing kills as seen in
109   // the AggressiveAntiDepBreaker class.
110   if (MI.isDebugInstr() || MI.isKill())
111     return;
112   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
113 
114   for (unsigned Reg = 1; Reg != TRI->getNumRegs(); ++Reg) {
115     if (KillIndices[Reg] != ~0u) {
116       // If Reg is currently live, then mark that it can't be renamed as
117       // we don't know the extent of its live-range anymore (now that it
118       // has been scheduled).
119       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
120       KillIndices[Reg] = Count;
121     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
122       // Any register which was defined within the previous scheduling region
123       // may have been rescheduled and its lifetime may overlap with registers
124       // in ways not reflected in our current liveness state. For each such
125       // register, adjust the liveness state to be conservatively correct.
126       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
127 
128       // Move the def index to the end of the previous region, to reflect
129       // that the def could theoretically have been scheduled at the end.
130       DefIndices[Reg] = InsertPosIndex;
131     }
132   }
133 
134   PrescanInstruction(MI);
135   ScanInstruction(MI, Count);
136 }
137 
138 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
139 /// critical path.
140 static const SDep *CriticalPathStep(const SUnit *SU) {
141   const SDep *Next = nullptr;
142   unsigned NextDepth = 0;
143   // Find the predecessor edge with the greatest depth.
144   for (const SDep &P : SU->Preds) {
145     const SUnit *PredSU = P.getSUnit();
146     unsigned PredLatency = P.getLatency();
147     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
148     // In the case of a latency tie, prefer an anti-dependency edge over
149     // other types of edges.
150     if (NextDepth < PredTotalLatency ||
151         (NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) {
152       NextDepth = PredTotalLatency;
153       Next = &P;
154     }
155   }
156   return Next;
157 }
158 
159 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
160   // It's not safe to change register allocation for source operands of
161   // instructions that have special allocation requirements. Also assume all
162   // registers used in a call must not be changed (ABI).
163   // FIXME: The issue with predicated instruction is more complex. We are being
164   // conservative here because the kill markers cannot be trusted after
165   // if-conversion:
166   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
167   // ...
168   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
169   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
170   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
171   //
172   // The first R6 kill is not really a kill since it's killed by a predicated
173   // instruction which may not be executed. The second R6 def may or may not
174   // re-define R6 so it's not safe to change it since the last R6 use cannot be
175   // changed.
176   bool Special =
177       MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
178 
179   // Scan the register operands for this instruction and update
180   // Classes and RegRefs.
181   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
182     MachineOperand &MO = MI.getOperand(i);
183     if (!MO.isReg()) continue;
184     Register Reg = MO.getReg();
185     if (Reg == 0) continue;
186     const TargetRegisterClass *NewRC = nullptr;
187 
188     if (i < MI.getDesc().getNumOperands())
189       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
190 
191     // For now, only allow the register to be changed if its register
192     // class is consistent across all uses.
193     if (!Classes[Reg] && NewRC)
194       Classes[Reg] = NewRC;
195     else if (!NewRC || Classes[Reg] != NewRC)
196       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
197 
198     // Now check for aliases.
199     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
200       // If an alias of the reg is used during the live range, give up.
201       // Note that this allows us to skip checking if AntiDepReg
202       // overlaps with any of the aliases, among other things.
203       unsigned AliasReg = *AI;
204       if (Classes[AliasReg]) {
205         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
206         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
207       }
208     }
209 
210     // If we're still willing to consider this register, note the reference.
211     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
212       RegRefs.insert(std::make_pair(Reg, &MO));
213 
214     if (MO.isUse() && Special) {
215       if (!KeepRegs.test(Reg)) {
216         for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
217           KeepRegs.set(SubReg);
218       }
219     }
220   }
221 
222   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
223     const MachineOperand &MO = MI.getOperand(I);
224     if (!MO.isReg()) continue;
225     Register Reg = MO.getReg();
226     if (!Reg.isValid())
227       continue;
228     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
229     // it or any of its sub or super regs. We need to use KeepRegs to mark the
230     // reg because not all uses of the same reg within an instruction are
231     // necessarily tagged as tied.
232     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
233     // def register but not the second (see PR20020 for details).
234     // FIXME: can this check be relaxed to account for undef uses
235     // of a register? In the above 'xor' example, the uses of %eax are undef, so
236     // earlier instructions could still replace %eax even though the 'xor'
237     // itself can't be changed.
238     if (MI.isRegTiedToUseOperand(I) &&
239         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
240       for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) {
241         KeepRegs.set(SubReg);
242       }
243       for (MCPhysReg SuperReg : TRI->superregs(Reg)) {
244         KeepRegs.set(SuperReg);
245       }
246     }
247   }
248 }
249 
250 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
251   // Update liveness.
252   // Proceeding upwards, registers that are defed but not used in this
253   // instruction are now dead.
254   assert(!MI.isKill() && "Attempting to scan a kill instruction");
255 
256   if (!TII->isPredicated(MI)) {
257     // Predicated defs are modeled as read + write, i.e. similar to two
258     // address updates.
259     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
260       MachineOperand &MO = MI.getOperand(i);
261 
262       if (MO.isRegMask()) {
263         auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) {
264           return all_of(TRI->subregs_inclusive(PhysReg),
265                         [&](MCPhysReg SR) { return MO.clobbersPhysReg(SR); });
266         };
267 
268         for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) {
269           if (ClobbersPhysRegAndSubRegs(i)) {
270             DefIndices[i] = Count;
271             KillIndices[i] = ~0u;
272             KeepRegs.reset(i);
273             Classes[i] = nullptr;
274             RegRefs.erase(i);
275           }
276         }
277       }
278 
279       if (!MO.isReg()) continue;
280       Register Reg = MO.getReg();
281       if (Reg == 0) continue;
282       if (!MO.isDef()) continue;
283 
284       // Ignore two-addr defs.
285       if (MI.isRegTiedToUseOperand(i))
286         continue;
287 
288       // If we've already marked this reg as unchangeable, don't remove
289       // it or any of its subregs from KeepRegs.
290       bool Keep = KeepRegs.test(Reg);
291 
292       // For the reg itself and all subregs: update the def to current;
293       // reset the kill state, any restrictions, and references.
294       for (MCPhysReg SubregReg : TRI->subregs_inclusive(Reg)) {
295         DefIndices[SubregReg] = Count;
296         KillIndices[SubregReg] = ~0u;
297         Classes[SubregReg] = nullptr;
298         RegRefs.erase(SubregReg);
299         if (!Keep)
300           KeepRegs.reset(SubregReg);
301       }
302       // Conservatively mark super-registers as unusable.
303       for (MCPhysReg SR : TRI->superregs(Reg))
304         Classes[SR] = reinterpret_cast<TargetRegisterClass *>(-1);
305     }
306   }
307   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
308     MachineOperand &MO = MI.getOperand(i);
309     if (!MO.isReg()) continue;
310     Register Reg = MO.getReg();
311     if (Reg == 0) continue;
312     if (!MO.isUse()) continue;
313 
314     const TargetRegisterClass *NewRC = nullptr;
315     if (i < MI.getDesc().getNumOperands())
316       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
317 
318     // For now, only allow the register to be changed if its register
319     // class is consistent across all uses.
320     if (!Classes[Reg] && NewRC)
321       Classes[Reg] = NewRC;
322     else if (!NewRC || Classes[Reg] != NewRC)
323       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
324 
325     RegRefs.insert(std::make_pair(Reg, &MO));
326 
327     // It wasn't previously live but now it is, this is a kill.
328     // Repeat for all aliases.
329     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
330       unsigned AliasReg = *AI;
331       if (KillIndices[AliasReg] == ~0u) {
332         KillIndices[AliasReg] = Count;
333         DefIndices[AliasReg] = ~0u;
334       }
335     }
336   }
337 }
338 
339 // Check all machine operands that reference the antidependent register and must
340 // be replaced by NewReg. Return true if any of their parent instructions may
341 // clobber the new register.
342 //
343 // Note: AntiDepReg may be referenced by a two-address instruction such that
344 // it's use operand is tied to a def operand. We guard against the case in which
345 // the two-address instruction also defines NewReg, as may happen with
346 // pre/postincrement loads. In this case, both the use and def operands are in
347 // RegRefs because the def is inserted by PrescanInstruction and not erased
348 // during ScanInstruction. So checking for an instruction with definitions of
349 // both NewReg and AntiDepReg covers it.
350 bool
351 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
352                                                 RegRefIter RegRefEnd,
353                                                 unsigned NewReg) {
354   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
355     MachineOperand *RefOper = I->second;
356 
357     // Don't allow the instruction defining AntiDepReg to earlyclobber its
358     // operands, in case they may be assigned to NewReg. In this case antidep
359     // breaking must fail, but it's too rare to bother optimizing.
360     if (RefOper->isDef() && RefOper->isEarlyClobber())
361       return true;
362 
363     // Handle cases in which this instruction defines NewReg.
364     MachineInstr *MI = RefOper->getParent();
365     for (const MachineOperand &CheckOper : MI->operands()) {
366       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
367         return true;
368 
369       if (!CheckOper.isReg() || !CheckOper.isDef() ||
370           CheckOper.getReg() != NewReg)
371         continue;
372 
373       // Don't allow the instruction to define NewReg and AntiDepReg.
374       // When AntiDepReg is renamed it will be an illegal op.
375       if (RefOper->isDef())
376         return true;
377 
378       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
379       // NewReg.
380       if (CheckOper.isEarlyClobber())
381         return true;
382 
383       // Don't allow inline asm to define NewReg at all. Who knows what it's
384       // doing with it.
385       if (MI->isInlineAsm())
386         return true;
387     }
388   }
389   return false;
390 }
391 
392 unsigned CriticalAntiDepBreaker::
393 findSuitableFreeRegister(RegRefIter RegRefBegin,
394                          RegRefIter RegRefEnd,
395                          unsigned AntiDepReg,
396                          unsigned LastNewReg,
397                          const TargetRegisterClass *RC,
398                          SmallVectorImpl<unsigned> &Forbid) {
399   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
400   for (unsigned NewReg : Order) {
401     // Don't replace a register with itself.
402     if (NewReg == AntiDepReg) continue;
403     // Don't replace a register with one that was recently used to repair
404     // an anti-dependence with this AntiDepReg, because that would
405     // re-introduce that anti-dependence.
406     if (NewReg == LastNewReg) continue;
407     // If any instructions that define AntiDepReg also define the NewReg, it's
408     // not suitable.  For example, Instruction with multiple definitions can
409     // result in this condition.
410     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
411     // If NewReg is dead and NewReg's most recent def is not before
412     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
413     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
414            && "Kill and Def maps aren't consistent for AntiDepReg!");
415     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
416            && "Kill and Def maps aren't consistent for NewReg!");
417     if (KillIndices[NewReg] != ~0u ||
418         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
419         KillIndices[AntiDepReg] > DefIndices[NewReg])
420       continue;
421     // If NewReg overlaps any of the forbidden registers, we can't use it.
422     bool Forbidden = false;
423     for (unsigned R : Forbid)
424       if (TRI->regsOverlap(NewReg, R)) {
425         Forbidden = true;
426         break;
427       }
428     if (Forbidden) continue;
429     return NewReg;
430   }
431 
432   // No registers are free and available!
433   return 0;
434 }
435 
436 unsigned CriticalAntiDepBreaker::
437 BreakAntiDependencies(const std::vector<SUnit> &SUnits,
438                       MachineBasicBlock::iterator Begin,
439                       MachineBasicBlock::iterator End,
440                       unsigned InsertPosIndex,
441                       DbgValueVector &DbgValues) {
442   // The code below assumes that there is at least one instruction,
443   // so just duck out immediately if the block is empty.
444   if (SUnits.empty()) return 0;
445 
446   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
447   // This is used for updating debug information.
448   //
449   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
450   DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
451 
452   // Find the node at the bottom of the critical path.
453   const SUnit *Max = nullptr;
454   for (const SUnit &SU : SUnits) {
455     MISUnitMap[SU.getInstr()] = &SU;
456     if (!Max || SU.getDepth() + SU.Latency > Max->getDepth() + Max->Latency)
457       Max = &SU;
458   }
459   assert(Max && "Failed to find bottom of the critical path");
460 
461 #ifndef NDEBUG
462   {
463     LLVM_DEBUG(dbgs() << "Critical path has total latency "
464                       << (Max->getDepth() + Max->Latency) << "\n");
465     LLVM_DEBUG(dbgs() << "Available regs:");
466     for (unsigned Reg = 1; Reg < TRI->getNumRegs(); ++Reg) {
467       if (KillIndices[Reg] == ~0u)
468         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
469     }
470     LLVM_DEBUG(dbgs() << '\n');
471   }
472 #endif
473 
474   // Track progress along the critical path through the SUnit graph as we walk
475   // the instructions.
476   const SUnit *CriticalPathSU = Max;
477   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
478 
479   // Consider this pattern:
480   //   A = ...
481   //   ... = A
482   //   A = ...
483   //   ... = A
484   //   A = ...
485   //   ... = A
486   //   A = ...
487   //   ... = A
488   // There are three anti-dependencies here, and without special care,
489   // we'd break all of them using the same register:
490   //   A = ...
491   //   ... = A
492   //   B = ...
493   //   ... = B
494   //   B = ...
495   //   ... = B
496   //   B = ...
497   //   ... = B
498   // because at each anti-dependence, B is the first register that
499   // isn't A which is free.  This re-introduces anti-dependencies
500   // at all but one of the original anti-dependencies that we were
501   // trying to break.  To avoid this, keep track of the most recent
502   // register that each register was replaced with, avoid
503   // using it to repair an anti-dependence on the same register.
504   // This lets us produce this:
505   //   A = ...
506   //   ... = A
507   //   B = ...
508   //   ... = B
509   //   C = ...
510   //   ... = C
511   //   B = ...
512   //   ... = B
513   // This still has an anti-dependence on B, but at least it isn't on the
514   // original critical path.
515   //
516   // TODO: If we tracked more than one register here, we could potentially
517   // fix that remaining critical edge too. This is a little more involved,
518   // because unlike the most recent register, less recent registers should
519   // still be considered, though only if no other registers are available.
520   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
521 
522   // Attempt to break anti-dependence edges on the critical path. Walk the
523   // instructions from the bottom up, tracking information about liveness
524   // as we go to help determine which registers are available.
525   unsigned Broken = 0;
526   unsigned Count = InsertPosIndex - 1;
527   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
528     MachineInstr &MI = *--I;
529     // Kill instructions can define registers but are really nops, and there
530     // might be a real definition earlier that needs to be paired with uses
531     // dominated by this kill.
532 
533     // FIXME: It may be possible to remove the isKill() restriction once PR18663
534     // has been properly fixed. There can be value in processing kills as seen
535     // in the AggressiveAntiDepBreaker class.
536     if (MI.isDebugInstr() || MI.isKill())
537       continue;
538 
539     // Check if this instruction has a dependence on the critical path that
540     // is an anti-dependence that we may be able to break. If it is, set
541     // AntiDepReg to the non-zero register associated with the anti-dependence.
542     //
543     // We limit our attention to the critical path as a heuristic to avoid
544     // breaking anti-dependence edges that aren't going to significantly
545     // impact the overall schedule. There are a limited number of registers
546     // and we want to save them for the important edges.
547     //
548     // TODO: Instructions with multiple defs could have multiple
549     // anti-dependencies. The current code here only knows how to break one
550     // edge per instruction. Note that we'd have to be able to break all of
551     // the anti-dependencies in an instruction in order to be effective.
552     unsigned AntiDepReg = 0;
553     if (&MI == CriticalPathMI) {
554       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
555         const SUnit *NextSU = Edge->getSUnit();
556 
557         // Only consider anti-dependence edges.
558         if (Edge->getKind() == SDep::Anti) {
559           AntiDepReg = Edge->getReg();
560           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
561           if (!MRI.isAllocatable(AntiDepReg))
562             // Don't break anti-dependencies on non-allocatable registers.
563             AntiDepReg = 0;
564           else if (KeepRegs.test(AntiDepReg))
565             // Don't break anti-dependencies if a use down below requires
566             // this exact register.
567             AntiDepReg = 0;
568           else {
569             // If the SUnit has other dependencies on the SUnit that it
570             // anti-depends on, don't bother breaking the anti-dependency
571             // since those edges would prevent such units from being
572             // scheduled past each other regardless.
573             //
574             // Also, if there are dependencies on other SUnits with the
575             // same register as the anti-dependency, don't attempt to
576             // break it.
577             for (const SDep &P : CriticalPathSU->Preds)
578               if (P.getSUnit() == NextSU
579                       ? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg)
580                       : (P.getKind() == SDep::Data &&
581                          P.getReg() == AntiDepReg)) {
582                 AntiDepReg = 0;
583                 break;
584               }
585           }
586         }
587         CriticalPathSU = NextSU;
588         CriticalPathMI = CriticalPathSU->getInstr();
589       } else {
590         // We've reached the end of the critical path.
591         CriticalPathSU = nullptr;
592         CriticalPathMI = nullptr;
593       }
594     }
595 
596     PrescanInstruction(MI);
597 
598     SmallVector<unsigned, 2> ForbidRegs;
599 
600     // If MI's defs have a special allocation requirement, don't allow
601     // any def registers to be changed. Also assume all registers
602     // defined in a call must not be changed (ABI).
603     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
604       // If this instruction's defs have special allocation requirement, don't
605       // break this anti-dependency.
606       AntiDepReg = 0;
607     else if (AntiDepReg) {
608       // If this instruction has a use of AntiDepReg, breaking it
609       // is invalid.  If the instruction defines other registers,
610       // save a list of them so that we don't pick a new register
611       // that overlaps any of them.
612       for (const MachineOperand &MO : MI.operands()) {
613         if (!MO.isReg()) continue;
614         Register Reg = MO.getReg();
615         if (Reg == 0) continue;
616         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
617           AntiDepReg = 0;
618           break;
619         }
620         if (MO.isDef() && Reg != AntiDepReg)
621           ForbidRegs.push_back(Reg);
622       }
623     }
624 
625     // Determine AntiDepReg's register class, if it is live and is
626     // consistently used within a single class.
627     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
628                                                     : nullptr;
629     assert((AntiDepReg == 0 || RC != nullptr) &&
630            "Register should be live if it's causing an anti-dependence!");
631     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
632       AntiDepReg = 0;
633 
634     // Look for a suitable register to use to break the anti-dependence.
635     //
636     // TODO: Instead of picking the first free register, consider which might
637     // be the best.
638     if (AntiDepReg != 0) {
639       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
640                 std::multimap<unsigned, MachineOperand *>::iterator>
641         Range = RegRefs.equal_range(AntiDepReg);
642       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
643                                                      AntiDepReg,
644                                                      LastNewReg[AntiDepReg],
645                                                      RC, ForbidRegs)) {
646         LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
647                           << printReg(AntiDepReg, TRI) << " with "
648                           << RegRefs.count(AntiDepReg) << " references"
649                           << " using " << printReg(NewReg, TRI) << "!\n");
650 
651         // Update the references to the old register to refer to the new
652         // register.
653         for (std::multimap<unsigned, MachineOperand *>::iterator
654              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
655           Q->second->setReg(NewReg);
656           // If the SU for the instruction being updated has debug information
657           // related to the anti-dependency register, make sure to update that
658           // as well.
659           const SUnit *SU = MISUnitMap[Q->second->getParent()];
660           if (!SU) continue;
661           UpdateDbgValues(DbgValues, Q->second->getParent(),
662                           AntiDepReg, NewReg);
663         }
664 
665         // We just went back in time and modified history; the
666         // liveness information for the anti-dependence reg is now
667         // inconsistent. Set the state as if it were dead.
668         Classes[NewReg] = Classes[AntiDepReg];
669         DefIndices[NewReg] = DefIndices[AntiDepReg];
670         KillIndices[NewReg] = KillIndices[AntiDepReg];
671         assert(((KillIndices[NewReg] == ~0u) !=
672                 (DefIndices[NewReg] == ~0u)) &&
673              "Kill and Def maps aren't consistent for NewReg!");
674 
675         Classes[AntiDepReg] = nullptr;
676         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
677         KillIndices[AntiDepReg] = ~0u;
678         assert(((KillIndices[AntiDepReg] == ~0u) !=
679                 (DefIndices[AntiDepReg] == ~0u)) &&
680              "Kill and Def maps aren't consistent for AntiDepReg!");
681 
682         RegRefs.erase(AntiDepReg);
683         LastNewReg[AntiDepReg] = NewReg;
684         ++Broken;
685       }
686     }
687 
688     ScanInstruction(MI, Count);
689   }
690 
691   return Broken;
692 }
693 
694 AntiDepBreaker *
695 llvm::createCriticalAntiDepBreaker(MachineFunction &MFi,
696                                    const RegisterClassInfo &RCI) {
697   return new CriticalAntiDepBreaker(MFi, RCI);
698 }
699