1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/ADT/SetVector.h"
10 #include "llvm/ADT/SmallBitVector.h"
11 #include "llvm/CodeGen/GlobalISel/Combiner.h"
12 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
14 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
15 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
16 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/LowLevelType.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetLowering.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include <tuple>
32 
33 #define DEBUG_TYPE "gi-combiner"
34 
35 using namespace llvm;
36 using namespace MIPatternMatch;
37 
38 // Option to allow testing of the combiner while no targets know about indexed
39 // addressing.
40 static cl::opt<bool>
41     ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
42                        cl::desc("Force all indexed operations to be "
43                                 "legal for the GlobalISel combiner"));
44 
45 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
46                                MachineIRBuilder &B, GISelKnownBits *KB,
47                                MachineDominatorTree *MDT,
48                                const LegalizerInfo *LI)
49     : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer),
50       KB(KB), MDT(MDT), LI(LI) {
51   (void)this->KB;
52 }
53 
54 const TargetLowering &CombinerHelper::getTargetLowering() const {
55   return *Builder.getMF().getSubtarget().getTargetLowering();
56 }
57 
58 /// \returns The little endian in-memory byte position of byte \p I in a
59 /// \p ByteWidth bytes wide type.
60 ///
61 /// E.g. Given a 4-byte type x, x[0] -> byte 0
62 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
63   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
64   return I;
65 }
66 
67 /// \returns The big endian in-memory byte position of byte \p I in a
68 /// \p ByteWidth bytes wide type.
69 ///
70 /// E.g. Given a 4-byte type x, x[0] -> byte 3
71 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
72   assert(I < ByteWidth && "I must be in [0, ByteWidth)");
73   return ByteWidth - I - 1;
74 }
75 
76 /// Given a map from byte offsets in memory to indices in a load/store,
77 /// determine if that map corresponds to a little or big endian byte pattern.
78 ///
79 /// \param MemOffset2Idx maps memory offsets to address offsets.
80 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
81 ///
82 /// \returns true if the map corresponds to a big endian byte pattern, false
83 /// if it corresponds to a little endian byte pattern, and None otherwise.
84 ///
85 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
86 /// are as follows:
87 ///
88 /// AddrOffset   Little endian    Big endian
89 /// 0            0                3
90 /// 1            1                2
91 /// 2            2                1
92 /// 3            3                0
93 static Optional<bool>
94 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
95             int64_t LowestIdx) {
96   // Need at least two byte positions to decide on endianness.
97   unsigned Width = MemOffset2Idx.size();
98   if (Width < 2)
99     return None;
100   bool BigEndian = true, LittleEndian = true;
101   for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
102     auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
103     if (MemOffsetAndIdx == MemOffset2Idx.end())
104       return None;
105     const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
106     assert(Idx >= 0 && "Expected non-negative byte offset?");
107     LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
108     BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
109     if (!BigEndian && !LittleEndian)
110       return None;
111   }
112 
113   assert((BigEndian != LittleEndian) &&
114          "Pattern cannot be both big and little endian!");
115   return BigEndian;
116 }
117 
118 bool CombinerHelper::isLegalOrBeforeLegalizer(
119     const LegalityQuery &Query) const {
120   return !LI || LI->getAction(Query).Action == LegalizeActions::Legal;
121 }
122 
123 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
124                                     Register ToReg) const {
125   Observer.changingAllUsesOfReg(MRI, FromReg);
126 
127   if (MRI.constrainRegAttrs(ToReg, FromReg))
128     MRI.replaceRegWith(FromReg, ToReg);
129   else
130     Builder.buildCopy(ToReg, FromReg);
131 
132   Observer.finishedChangingAllUsesOfReg();
133 }
134 
135 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
136                                       MachineOperand &FromRegOp,
137                                       Register ToReg) const {
138   assert(FromRegOp.getParent() && "Expected an operand in an MI");
139   Observer.changingInstr(*FromRegOp.getParent());
140 
141   FromRegOp.setReg(ToReg);
142 
143   Observer.changedInstr(*FromRegOp.getParent());
144 }
145 
146 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
147   if (matchCombineCopy(MI)) {
148     applyCombineCopy(MI);
149     return true;
150   }
151   return false;
152 }
153 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
154   if (MI.getOpcode() != TargetOpcode::COPY)
155     return false;
156   Register DstReg = MI.getOperand(0).getReg();
157   Register SrcReg = MI.getOperand(1).getReg();
158   return canReplaceReg(DstReg, SrcReg, MRI);
159 }
160 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
161   Register DstReg = MI.getOperand(0).getReg();
162   Register SrcReg = MI.getOperand(1).getReg();
163   MI.eraseFromParent();
164   replaceRegWith(MRI, DstReg, SrcReg);
165 }
166 
167 bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) {
168   bool IsUndef = false;
169   SmallVector<Register, 4> Ops;
170   if (matchCombineConcatVectors(MI, IsUndef, Ops)) {
171     applyCombineConcatVectors(MI, IsUndef, Ops);
172     return true;
173   }
174   return false;
175 }
176 
177 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef,
178                                                SmallVectorImpl<Register> &Ops) {
179   assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
180          "Invalid instruction");
181   IsUndef = true;
182   MachineInstr *Undef = nullptr;
183 
184   // Walk over all the operands of concat vectors and check if they are
185   // build_vector themselves or undef.
186   // Then collect their operands in Ops.
187   for (const MachineOperand &MO : MI.uses()) {
188     Register Reg = MO.getReg();
189     MachineInstr *Def = MRI.getVRegDef(Reg);
190     assert(Def && "Operand not defined");
191     switch (Def->getOpcode()) {
192     case TargetOpcode::G_BUILD_VECTOR:
193       IsUndef = false;
194       // Remember the operands of the build_vector to fold
195       // them into the yet-to-build flattened concat vectors.
196       for (const MachineOperand &BuildVecMO : Def->uses())
197         Ops.push_back(BuildVecMO.getReg());
198       break;
199     case TargetOpcode::G_IMPLICIT_DEF: {
200       LLT OpType = MRI.getType(Reg);
201       // Keep one undef value for all the undef operands.
202       if (!Undef) {
203         Builder.setInsertPt(*MI.getParent(), MI);
204         Undef = Builder.buildUndef(OpType.getScalarType());
205       }
206       assert(MRI.getType(Undef->getOperand(0).getReg()) ==
207                  OpType.getScalarType() &&
208              "All undefs should have the same type");
209       // Break the undef vector in as many scalar elements as needed
210       // for the flattening.
211       for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
212            EltIdx != EltEnd; ++EltIdx)
213         Ops.push_back(Undef->getOperand(0).getReg());
214       break;
215     }
216     default:
217       return false;
218     }
219   }
220   return true;
221 }
222 void CombinerHelper::applyCombineConcatVectors(
223     MachineInstr &MI, bool IsUndef, const ArrayRef<Register> Ops) {
224   // We determined that the concat_vectors can be flatten.
225   // Generate the flattened build_vector.
226   Register DstReg = MI.getOperand(0).getReg();
227   Builder.setInsertPt(*MI.getParent(), MI);
228   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
229 
230   // Note: IsUndef is sort of redundant. We could have determine it by
231   // checking that at all Ops are undef.  Alternatively, we could have
232   // generate a build_vector of undefs and rely on another combine to
233   // clean that up.  For now, given we already gather this information
234   // in tryCombineConcatVectors, just save compile time and issue the
235   // right thing.
236   if (IsUndef)
237     Builder.buildUndef(NewDstReg);
238   else
239     Builder.buildBuildVector(NewDstReg, Ops);
240   MI.eraseFromParent();
241   replaceRegWith(MRI, DstReg, NewDstReg);
242 }
243 
244 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
245   SmallVector<Register, 4> Ops;
246   if (matchCombineShuffleVector(MI, Ops)) {
247     applyCombineShuffleVector(MI, Ops);
248     return true;
249   }
250   return false;
251 }
252 
253 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
254                                                SmallVectorImpl<Register> &Ops) {
255   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
256          "Invalid instruction kind");
257   LLT DstType = MRI.getType(MI.getOperand(0).getReg());
258   Register Src1 = MI.getOperand(1).getReg();
259   LLT SrcType = MRI.getType(Src1);
260   // As bizarre as it may look, shuffle vector can actually produce
261   // scalar! This is because at the IR level a <1 x ty> shuffle
262   // vector is perfectly valid.
263   unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
264   unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
265 
266   // If the resulting vector is smaller than the size of the source
267   // vectors being concatenated, we won't be able to replace the
268   // shuffle vector into a concat_vectors.
269   //
270   // Note: We may still be able to produce a concat_vectors fed by
271   //       extract_vector_elt and so on. It is less clear that would
272   //       be better though, so don't bother for now.
273   //
274   // If the destination is a scalar, the size of the sources doesn't
275   // matter. we will lower the shuffle to a plain copy. This will
276   // work only if the source and destination have the same size. But
277   // that's covered by the next condition.
278   //
279   // TODO: If the size between the source and destination don't match
280   //       we could still emit an extract vector element in that case.
281   if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
282     return false;
283 
284   // Check that the shuffle mask can be broken evenly between the
285   // different sources.
286   if (DstNumElts % SrcNumElts != 0)
287     return false;
288 
289   // Mask length is a multiple of the source vector length.
290   // Check if the shuffle is some kind of concatenation of the input
291   // vectors.
292   unsigned NumConcat = DstNumElts / SrcNumElts;
293   SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
294   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
295   for (unsigned i = 0; i != DstNumElts; ++i) {
296     int Idx = Mask[i];
297     // Undef value.
298     if (Idx < 0)
299       continue;
300     // Ensure the indices in each SrcType sized piece are sequential and that
301     // the same source is used for the whole piece.
302     if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
303         (ConcatSrcs[i / SrcNumElts] >= 0 &&
304          ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
305       return false;
306     // Remember which source this index came from.
307     ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
308   }
309 
310   // The shuffle is concatenating multiple vectors together.
311   // Collect the different operands for that.
312   Register UndefReg;
313   Register Src2 = MI.getOperand(2).getReg();
314   for (auto Src : ConcatSrcs) {
315     if (Src < 0) {
316       if (!UndefReg) {
317         Builder.setInsertPt(*MI.getParent(), MI);
318         UndefReg = Builder.buildUndef(SrcType).getReg(0);
319       }
320       Ops.push_back(UndefReg);
321     } else if (Src == 0)
322       Ops.push_back(Src1);
323     else
324       Ops.push_back(Src2);
325   }
326   return true;
327 }
328 
329 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
330                                                const ArrayRef<Register> Ops) {
331   Register DstReg = MI.getOperand(0).getReg();
332   Builder.setInsertPt(*MI.getParent(), MI);
333   Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
334 
335   if (Ops.size() == 1)
336     Builder.buildCopy(NewDstReg, Ops[0]);
337   else
338     Builder.buildMerge(NewDstReg, Ops);
339 
340   MI.eraseFromParent();
341   replaceRegWith(MRI, DstReg, NewDstReg);
342 }
343 
344 namespace {
345 
346 /// Select a preference between two uses. CurrentUse is the current preference
347 /// while *ForCandidate is attributes of the candidate under consideration.
348 PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse,
349                                   const LLT TyForCandidate,
350                                   unsigned OpcodeForCandidate,
351                                   MachineInstr *MIForCandidate) {
352   if (!CurrentUse.Ty.isValid()) {
353     if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
354         CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
355       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
356     return CurrentUse;
357   }
358 
359   // We permit the extend to hoist through basic blocks but this is only
360   // sensible if the target has extending loads. If you end up lowering back
361   // into a load and extend during the legalizer then the end result is
362   // hoisting the extend up to the load.
363 
364   // Prefer defined extensions to undefined extensions as these are more
365   // likely to reduce the number of instructions.
366   if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
367       CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
368     return CurrentUse;
369   else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
370            OpcodeForCandidate != TargetOpcode::G_ANYEXT)
371     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
372 
373   // Prefer sign extensions to zero extensions as sign-extensions tend to be
374   // more expensive.
375   if (CurrentUse.Ty == TyForCandidate) {
376     if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
377         OpcodeForCandidate == TargetOpcode::G_ZEXT)
378       return CurrentUse;
379     else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
380              OpcodeForCandidate == TargetOpcode::G_SEXT)
381       return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
382   }
383 
384   // This is potentially target specific. We've chosen the largest type
385   // because G_TRUNC is usually free. One potential catch with this is that
386   // some targets have a reduced number of larger registers than smaller
387   // registers and this choice potentially increases the live-range for the
388   // larger value.
389   if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
390     return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
391   }
392   return CurrentUse;
393 }
394 
395 /// Find a suitable place to insert some instructions and insert them. This
396 /// function accounts for special cases like inserting before a PHI node.
397 /// The current strategy for inserting before PHI's is to duplicate the
398 /// instructions for each predecessor. However, while that's ok for G_TRUNC
399 /// on most targets since it generally requires no code, other targets/cases may
400 /// want to try harder to find a dominating block.
401 static void InsertInsnsWithoutSideEffectsBeforeUse(
402     MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
403     std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
404                        MachineOperand &UseMO)>
405         Inserter) {
406   MachineInstr &UseMI = *UseMO.getParent();
407 
408   MachineBasicBlock *InsertBB = UseMI.getParent();
409 
410   // If the use is a PHI then we want the predecessor block instead.
411   if (UseMI.isPHI()) {
412     MachineOperand *PredBB = std::next(&UseMO);
413     InsertBB = PredBB->getMBB();
414   }
415 
416   // If the block is the same block as the def then we want to insert just after
417   // the def instead of at the start of the block.
418   if (InsertBB == DefMI.getParent()) {
419     MachineBasicBlock::iterator InsertPt = &DefMI;
420     Inserter(InsertBB, std::next(InsertPt), UseMO);
421     return;
422   }
423 
424   // Otherwise we want the start of the BB
425   Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
426 }
427 } // end anonymous namespace
428 
429 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
430   PreferredTuple Preferred;
431   if (matchCombineExtendingLoads(MI, Preferred)) {
432     applyCombineExtendingLoads(MI, Preferred);
433     return true;
434   }
435   return false;
436 }
437 
438 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
439                                                 PreferredTuple &Preferred) {
440   // We match the loads and follow the uses to the extend instead of matching
441   // the extends and following the def to the load. This is because the load
442   // must remain in the same position for correctness (unless we also add code
443   // to find a safe place to sink it) whereas the extend is freely movable.
444   // It also prevents us from duplicating the load for the volatile case or just
445   // for performance.
446   GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
447   if (!LoadMI)
448     return false;
449 
450   Register LoadReg = LoadMI->getDstReg();
451 
452   LLT LoadValueTy = MRI.getType(LoadReg);
453   if (!LoadValueTy.isScalar())
454     return false;
455 
456   // Most architectures are going to legalize <s8 loads into at least a 1 byte
457   // load, and the MMOs can only describe memory accesses in multiples of bytes.
458   // If we try to perform extload combining on those, we can end up with
459   // %a(s8) = extload %ptr (load 1 byte from %ptr)
460   // ... which is an illegal extload instruction.
461   if (LoadValueTy.getSizeInBits() < 8)
462     return false;
463 
464   // For non power-of-2 types, they will very likely be legalized into multiple
465   // loads. Don't bother trying to match them into extending loads.
466   if (!isPowerOf2_32(LoadValueTy.getSizeInBits()))
467     return false;
468 
469   // Find the preferred type aside from the any-extends (unless it's the only
470   // one) and non-extending ops. We'll emit an extending load to that type and
471   // and emit a variant of (extend (trunc X)) for the others according to the
472   // relative type sizes. At the same time, pick an extend to use based on the
473   // extend involved in the chosen type.
474   unsigned PreferredOpcode =
475       isa<GLoad>(&MI)
476           ? TargetOpcode::G_ANYEXT
477           : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
478   Preferred = {LLT(), PreferredOpcode, nullptr};
479   for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
480     if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
481         UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
482         (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
483       const auto &MMO = LoadMI->getMMO();
484       // For atomics, only form anyextending loads.
485       if (MMO.isAtomic() && UseMI.getOpcode() != TargetOpcode::G_ANYEXT)
486         continue;
487       // Check for legality.
488       if (LI) {
489         LegalityQuery::MemDesc MMDesc;
490         MMDesc.MemoryTy = MMO.getMemoryType();
491         MMDesc.AlignInBits = MMO.getAlign().value() * 8;
492         MMDesc.Ordering = MMO.getSuccessOrdering();
493         LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
494         LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
495         if (LI->getAction({LoadMI->getOpcode(), {UseTy, SrcTy}, {MMDesc}})
496                 .Action != LegalizeActions::Legal)
497           continue;
498       }
499       Preferred = ChoosePreferredUse(Preferred,
500                                      MRI.getType(UseMI.getOperand(0).getReg()),
501                                      UseMI.getOpcode(), &UseMI);
502     }
503   }
504 
505   // There were no extends
506   if (!Preferred.MI)
507     return false;
508   // It should be impossible to chose an extend without selecting a different
509   // type since by definition the result of an extend is larger.
510   assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
511 
512   LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
513   return true;
514 }
515 
516 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
517                                                 PreferredTuple &Preferred) {
518   // Rewrite the load to the chosen extending load.
519   Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
520 
521   // Inserter to insert a truncate back to the original type at a given point
522   // with some basic CSE to limit truncate duplication to one per BB.
523   DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
524   auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
525                            MachineBasicBlock::iterator InsertBefore,
526                            MachineOperand &UseMO) {
527     MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
528     if (PreviouslyEmitted) {
529       Observer.changingInstr(*UseMO.getParent());
530       UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
531       Observer.changedInstr(*UseMO.getParent());
532       return;
533     }
534 
535     Builder.setInsertPt(*InsertIntoBB, InsertBefore);
536     Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
537     MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
538     EmittedInsns[InsertIntoBB] = NewMI;
539     replaceRegOpWith(MRI, UseMO, NewDstReg);
540   };
541 
542   Observer.changingInstr(MI);
543   MI.setDesc(
544       Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT
545                                ? TargetOpcode::G_SEXTLOAD
546                                : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT
547                                      ? TargetOpcode::G_ZEXTLOAD
548                                      : TargetOpcode::G_LOAD));
549 
550   // Rewrite all the uses to fix up the types.
551   auto &LoadValue = MI.getOperand(0);
552   SmallVector<MachineOperand *, 4> Uses;
553   for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
554     Uses.push_back(&UseMO);
555 
556   for (auto *UseMO : Uses) {
557     MachineInstr *UseMI = UseMO->getParent();
558 
559     // If the extend is compatible with the preferred extend then we should fix
560     // up the type and extend so that it uses the preferred use.
561     if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
562         UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
563       Register UseDstReg = UseMI->getOperand(0).getReg();
564       MachineOperand &UseSrcMO = UseMI->getOperand(1);
565       const LLT UseDstTy = MRI.getType(UseDstReg);
566       if (UseDstReg != ChosenDstReg) {
567         if (Preferred.Ty == UseDstTy) {
568           // If the use has the same type as the preferred use, then merge
569           // the vregs and erase the extend. For example:
570           //    %1:_(s8) = G_LOAD ...
571           //    %2:_(s32) = G_SEXT %1(s8)
572           //    %3:_(s32) = G_ANYEXT %1(s8)
573           //    ... = ... %3(s32)
574           // rewrites to:
575           //    %2:_(s32) = G_SEXTLOAD ...
576           //    ... = ... %2(s32)
577           replaceRegWith(MRI, UseDstReg, ChosenDstReg);
578           Observer.erasingInstr(*UseMO->getParent());
579           UseMO->getParent()->eraseFromParent();
580         } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
581           // If the preferred size is smaller, then keep the extend but extend
582           // from the result of the extending load. For example:
583           //    %1:_(s8) = G_LOAD ...
584           //    %2:_(s32) = G_SEXT %1(s8)
585           //    %3:_(s64) = G_ANYEXT %1(s8)
586           //    ... = ... %3(s64)
587           /// rewrites to:
588           //    %2:_(s32) = G_SEXTLOAD ...
589           //    %3:_(s64) = G_ANYEXT %2:_(s32)
590           //    ... = ... %3(s64)
591           replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
592         } else {
593           // If the preferred size is large, then insert a truncate. For
594           // example:
595           //    %1:_(s8) = G_LOAD ...
596           //    %2:_(s64) = G_SEXT %1(s8)
597           //    %3:_(s32) = G_ZEXT %1(s8)
598           //    ... = ... %3(s32)
599           /// rewrites to:
600           //    %2:_(s64) = G_SEXTLOAD ...
601           //    %4:_(s8) = G_TRUNC %2:_(s32)
602           //    %3:_(s64) = G_ZEXT %2:_(s8)
603           //    ... = ... %3(s64)
604           InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
605                                                  InsertTruncAt);
606         }
607         continue;
608       }
609       // The use is (one of) the uses of the preferred use we chose earlier.
610       // We're going to update the load to def this value later so just erase
611       // the old extend.
612       Observer.erasingInstr(*UseMO->getParent());
613       UseMO->getParent()->eraseFromParent();
614       continue;
615     }
616 
617     // The use isn't an extend. Truncate back to the type we originally loaded.
618     // This is free on many targets.
619     InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
620   }
621 
622   MI.getOperand(0).setReg(ChosenDstReg);
623   Observer.changedInstr(MI);
624 }
625 
626 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
627                                    const MachineInstr &UseMI) {
628   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
629          "shouldn't consider debug uses");
630   assert(DefMI.getParent() == UseMI.getParent());
631   if (&DefMI == &UseMI)
632     return false;
633   const MachineBasicBlock &MBB = *DefMI.getParent();
634   auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
635     return &MI == &DefMI || &MI == &UseMI;
636   });
637   if (DefOrUse == MBB.end())
638     llvm_unreachable("Block must contain both DefMI and UseMI!");
639   return &*DefOrUse == &DefMI;
640 }
641 
642 bool CombinerHelper::dominates(const MachineInstr &DefMI,
643                                const MachineInstr &UseMI) {
644   assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
645          "shouldn't consider debug uses");
646   if (MDT)
647     return MDT->dominates(&DefMI, &UseMI);
648   else if (DefMI.getParent() != UseMI.getParent())
649     return false;
650 
651   return isPredecessor(DefMI, UseMI);
652 }
653 
654 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
655   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
656   Register SrcReg = MI.getOperand(1).getReg();
657   Register LoadUser = SrcReg;
658 
659   if (MRI.getType(SrcReg).isVector())
660     return false;
661 
662   Register TruncSrc;
663   if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
664     LoadUser = TruncSrc;
665 
666   uint64_t SizeInBits = MI.getOperand(2).getImm();
667   // If the source is a G_SEXTLOAD from the same bit width, then we don't
668   // need any extend at all, just a truncate.
669   if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
670     // If truncating more than the original extended value, abort.
671     auto LoadSizeBits = LoadMI->getMemSizeInBits();
672     if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits)
673       return false;
674     if (LoadSizeBits == SizeInBits)
675       return true;
676   }
677   return false;
678 }
679 
680 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
681   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
682   Builder.setInstrAndDebugLoc(MI);
683   Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
684   MI.eraseFromParent();
685 }
686 
687 bool CombinerHelper::matchSextInRegOfLoad(
688     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
689   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
690 
691   // Only supports scalars for now.
692   if (MRI.getType(MI.getOperand(0).getReg()).isVector())
693     return false;
694 
695   Register SrcReg = MI.getOperand(1).getReg();
696   auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
697   if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg()) ||
698       !LoadDef->isSimple())
699     return false;
700 
701   // If the sign extend extends from a narrower width than the load's width,
702   // then we can narrow the load width when we combine to a G_SEXTLOAD.
703   // Avoid widening the load at all.
704   unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(),
705                                   LoadDef->getMemSizeInBits());
706 
707   // Don't generate G_SEXTLOADs with a < 1 byte width.
708   if (NewSizeBits < 8)
709     return false;
710   // Don't bother creating a non-power-2 sextload, it will likely be broken up
711   // anyway for most targets.
712   if (!isPowerOf2_32(NewSizeBits))
713     return false;
714   MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
715   return true;
716 }
717 
718 void CombinerHelper::applySextInRegOfLoad(
719     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
720   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
721   Register LoadReg;
722   unsigned ScalarSizeBits;
723   std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
724   GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
725 
726   // If we have the following:
727   // %ld = G_LOAD %ptr, (load 2)
728   // %ext = G_SEXT_INREG %ld, 8
729   //    ==>
730   // %ld = G_SEXTLOAD %ptr (load 1)
731 
732   auto &MMO = LoadDef->getMMO();
733   Builder.setInstrAndDebugLoc(*LoadDef);
734   auto &MF = Builder.getMF();
735   auto PtrInfo = MMO.getPointerInfo();
736   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
737   Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
738                          LoadDef->getPointerReg(), *NewMMO);
739   MI.eraseFromParent();
740 }
741 
742 bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr,
743                                             Register &Base, Register &Offset) {
744   auto &MF = *MI.getParent()->getParent();
745   const auto &TLI = *MF.getSubtarget().getTargetLowering();
746 
747 #ifndef NDEBUG
748   unsigned Opcode = MI.getOpcode();
749   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
750          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
751 #endif
752 
753   Base = MI.getOperand(1).getReg();
754   MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base);
755   if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
756     return false;
757 
758   LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI);
759   // FIXME: The following use traversal needs a bail out for patholigical cases.
760   for (auto &Use : MRI.use_nodbg_instructions(Base)) {
761     if (Use.getOpcode() != TargetOpcode::G_PTR_ADD)
762       continue;
763 
764     Offset = Use.getOperand(2).getReg();
765     if (!ForceLegalIndexing &&
766         !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) {
767       LLVM_DEBUG(dbgs() << "    Ignoring candidate with illegal addrmode: "
768                         << Use);
769       continue;
770     }
771 
772     // Make sure the offset calculation is before the potentially indexed op.
773     // FIXME: we really care about dependency here. The offset calculation might
774     // be movable.
775     MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset);
776     if (!OffsetDef || !dominates(*OffsetDef, MI)) {
777       LLVM_DEBUG(dbgs() << "    Ignoring candidate with offset after mem-op: "
778                         << Use);
779       continue;
780     }
781 
782     // FIXME: check whether all uses of Base are load/store with foldable
783     // addressing modes. If so, using the normal addr-modes is better than
784     // forming an indexed one.
785 
786     bool MemOpDominatesAddrUses = true;
787     for (auto &PtrAddUse :
788          MRI.use_nodbg_instructions(Use.getOperand(0).getReg())) {
789       if (!dominates(MI, PtrAddUse)) {
790         MemOpDominatesAddrUses = false;
791         break;
792       }
793     }
794 
795     if (!MemOpDominatesAddrUses) {
796       LLVM_DEBUG(
797           dbgs() << "    Ignoring candidate as memop does not dominate uses: "
798                  << Use);
799       continue;
800     }
801 
802     LLVM_DEBUG(dbgs() << "    Found match: " << Use);
803     Addr = Use.getOperand(0).getReg();
804     return true;
805   }
806 
807   return false;
808 }
809 
810 bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr,
811                                            Register &Base, Register &Offset) {
812   auto &MF = *MI.getParent()->getParent();
813   const auto &TLI = *MF.getSubtarget().getTargetLowering();
814 
815 #ifndef NDEBUG
816   unsigned Opcode = MI.getOpcode();
817   assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD ||
818          Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE);
819 #endif
820 
821   Addr = MI.getOperand(1).getReg();
822   MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI);
823   if (!AddrDef || MRI.hasOneNonDBGUse(Addr))
824     return false;
825 
826   Base = AddrDef->getOperand(1).getReg();
827   Offset = AddrDef->getOperand(2).getReg();
828 
829   LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI);
830 
831   if (!ForceLegalIndexing &&
832       !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) {
833     LLVM_DEBUG(dbgs() << "    Skipping, not legal for target");
834     return false;
835   }
836 
837   MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
838   if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) {
839     LLVM_DEBUG(dbgs() << "    Skipping, frame index would need copy anyway.");
840     return false;
841   }
842 
843   if (MI.getOpcode() == TargetOpcode::G_STORE) {
844     // Would require a copy.
845     if (Base == MI.getOperand(0).getReg()) {
846       LLVM_DEBUG(dbgs() << "    Skipping, storing base so need copy anyway.");
847       return false;
848     }
849 
850     // We're expecting one use of Addr in MI, but it could also be the
851     // value stored, which isn't actually dominated by the instruction.
852     if (MI.getOperand(0).getReg() == Addr) {
853       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses");
854       return false;
855     }
856   }
857 
858   // FIXME: check whether all uses of the base pointer are constant PtrAdds.
859   // That might allow us to end base's liveness here by adjusting the constant.
860 
861   for (auto &UseMI : MRI.use_nodbg_instructions(Addr)) {
862     if (!dominates(MI, UseMI)) {
863       LLVM_DEBUG(dbgs() << "    Skipping, does not dominate all addr uses.");
864       return false;
865     }
866   }
867 
868   return true;
869 }
870 
871 bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) {
872   IndexedLoadStoreMatchInfo MatchInfo;
873   if (matchCombineIndexedLoadStore(MI, MatchInfo)) {
874     applyCombineIndexedLoadStore(MI, MatchInfo);
875     return true;
876   }
877   return false;
878 }
879 
880 bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
881   unsigned Opcode = MI.getOpcode();
882   if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD &&
883       Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE)
884     return false;
885 
886   // For now, no targets actually support these opcodes so don't waste time
887   // running these unless we're forced to for testing.
888   if (!ForceLegalIndexing)
889     return false;
890 
891   MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
892                                           MatchInfo.Offset);
893   if (!MatchInfo.IsPre &&
894       !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base,
895                               MatchInfo.Offset))
896     return false;
897 
898   return true;
899 }
900 
901 void CombinerHelper::applyCombineIndexedLoadStore(
902     MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
903   MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
904   MachineIRBuilder MIRBuilder(MI);
905   unsigned Opcode = MI.getOpcode();
906   bool IsStore = Opcode == TargetOpcode::G_STORE;
907   unsigned NewOpcode;
908   switch (Opcode) {
909   case TargetOpcode::G_LOAD:
910     NewOpcode = TargetOpcode::G_INDEXED_LOAD;
911     break;
912   case TargetOpcode::G_SEXTLOAD:
913     NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD;
914     break;
915   case TargetOpcode::G_ZEXTLOAD:
916     NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD;
917     break;
918   case TargetOpcode::G_STORE:
919     NewOpcode = TargetOpcode::G_INDEXED_STORE;
920     break;
921   default:
922     llvm_unreachable("Unknown load/store opcode");
923   }
924 
925   auto MIB = MIRBuilder.buildInstr(NewOpcode);
926   if (IsStore) {
927     MIB.addDef(MatchInfo.Addr);
928     MIB.addUse(MI.getOperand(0).getReg());
929   } else {
930     MIB.addDef(MI.getOperand(0).getReg());
931     MIB.addDef(MatchInfo.Addr);
932   }
933 
934   MIB.addUse(MatchInfo.Base);
935   MIB.addUse(MatchInfo.Offset);
936   MIB.addImm(MatchInfo.IsPre);
937   MI.eraseFromParent();
938   AddrDef.eraseFromParent();
939 
940   LLVM_DEBUG(dbgs() << "    Combinined to indexed operation");
941 }
942 
943 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
944                                         MachineInstr *&OtherMI) {
945   unsigned Opcode = MI.getOpcode();
946   bool IsDiv, IsSigned;
947 
948   switch (Opcode) {
949   default:
950     llvm_unreachable("Unexpected opcode!");
951   case TargetOpcode::G_SDIV:
952   case TargetOpcode::G_UDIV: {
953     IsDiv = true;
954     IsSigned = Opcode == TargetOpcode::G_SDIV;
955     break;
956   }
957   case TargetOpcode::G_SREM:
958   case TargetOpcode::G_UREM: {
959     IsDiv = false;
960     IsSigned = Opcode == TargetOpcode::G_SREM;
961     break;
962   }
963   }
964 
965   Register Src1 = MI.getOperand(1).getReg();
966   unsigned DivOpcode, RemOpcode, DivremOpcode;
967   if (IsSigned) {
968     DivOpcode = TargetOpcode::G_SDIV;
969     RemOpcode = TargetOpcode::G_SREM;
970     DivremOpcode = TargetOpcode::G_SDIVREM;
971   } else {
972     DivOpcode = TargetOpcode::G_UDIV;
973     RemOpcode = TargetOpcode::G_UREM;
974     DivremOpcode = TargetOpcode::G_UDIVREM;
975   }
976 
977   if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
978     return false;
979 
980   // Combine:
981   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
982   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
983   // into:
984   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
985 
986   // Combine:
987   //   %rem:_ = G_[SU]REM %src1:_, %src2:_
988   //   %div:_ = G_[SU]DIV %src1:_, %src2:_
989   // into:
990   //  %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
991 
992   for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
993     if (MI.getParent() == UseMI.getParent() &&
994         ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
995          (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
996         matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2))) {
997       OtherMI = &UseMI;
998       return true;
999     }
1000   }
1001 
1002   return false;
1003 }
1004 
1005 void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1006                                         MachineInstr *&OtherMI) {
1007   unsigned Opcode = MI.getOpcode();
1008   assert(OtherMI && "OtherMI shouldn't be empty.");
1009 
1010   Register DestDivReg, DestRemReg;
1011   if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1012     DestDivReg = MI.getOperand(0).getReg();
1013     DestRemReg = OtherMI->getOperand(0).getReg();
1014   } else {
1015     DestDivReg = OtherMI->getOperand(0).getReg();
1016     DestRemReg = MI.getOperand(0).getReg();
1017   }
1018 
1019   bool IsSigned =
1020       Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1021 
1022   // Check which instruction is first in the block so we don't break def-use
1023   // deps by "moving" the instruction incorrectly.
1024   if (dominates(MI, *OtherMI))
1025     Builder.setInstrAndDebugLoc(MI);
1026   else
1027     Builder.setInstrAndDebugLoc(*OtherMI);
1028 
1029   Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1030                               : TargetOpcode::G_UDIVREM,
1031                      {DestDivReg, DestRemReg},
1032                      {MI.getOperand(1).getReg(), MI.getOperand(2).getReg()});
1033   MI.eraseFromParent();
1034   OtherMI->eraseFromParent();
1035 }
1036 
1037 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1038                                                    MachineInstr *&BrCond) {
1039   assert(MI.getOpcode() == TargetOpcode::G_BR);
1040 
1041   // Try to match the following:
1042   // bb1:
1043   //   G_BRCOND %c1, %bb2
1044   //   G_BR %bb3
1045   // bb2:
1046   // ...
1047   // bb3:
1048 
1049   // The above pattern does not have a fall through to the successor bb2, always
1050   // resulting in a branch no matter which path is taken. Here we try to find
1051   // and replace that pattern with conditional branch to bb3 and otherwise
1052   // fallthrough to bb2. This is generally better for branch predictors.
1053 
1054   MachineBasicBlock *MBB = MI.getParent();
1055   MachineBasicBlock::iterator BrIt(MI);
1056   if (BrIt == MBB->begin())
1057     return false;
1058   assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
1059 
1060   BrCond = &*std::prev(BrIt);
1061   if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1062     return false;
1063 
1064   // Check that the next block is the conditional branch target. Also make sure
1065   // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1066   MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1067   return BrCondTarget != MI.getOperand(0).getMBB() &&
1068          MBB->isLayoutSuccessor(BrCondTarget);
1069 }
1070 
1071 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1072                                                    MachineInstr *&BrCond) {
1073   MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1074   Builder.setInstrAndDebugLoc(*BrCond);
1075   LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1076   // FIXME: Does int/fp matter for this? If so, we might need to restrict
1077   // this to i1 only since we might not know for sure what kind of
1078   // compare generated the condition value.
1079   auto True = Builder.buildConstant(
1080       Ty, getICmpTrueVal(getTargetLowering(), false, false));
1081   auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1082 
1083   auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1084   Observer.changingInstr(MI);
1085   MI.getOperand(0).setMBB(FallthroughBB);
1086   Observer.changedInstr(MI);
1087 
1088   // Change the conditional branch to use the inverted condition and
1089   // new target block.
1090   Observer.changingInstr(*BrCond);
1091   BrCond->getOperand(0).setReg(Xor.getReg(0));
1092   BrCond->getOperand(1).setMBB(BrTarget);
1093   Observer.changedInstr(*BrCond);
1094 }
1095 
1096 static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
1097   // On Darwin, -Os means optimize for size without hurting performance, so
1098   // only really optimize for size when -Oz (MinSize) is used.
1099   if (MF.getTarget().getTargetTriple().isOSDarwin())
1100     return MF.getFunction().hasMinSize();
1101   return MF.getFunction().hasOptSize();
1102 }
1103 
1104 // Returns a list of types to use for memory op lowering in MemOps. A partial
1105 // port of findOptimalMemOpLowering in TargetLowering.
1106 static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
1107                                           unsigned Limit, const MemOp &Op,
1108                                           unsigned DstAS, unsigned SrcAS,
1109                                           const AttributeList &FuncAttributes,
1110                                           const TargetLowering &TLI) {
1111   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
1112     return false;
1113 
1114   LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
1115 
1116   if (Ty == LLT()) {
1117     // Use the largest scalar type whose alignment constraints are satisfied.
1118     // We only need to check DstAlign here as SrcAlign is always greater or
1119     // equal to DstAlign (or zero).
1120     Ty = LLT::scalar(64);
1121     if (Op.isFixedDstAlign())
1122       while (Op.getDstAlign() < Ty.getSizeInBytes() &&
1123              !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
1124         Ty = LLT::scalar(Ty.getSizeInBytes());
1125     assert(Ty.getSizeInBits() > 0 && "Could not find valid type");
1126     // FIXME: check for the largest legal type we can load/store to.
1127   }
1128 
1129   unsigned NumMemOps = 0;
1130   uint64_t Size = Op.size();
1131   while (Size) {
1132     unsigned TySize = Ty.getSizeInBytes();
1133     while (TySize > Size) {
1134       // For now, only use non-vector load / store's for the left-over pieces.
1135       LLT NewTy = Ty;
1136       // FIXME: check for mem op safety and legality of the types. Not all of
1137       // SDAGisms map cleanly to GISel concepts.
1138       if (NewTy.isVector())
1139         NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
1140       NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
1141       unsigned NewTySize = NewTy.getSizeInBytes();
1142       assert(NewTySize > 0 && "Could not find appropriate type");
1143 
1144       // If the new LLT cannot cover all of the remaining bits, then consider
1145       // issuing a (or a pair of) unaligned and overlapping load / store.
1146       bool Fast;
1147       // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
1148       MVT VT = getMVTForLLT(Ty);
1149       if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
1150           TLI.allowsMisalignedMemoryAccesses(
1151               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
1152               MachineMemOperand::MONone, &Fast) &&
1153           Fast)
1154         TySize = Size;
1155       else {
1156         Ty = NewTy;
1157         TySize = NewTySize;
1158       }
1159     }
1160 
1161     if (++NumMemOps > Limit)
1162       return false;
1163 
1164     MemOps.push_back(Ty);
1165     Size -= TySize;
1166   }
1167 
1168   return true;
1169 }
1170 
1171 static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
1172   if (Ty.isVector())
1173     return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
1174                                 Ty.getNumElements());
1175   return IntegerType::get(C, Ty.getSizeInBits());
1176 }
1177 
1178 // Get a vectorized representation of the memset value operand, GISel edition.
1179 static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
1180   MachineRegisterInfo &MRI = *MIB.getMRI();
1181   unsigned NumBits = Ty.getScalarSizeInBits();
1182   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1183   if (!Ty.isVector() && ValVRegAndVal) {
1184     APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
1185     APInt SplatVal = APInt::getSplat(NumBits, Scalar);
1186     return MIB.buildConstant(Ty, SplatVal).getReg(0);
1187   }
1188 
1189   // Extend the byte value to the larger type, and then multiply by a magic
1190   // value 0x010101... in order to replicate it across every byte.
1191   // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
1192   if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
1193     return MIB.buildConstant(Ty, 0).getReg(0);
1194   }
1195 
1196   LLT ExtType = Ty.getScalarType();
1197   auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
1198   if (NumBits > 8) {
1199     APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
1200     auto MagicMI = MIB.buildConstant(ExtType, Magic);
1201     Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
1202   }
1203 
1204   // For vector types create a G_BUILD_VECTOR.
1205   if (Ty.isVector())
1206     Val = MIB.buildSplatVector(Ty, Val).getReg(0);
1207 
1208   return Val;
1209 }
1210 
1211 bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst,
1212                                     Register Val, uint64_t KnownLen,
1213                                     Align Alignment, bool IsVolatile) {
1214   auto &MF = *MI.getParent()->getParent();
1215   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1216   auto &DL = MF.getDataLayout();
1217   LLVMContext &C = MF.getFunction().getContext();
1218 
1219   assert(KnownLen != 0 && "Have a zero length memset length!");
1220 
1221   bool DstAlignCanChange = false;
1222   MachineFrameInfo &MFI = MF.getFrameInfo();
1223   bool OptSize = shouldLowerMemFuncForSize(MF);
1224 
1225   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1226   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1227     DstAlignCanChange = true;
1228 
1229   unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
1230   std::vector<LLT> MemOps;
1231 
1232   const auto &DstMMO = **MI.memoperands_begin();
1233   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1234 
1235   auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI);
1236   bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
1237 
1238   if (!findGISelOptimalMemOpLowering(MemOps, Limit,
1239                                      MemOp::Set(KnownLen, DstAlignCanChange,
1240                                                 Alignment,
1241                                                 /*IsZeroMemset=*/IsZeroVal,
1242                                                 /*IsVolatile=*/IsVolatile),
1243                                      DstPtrInfo.getAddrSpace(), ~0u,
1244                                      MF.getFunction().getAttributes(), TLI))
1245     return false;
1246 
1247   if (DstAlignCanChange) {
1248     // Get an estimate of the type from the LLT.
1249     Type *IRTy = getTypeForLLT(MemOps[0], C);
1250     Align NewAlign = DL.getABITypeAlign(IRTy);
1251     if (NewAlign > Alignment) {
1252       Alignment = NewAlign;
1253       unsigned FI = FIDef->getOperand(1).getIndex();
1254       // Give the stack frame object a larger alignment if needed.
1255       if (MFI.getObjectAlign(FI) < Alignment)
1256         MFI.setObjectAlignment(FI, Alignment);
1257     }
1258   }
1259 
1260   MachineIRBuilder MIB(MI);
1261   // Find the largest store and generate the bit pattern for it.
1262   LLT LargestTy = MemOps[0];
1263   for (unsigned i = 1; i < MemOps.size(); i++)
1264     if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
1265       LargestTy = MemOps[i];
1266 
1267   // The memset stored value is always defined as an s8, so in order to make it
1268   // work with larger store types we need to repeat the bit pattern across the
1269   // wider type.
1270   Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
1271 
1272   if (!MemSetValue)
1273     return false;
1274 
1275   // Generate the stores. For each store type in the list, we generate the
1276   // matching store of that type to the destination address.
1277   LLT PtrTy = MRI.getType(Dst);
1278   unsigned DstOff = 0;
1279   unsigned Size = KnownLen;
1280   for (unsigned I = 0; I < MemOps.size(); I++) {
1281     LLT Ty = MemOps[I];
1282     unsigned TySize = Ty.getSizeInBytes();
1283     if (TySize > Size) {
1284       // Issuing an unaligned load / store pair that overlaps with the previous
1285       // pair. Adjust the offset accordingly.
1286       assert(I == MemOps.size() - 1 && I != 0);
1287       DstOff -= TySize - Size;
1288     }
1289 
1290     // If this store is smaller than the largest store see whether we can get
1291     // the smaller value for free with a truncate.
1292     Register Value = MemSetValue;
1293     if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
1294       MVT VT = getMVTForLLT(Ty);
1295       MVT LargestVT = getMVTForLLT(LargestTy);
1296       if (!LargestTy.isVector() && !Ty.isVector() &&
1297           TLI.isTruncateFree(LargestVT, VT))
1298         Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
1299       else
1300         Value = getMemsetValue(Val, Ty, MIB);
1301       if (!Value)
1302         return false;
1303     }
1304 
1305     auto *StoreMMO =
1306         MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
1307 
1308     Register Ptr = Dst;
1309     if (DstOff != 0) {
1310       auto Offset =
1311           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
1312       Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1313     }
1314 
1315     MIB.buildStore(Value, Ptr, *StoreMMO);
1316     DstOff += Ty.getSizeInBytes();
1317     Size -= TySize;
1318   }
1319 
1320   MI.eraseFromParent();
1321   return true;
1322 }
1323 
1324 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1325   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
1326 
1327   Register Dst = MI.getOperand(0).getReg();
1328   Register Src = MI.getOperand(1).getReg();
1329   Register Len = MI.getOperand(2).getReg();
1330 
1331   const auto *MMOIt = MI.memoperands_begin();
1332   const MachineMemOperand *MemOp = *MMOIt;
1333   bool IsVolatile = MemOp->isVolatile();
1334 
1335   // See if this is a constant length copy
1336   auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1337   // FIXME: support dynamically sized G_MEMCPY_INLINE
1338   assert(LenVRegAndVal.hasValue() &&
1339          "inline memcpy with dynamic size is not yet supported");
1340   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
1341   if (KnownLen == 0) {
1342     MI.eraseFromParent();
1343     return true;
1344   }
1345 
1346   const auto &DstMMO = **MI.memoperands_begin();
1347   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1348   Align DstAlign = DstMMO.getBaseAlign();
1349   Align SrcAlign = SrcMMO.getBaseAlign();
1350 
1351   return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
1352                              IsVolatile);
1353 }
1354 
1355 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI, Register Dst,
1356                                          Register Src, uint64_t KnownLen,
1357                                          Align DstAlign, Align SrcAlign,
1358                                          bool IsVolatile) {
1359   assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE);
1360   return optimizeMemcpy(MI, Dst, Src, KnownLen,
1361                         std::numeric_limits<uint64_t>::max(), DstAlign,
1362                         SrcAlign, IsVolatile);
1363 }
1364 
1365 bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst,
1366                                     Register Src, uint64_t KnownLen,
1367                                     uint64_t Limit, Align DstAlign,
1368                                     Align SrcAlign, bool IsVolatile) {
1369   auto &MF = *MI.getParent()->getParent();
1370   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1371   auto &DL = MF.getDataLayout();
1372   LLVMContext &C = MF.getFunction().getContext();
1373 
1374   assert(KnownLen != 0 && "Have a zero length memcpy length!");
1375 
1376   bool DstAlignCanChange = false;
1377   MachineFrameInfo &MFI = MF.getFrameInfo();
1378   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1379 
1380   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1381   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1382     DstAlignCanChange = true;
1383 
1384   // FIXME: infer better src pointer alignment like SelectionDAG does here.
1385   // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
1386   // if the memcpy is in a tail call position.
1387 
1388   std::vector<LLT> MemOps;
1389 
1390   const auto &DstMMO = **MI.memoperands_begin();
1391   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1392   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1393   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1394 
1395   if (!findGISelOptimalMemOpLowering(
1396           MemOps, Limit,
1397           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1398                       IsVolatile),
1399           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1400           MF.getFunction().getAttributes(), TLI))
1401     return false;
1402 
1403   if (DstAlignCanChange) {
1404     // Get an estimate of the type from the LLT.
1405     Type *IRTy = getTypeForLLT(MemOps[0], C);
1406     Align NewAlign = DL.getABITypeAlign(IRTy);
1407 
1408     // Don't promote to an alignment that would require dynamic stack
1409     // realignment.
1410     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1411     if (!TRI->hasStackRealignment(MF))
1412       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1413         NewAlign = NewAlign / 2;
1414 
1415     if (NewAlign > Alignment) {
1416       Alignment = NewAlign;
1417       unsigned FI = FIDef->getOperand(1).getIndex();
1418       // Give the stack frame object a larger alignment if needed.
1419       if (MFI.getObjectAlign(FI) < Alignment)
1420         MFI.setObjectAlignment(FI, Alignment);
1421     }
1422   }
1423 
1424   LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n");
1425 
1426   MachineIRBuilder MIB(MI);
1427   // Now we need to emit a pair of load and stores for each of the types we've
1428   // collected. I.e. for each type, generate a load from the source pointer of
1429   // that type width, and then generate a corresponding store to the dest buffer
1430   // of that value loaded. This can result in a sequence of loads and stores
1431   // mixed types, depending on what the target specifies as good types to use.
1432   unsigned CurrOffset = 0;
1433   LLT PtrTy = MRI.getType(Src);
1434   unsigned Size = KnownLen;
1435   for (auto CopyTy : MemOps) {
1436     // Issuing an unaligned load / store pair  that overlaps with the previous
1437     // pair. Adjust the offset accordingly.
1438     if (CopyTy.getSizeInBytes() > Size)
1439       CurrOffset -= CopyTy.getSizeInBytes() - Size;
1440 
1441     // Construct MMOs for the accesses.
1442     auto *LoadMMO =
1443         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1444     auto *StoreMMO =
1445         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1446 
1447     // Create the load.
1448     Register LoadPtr = Src;
1449     Register Offset;
1450     if (CurrOffset != 0) {
1451       Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset)
1452                    .getReg(0);
1453       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1454     }
1455     auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
1456 
1457     // Create the store.
1458     Register StorePtr =
1459         CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1460     MIB.buildStore(LdVal, StorePtr, *StoreMMO);
1461     CurrOffset += CopyTy.getSizeInBytes();
1462     Size -= CopyTy.getSizeInBytes();
1463   }
1464 
1465   MI.eraseFromParent();
1466   return true;
1467 }
1468 
1469 bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst,
1470                                      Register Src, uint64_t KnownLen,
1471                                      Align DstAlign, Align SrcAlign,
1472                                      bool IsVolatile) {
1473   auto &MF = *MI.getParent()->getParent();
1474   const auto &TLI = *MF.getSubtarget().getTargetLowering();
1475   auto &DL = MF.getDataLayout();
1476   LLVMContext &C = MF.getFunction().getContext();
1477 
1478   assert(KnownLen != 0 && "Have a zero length memmove length!");
1479 
1480   bool DstAlignCanChange = false;
1481   MachineFrameInfo &MFI = MF.getFrameInfo();
1482   bool OptSize = shouldLowerMemFuncForSize(MF);
1483   Align Alignment = commonAlignment(DstAlign, SrcAlign);
1484 
1485   MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
1486   if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
1487     DstAlignCanChange = true;
1488 
1489   unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
1490   std::vector<LLT> MemOps;
1491 
1492   const auto &DstMMO = **MI.memoperands_begin();
1493   const auto &SrcMMO = **std::next(MI.memoperands_begin());
1494   MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
1495   MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
1496 
1497   // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
1498   // to a bug in it's findOptimalMemOpLowering implementation. For now do the
1499   // same thing here.
1500   if (!findGISelOptimalMemOpLowering(
1501           MemOps, Limit,
1502           MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
1503                       /*IsVolatile*/ true),
1504           DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
1505           MF.getFunction().getAttributes(), TLI))
1506     return false;
1507 
1508   if (DstAlignCanChange) {
1509     // Get an estimate of the type from the LLT.
1510     Type *IRTy = getTypeForLLT(MemOps[0], C);
1511     Align NewAlign = DL.getABITypeAlign(IRTy);
1512 
1513     // Don't promote to an alignment that would require dynamic stack
1514     // realignment.
1515     const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1516     if (!TRI->hasStackRealignment(MF))
1517       while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
1518         NewAlign = NewAlign / 2;
1519 
1520     if (NewAlign > Alignment) {
1521       Alignment = NewAlign;
1522       unsigned FI = FIDef->getOperand(1).getIndex();
1523       // Give the stack frame object a larger alignment if needed.
1524       if (MFI.getObjectAlign(FI) < Alignment)
1525         MFI.setObjectAlignment(FI, Alignment);
1526     }
1527   }
1528 
1529   LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n");
1530 
1531   MachineIRBuilder MIB(MI);
1532   // Memmove requires that we perform the loads first before issuing the stores.
1533   // Apart from that, this loop is pretty much doing the same thing as the
1534   // memcpy codegen function.
1535   unsigned CurrOffset = 0;
1536   LLT PtrTy = MRI.getType(Src);
1537   SmallVector<Register, 16> LoadVals;
1538   for (auto CopyTy : MemOps) {
1539     // Construct MMO for the load.
1540     auto *LoadMMO =
1541         MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
1542 
1543     // Create the load.
1544     Register LoadPtr = Src;
1545     if (CurrOffset != 0) {
1546       auto Offset =
1547           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1548       LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0);
1549     }
1550     LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
1551     CurrOffset += CopyTy.getSizeInBytes();
1552   }
1553 
1554   CurrOffset = 0;
1555   for (unsigned I = 0; I < MemOps.size(); ++I) {
1556     LLT CopyTy = MemOps[I];
1557     // Now store the values loaded.
1558     auto *StoreMMO =
1559         MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
1560 
1561     Register StorePtr = Dst;
1562     if (CurrOffset != 0) {
1563       auto Offset =
1564           MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset);
1565       StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
1566     }
1567     MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
1568     CurrOffset += CopyTy.getSizeInBytes();
1569   }
1570   MI.eraseFromParent();
1571   return true;
1572 }
1573 
1574 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1575   const unsigned Opc = MI.getOpcode();
1576   // This combine is fairly complex so it's not written with a separate
1577   // matcher function.
1578   assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||
1579           Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction");
1580 
1581   auto MMOIt = MI.memoperands_begin();
1582   const MachineMemOperand *MemOp = *MMOIt;
1583 
1584   Align DstAlign = MemOp->getBaseAlign();
1585   Align SrcAlign;
1586   Register Dst = MI.getOperand(0).getReg();
1587   Register Src = MI.getOperand(1).getReg();
1588   Register Len = MI.getOperand(2).getReg();
1589 
1590   if (Opc != TargetOpcode::G_MEMSET) {
1591     assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI");
1592     MemOp = *(++MMOIt);
1593     SrcAlign = MemOp->getBaseAlign();
1594   }
1595 
1596   // See if this is a constant length copy
1597   auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI);
1598   if (!LenVRegAndVal)
1599     return false; // Leave it to the legalizer to lower it to a libcall.
1600   uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
1601 
1602   if (KnownLen == 0) {
1603     MI.eraseFromParent();
1604     return true;
1605   }
1606 
1607   bool IsVolatile = MemOp->isVolatile();
1608   if (Opc == TargetOpcode::G_MEMCPY_INLINE)
1609     return tryEmitMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
1610                                IsVolatile);
1611 
1612   // Don't try to optimize volatile.
1613   if (IsVolatile)
1614     return false;
1615 
1616   if (MaxLen && KnownLen > MaxLen)
1617     return false;
1618 
1619   if (Opc == TargetOpcode::G_MEMCPY) {
1620     auto &MF = *MI.getParent()->getParent();
1621     const auto &TLI = *MF.getSubtarget().getTargetLowering();
1622     bool OptSize = shouldLowerMemFuncForSize(MF);
1623     uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
1624     return optimizeMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
1625                           IsVolatile);
1626   }
1627   if (Opc == TargetOpcode::G_MEMMOVE)
1628     return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
1629   if (Opc == TargetOpcode::G_MEMSET)
1630     return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
1631   return false;
1632 }
1633 
1634 static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy,
1635                                              const Register Op,
1636                                              const MachineRegisterInfo &MRI) {
1637   const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI);
1638   if (!MaybeCst)
1639     return None;
1640 
1641   APFloat V = MaybeCst->getValueAPF();
1642   switch (Opcode) {
1643   default:
1644     llvm_unreachable("Unexpected opcode!");
1645   case TargetOpcode::G_FNEG: {
1646     V.changeSign();
1647     return V;
1648   }
1649   case TargetOpcode::G_FABS: {
1650     V.clearSign();
1651     return V;
1652   }
1653   case TargetOpcode::G_FPTRUNC:
1654     break;
1655   case TargetOpcode::G_FSQRT: {
1656     bool Unused;
1657     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1658     V = APFloat(sqrt(V.convertToDouble()));
1659     break;
1660   }
1661   case TargetOpcode::G_FLOG2: {
1662     bool Unused;
1663     V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused);
1664     V = APFloat(log2(V.convertToDouble()));
1665     break;
1666   }
1667   }
1668   // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1669   // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`,
1670   // and `G_FLOG2` reach here.
1671   bool Unused;
1672   V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused);
1673   return V;
1674 }
1675 
1676 bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI,
1677                                                      Optional<APFloat> &Cst) {
1678   Register DstReg = MI.getOperand(0).getReg();
1679   Register SrcReg = MI.getOperand(1).getReg();
1680   LLT DstTy = MRI.getType(DstReg);
1681   Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI);
1682   return Cst.hasValue();
1683 }
1684 
1685 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1686                                                      Optional<APFloat> &Cst) {
1687   assert(Cst.hasValue() && "Optional is unexpectedly empty!");
1688   Builder.setInstrAndDebugLoc(MI);
1689   MachineFunction &MF = Builder.getMF();
1690   auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst);
1691   Register DstReg = MI.getOperand(0).getReg();
1692   Builder.buildFConstant(DstReg, *FPVal);
1693   MI.eraseFromParent();
1694 }
1695 
1696 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1697                                            PtrAddChain &MatchInfo) {
1698   // We're trying to match the following pattern:
1699   //   %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1700   //   %root = G_PTR_ADD %t1, G_CONSTANT imm2
1701   // -->
1702   //   %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1703 
1704   if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1705     return false;
1706 
1707   Register Add2 = MI.getOperand(1).getReg();
1708   Register Imm1 = MI.getOperand(2).getReg();
1709   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1710   if (!MaybeImmVal)
1711     return false;
1712 
1713   // Don't do this combine if there multiple uses of the first PTR_ADD,
1714   // since we may be able to compute the second PTR_ADD as an immediate
1715   // offset anyway. Folding the first offset into the second may cause us
1716   // to go beyond the bounds of our legal addressing modes.
1717   if (!MRI.hasOneNonDBGUse(Add2))
1718     return false;
1719 
1720   MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2);
1721   if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1722     return false;
1723 
1724   Register Base = Add2Def->getOperand(1).getReg();
1725   Register Imm2 = Add2Def->getOperand(2).getReg();
1726   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1727   if (!MaybeImm2Val)
1728     return false;
1729 
1730   // Pass the combined immediate to the apply function.
1731   MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue();
1732   MatchInfo.Base = Base;
1733   return true;
1734 }
1735 
1736 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1737                                            PtrAddChain &MatchInfo) {
1738   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1739   MachineIRBuilder MIB(MI);
1740   LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1741   auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1742   Observer.changingInstr(MI);
1743   MI.getOperand(1).setReg(MatchInfo.Base);
1744   MI.getOperand(2).setReg(NewOffset.getReg(0));
1745   Observer.changedInstr(MI);
1746 }
1747 
1748 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1749                                           RegisterImmPair &MatchInfo) {
1750   // We're trying to match the following pattern with any of
1751   // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1752   //   %t1 = SHIFT %base, G_CONSTANT imm1
1753   //   %root = SHIFT %t1, G_CONSTANT imm2
1754   // -->
1755   //   %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1756 
1757   unsigned Opcode = MI.getOpcode();
1758   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1759           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1760           Opcode == TargetOpcode::G_USHLSAT) &&
1761          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1762 
1763   Register Shl2 = MI.getOperand(1).getReg();
1764   Register Imm1 = MI.getOperand(2).getReg();
1765   auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI);
1766   if (!MaybeImmVal)
1767     return false;
1768 
1769   MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1770   if (Shl2Def->getOpcode() != Opcode)
1771     return false;
1772 
1773   Register Base = Shl2Def->getOperand(1).getReg();
1774   Register Imm2 = Shl2Def->getOperand(2).getReg();
1775   auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI);
1776   if (!MaybeImm2Val)
1777     return false;
1778 
1779   // Pass the combined immediate to the apply function.
1780   MatchInfo.Imm =
1781       (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue();
1782   MatchInfo.Reg = Base;
1783 
1784   // There is no simple replacement for a saturating unsigned left shift that
1785   // exceeds the scalar size.
1786   if (Opcode == TargetOpcode::G_USHLSAT &&
1787       MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1788     return false;
1789 
1790   return true;
1791 }
1792 
1793 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1794                                           RegisterImmPair &MatchInfo) {
1795   unsigned Opcode = MI.getOpcode();
1796   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1797           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1798           Opcode == TargetOpcode::G_USHLSAT) &&
1799          "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1800 
1801   Builder.setInstrAndDebugLoc(MI);
1802   LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1803   unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1804   auto Imm = MatchInfo.Imm;
1805 
1806   if (Imm >= ScalarSizeInBits) {
1807     // Any logical shift that exceeds scalar size will produce zero.
1808     if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1809       Builder.buildConstant(MI.getOperand(0), 0);
1810       MI.eraseFromParent();
1811       return;
1812     }
1813     // Arithmetic shift and saturating signed left shift have no effect beyond
1814     // scalar size.
1815     Imm = ScalarSizeInBits - 1;
1816   }
1817 
1818   LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1819   Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1820   Observer.changingInstr(MI);
1821   MI.getOperand(1).setReg(MatchInfo.Reg);
1822   MI.getOperand(2).setReg(NewImm);
1823   Observer.changedInstr(MI);
1824 }
1825 
1826 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1827                                               ShiftOfShiftedLogic &MatchInfo) {
1828   // We're trying to match the following pattern with any of
1829   // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1830   // with any of G_AND/G_OR/G_XOR logic instructions.
1831   //   %t1 = SHIFT %X, G_CONSTANT C0
1832   //   %t2 = LOGIC %t1, %Y
1833   //   %root = SHIFT %t2, G_CONSTANT C1
1834   // -->
1835   //   %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1836   //   %t4 = SHIFT %Y, G_CONSTANT C1
1837   //   %root = LOGIC %t3, %t4
1838   unsigned ShiftOpcode = MI.getOpcode();
1839   assert((ShiftOpcode == TargetOpcode::G_SHL ||
1840           ShiftOpcode == TargetOpcode::G_ASHR ||
1841           ShiftOpcode == TargetOpcode::G_LSHR ||
1842           ShiftOpcode == TargetOpcode::G_USHLSAT ||
1843           ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1844          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1845 
1846   // Match a one-use bitwise logic op.
1847   Register LogicDest = MI.getOperand(1).getReg();
1848   if (!MRI.hasOneNonDBGUse(LogicDest))
1849     return false;
1850 
1851   MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1852   unsigned LogicOpcode = LogicMI->getOpcode();
1853   if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1854       LogicOpcode != TargetOpcode::G_XOR)
1855     return false;
1856 
1857   // Find a matching one-use shift by constant.
1858   const Register C1 = MI.getOperand(2).getReg();
1859   auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI);
1860   if (!MaybeImmVal)
1861     return false;
1862 
1863   const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1864 
1865   auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1866     // Shift should match previous one and should be a one-use.
1867     if (MI->getOpcode() != ShiftOpcode ||
1868         !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1869       return false;
1870 
1871     // Must be a constant.
1872     auto MaybeImmVal =
1873         getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1874     if (!MaybeImmVal)
1875       return false;
1876 
1877     ShiftVal = MaybeImmVal->Value.getSExtValue();
1878     return true;
1879   };
1880 
1881   // Logic ops are commutative, so check each operand for a match.
1882   Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1883   MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1884   Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1885   MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1886   uint64_t C0Val;
1887 
1888   if (matchFirstShift(LogicMIOp1, C0Val)) {
1889     MatchInfo.LogicNonShiftReg = LogicMIReg2;
1890     MatchInfo.Shift2 = LogicMIOp1;
1891   } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1892     MatchInfo.LogicNonShiftReg = LogicMIReg1;
1893     MatchInfo.Shift2 = LogicMIOp2;
1894   } else
1895     return false;
1896 
1897   MatchInfo.ValSum = C0Val + C1Val;
1898 
1899   // The fold is not valid if the sum of the shift values exceeds bitwidth.
1900   if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1901     return false;
1902 
1903   MatchInfo.Logic = LogicMI;
1904   return true;
1905 }
1906 
1907 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1908                                               ShiftOfShiftedLogic &MatchInfo) {
1909   unsigned Opcode = MI.getOpcode();
1910   assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1911           Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1912           Opcode == TargetOpcode::G_SSHLSAT) &&
1913          "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1914 
1915   LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1916   LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1917   Builder.setInstrAndDebugLoc(MI);
1918 
1919   Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1920 
1921   Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1922   Register Shift1 =
1923       Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1924 
1925   Register Shift2Const = MI.getOperand(2).getReg();
1926   Register Shift2 = Builder
1927                         .buildInstr(Opcode, {DestType},
1928                                     {MatchInfo.LogicNonShiftReg, Shift2Const})
1929                         .getReg(0);
1930 
1931   Register Dest = MI.getOperand(0).getReg();
1932   Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1933 
1934   // These were one use so it's safe to remove them.
1935   MatchInfo.Shift2->eraseFromParent();
1936   MatchInfo.Logic->eraseFromParent();
1937 
1938   MI.eraseFromParent();
1939 }
1940 
1941 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
1942                                           unsigned &ShiftVal) {
1943   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1944   auto MaybeImmVal =
1945       getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
1946   if (!MaybeImmVal)
1947     return false;
1948 
1949   ShiftVal = MaybeImmVal->Value.exactLogBase2();
1950   return (static_cast<int32_t>(ShiftVal) != -1);
1951 }
1952 
1953 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
1954                                           unsigned &ShiftVal) {
1955   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
1956   MachineIRBuilder MIB(MI);
1957   LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
1958   auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
1959   Observer.changingInstr(MI);
1960   MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
1961   MI.getOperand(2).setReg(ShiftCst.getReg(0));
1962   Observer.changedInstr(MI);
1963 }
1964 
1965 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
1966 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
1967                                              RegisterImmPair &MatchData) {
1968   assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
1969 
1970   Register LHS = MI.getOperand(1).getReg();
1971 
1972   Register ExtSrc;
1973   if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
1974       !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
1975       !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
1976     return false;
1977 
1978   // TODO: Should handle vector splat.
1979   Register RHS = MI.getOperand(2).getReg();
1980   auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI);
1981   if (!MaybeShiftAmtVal)
1982     return false;
1983 
1984   if (LI) {
1985     LLT SrcTy = MRI.getType(ExtSrc);
1986 
1987     // We only really care about the legality with the shifted value. We can
1988     // pick any type the constant shift amount, so ask the target what to
1989     // use. Otherwise we would have to guess and hope it is reported as legal.
1990     LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
1991     if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
1992       return false;
1993   }
1994 
1995   int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue();
1996   MatchData.Reg = ExtSrc;
1997   MatchData.Imm = ShiftAmt;
1998 
1999   unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes();
2000   return MinLeadingZeros >= ShiftAmt;
2001 }
2002 
2003 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
2004                                              const RegisterImmPair &MatchData) {
2005   Register ExtSrcReg = MatchData.Reg;
2006   int64_t ShiftAmtVal = MatchData.Imm;
2007 
2008   LLT ExtSrcTy = MRI.getType(ExtSrcReg);
2009   Builder.setInstrAndDebugLoc(MI);
2010   auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
2011   auto NarrowShift =
2012       Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
2013   Builder.buildZExt(MI.getOperand(0), NarrowShift);
2014   MI.eraseFromParent();
2015 }
2016 
2017 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
2018                                               Register &MatchInfo) {
2019   GMerge &Merge = cast<GMerge>(MI);
2020   SmallVector<Register, 16> MergedValues;
2021   for (unsigned I = 0; I < Merge.getNumSources(); ++I)
2022     MergedValues.emplace_back(Merge.getSourceReg(I));
2023 
2024   auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
2025   if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
2026     return false;
2027 
2028   for (unsigned I = 0; I < MergedValues.size(); ++I)
2029     if (MergedValues[I] != Unmerge->getReg(I))
2030       return false;
2031 
2032   MatchInfo = Unmerge->getSourceReg();
2033   return true;
2034 }
2035 
2036 static Register peekThroughBitcast(Register Reg,
2037                                    const MachineRegisterInfo &MRI) {
2038   while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
2039     ;
2040 
2041   return Reg;
2042 }
2043 
2044 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
2045     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2046   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2047          "Expected an unmerge");
2048   Register SrcReg =
2049       peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI);
2050 
2051   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
2052   if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES &&
2053       SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
2054       SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS)
2055     return false;
2056 
2057   // Check the source type of the merge.
2058   LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg());
2059   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
2060   bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
2061   if (SrcMergeTy != Dst0Ty && !SameSize)
2062     return false;
2063   // They are the same now (modulo a bitcast).
2064   // We can collect all the src registers.
2065   for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx;
2066        ++Idx)
2067     Operands.push_back(SrcInstr->getOperand(Idx).getReg());
2068   return true;
2069 }
2070 
2071 void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
2072     MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2073   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2074          "Expected an unmerge");
2075   assert((MI.getNumOperands() - 1 == Operands.size()) &&
2076          "Not enough operands to replace all defs");
2077   unsigned NumElems = MI.getNumOperands() - 1;
2078 
2079   LLT SrcTy = MRI.getType(Operands[0]);
2080   LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2081   bool CanReuseInputDirectly = DstTy == SrcTy;
2082   Builder.setInstrAndDebugLoc(MI);
2083   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2084     Register DstReg = MI.getOperand(Idx).getReg();
2085     Register SrcReg = Operands[Idx];
2086     if (CanReuseInputDirectly)
2087       replaceRegWith(MRI, DstReg, SrcReg);
2088     else
2089       Builder.buildCast(DstReg, SrcReg);
2090   }
2091   MI.eraseFromParent();
2092 }
2093 
2094 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
2095                                                  SmallVectorImpl<APInt> &Csts) {
2096   unsigned SrcIdx = MI.getNumOperands() - 1;
2097   Register SrcReg = MI.getOperand(SrcIdx).getReg();
2098   MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
2099   if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
2100       SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
2101     return false;
2102   // Break down the big constant in smaller ones.
2103   const MachineOperand &CstVal = SrcInstr->getOperand(1);
2104   APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
2105                   ? CstVal.getCImm()->getValue()
2106                   : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
2107 
2108   LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
2109   unsigned ShiftAmt = Dst0Ty.getSizeInBits();
2110   // Unmerge a constant.
2111   for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
2112     Csts.emplace_back(Val.trunc(ShiftAmt));
2113     Val = Val.lshr(ShiftAmt);
2114   }
2115 
2116   return true;
2117 }
2118 
2119 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
2120                                                  SmallVectorImpl<APInt> &Csts) {
2121   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2122          "Expected an unmerge");
2123   assert((MI.getNumOperands() - 1 == Csts.size()) &&
2124          "Not enough operands to replace all defs");
2125   unsigned NumElems = MI.getNumOperands() - 1;
2126   Builder.setInstrAndDebugLoc(MI);
2127   for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2128     Register DstReg = MI.getOperand(Idx).getReg();
2129     Builder.buildConstant(DstReg, Csts[Idx]);
2130   }
2131 
2132   MI.eraseFromParent();
2133 }
2134 
2135 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2136   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2137          "Expected an unmerge");
2138   // Check that all the lanes are dead except the first one.
2139   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2140     if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
2141       return false;
2142   }
2143   return true;
2144 }
2145 
2146 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2147   Builder.setInstrAndDebugLoc(MI);
2148   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2149   // Truncating a vector is going to truncate every single lane,
2150   // whereas we want the full lowbits.
2151   // Do the operation on a scalar instead.
2152   LLT SrcTy = MRI.getType(SrcReg);
2153   if (SrcTy.isVector())
2154     SrcReg =
2155         Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0);
2156 
2157   Register Dst0Reg = MI.getOperand(0).getReg();
2158   LLT Dst0Ty = MRI.getType(Dst0Reg);
2159   if (Dst0Ty.isVector()) {
2160     auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg);
2161     Builder.buildCast(Dst0Reg, MIB);
2162   } else
2163     Builder.buildTrunc(Dst0Reg, SrcReg);
2164   MI.eraseFromParent();
2165 }
2166 
2167 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
2168   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2169          "Expected an unmerge");
2170   Register Dst0Reg = MI.getOperand(0).getReg();
2171   LLT Dst0Ty = MRI.getType(Dst0Reg);
2172   // G_ZEXT on vector applies to each lane, so it will
2173   // affect all destinations. Therefore we won't be able
2174   // to simplify the unmerge to just the first definition.
2175   if (Dst0Ty.isVector())
2176     return false;
2177   Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2178   LLT SrcTy = MRI.getType(SrcReg);
2179   if (SrcTy.isVector())
2180     return false;
2181 
2182   Register ZExtSrcReg;
2183   if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
2184     return false;
2185 
2186   // Finally we can replace the first definition with
2187   // a zext of the source if the definition is big enough to hold
2188   // all of ZExtSrc bits.
2189   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2190   return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
2191 }
2192 
2193 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
2194   assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2195          "Expected an unmerge");
2196 
2197   Register Dst0Reg = MI.getOperand(0).getReg();
2198 
2199   MachineInstr *ZExtInstr =
2200       MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
2201   assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
2202          "Expecting a G_ZEXT");
2203 
2204   Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
2205   LLT Dst0Ty = MRI.getType(Dst0Reg);
2206   LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2207 
2208   Builder.setInstrAndDebugLoc(MI);
2209 
2210   if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
2211     Builder.buildZExt(Dst0Reg, ZExtSrcReg);
2212   } else {
2213     assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
2214            "ZExt src doesn't fit in destination");
2215     replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
2216   }
2217 
2218   Register ZeroReg;
2219   for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2220     if (!ZeroReg)
2221       ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
2222     replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
2223   }
2224   MI.eraseFromParent();
2225 }
2226 
2227 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
2228                                                 unsigned TargetShiftSize,
2229                                                 unsigned &ShiftVal) {
2230   assert((MI.getOpcode() == TargetOpcode::G_SHL ||
2231           MI.getOpcode() == TargetOpcode::G_LSHR ||
2232           MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
2233 
2234   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2235   if (Ty.isVector()) // TODO:
2236     return false;
2237 
2238   // Don't narrow further than the requested size.
2239   unsigned Size = Ty.getSizeInBits();
2240   if (Size <= TargetShiftSize)
2241     return false;
2242 
2243   auto MaybeImmVal =
2244     getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2245   if (!MaybeImmVal)
2246     return false;
2247 
2248   ShiftVal = MaybeImmVal->Value.getSExtValue();
2249   return ShiftVal >= Size / 2 && ShiftVal < Size;
2250 }
2251 
2252 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
2253                                                 const unsigned &ShiftVal) {
2254   Register DstReg = MI.getOperand(0).getReg();
2255   Register SrcReg = MI.getOperand(1).getReg();
2256   LLT Ty = MRI.getType(SrcReg);
2257   unsigned Size = Ty.getSizeInBits();
2258   unsigned HalfSize = Size / 2;
2259   assert(ShiftVal >= HalfSize);
2260 
2261   LLT HalfTy = LLT::scalar(HalfSize);
2262 
2263   Builder.setInstr(MI);
2264   auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
2265   unsigned NarrowShiftAmt = ShiftVal - HalfSize;
2266 
2267   if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2268     Register Narrowed = Unmerge.getReg(1);
2269 
2270     //  dst = G_LSHR s64:x, C for C >= 32
2271     // =>
2272     //   lo, hi = G_UNMERGE_VALUES x
2273     //   dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
2274 
2275     if (NarrowShiftAmt != 0) {
2276       Narrowed = Builder.buildLShr(HalfTy, Narrowed,
2277         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2278     }
2279 
2280     auto Zero = Builder.buildConstant(HalfTy, 0);
2281     Builder.buildMerge(DstReg, { Narrowed, Zero });
2282   } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
2283     Register Narrowed = Unmerge.getReg(0);
2284     //  dst = G_SHL s64:x, C for C >= 32
2285     // =>
2286     //   lo, hi = G_UNMERGE_VALUES x
2287     //   dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
2288     if (NarrowShiftAmt != 0) {
2289       Narrowed = Builder.buildShl(HalfTy, Narrowed,
2290         Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2291     }
2292 
2293     auto Zero = Builder.buildConstant(HalfTy, 0);
2294     Builder.buildMerge(DstReg, { Zero, Narrowed });
2295   } else {
2296     assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2297     auto Hi = Builder.buildAShr(
2298       HalfTy, Unmerge.getReg(1),
2299       Builder.buildConstant(HalfTy, HalfSize - 1));
2300 
2301     if (ShiftVal == HalfSize) {
2302       // (G_ASHR i64:x, 32) ->
2303       //   G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2304       Builder.buildMerge(DstReg, { Unmerge.getReg(1), Hi });
2305     } else if (ShiftVal == Size - 1) {
2306       // Don't need a second shift.
2307       // (G_ASHR i64:x, 63) ->
2308       //   %narrowed = (G_ASHR hi_32(x), 31)
2309       //   G_MERGE_VALUES %narrowed, %narrowed
2310       Builder.buildMerge(DstReg, { Hi, Hi });
2311     } else {
2312       auto Lo = Builder.buildAShr(
2313         HalfTy, Unmerge.getReg(1),
2314         Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2315 
2316       // (G_ASHR i64:x, C) ->, for C >= 32
2317       //   G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2318       Builder.buildMerge(DstReg, { Lo, Hi });
2319     }
2320   }
2321 
2322   MI.eraseFromParent();
2323 }
2324 
2325 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2326                                               unsigned TargetShiftAmount) {
2327   unsigned ShiftAmt;
2328   if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2329     applyCombineShiftToUnmerge(MI, ShiftAmt);
2330     return true;
2331   }
2332 
2333   return false;
2334 }
2335 
2336 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2337   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2338   Register DstReg = MI.getOperand(0).getReg();
2339   LLT DstTy = MRI.getType(DstReg);
2340   Register SrcReg = MI.getOperand(1).getReg();
2341   return mi_match(SrcReg, MRI,
2342                   m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2343 }
2344 
2345 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2346   assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2347   Register DstReg = MI.getOperand(0).getReg();
2348   Builder.setInstr(MI);
2349   Builder.buildCopy(DstReg, Reg);
2350   MI.eraseFromParent();
2351 }
2352 
2353 bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2354   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2355   Register SrcReg = MI.getOperand(1).getReg();
2356   return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg)));
2357 }
2358 
2359 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2360   assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2361   Register DstReg = MI.getOperand(0).getReg();
2362   Builder.setInstr(MI);
2363   Builder.buildZExtOrTrunc(DstReg, Reg);
2364   MI.eraseFromParent();
2365 }
2366 
2367 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2368     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2369   assert(MI.getOpcode() == TargetOpcode::G_ADD);
2370   Register LHS = MI.getOperand(1).getReg();
2371   Register RHS = MI.getOperand(2).getReg();
2372   LLT IntTy = MRI.getType(LHS);
2373 
2374   // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2375   // instruction.
2376   PtrReg.second = false;
2377   for (Register SrcReg : {LHS, RHS}) {
2378     if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2379       // Don't handle cases where the integer is implicitly converted to the
2380       // pointer width.
2381       LLT PtrTy = MRI.getType(PtrReg.first);
2382       if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2383         return true;
2384     }
2385 
2386     PtrReg.second = true;
2387   }
2388 
2389   return false;
2390 }
2391 
2392 void CombinerHelper::applyCombineAddP2IToPtrAdd(
2393     MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2394   Register Dst = MI.getOperand(0).getReg();
2395   Register LHS = MI.getOperand(1).getReg();
2396   Register RHS = MI.getOperand(2).getReg();
2397 
2398   const bool DoCommute = PtrReg.second;
2399   if (DoCommute)
2400     std::swap(LHS, RHS);
2401   LHS = PtrReg.first;
2402 
2403   LLT PtrTy = MRI.getType(LHS);
2404 
2405   Builder.setInstrAndDebugLoc(MI);
2406   auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2407   Builder.buildPtrToInt(Dst, PtrAdd);
2408   MI.eraseFromParent();
2409 }
2410 
2411 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2412                                                   int64_t &NewCst) {
2413   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
2414   Register LHS = MI.getOperand(1).getReg();
2415   Register RHS = MI.getOperand(2).getReg();
2416   MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2417 
2418   if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) {
2419     int64_t Cst;
2420     if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2421       NewCst = Cst + *RHSCst;
2422       return true;
2423     }
2424   }
2425 
2426   return false;
2427 }
2428 
2429 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2430                                                   int64_t &NewCst) {
2431   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD");
2432   Register Dst = MI.getOperand(0).getReg();
2433 
2434   Builder.setInstrAndDebugLoc(MI);
2435   Builder.buildConstant(Dst, NewCst);
2436   MI.eraseFromParent();
2437 }
2438 
2439 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2440   assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2441   Register DstReg = MI.getOperand(0).getReg();
2442   Register SrcReg = MI.getOperand(1).getReg();
2443   LLT DstTy = MRI.getType(DstReg);
2444   return mi_match(SrcReg, MRI,
2445                   m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2446 }
2447 
2448 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2449   assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
2450   Register DstReg = MI.getOperand(0).getReg();
2451   Register SrcReg = MI.getOperand(1).getReg();
2452   LLT DstTy = MRI.getType(DstReg);
2453   if (mi_match(SrcReg, MRI,
2454                m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2455     unsigned DstSize = DstTy.getScalarSizeInBits();
2456     unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2457     return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2458   }
2459   return false;
2460 }
2461 
2462 bool CombinerHelper::matchCombineExtOfExt(
2463     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2464   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2465           MI.getOpcode() == TargetOpcode::G_SEXT ||
2466           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2467          "Expected a G_[ASZ]EXT");
2468   Register SrcReg = MI.getOperand(1).getReg();
2469   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2470   // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2471   unsigned Opc = MI.getOpcode();
2472   unsigned SrcOpc = SrcMI->getOpcode();
2473   if (Opc == SrcOpc ||
2474       (Opc == TargetOpcode::G_ANYEXT &&
2475        (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2476       (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2477     MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2478     return true;
2479   }
2480   return false;
2481 }
2482 
2483 void CombinerHelper::applyCombineExtOfExt(
2484     MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2485   assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2486           MI.getOpcode() == TargetOpcode::G_SEXT ||
2487           MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2488          "Expected a G_[ASZ]EXT");
2489 
2490   Register Reg = std::get<0>(MatchInfo);
2491   unsigned SrcExtOp = std::get<1>(MatchInfo);
2492 
2493   // Combine exts with the same opcode.
2494   if (MI.getOpcode() == SrcExtOp) {
2495     Observer.changingInstr(MI);
2496     MI.getOperand(1).setReg(Reg);
2497     Observer.changedInstr(MI);
2498     return;
2499   }
2500 
2501   // Combine:
2502   // - anyext([sz]ext x) to [sz]ext x
2503   // - sext(zext x) to zext x
2504   if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2505       (MI.getOpcode() == TargetOpcode::G_SEXT &&
2506        SrcExtOp == TargetOpcode::G_ZEXT)) {
2507     Register DstReg = MI.getOperand(0).getReg();
2508     Builder.setInstrAndDebugLoc(MI);
2509     Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2510     MI.eraseFromParent();
2511   }
2512 }
2513 
2514 void CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) {
2515   assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2516   Register DstReg = MI.getOperand(0).getReg();
2517   Register SrcReg = MI.getOperand(1).getReg();
2518   LLT DstTy = MRI.getType(DstReg);
2519 
2520   Builder.setInstrAndDebugLoc(MI);
2521   Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg,
2522                    MI.getFlags());
2523   MI.eraseFromParent();
2524 }
2525 
2526 bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) {
2527   assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG");
2528   Register SrcReg = MI.getOperand(1).getReg();
2529   return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg)));
2530 }
2531 
2532 bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) {
2533   assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS");
2534   Src = MI.getOperand(1).getReg();
2535   Register AbsSrc;
2536   return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc)));
2537 }
2538 
2539 bool CombinerHelper::matchCombineTruncOfExt(
2540     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2541   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2542   Register SrcReg = MI.getOperand(1).getReg();
2543   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2544   unsigned SrcOpc = SrcMI->getOpcode();
2545   if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2546       SrcOpc == TargetOpcode::G_ZEXT) {
2547     MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2548     return true;
2549   }
2550   return false;
2551 }
2552 
2553 void CombinerHelper::applyCombineTruncOfExt(
2554     MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2555   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2556   Register SrcReg = MatchInfo.first;
2557   unsigned SrcExtOp = MatchInfo.second;
2558   Register DstReg = MI.getOperand(0).getReg();
2559   LLT SrcTy = MRI.getType(SrcReg);
2560   LLT DstTy = MRI.getType(DstReg);
2561   if (SrcTy == DstTy) {
2562     MI.eraseFromParent();
2563     replaceRegWith(MRI, DstReg, SrcReg);
2564     return;
2565   }
2566   Builder.setInstrAndDebugLoc(MI);
2567   if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2568     Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2569   else
2570     Builder.buildTrunc(DstReg, SrcReg);
2571   MI.eraseFromParent();
2572 }
2573 
2574 bool CombinerHelper::matchCombineTruncOfShl(
2575     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2576   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2577   Register DstReg = MI.getOperand(0).getReg();
2578   Register SrcReg = MI.getOperand(1).getReg();
2579   LLT DstTy = MRI.getType(DstReg);
2580   Register ShiftSrc;
2581   Register ShiftAmt;
2582 
2583   if (MRI.hasOneNonDBGUse(SrcReg) &&
2584       mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) &&
2585       isLegalOrBeforeLegalizer(
2586           {TargetOpcode::G_SHL,
2587            {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) {
2588     KnownBits Known = KB->getKnownBits(ShiftAmt);
2589     unsigned Size = DstTy.getSizeInBits();
2590     if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
2591       MatchInfo = std::make_pair(ShiftSrc, ShiftAmt);
2592       return true;
2593     }
2594   }
2595   return false;
2596 }
2597 
2598 void CombinerHelper::applyCombineTruncOfShl(
2599     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
2600   assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2601   Register DstReg = MI.getOperand(0).getReg();
2602   Register SrcReg = MI.getOperand(1).getReg();
2603   LLT DstTy = MRI.getType(DstReg);
2604   MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2605 
2606   Register ShiftSrc = MatchInfo.first;
2607   Register ShiftAmt = MatchInfo.second;
2608   Builder.setInstrAndDebugLoc(MI);
2609   auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc);
2610   Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags());
2611   MI.eraseFromParent();
2612 }
2613 
2614 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2615   return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2616     return MO.isReg() &&
2617            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2618   });
2619 }
2620 
2621 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2622   return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2623     return !MO.isReg() ||
2624            getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2625   });
2626 }
2627 
2628 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2629   assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2630   ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2631   return all_of(Mask, [](int Elt) { return Elt < 0; });
2632 }
2633 
2634 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2635   assert(MI.getOpcode() == TargetOpcode::G_STORE);
2636   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2637                       MRI);
2638 }
2639 
2640 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2641   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2642   return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2643                       MRI);
2644 }
2645 
2646 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2647   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2648   if (auto MaybeCstCmp =
2649           getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) {
2650     OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2;
2651     return true;
2652   }
2653   return false;
2654 }
2655 
2656 bool CombinerHelper::eraseInst(MachineInstr &MI) {
2657   MI.eraseFromParent();
2658   return true;
2659 }
2660 
2661 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2662                                     const MachineOperand &MOP2) {
2663   if (!MOP1.isReg() || !MOP2.isReg())
2664     return false;
2665   MachineInstr *I1 = getDefIgnoringCopies(MOP1.getReg(), MRI);
2666   if (!I1)
2667     return false;
2668   MachineInstr *I2 = getDefIgnoringCopies(MOP2.getReg(), MRI);
2669   if (!I2)
2670     return false;
2671 
2672   // Handle a case like this:
2673   //
2674   // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2675   //
2676   // Even though %0 and %1 are produced by the same instruction they are not
2677   // the same values.
2678   if (I1 == I2)
2679     return MOP1.getReg() == MOP2.getReg();
2680 
2681   // If we have an instruction which loads or stores, we can't guarantee that
2682   // it is identical.
2683   //
2684   // For example, we may have
2685   //
2686   // %x1 = G_LOAD %addr (load N from @somewhere)
2687   // ...
2688   // call @foo
2689   // ...
2690   // %x2 = G_LOAD %addr (load N from @somewhere)
2691   // ...
2692   // %or = G_OR %x1, %x2
2693   //
2694   // It's possible that @foo will modify whatever lives at the address we're
2695   // loading from. To be safe, let's just assume that all loads and stores
2696   // are different (unless we have something which is guaranteed to not
2697   // change.)
2698   if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad(nullptr))
2699     return false;
2700 
2701   // Check for physical registers on the instructions first to avoid cases
2702   // like this:
2703   //
2704   // %a = COPY $physreg
2705   // ...
2706   // SOMETHING implicit-def $physreg
2707   // ...
2708   // %b = COPY $physreg
2709   //
2710   // These copies are not equivalent.
2711   if (any_of(I1->uses(), [](const MachineOperand &MO) {
2712         return MO.isReg() && MO.getReg().isPhysical();
2713       })) {
2714     // Check if we have a case like this:
2715     //
2716     // %a = COPY $physreg
2717     // %b = COPY %a
2718     //
2719     // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2720     // From that, we know that they must have the same value, since they must
2721     // have come from the same COPY.
2722     return I1->isIdenticalTo(*I2);
2723   }
2724 
2725   // We don't have any physical registers, so we don't necessarily need the
2726   // same vreg defs.
2727   //
2728   // On the off-chance that there's some target instruction feeding into the
2729   // instruction, let's use produceSameValue instead of isIdenticalTo.
2730   return Builder.getTII().produceSameValue(*I1, *I2, &MRI);
2731 }
2732 
2733 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2734   if (!MOP.isReg())
2735     return false;
2736   // MIPatternMatch doesn't let us look through G_ZEXT etc.
2737   auto ValAndVReg = getConstantVRegValWithLookThrough(MOP.getReg(), MRI);
2738   return ValAndVReg && ValAndVReg->Value == C;
2739 }
2740 
2741 bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2742                                                      unsigned OpIdx) {
2743   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2744   Register OldReg = MI.getOperand(0).getReg();
2745   Register Replacement = MI.getOperand(OpIdx).getReg();
2746   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2747   MI.eraseFromParent();
2748   replaceRegWith(MRI, OldReg, Replacement);
2749   return true;
2750 }
2751 
2752 bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2753                                                  Register Replacement) {
2754   assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2755   Register OldReg = MI.getOperand(0).getReg();
2756   assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2757   MI.eraseFromParent();
2758   replaceRegWith(MRI, OldReg, Replacement);
2759   return true;
2760 }
2761 
2762 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2763   assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2764   // Match (cond ? x : x)
2765   return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2766          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2767                        MRI);
2768 }
2769 
2770 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2771   return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2772          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2773                        MRI);
2774 }
2775 
2776 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2777   return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2778          canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2779                        MRI);
2780 }
2781 
2782 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2783   MachineOperand &MO = MI.getOperand(OpIdx);
2784   return MO.isReg() &&
2785          getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2786 }
2787 
2788 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2789                                                         unsigned OpIdx) {
2790   MachineOperand &MO = MI.getOperand(OpIdx);
2791   return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2792 }
2793 
2794 bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2795   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2796   Builder.setInstr(MI);
2797   Builder.buildFConstant(MI.getOperand(0), C);
2798   MI.eraseFromParent();
2799   return true;
2800 }
2801 
2802 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2803   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2804   Builder.setInstr(MI);
2805   Builder.buildConstant(MI.getOperand(0), C);
2806   MI.eraseFromParent();
2807   return true;
2808 }
2809 
2810 bool CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2811   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2812   Builder.setInstr(MI);
2813   Builder.buildConstant(MI.getOperand(0), C);
2814   MI.eraseFromParent();
2815   return true;
2816 }
2817 
2818 bool CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
2819   assert(MI.getNumDefs() == 1 && "Expected only one def?");
2820   Builder.setInstr(MI);
2821   Builder.buildUndef(MI.getOperand(0));
2822   MI.eraseFromParent();
2823   return true;
2824 }
2825 
2826 bool CombinerHelper::matchSimplifyAddToSub(
2827     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2828   Register LHS = MI.getOperand(1).getReg();
2829   Register RHS = MI.getOperand(2).getReg();
2830   Register &NewLHS = std::get<0>(MatchInfo);
2831   Register &NewRHS = std::get<1>(MatchInfo);
2832 
2833   // Helper lambda to check for opportunities for
2834   // ((0-A) + B) -> B - A
2835   // (A + (0-B)) -> A - B
2836   auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
2837     if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
2838       return false;
2839     NewLHS = MaybeNewLHS;
2840     return true;
2841   };
2842 
2843   return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
2844 }
2845 
2846 bool CombinerHelper::matchCombineInsertVecElts(
2847     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2848   assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
2849          "Invalid opcode");
2850   Register DstReg = MI.getOperand(0).getReg();
2851   LLT DstTy = MRI.getType(DstReg);
2852   assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
2853   unsigned NumElts = DstTy.getNumElements();
2854   // If this MI is part of a sequence of insert_vec_elts, then
2855   // don't do the combine in the middle of the sequence.
2856   if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
2857                                    TargetOpcode::G_INSERT_VECTOR_ELT)
2858     return false;
2859   MachineInstr *CurrInst = &MI;
2860   MachineInstr *TmpInst;
2861   int64_t IntImm;
2862   Register TmpReg;
2863   MatchInfo.resize(NumElts);
2864   while (mi_match(
2865       CurrInst->getOperand(0).getReg(), MRI,
2866       m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
2867     if (IntImm >= NumElts)
2868       return false;
2869     if (!MatchInfo[IntImm])
2870       MatchInfo[IntImm] = TmpReg;
2871     CurrInst = TmpInst;
2872   }
2873   // Variable index.
2874   if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
2875     return false;
2876   if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
2877     for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
2878       if (!MatchInfo[I - 1].isValid())
2879         MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
2880     }
2881     return true;
2882   }
2883   // If we didn't end in a G_IMPLICIT_DEF, bail out.
2884   return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF;
2885 }
2886 
2887 void CombinerHelper::applyCombineInsertVecElts(
2888     MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
2889   Builder.setInstr(MI);
2890   Register UndefReg;
2891   auto GetUndef = [&]() {
2892     if (UndefReg)
2893       return UndefReg;
2894     LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2895     UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
2896     return UndefReg;
2897   };
2898   for (unsigned I = 0; I < MatchInfo.size(); ++I) {
2899     if (!MatchInfo[I])
2900       MatchInfo[I] = GetUndef();
2901   }
2902   Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
2903   MI.eraseFromParent();
2904 }
2905 
2906 void CombinerHelper::applySimplifyAddToSub(
2907     MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
2908   Builder.setInstr(MI);
2909   Register SubLHS, SubRHS;
2910   std::tie(SubLHS, SubRHS) = MatchInfo;
2911   Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
2912   MI.eraseFromParent();
2913 }
2914 
2915 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
2916     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
2917   // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
2918   //
2919   // Creates the new hand + logic instruction (but does not insert them.)
2920   //
2921   // On success, MatchInfo is populated with the new instructions. These are
2922   // inserted in applyHoistLogicOpWithSameOpcodeHands.
2923   unsigned LogicOpcode = MI.getOpcode();
2924   assert(LogicOpcode == TargetOpcode::G_AND ||
2925          LogicOpcode == TargetOpcode::G_OR ||
2926          LogicOpcode == TargetOpcode::G_XOR);
2927   MachineIRBuilder MIB(MI);
2928   Register Dst = MI.getOperand(0).getReg();
2929   Register LHSReg = MI.getOperand(1).getReg();
2930   Register RHSReg = MI.getOperand(2).getReg();
2931 
2932   // Don't recompute anything.
2933   if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
2934     return false;
2935 
2936   // Make sure we have (hand x, ...), (hand y, ...)
2937   MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
2938   MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
2939   if (!LeftHandInst || !RightHandInst)
2940     return false;
2941   unsigned HandOpcode = LeftHandInst->getOpcode();
2942   if (HandOpcode != RightHandInst->getOpcode())
2943     return false;
2944   if (!LeftHandInst->getOperand(1).isReg() ||
2945       !RightHandInst->getOperand(1).isReg())
2946     return false;
2947 
2948   // Make sure the types match up, and if we're doing this post-legalization,
2949   // we end up with legal types.
2950   Register X = LeftHandInst->getOperand(1).getReg();
2951   Register Y = RightHandInst->getOperand(1).getReg();
2952   LLT XTy = MRI.getType(X);
2953   LLT YTy = MRI.getType(Y);
2954   if (XTy != YTy)
2955     return false;
2956   if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
2957     return false;
2958 
2959   // Optional extra source register.
2960   Register ExtraHandOpSrcReg;
2961   switch (HandOpcode) {
2962   default:
2963     return false;
2964   case TargetOpcode::G_ANYEXT:
2965   case TargetOpcode::G_SEXT:
2966   case TargetOpcode::G_ZEXT: {
2967     // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
2968     break;
2969   }
2970   case TargetOpcode::G_AND:
2971   case TargetOpcode::G_ASHR:
2972   case TargetOpcode::G_LSHR:
2973   case TargetOpcode::G_SHL: {
2974     // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
2975     MachineOperand &ZOp = LeftHandInst->getOperand(2);
2976     if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
2977       return false;
2978     ExtraHandOpSrcReg = ZOp.getReg();
2979     break;
2980   }
2981   }
2982 
2983   // Record the steps to build the new instructions.
2984   //
2985   // Steps to build (logic x, y)
2986   auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
2987   OperandBuildSteps LogicBuildSteps = {
2988       [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
2989       [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
2990       [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
2991   InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
2992 
2993   // Steps to build hand (logic x, y), ...z
2994   OperandBuildSteps HandBuildSteps = {
2995       [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
2996       [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
2997   if (ExtraHandOpSrcReg.isValid())
2998     HandBuildSteps.push_back(
2999         [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
3000   InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
3001 
3002   MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
3003   return true;
3004 }
3005 
3006 void CombinerHelper::applyBuildInstructionSteps(
3007     MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
3008   assert(MatchInfo.InstrsToBuild.size() &&
3009          "Expected at least one instr to build?");
3010   Builder.setInstr(MI);
3011   for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
3012     assert(InstrToBuild.Opcode && "Expected a valid opcode?");
3013     assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
3014     MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
3015     for (auto &OperandFn : InstrToBuild.OperandFns)
3016       OperandFn(Instr);
3017   }
3018   MI.eraseFromParent();
3019 }
3020 
3021 bool CombinerHelper::matchAshrShlToSextInreg(
3022     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3023   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3024   int64_t ShlCst, AshrCst;
3025   Register Src;
3026   // FIXME: detect splat constant vectors.
3027   if (!mi_match(MI.getOperand(0).getReg(), MRI,
3028                 m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst))))
3029     return false;
3030   if (ShlCst != AshrCst)
3031     return false;
3032   if (!isLegalOrBeforeLegalizer(
3033           {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
3034     return false;
3035   MatchInfo = std::make_tuple(Src, ShlCst);
3036   return true;
3037 }
3038 
3039 void CombinerHelper::applyAshShlToSextInreg(
3040     MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3041   assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3042   Register Src;
3043   int64_t ShiftAmt;
3044   std::tie(Src, ShiftAmt) = MatchInfo;
3045   unsigned Size = MRI.getType(Src).getScalarSizeInBits();
3046   Builder.setInstrAndDebugLoc(MI);
3047   Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
3048   MI.eraseFromParent();
3049 }
3050 
3051 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
3052 bool CombinerHelper::matchOverlappingAnd(
3053     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3054   assert(MI.getOpcode() == TargetOpcode::G_AND);
3055 
3056   Register Dst = MI.getOperand(0).getReg();
3057   LLT Ty = MRI.getType(Dst);
3058 
3059   Register R;
3060   int64_t C1;
3061   int64_t C2;
3062   if (!mi_match(
3063           Dst, MRI,
3064           m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
3065     return false;
3066 
3067   MatchInfo = [=](MachineIRBuilder &B) {
3068     if (C1 & C2) {
3069       B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
3070       return;
3071     }
3072     auto Zero = B.buildConstant(Ty, 0);
3073     replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
3074   };
3075   return true;
3076 }
3077 
3078 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
3079                                        Register &Replacement) {
3080   // Given
3081   //
3082   // %y:_(sN) = G_SOMETHING
3083   // %x:_(sN) = G_SOMETHING
3084   // %res:_(sN) = G_AND %x, %y
3085   //
3086   // Eliminate the G_AND when it is known that x & y == x or x & y == y.
3087   //
3088   // Patterns like this can appear as a result of legalization. E.g.
3089   //
3090   // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
3091   // %one:_(s32) = G_CONSTANT i32 1
3092   // %and:_(s32) = G_AND %cmp, %one
3093   //
3094   // In this case, G_ICMP only produces a single bit, so x & 1 == x.
3095   assert(MI.getOpcode() == TargetOpcode::G_AND);
3096   if (!KB)
3097     return false;
3098 
3099   Register AndDst = MI.getOperand(0).getReg();
3100   LLT DstTy = MRI.getType(AndDst);
3101 
3102   // FIXME: This should be removed once GISelKnownBits supports vectors.
3103   if (DstTy.isVector())
3104     return false;
3105 
3106   Register LHS = MI.getOperand(1).getReg();
3107   Register RHS = MI.getOperand(2).getReg();
3108   KnownBits LHSBits = KB->getKnownBits(LHS);
3109   KnownBits RHSBits = KB->getKnownBits(RHS);
3110 
3111   // Check that x & Mask == x.
3112   // x & 1 == x, always
3113   // x & 0 == x, only if x is also 0
3114   // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
3115   //
3116   // Check if we can replace AndDst with the LHS of the G_AND
3117   if (canReplaceReg(AndDst, LHS, MRI) &&
3118       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
3119     Replacement = LHS;
3120     return true;
3121   }
3122 
3123   // Check if we can replace AndDst with the RHS of the G_AND
3124   if (canReplaceReg(AndDst, RHS, MRI) &&
3125       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
3126     Replacement = RHS;
3127     return true;
3128   }
3129 
3130   return false;
3131 }
3132 
3133 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
3134   // Given
3135   //
3136   // %y:_(sN) = G_SOMETHING
3137   // %x:_(sN) = G_SOMETHING
3138   // %res:_(sN) = G_OR %x, %y
3139   //
3140   // Eliminate the G_OR when it is known that x | y == x or x | y == y.
3141   assert(MI.getOpcode() == TargetOpcode::G_OR);
3142   if (!KB)
3143     return false;
3144 
3145   Register OrDst = MI.getOperand(0).getReg();
3146   LLT DstTy = MRI.getType(OrDst);
3147 
3148   // FIXME: This should be removed once GISelKnownBits supports vectors.
3149   if (DstTy.isVector())
3150     return false;
3151 
3152   Register LHS = MI.getOperand(1).getReg();
3153   Register RHS = MI.getOperand(2).getReg();
3154   KnownBits LHSBits = KB->getKnownBits(LHS);
3155   KnownBits RHSBits = KB->getKnownBits(RHS);
3156 
3157   // Check that x | Mask == x.
3158   // x | 0 == x, always
3159   // x | 1 == x, only if x is also 1
3160   // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
3161   //
3162   // Check if we can replace OrDst with the LHS of the G_OR
3163   if (canReplaceReg(OrDst, LHS, MRI) &&
3164       (LHSBits.One | RHSBits.Zero).isAllOnesValue()) {
3165     Replacement = LHS;
3166     return true;
3167   }
3168 
3169   // Check if we can replace OrDst with the RHS of the G_OR
3170   if (canReplaceReg(OrDst, RHS, MRI) &&
3171       (LHSBits.Zero | RHSBits.One).isAllOnesValue()) {
3172     Replacement = RHS;
3173     return true;
3174   }
3175 
3176   return false;
3177 }
3178 
3179 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
3180   // If the input is already sign extended, just drop the extension.
3181   Register Src = MI.getOperand(1).getReg();
3182   unsigned ExtBits = MI.getOperand(2).getImm();
3183   unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
3184   return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
3185 }
3186 
3187 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
3188                              int64_t Cst, bool IsVector, bool IsFP) {
3189   // For i1, Cst will always be -1 regardless of boolean contents.
3190   return (ScalarSizeBits == 1 && Cst == -1) ||
3191          isConstTrueVal(TLI, Cst, IsVector, IsFP);
3192 }
3193 
3194 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
3195                                  SmallVectorImpl<Register> &RegsToNegate) {
3196   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3197   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3198   const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
3199   Register XorSrc;
3200   Register CstReg;
3201   // We match xor(src, true) here.
3202   if (!mi_match(MI.getOperand(0).getReg(), MRI,
3203                 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
3204     return false;
3205 
3206   if (!MRI.hasOneNonDBGUse(XorSrc))
3207     return false;
3208 
3209   // Check that XorSrc is the root of a tree of comparisons combined with ANDs
3210   // and ORs. The suffix of RegsToNegate starting from index I is used a work
3211   // list of tree nodes to visit.
3212   RegsToNegate.push_back(XorSrc);
3213   // Remember whether the comparisons are all integer or all floating point.
3214   bool IsInt = false;
3215   bool IsFP = false;
3216   for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3217     Register Reg = RegsToNegate[I];
3218     if (!MRI.hasOneNonDBGUse(Reg))
3219       return false;
3220     MachineInstr *Def = MRI.getVRegDef(Reg);
3221     switch (Def->getOpcode()) {
3222     default:
3223       // Don't match if the tree contains anything other than ANDs, ORs and
3224       // comparisons.
3225       return false;
3226     case TargetOpcode::G_ICMP:
3227       if (IsFP)
3228         return false;
3229       IsInt = true;
3230       // When we apply the combine we will invert the predicate.
3231       break;
3232     case TargetOpcode::G_FCMP:
3233       if (IsInt)
3234         return false;
3235       IsFP = true;
3236       // When we apply the combine we will invert the predicate.
3237       break;
3238     case TargetOpcode::G_AND:
3239     case TargetOpcode::G_OR:
3240       // Implement De Morgan's laws:
3241       // ~(x & y) -> ~x | ~y
3242       // ~(x | y) -> ~x & ~y
3243       // When we apply the combine we will change the opcode and recursively
3244       // negate the operands.
3245       RegsToNegate.push_back(Def->getOperand(1).getReg());
3246       RegsToNegate.push_back(Def->getOperand(2).getReg());
3247       break;
3248     }
3249   }
3250 
3251   // Now we know whether the comparisons are integer or floating point, check
3252   // the constant in the xor.
3253   int64_t Cst;
3254   if (Ty.isVector()) {
3255     MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3256     auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI);
3257     if (!MaybeCst)
3258       return false;
3259     if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3260       return false;
3261   } else {
3262     if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3263       return false;
3264     if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3265       return false;
3266   }
3267 
3268   return true;
3269 }
3270 
3271 void CombinerHelper::applyNotCmp(MachineInstr &MI,
3272                                  SmallVectorImpl<Register> &RegsToNegate) {
3273   for (Register Reg : RegsToNegate) {
3274     MachineInstr *Def = MRI.getVRegDef(Reg);
3275     Observer.changingInstr(*Def);
3276     // For each comparison, invert the opcode. For each AND and OR, change the
3277     // opcode.
3278     switch (Def->getOpcode()) {
3279     default:
3280       llvm_unreachable("Unexpected opcode");
3281     case TargetOpcode::G_ICMP:
3282     case TargetOpcode::G_FCMP: {
3283       MachineOperand &PredOp = Def->getOperand(1);
3284       CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3285           (CmpInst::Predicate)PredOp.getPredicate());
3286       PredOp.setPredicate(NewP);
3287       break;
3288     }
3289     case TargetOpcode::G_AND:
3290       Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3291       break;
3292     case TargetOpcode::G_OR:
3293       Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3294       break;
3295     }
3296     Observer.changedInstr(*Def);
3297   }
3298 
3299   replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3300   MI.eraseFromParent();
3301 }
3302 
3303 bool CombinerHelper::matchXorOfAndWithSameReg(
3304     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3305   // Match (xor (and x, y), y) (or any of its commuted cases)
3306   assert(MI.getOpcode() == TargetOpcode::G_XOR);
3307   Register &X = MatchInfo.first;
3308   Register &Y = MatchInfo.second;
3309   Register AndReg = MI.getOperand(1).getReg();
3310   Register SharedReg = MI.getOperand(2).getReg();
3311 
3312   // Find a G_AND on either side of the G_XOR.
3313   // Look for one of
3314   //
3315   // (xor (and x, y), SharedReg)
3316   // (xor SharedReg, (and x, y))
3317   if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3318     std::swap(AndReg, SharedReg);
3319     if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3320       return false;
3321   }
3322 
3323   // Only do this if we'll eliminate the G_AND.
3324   if (!MRI.hasOneNonDBGUse(AndReg))
3325     return false;
3326 
3327   // We can combine if SharedReg is the same as either the LHS or RHS of the
3328   // G_AND.
3329   if (Y != SharedReg)
3330     std::swap(X, Y);
3331   return Y == SharedReg;
3332 }
3333 
3334 void CombinerHelper::applyXorOfAndWithSameReg(
3335     MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3336   // Fold (xor (and x, y), y) -> (and (not x), y)
3337   Builder.setInstrAndDebugLoc(MI);
3338   Register X, Y;
3339   std::tie(X, Y) = MatchInfo;
3340   auto Not = Builder.buildNot(MRI.getType(X), X);
3341   Observer.changingInstr(MI);
3342   MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3343   MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3344   MI.getOperand(2).setReg(Y);
3345   Observer.changedInstr(MI);
3346 }
3347 
3348 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3349   Register DstReg = MI.getOperand(0).getReg();
3350   LLT Ty = MRI.getType(DstReg);
3351   const DataLayout &DL = Builder.getMF().getDataLayout();
3352 
3353   if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3354     return false;
3355 
3356   if (Ty.isPointer()) {
3357     auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI);
3358     return ConstVal && *ConstVal == 0;
3359   }
3360 
3361   assert(Ty.isVector() && "Expecting a vector type");
3362   const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg());
3363   return isBuildVectorAllZeros(*VecMI, MRI);
3364 }
3365 
3366 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3367   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
3368   Builder.setInstrAndDebugLoc(MI);
3369   Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2));
3370   MI.eraseFromParent();
3371 }
3372 
3373 /// The second source operand is known to be a power of 2.
3374 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3375   Register DstReg = MI.getOperand(0).getReg();
3376   Register Src0 = MI.getOperand(1).getReg();
3377   Register Pow2Src1 = MI.getOperand(2).getReg();
3378   LLT Ty = MRI.getType(DstReg);
3379   Builder.setInstrAndDebugLoc(MI);
3380 
3381   // Fold (urem x, pow2) -> (and x, pow2-1)
3382   auto NegOne = Builder.buildConstant(Ty, -1);
3383   auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3384   Builder.buildAnd(DstReg, Src0, Add);
3385   MI.eraseFromParent();
3386 }
3387 
3388 Optional<SmallVector<Register, 8>>
3389 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3390   assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3391   // We want to detect if Root is part of a tree which represents a bunch
3392   // of loads being merged into a larger load. We'll try to recognize patterns
3393   // like, for example:
3394   //
3395   //  Reg   Reg
3396   //   \    /
3397   //    OR_1   Reg
3398   //     \    /
3399   //      OR_2
3400   //        \     Reg
3401   //         .. /
3402   //        Root
3403   //
3404   //  Reg   Reg   Reg   Reg
3405   //     \ /       \   /
3406   //     OR_1      OR_2
3407   //       \       /
3408   //        \    /
3409   //         ...
3410   //         Root
3411   //
3412   // Each "Reg" may have been produced by a load + some arithmetic. This
3413   // function will save each of them.
3414   SmallVector<Register, 8> RegsToVisit;
3415   SmallVector<const MachineInstr *, 7> Ors = {Root};
3416 
3417   // In the "worst" case, we're dealing with a load for each byte. So, there
3418   // are at most #bytes - 1 ORs.
3419   const unsigned MaxIter =
3420       MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3421   for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3422     if (Ors.empty())
3423       break;
3424     const MachineInstr *Curr = Ors.pop_back_val();
3425     Register OrLHS = Curr->getOperand(1).getReg();
3426     Register OrRHS = Curr->getOperand(2).getReg();
3427 
3428     // In the combine, we want to elimate the entire tree.
3429     if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3430       return None;
3431 
3432     // If it's a G_OR, save it and continue to walk. If it's not, then it's
3433     // something that may be a load + arithmetic.
3434     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3435       Ors.push_back(Or);
3436     else
3437       RegsToVisit.push_back(OrLHS);
3438     if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3439       Ors.push_back(Or);
3440     else
3441       RegsToVisit.push_back(OrRHS);
3442   }
3443 
3444   // We're going to try and merge each register into a wider power-of-2 type,
3445   // so we ought to have an even number of registers.
3446   if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3447     return None;
3448   return RegsToVisit;
3449 }
3450 
3451 /// Helper function for findLoadOffsetsForLoadOrCombine.
3452 ///
3453 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3454 /// and then moving that value into a specific byte offset.
3455 ///
3456 /// e.g. x[i] << 24
3457 ///
3458 /// \returns The load instruction and the byte offset it is moved into.
3459 static Optional<std::pair<GZExtLoad *, int64_t>>
3460 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3461                          const MachineRegisterInfo &MRI) {
3462   assert(MRI.hasOneNonDBGUse(Reg) &&
3463          "Expected Reg to only have one non-debug use?");
3464   Register MaybeLoad;
3465   int64_t Shift;
3466   if (!mi_match(Reg, MRI,
3467                 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3468     Shift = 0;
3469     MaybeLoad = Reg;
3470   }
3471 
3472   if (Shift % MemSizeInBits != 0)
3473     return None;
3474 
3475   // TODO: Handle other types of loads.
3476   auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3477   if (!Load)
3478     return None;
3479 
3480   if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3481     return None;
3482 
3483   return std::make_pair(Load, Shift / MemSizeInBits);
3484 }
3485 
3486 Optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
3487 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3488     SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3489     const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3490 
3491   // Each load found for the pattern. There should be one for each RegsToVisit.
3492   SmallSetVector<const MachineInstr *, 8> Loads;
3493 
3494   // The lowest index used in any load. (The lowest "i" for each x[i].)
3495   int64_t LowestIdx = INT64_MAX;
3496 
3497   // The load which uses the lowest index.
3498   GZExtLoad *LowestIdxLoad = nullptr;
3499 
3500   // Keeps track of the load indices we see. We shouldn't see any indices twice.
3501   SmallSet<int64_t, 8> SeenIdx;
3502 
3503   // Ensure each load is in the same MBB.
3504   // TODO: Support multiple MachineBasicBlocks.
3505   MachineBasicBlock *MBB = nullptr;
3506   const MachineMemOperand *MMO = nullptr;
3507 
3508   // Earliest instruction-order load in the pattern.
3509   GZExtLoad *EarliestLoad = nullptr;
3510 
3511   // Latest instruction-order load in the pattern.
3512   GZExtLoad *LatestLoad = nullptr;
3513 
3514   // Base pointer which every load should share.
3515   Register BasePtr;
3516 
3517   // We want to find a load for each register. Each load should have some
3518   // appropriate bit twiddling arithmetic. During this loop, we will also keep
3519   // track of the load which uses the lowest index. Later, we will check if we
3520   // can use its pointer in the final, combined load.
3521   for (auto Reg : RegsToVisit) {
3522     // Find the load, and find the position that it will end up in (e.g. a
3523     // shifted) value.
3524     auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3525     if (!LoadAndPos)
3526       return None;
3527     GZExtLoad *Load;
3528     int64_t DstPos;
3529     std::tie(Load, DstPos) = *LoadAndPos;
3530 
3531     // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3532     // it is difficult to check for stores/calls/etc between loads.
3533     MachineBasicBlock *LoadMBB = Load->getParent();
3534     if (!MBB)
3535       MBB = LoadMBB;
3536     if (LoadMBB != MBB)
3537       return None;
3538 
3539     // Make sure that the MachineMemOperands of every seen load are compatible.
3540     auto &LoadMMO = Load->getMMO();
3541     if (!MMO)
3542       MMO = &LoadMMO;
3543     if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3544       return None;
3545 
3546     // Find out what the base pointer and index for the load is.
3547     Register LoadPtr;
3548     int64_t Idx;
3549     if (!mi_match(Load->getOperand(1).getReg(), MRI,
3550                   m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3551       LoadPtr = Load->getOperand(1).getReg();
3552       Idx = 0;
3553     }
3554 
3555     // Don't combine things like a[i], a[i] -> a bigger load.
3556     if (!SeenIdx.insert(Idx).second)
3557       return None;
3558 
3559     // Every load must share the same base pointer; don't combine things like:
3560     //
3561     // a[i], b[i + 1] -> a bigger load.
3562     if (!BasePtr.isValid())
3563       BasePtr = LoadPtr;
3564     if (BasePtr != LoadPtr)
3565       return None;
3566 
3567     if (Idx < LowestIdx) {
3568       LowestIdx = Idx;
3569       LowestIdxLoad = Load;
3570     }
3571 
3572     // Keep track of the byte offset that this load ends up at. If we have seen
3573     // the byte offset, then stop here. We do not want to combine:
3574     //
3575     // a[i] << 16, a[i + k] << 16 -> a bigger load.
3576     if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3577       return None;
3578     Loads.insert(Load);
3579 
3580     // Keep track of the position of the earliest/latest loads in the pattern.
3581     // We will check that there are no load fold barriers between them later
3582     // on.
3583     //
3584     // FIXME: Is there a better way to check for load fold barriers?
3585     if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3586       EarliestLoad = Load;
3587     if (!LatestLoad || dominates(*LatestLoad, *Load))
3588       LatestLoad = Load;
3589   }
3590 
3591   // We found a load for each register. Let's check if each load satisfies the
3592   // pattern.
3593   assert(Loads.size() == RegsToVisit.size() &&
3594          "Expected to find a load for each register?");
3595   assert(EarliestLoad != LatestLoad && EarliestLoad &&
3596          LatestLoad && "Expected at least two loads?");
3597 
3598   // Check if there are any stores, calls, etc. between any of the loads. If
3599   // there are, then we can't safely perform the combine.
3600   //
3601   // MaxIter is chosen based off the (worst case) number of iterations it
3602   // typically takes to succeed in the LLVM test suite plus some padding.
3603   //
3604   // FIXME: Is there a better way to check for load fold barriers?
3605   const unsigned MaxIter = 20;
3606   unsigned Iter = 0;
3607   for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3608                                                  LatestLoad->getIterator())) {
3609     if (Loads.count(&MI))
3610       continue;
3611     if (MI.isLoadFoldBarrier())
3612       return None;
3613     if (Iter++ == MaxIter)
3614       return None;
3615   }
3616 
3617   return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3618 }
3619 
3620 bool CombinerHelper::matchLoadOrCombine(
3621     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3622   assert(MI.getOpcode() == TargetOpcode::G_OR);
3623   MachineFunction &MF = *MI.getMF();
3624   // Assuming a little-endian target, transform:
3625   //  s8 *a = ...
3626   //  s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3627   // =>
3628   //  s32 val = *((i32)a)
3629   //
3630   //  s8 *a = ...
3631   //  s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3632   // =>
3633   //  s32 val = BSWAP(*((s32)a))
3634   Register Dst = MI.getOperand(0).getReg();
3635   LLT Ty = MRI.getType(Dst);
3636   if (Ty.isVector())
3637     return false;
3638 
3639   // We need to combine at least two loads into this type. Since the smallest
3640   // possible load is into a byte, we need at least a 16-bit wide type.
3641   const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3642   if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3643     return false;
3644 
3645   // Match a collection of non-OR instructions in the pattern.
3646   auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3647   if (!RegsToVisit)
3648     return false;
3649 
3650   // We have a collection of non-OR instructions. Figure out how wide each of
3651   // the small loads should be based off of the number of potential loads we
3652   // found.
3653   const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3654   if (NarrowMemSizeInBits % 8 != 0)
3655     return false;
3656 
3657   // Check if each register feeding into each OR is a load from the same
3658   // base pointer + some arithmetic.
3659   //
3660   // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3661   //
3662   // Also verify that each of these ends up putting a[i] into the same memory
3663   // offset as a load into a wide type would.
3664   SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3665   GZExtLoad *LowestIdxLoad, *LatestLoad;
3666   int64_t LowestIdx;
3667   auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3668       MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3669   if (!MaybeLoadInfo)
3670     return false;
3671   std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3672 
3673   // We have a bunch of loads being OR'd together. Using the addresses + offsets
3674   // we found before, check if this corresponds to a big or little endian byte
3675   // pattern. If it does, then we can represent it using a load + possibly a
3676   // BSWAP.
3677   bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3678   Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3679   if (!IsBigEndian.hasValue())
3680     return false;
3681   bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3682   if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3683     return false;
3684 
3685   // Make sure that the load from the lowest index produces offset 0 in the
3686   // final value.
3687   //
3688   // This ensures that we won't combine something like this:
3689   //
3690   // load x[i] -> byte 2
3691   // load x[i+1] -> byte 0 ---> wide_load x[i]
3692   // load x[i+2] -> byte 1
3693   const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3694   const unsigned ZeroByteOffset =
3695       *IsBigEndian
3696           ? bigEndianByteAt(NumLoadsInTy, 0)
3697           : littleEndianByteAt(NumLoadsInTy, 0);
3698   auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3699   if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3700       ZeroOffsetIdx->second != LowestIdx)
3701     return false;
3702 
3703   // We wil reuse the pointer from the load which ends up at byte offset 0. It
3704   // may not use index 0.
3705   Register Ptr = LowestIdxLoad->getPointerReg();
3706   const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3707   LegalityQuery::MemDesc MMDesc;
3708   MMDesc.MemoryTy = Ty;
3709   MMDesc.AlignInBits = MMO.getAlign().value() * 8;
3710   MMDesc.Ordering = MMO.getSuccessOrdering();
3711   if (!isLegalOrBeforeLegalizer(
3712           {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3713     return false;
3714   auto PtrInfo = MMO.getPointerInfo();
3715   auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
3716 
3717   // Load must be allowed and fast on the target.
3718   LLVMContext &C = MF.getFunction().getContext();
3719   auto &DL = MF.getDataLayout();
3720   bool Fast = false;
3721   if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
3722       !Fast)
3723     return false;
3724 
3725   MatchInfo = [=](MachineIRBuilder &MIB) {
3726     MIB.setInstrAndDebugLoc(*LatestLoad);
3727     Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
3728     MIB.buildLoad(LoadDst, Ptr, *NewMMO);
3729     if (NeedsBSwap)
3730       MIB.buildBSwap(Dst, LoadDst);
3731   };
3732   return true;
3733 }
3734 
3735 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
3736                                             MachineInstr *&ExtMI) {
3737   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3738 
3739   Register DstReg = MI.getOperand(0).getReg();
3740 
3741   // TODO: Extending a vector may be expensive, don't do this until heuristics
3742   // are better.
3743   if (MRI.getType(DstReg).isVector())
3744     return false;
3745 
3746   // Try to match a phi, whose only use is an extend.
3747   if (!MRI.hasOneNonDBGUse(DstReg))
3748     return false;
3749   ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
3750   switch (ExtMI->getOpcode()) {
3751   case TargetOpcode::G_ANYEXT:
3752     return true; // G_ANYEXT is usually free.
3753   case TargetOpcode::G_ZEXT:
3754   case TargetOpcode::G_SEXT:
3755     break;
3756   default:
3757     return false;
3758   }
3759 
3760   // If the target is likely to fold this extend away, don't propagate.
3761   if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
3762     return false;
3763 
3764   // We don't want to propagate the extends unless there's a good chance that
3765   // they'll be optimized in some way.
3766   // Collect the unique incoming values.
3767   SmallPtrSet<MachineInstr *, 4> InSrcs;
3768   for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
3769     auto *DefMI = getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI);
3770     switch (DefMI->getOpcode()) {
3771     case TargetOpcode::G_LOAD:
3772     case TargetOpcode::G_TRUNC:
3773     case TargetOpcode::G_SEXT:
3774     case TargetOpcode::G_ZEXT:
3775     case TargetOpcode::G_ANYEXT:
3776     case TargetOpcode::G_CONSTANT:
3777       InSrcs.insert(getDefIgnoringCopies(MI.getOperand(Idx).getReg(), MRI));
3778       // Don't try to propagate if there are too many places to create new
3779       // extends, chances are it'll increase code size.
3780       if (InSrcs.size() > 2)
3781         return false;
3782       break;
3783     default:
3784       return false;
3785     }
3786   }
3787   return true;
3788 }
3789 
3790 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
3791                                             MachineInstr *&ExtMI) {
3792   assert(MI.getOpcode() == TargetOpcode::G_PHI);
3793   Register DstReg = ExtMI->getOperand(0).getReg();
3794   LLT ExtTy = MRI.getType(DstReg);
3795 
3796   // Propagate the extension into the block of each incoming reg's block.
3797   // Use a SetVector here because PHIs can have duplicate edges, and we want
3798   // deterministic iteration order.
3799   SmallSetVector<MachineInstr *, 8> SrcMIs;
3800   SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
3801   for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); SrcIdx += 2) {
3802     auto *SrcMI = MRI.getVRegDef(MI.getOperand(SrcIdx).getReg());
3803     if (!SrcMIs.insert(SrcMI))
3804       continue;
3805 
3806     // Build an extend after each src inst.
3807     auto *MBB = SrcMI->getParent();
3808     MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
3809     if (InsertPt != MBB->end() && InsertPt->isPHI())
3810       InsertPt = MBB->getFirstNonPHI();
3811 
3812     Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
3813     Builder.setDebugLoc(MI.getDebugLoc());
3814     auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy,
3815                                           SrcMI->getOperand(0).getReg());
3816     OldToNewSrcMap[SrcMI] = NewExt;
3817   }
3818 
3819   // Create a new phi with the extended inputs.
3820   Builder.setInstrAndDebugLoc(MI);
3821   auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
3822   NewPhi.addDef(DstReg);
3823   for (unsigned SrcIdx = 1; SrcIdx < MI.getNumOperands(); ++SrcIdx) {
3824     auto &MO = MI.getOperand(SrcIdx);
3825     if (!MO.isReg()) {
3826       NewPhi.addMBB(MO.getMBB());
3827       continue;
3828     }
3829     auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
3830     NewPhi.addUse(NewSrc->getOperand(0).getReg());
3831   }
3832   Builder.insertInstr(NewPhi);
3833   ExtMI->eraseFromParent();
3834 }
3835 
3836 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
3837                                                 Register &Reg) {
3838   assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
3839   // If we have a constant index, look for a G_BUILD_VECTOR source
3840   // and find the source register that the index maps to.
3841   Register SrcVec = MI.getOperand(1).getReg();
3842   LLT SrcTy = MRI.getType(SrcVec);
3843   if (!isLegalOrBeforeLegalizer(
3844           {TargetOpcode::G_BUILD_VECTOR, {SrcTy, SrcTy.getElementType()}}))
3845     return false;
3846 
3847   auto Cst = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
3848   if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
3849     return false;
3850 
3851   unsigned VecIdx = Cst->Value.getZExtValue();
3852   MachineInstr *BuildVecMI =
3853       getOpcodeDef(TargetOpcode::G_BUILD_VECTOR, SrcVec, MRI);
3854   if (!BuildVecMI) {
3855     BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR_TRUNC, SrcVec, MRI);
3856     if (!BuildVecMI)
3857       return false;
3858     LLT ScalarTy = MRI.getType(BuildVecMI->getOperand(1).getReg());
3859     if (!isLegalOrBeforeLegalizer(
3860             {TargetOpcode::G_BUILD_VECTOR_TRUNC, {SrcTy, ScalarTy}}))
3861       return false;
3862   }
3863 
3864   EVT Ty(getMVTForLLT(SrcTy));
3865   if (!MRI.hasOneNonDBGUse(SrcVec) &&
3866       !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
3867     return false;
3868 
3869   Reg = BuildVecMI->getOperand(VecIdx + 1).getReg();
3870   return true;
3871 }
3872 
3873 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
3874                                                 Register &Reg) {
3875   // Check the type of the register, since it may have come from a
3876   // G_BUILD_VECTOR_TRUNC.
3877   LLT ScalarTy = MRI.getType(Reg);
3878   Register DstReg = MI.getOperand(0).getReg();
3879   LLT DstTy = MRI.getType(DstReg);
3880 
3881   Builder.setInstrAndDebugLoc(MI);
3882   if (ScalarTy != DstTy) {
3883     assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
3884     Builder.buildTrunc(DstReg, Reg);
3885     MI.eraseFromParent();
3886     return;
3887   }
3888   replaceSingleDefInstWithReg(MI, Reg);
3889 }
3890 
3891 bool CombinerHelper::matchExtractAllEltsFromBuildVector(
3892     MachineInstr &MI,
3893     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3894   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3895   // This combine tries to find build_vector's which have every source element
3896   // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
3897   // the masked load scalarization is run late in the pipeline. There's already
3898   // a combine for a similar pattern starting from the extract, but that
3899   // doesn't attempt to do it if there are multiple uses of the build_vector,
3900   // which in this case is true. Starting the combine from the build_vector
3901   // feels more natural than trying to find sibling nodes of extracts.
3902   // E.g.
3903   //  %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
3904   //  %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
3905   //  %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
3906   //  %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
3907   //  %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
3908   // ==>
3909   // replace ext{1,2,3,4} with %s{1,2,3,4}
3910 
3911   Register DstReg = MI.getOperand(0).getReg();
3912   LLT DstTy = MRI.getType(DstReg);
3913   unsigned NumElts = DstTy.getNumElements();
3914 
3915   SmallBitVector ExtractedElts(NumElts);
3916   for (auto &II : make_range(MRI.use_instr_nodbg_begin(DstReg),
3917                              MRI.use_instr_nodbg_end())) {
3918     if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
3919       return false;
3920     auto Cst = getConstantVRegVal(II.getOperand(2).getReg(), MRI);
3921     if (!Cst)
3922       return false;
3923     unsigned Idx = Cst.getValue().getZExtValue();
3924     if (Idx >= NumElts)
3925       return false; // Out of range.
3926     ExtractedElts.set(Idx);
3927     SrcDstPairs.emplace_back(
3928         std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
3929   }
3930   // Match if every element was extracted.
3931   return ExtractedElts.all();
3932 }
3933 
3934 void CombinerHelper::applyExtractAllEltsFromBuildVector(
3935     MachineInstr &MI,
3936     SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
3937   assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
3938   for (auto &Pair : SrcDstPairs) {
3939     auto *ExtMI = Pair.second;
3940     replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
3941     ExtMI->eraseFromParent();
3942   }
3943   MI.eraseFromParent();
3944 }
3945 
3946 void CombinerHelper::applyBuildFn(
3947     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3948   Builder.setInstrAndDebugLoc(MI);
3949   MatchInfo(Builder);
3950   MI.eraseFromParent();
3951 }
3952 
3953 void CombinerHelper::applyBuildFnNoErase(
3954     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3955   Builder.setInstrAndDebugLoc(MI);
3956   MatchInfo(Builder);
3957 }
3958 
3959 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
3960 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
3961   unsigned Opc = MI.getOpcode();
3962   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
3963   Register X = MI.getOperand(1).getReg();
3964   Register Y = MI.getOperand(2).getReg();
3965   if (X != Y)
3966     return false;
3967   unsigned RotateOpc =
3968       Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
3969   return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
3970 }
3971 
3972 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
3973   unsigned Opc = MI.getOpcode();
3974   assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
3975   bool IsFSHL = Opc == TargetOpcode::G_FSHL;
3976   Observer.changingInstr(MI);
3977   MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
3978                                          : TargetOpcode::G_ROTR));
3979   MI.RemoveOperand(2);
3980   Observer.changedInstr(MI);
3981 }
3982 
3983 // Fold (rot x, c) -> (rot x, c % BitSize)
3984 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
3985   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
3986          MI.getOpcode() == TargetOpcode::G_ROTR);
3987   unsigned Bitsize =
3988       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
3989   Register AmtReg = MI.getOperand(2).getReg();
3990   bool OutOfRange = false;
3991   auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
3992     if (auto *CI = dyn_cast<ConstantInt>(C))
3993       OutOfRange |= CI->getValue().uge(Bitsize);
3994     return true;
3995   };
3996   return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
3997 }
3998 
3999 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4000   assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4001          MI.getOpcode() == TargetOpcode::G_ROTR);
4002   unsigned Bitsize =
4003       MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4004   Builder.setInstrAndDebugLoc(MI);
4005   Register Amt = MI.getOperand(2).getReg();
4006   LLT AmtTy = MRI.getType(Amt);
4007   auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4008   Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4009   Observer.changingInstr(MI);
4010   MI.getOperand(2).setReg(Amt);
4011   Observer.changedInstr(MI);
4012 }
4013 
4014 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4015                                                    int64_t &MatchInfo) {
4016   assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4017   auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4018   auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4019   auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4020   Optional<bool> KnownVal;
4021   switch (Pred) {
4022   default:
4023     llvm_unreachable("Unexpected G_ICMP predicate?");
4024   case CmpInst::ICMP_EQ:
4025     KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4026     break;
4027   case CmpInst::ICMP_NE:
4028     KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4029     break;
4030   case CmpInst::ICMP_SGE:
4031     KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4032     break;
4033   case CmpInst::ICMP_SGT:
4034     KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4035     break;
4036   case CmpInst::ICMP_SLE:
4037     KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4038     break;
4039   case CmpInst::ICMP_SLT:
4040     KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4041     break;
4042   case CmpInst::ICMP_UGE:
4043     KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4044     break;
4045   case CmpInst::ICMP_UGT:
4046     KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4047     break;
4048   case CmpInst::ICMP_ULE:
4049     KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4050     break;
4051   case CmpInst::ICMP_ULT:
4052     KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4053     break;
4054   }
4055   if (!KnownVal)
4056     return false;
4057   MatchInfo =
4058       *KnownVal
4059           ? getICmpTrueVal(getTargetLowering(),
4060                            /*IsVector = */
4061                            MRI.getType(MI.getOperand(0).getReg()).isVector(),
4062                            /* IsFP = */ false)
4063           : 0;
4064   return true;
4065 }
4066 
4067 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
4068 bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4069     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4070   assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
4071   Register Dst = MI.getOperand(0).getReg();
4072   Register Src = MI.getOperand(1).getReg();
4073   LLT Ty = MRI.getType(Src);
4074   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4075   if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4076     return false;
4077   int64_t Width = MI.getOperand(2).getImm();
4078   Register ShiftSrc;
4079   int64_t ShiftImm;
4080   if (!mi_match(
4081           Src, MRI,
4082           m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4083                                   m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4084     return false;
4085   if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4086     return false;
4087 
4088   MatchInfo = [=](MachineIRBuilder &B) {
4089     auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4090     auto Cst2 = B.buildConstant(ExtractTy, Width);
4091     B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4092   };
4093   return true;
4094 }
4095 
4096 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
4097 bool CombinerHelper::matchBitfieldExtractFromAnd(
4098     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4099   assert(MI.getOpcode() == TargetOpcode::G_AND);
4100   Register Dst = MI.getOperand(0).getReg();
4101   LLT Ty = MRI.getType(Dst);
4102   if (!getTargetLowering().isConstantUnsignedBitfieldExtactLegal(
4103           TargetOpcode::G_UBFX, Ty, Ty))
4104     return false;
4105 
4106   int64_t AndImm, LSBImm;
4107   Register ShiftSrc;
4108   const unsigned Size = Ty.getScalarSizeInBits();
4109   if (!mi_match(MI.getOperand(0).getReg(), MRI,
4110                 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4111                        m_ICst(AndImm))))
4112     return false;
4113 
4114   // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4115   auto MaybeMask = static_cast<uint64_t>(AndImm);
4116   if (MaybeMask & (MaybeMask + 1))
4117     return false;
4118 
4119   // LSB must fit within the register.
4120   if (static_cast<uint64_t>(LSBImm) >= Size)
4121     return false;
4122 
4123   LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4124   uint64_t Width = APInt(Size, AndImm).countTrailingOnes();
4125   MatchInfo = [=](MachineIRBuilder &B) {
4126     auto WidthCst = B.buildConstant(ExtractTy, Width);
4127     auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4128     B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4129   };
4130   return true;
4131 }
4132 
4133 bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4134     MachineInstr &PtrAdd) {
4135   assert(PtrAdd.getOpcode() == TargetOpcode::G_PTR_ADD);
4136 
4137   Register Src1Reg = PtrAdd.getOperand(1).getReg();
4138   MachineInstr *Src1Def = getOpcodeDef(TargetOpcode::G_PTR_ADD, Src1Reg, MRI);
4139   if (!Src1Def)
4140     return false;
4141 
4142   Register Src2Reg = PtrAdd.getOperand(2).getReg();
4143 
4144   if (MRI.hasOneNonDBGUse(Src1Reg))
4145     return false;
4146 
4147   auto C1 = getConstantVRegVal(Src1Def->getOperand(2).getReg(), MRI);
4148   if (!C1)
4149     return false;
4150   auto C2 = getConstantVRegVal(Src2Reg, MRI);
4151   if (!C2)
4152     return false;
4153 
4154   const APInt &C1APIntVal = *C1;
4155   const APInt &C2APIntVal = *C2;
4156   const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4157 
4158   for (auto &UseMI : MRI.use_nodbg_instructions(Src1Reg)) {
4159     // This combine may end up running before ptrtoint/inttoptr combines
4160     // manage to eliminate redundant conversions, so try to look through them.
4161     MachineInstr *ConvUseMI = &UseMI;
4162     unsigned ConvUseOpc = ConvUseMI->getOpcode();
4163     while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4164            ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4165       Register DefReg = ConvUseMI->getOperand(0).getReg();
4166       if (!MRI.hasOneNonDBGUse(DefReg))
4167         break;
4168       ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4169       ConvUseOpc = ConvUseMI->getOpcode();
4170     }
4171     auto LoadStore = ConvUseOpc == TargetOpcode::G_LOAD ||
4172                      ConvUseOpc == TargetOpcode::G_STORE;
4173     if (!LoadStore)
4174       continue;
4175     // Is x[offset2] already not a legal addressing mode? If so then
4176     // reassociating the constants breaks nothing (we test offset2 because
4177     // that's the one we hope to fold into the load or store).
4178     TargetLoweringBase::AddrMode AM;
4179     AM.HasBaseReg = true;
4180     AM.BaseOffs = C2APIntVal.getSExtValue();
4181     unsigned AS =
4182         MRI.getType(ConvUseMI->getOperand(1).getReg()).getAddressSpace();
4183     Type *AccessTy =
4184         getTypeForLLT(MRI.getType(ConvUseMI->getOperand(0).getReg()),
4185                       PtrAdd.getMF()->getFunction().getContext());
4186     const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4187     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4188                                    AccessTy, AS))
4189       continue;
4190 
4191     // Would x[offset1+offset2] still be a legal addressing mode?
4192     AM.BaseOffs = CombinedValue;
4193     if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4194                                    AccessTy, AS))
4195       return true;
4196   }
4197 
4198   return false;
4199 }
4200 
4201 bool CombinerHelper::matchReassocPtrAdd(
4202     MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4203   assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD);
4204   // We're trying to match a few pointer computation patterns here for
4205   // re-association opportunities.
4206   // 1) Isolating a constant operand to be on the RHS, e.g.:
4207   // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4208   //
4209   // 2) Folding two constants in each sub-tree as long as such folding
4210   // doesn't break a legal addressing mode.
4211   // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4212   Register Src1Reg = MI.getOperand(1).getReg();
4213   Register Src2Reg = MI.getOperand(2).getReg();
4214   MachineInstr *LHS = MRI.getVRegDef(Src1Reg);
4215   MachineInstr *RHS = MRI.getVRegDef(Src2Reg);
4216 
4217   if (LHS->getOpcode() != TargetOpcode::G_PTR_ADD) {
4218     // Try to match example 1).
4219     if (RHS->getOpcode() != TargetOpcode::G_ADD)
4220       return false;
4221     auto C2 = getConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4222     if (!C2)
4223       return false;
4224 
4225     MatchInfo = [=,&MI](MachineIRBuilder &B) {
4226       LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4227 
4228       auto NewBase =
4229           Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4230       Observer.changingInstr(MI);
4231       MI.getOperand(1).setReg(NewBase.getReg(0));
4232       MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4233       Observer.changedInstr(MI);
4234     };
4235   } else {
4236     // Try to match example 2.
4237     Register LHSSrc1 = LHS->getOperand(1).getReg();
4238     Register LHSSrc2 = LHS->getOperand(2).getReg();
4239     auto C1 = getConstantVRegVal(LHSSrc2, MRI);
4240     if (!C1)
4241       return false;
4242     auto C2 = getConstantVRegVal(Src2Reg, MRI);
4243     if (!C2)
4244       return false;
4245 
4246     MatchInfo = [=, &MI](MachineIRBuilder &B) {
4247       auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4248       Observer.changingInstr(MI);
4249       MI.getOperand(1).setReg(LHSSrc1);
4250       MI.getOperand(2).setReg(NewCst.getReg(0));
4251       Observer.changedInstr(MI);
4252     };
4253   }
4254   return !reassociationCanBreakAddressingModePattern(MI);
4255 }
4256 
4257 bool CombinerHelper::matchConstantFold(MachineInstr &MI, APInt &MatchInfo) {
4258   Register Op1 = MI.getOperand(1).getReg();
4259   Register Op2 = MI.getOperand(2).getReg();
4260   auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4261   if (!MaybeCst)
4262     return false;
4263   MatchInfo = *MaybeCst;
4264   return true;
4265 }
4266 
4267 bool CombinerHelper::tryCombine(MachineInstr &MI) {
4268   if (tryCombineCopy(MI))
4269     return true;
4270   if (tryCombineExtendingLoads(MI))
4271     return true;
4272   if (tryCombineIndexedLoadStore(MI))
4273     return true;
4274   return false;
4275 }
4276