1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
48 
49 #define DEBUG_TYPE "regbankselect"
50 
51 using namespace llvm;
52 
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56                           "Run the Fast mode (default mapping)"),
57                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58                           "Use the Greedy mode (best local mapping)")));
59 
60 char RegBankSelect::ID = 0;
61 
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63                       "Assign register bank of generic virtual registers",
64                       false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69                     "Assign register bank of generic virtual registers", false,
70                     false)
71 
72 RegBankSelect::RegBankSelect(Mode RunningMode)
73     : MachineFunctionPass(ID), OptMode(RunningMode) {
74   if (RegBankSelectMode.getNumOccurrences() != 0) {
75     OptMode = RegBankSelectMode;
76     if (RegBankSelectMode != RunningMode)
77       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
78   }
79 }
80 
81 void RegBankSelect::init(MachineFunction &MF) {
82   RBI = MF.getSubtarget().getRegBankInfo();
83   assert(RBI && "Cannot work without RegisterBankInfo");
84   MRI = &MF.getRegInfo();
85   TRI = MF.getSubtarget().getRegisterInfo();
86   TPC = &getAnalysis<TargetPassConfig>();
87   if (OptMode != Mode::Fast) {
88     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
89     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
90   } else {
91     MBFI = nullptr;
92     MBPI = nullptr;
93   }
94   MIRBuilder.setMF(MF);
95   MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
96 }
97 
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
99   if (OptMode != Mode::Fast) {
100     // We could preserve the information from these two analysis but
101     // the APIs do not allow to do so yet.
102     AU.addRequired<MachineBlockFrequencyInfo>();
103     AU.addRequired<MachineBranchProbabilityInfo>();
104   }
105   AU.addRequired<TargetPassConfig>();
106   getSelectionDAGFallbackAnalysisUsage(AU);
107   MachineFunctionPass::getAnalysisUsage(AU);
108 }
109 
110 bool RegBankSelect::assignmentMatch(
111     Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112     bool &OnlyAssign) const {
113   // By default we assume we will have to repair something.
114   OnlyAssign = false;
115   // Each part of a break down needs to end up in a different register.
116   // In other word, Reg assignment does not match.
117   if (ValMapping.NumBreakDowns != 1)
118     return false;
119 
120   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121   const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
122   // Reg is free of assignment, a simple assignment will make the
123   // register bank to match.
124   OnlyAssign = CurRegBank == nullptr;
125   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127              dbgs() << " against ";
128              assert(DesiredRegBank && "The mapping must be valid");
129              dbgs() << *DesiredRegBank << '\n';);
130   return CurRegBank == DesiredRegBank;
131 }
132 
133 bool RegBankSelect::repairReg(
134     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135     RegBankSelect::RepairingPlacement &RepairPt,
136     const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
137 
138   assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139          "need new vreg for each breakdown");
140 
141   // An empty range of new register means no repairing.
142   assert(!NewVRegs.empty() && "We should not have to repair");
143 
144   MachineInstr *MI;
145   if (ValMapping.NumBreakDowns == 1) {
146     // Assume we are repairing a use and thus, the original reg will be
147     // the source of the repairing.
148     Register Src = MO.getReg();
149     Register Dst = *NewVRegs.begin();
150 
151     // If we repair a definition, swap the source and destination for
152     // the repairing.
153     if (MO.isDef())
154       std::swap(Src, Dst);
155 
156     assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) &&
157            "We are about to create several defs for Dst");
158 
159     // Build the instruction used to repair, then clone it at the right
160     // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161     // same types because the type is a placeholder when this function is called.
162     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
163       .addDef(Dst)
164       .addUse(Src);
165     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << " to: " << printReg(Dst)
166                << '\n');
167   } else {
168     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
169     // sequence.
170     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
171 
172     LLT RegTy = MRI->getType(MO.getReg());
173     if (MO.isDef()) {
174       unsigned MergeOp;
175       if (RegTy.isVector()) {
176         if (ValMapping.NumBreakDowns == RegTy.getNumElements())
177           MergeOp = TargetOpcode::G_BUILD_VECTOR;
178         else {
179           assert(
180               (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
181                RegTy.getSizeInBits()) &&
182               (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
183                0) &&
184               "don't understand this value breakdown");
185 
186           MergeOp = TargetOpcode::G_CONCAT_VECTORS;
187         }
188       } else
189         MergeOp = TargetOpcode::G_MERGE_VALUES;
190 
191       auto MergeBuilder =
192         MIRBuilder.buildInstrNoInsert(MergeOp)
193         .addDef(MO.getReg());
194 
195       for (Register SrcReg : NewVRegs)
196         MergeBuilder.addUse(SrcReg);
197 
198       MI = MergeBuilder;
199     } else {
200       MachineInstrBuilder UnMergeBuilder =
201         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
202       for (Register DefReg : NewVRegs)
203         UnMergeBuilder.addDef(DefReg);
204 
205       UnMergeBuilder.addUse(MO.getReg());
206       MI = UnMergeBuilder;
207     }
208   }
209 
210   if (RepairPt.getNumInsertPoints() != 1)
211     report_fatal_error("need testcase to support multiple insertion points");
212 
213   // TODO:
214   // Check if MI is legal. if not, we need to legalize all the
215   // instructions we are going to insert.
216   std::unique_ptr<MachineInstr *[]> NewInstrs(
217       new MachineInstr *[RepairPt.getNumInsertPoints()]);
218   bool IsFirst = true;
219   unsigned Idx = 0;
220   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
221     MachineInstr *CurMI;
222     if (IsFirst)
223       CurMI = MI;
224     else
225       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
226     InsertPt->insert(*CurMI);
227     NewInstrs[Idx++] = CurMI;
228     IsFirst = false;
229   }
230   // TODO:
231   // Legalize NewInstrs if need be.
232   return true;
233 }
234 
235 uint64_t RegBankSelect::getRepairCost(
236     const MachineOperand &MO,
237     const RegisterBankInfo::ValueMapping &ValMapping) const {
238   assert(MO.isReg() && "We should only repair register operand");
239   assert(ValMapping.NumBreakDowns && "Nothing to map??");
240 
241   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
242   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
243   // If MO does not have a register bank, we should have just been
244   // able to set one unless we have to break the value down.
245   assert(CurRegBank || MO.isDef());
246 
247   // Def: Val <- NewDefs
248   //     Same number of values: copy
249   //     Different number: Val = build_sequence Defs1, Defs2, ...
250   // Use: NewSources <- Val.
251   //     Same number of values: copy.
252   //     Different number: Src1, Src2, ... =
253   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
254   // We should remember that this value is available somewhere else to
255   // coalesce the value.
256 
257   if (ValMapping.NumBreakDowns != 1)
258     return RBI->getBreakDownCost(ValMapping, CurRegBank);
259 
260   if (IsSameNumOfValues) {
261     const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
262     // If we repair a definition, swap the source and destination for
263     // the repairing.
264     if (MO.isDef())
265       std::swap(CurRegBank, DesiredRegBank);
266     // TODO: It may be possible to actually avoid the copy.
267     // If we repair something where the source is defined by a copy
268     // and the source of that copy is on the right bank, we can reuse
269     // it for free.
270     // E.g.,
271     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
272     // = op RegToRepair<BankA>
273     // We can simply propagate AlternativeSrc instead of copying RegToRepair
274     // into a new virtual register.
275     // We would also need to propagate this information in the
276     // repairing placement.
277     unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
278                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
279     // TODO: use a dedicated constant for ImpossibleCost.
280     if (Cost != std::numeric_limits<unsigned>::max())
281       return Cost;
282     // Return the legalization cost of that repairing.
283   }
284   return std::numeric_limits<unsigned>::max();
285 }
286 
287 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
288     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
289     SmallVectorImpl<RepairingPlacement> &RepairPts) {
290   assert(!PossibleMappings.empty() &&
291          "Do not know how to map this instruction");
292 
293   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
294   MappingCost Cost = MappingCost::ImpossibleCost();
295   SmallVector<RepairingPlacement, 4> LocalRepairPts;
296   for (const RegisterBankInfo::InstructionMapping *CurMapping :
297        PossibleMappings) {
298     MappingCost CurCost =
299         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
300     if (CurCost < Cost) {
301       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
302       Cost = CurCost;
303       BestMapping = CurMapping;
304       RepairPts.clear();
305       for (RepairingPlacement &RepairPt : LocalRepairPts)
306         RepairPts.emplace_back(std::move(RepairPt));
307     }
308   }
309   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
310     // If none of the mapping worked that means they are all impossible.
311     // Thus, pick the first one and set an impossible repairing point.
312     // It will trigger the failed isel mode.
313     BestMapping = *PossibleMappings.begin();
314     RepairPts.emplace_back(
315         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
316   } else
317     assert(BestMapping && "No suitable mapping for instruction");
318   return *BestMapping;
319 }
320 
321 void RegBankSelect::tryAvoidingSplit(
322     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
323     const RegisterBankInfo::ValueMapping &ValMapping) const {
324   const MachineInstr &MI = *MO.getParent();
325   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
326   // Splitting should only occur for PHIs or between terminators,
327   // because we only do local repairing.
328   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
329 
330   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
331          "Repairing placement does not match operand");
332 
333   // If we need splitting for phis, that means it is because we
334   // could not find an insertion point before the terminators of
335   // the predecessor block for this argument. In other words,
336   // the input value is defined by one of the terminators.
337   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
338 
339   // We split to repair the use of a phi or a terminator.
340   if (!MO.isDef()) {
341     if (MI.isTerminator()) {
342       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
343              "Need to split for the first terminator?!");
344     } else {
345       // For the PHI case, the split may not be actually required.
346       // In the copy case, a phi is already a copy on the incoming edge,
347       // therefore there is no need to split.
348       if (ValMapping.NumBreakDowns == 1)
349         // This is a already a copy, there is nothing to do.
350         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
351     }
352     return;
353   }
354 
355   // At this point, we need to repair a defintion of a terminator.
356 
357   // Technically we need to fix the def of MI on all outgoing
358   // edges of MI to keep the repairing local. In other words, we
359   // will create several definitions of the same register. This
360   // does not work for SSA unless that definition is a physical
361   // register.
362   // However, there are other cases where we can get away with
363   // that while still keeping the repairing local.
364   assert(MI.isTerminator() && MO.isDef() &&
365          "This code is for the def of a terminator");
366 
367   // Since we use RPO traversal, if we need to repair a definition
368   // this means this definition could be:
369   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
370   //    uses of a phi.), or
371   // 2. Part of a target specific instruction (i.e., the target applied
372   //    some register class constraints when creating the instruction.)
373   // If the constraints come for #2, the target said that another mapping
374   // is supported so we may just drop them. Indeed, if we do not change
375   // the number of registers holding that value, the uses will get fixed
376   // when we get to them.
377   // Uses in PHIs may have already been proceeded though.
378   // If the constraints come for #1, then, those are weak constraints and
379   // no actual uses may rely on them. However, the problem remains mainly
380   // the same as for #2. If the value stays in one register, we could
381   // just switch the register bank of the definition, but we would need to
382   // account for a repairing cost for each phi we silently change.
383   //
384   // In any case, if the value needs to be broken down into several
385   // registers, the repairing is not local anymore as we need to patch
386   // every uses to rebuild the value in just one register.
387   //
388   // To summarize:
389   // - If the value is in a physical register, we can do the split and
390   //   fix locally.
391   // Otherwise if the value is in a virtual register:
392   // - If the value remains in one register, we do not have to split
393   //   just switching the register bank would do, but we need to account
394   //   in the repairing cost all the phi we changed.
395   // - If the value spans several registers, then we cannot do a local
396   //   repairing.
397 
398   // Check if this is a physical or virtual register.
399   Register Reg = MO.getReg();
400   if (Reg.isPhysical()) {
401     // We are going to split every outgoing edges.
402     // Check that this is possible.
403     // FIXME: The machine representation is currently broken
404     // since it also several terminators in one basic block.
405     // Because of that we would technically need a way to get
406     // the targets of just one terminator to know which edges
407     // we have to split.
408     // Assert that we do not hit the ill-formed representation.
409 
410     // If there are other terminators before that one, some of
411     // the outgoing edges may not be dominated by this definition.
412     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
413            "Do not know which outgoing edges are relevant");
414     const MachineInstr *Next = MI.getNextNode();
415     assert((!Next || Next->isUnconditionalBranch()) &&
416            "Do not know where each terminator ends up");
417     if (Next)
418       // If the next terminator uses Reg, this means we have
419       // to split right after MI and thus we need a way to ask
420       // which outgoing edges are affected.
421       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
422     // We will split all the edges and repair there.
423   } else {
424     // This is a virtual register defined by a terminator.
425     if (ValMapping.NumBreakDowns == 1) {
426       // There is nothing to repair, but we may actually lie on
427       // the repairing cost because of the PHIs already proceeded
428       // as already stated.
429       // Though the code will be correct.
430       assert(false && "Repairing cost may not be accurate");
431     } else {
432       // We need to do non-local repairing. Basically, patch all
433       // the uses (i.e., phis) that we already proceeded.
434       // For now, just say this mapping is not possible.
435       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
436     }
437   }
438 }
439 
440 RegBankSelect::MappingCost RegBankSelect::computeMapping(
441     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
442     SmallVectorImpl<RepairingPlacement> &RepairPts,
443     const RegBankSelect::MappingCost *BestCost) {
444   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
445 
446   if (!InstrMapping.isValid())
447     return MappingCost::ImpossibleCost();
448 
449   // If mapped with InstrMapping, MI will have the recorded cost.
450   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
451   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
452   assert(!Saturated && "Possible mapping saturated the cost");
453   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
454   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
455   RepairPts.clear();
456   if (BestCost && Cost > *BestCost) {
457     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
458     return Cost;
459   }
460   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
461 
462   // Moreover, to realize this mapping, the register bank of each operand must
463   // match this mapping. In other words, we may need to locally reassign the
464   // register banks. Account for that repairing cost as well.
465   // In this context, local means in the surrounding of MI.
466   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
467        OpIdx != EndOpIdx; ++OpIdx) {
468     const MachineOperand &MO = MI.getOperand(OpIdx);
469     if (!MO.isReg())
470       continue;
471     Register Reg = MO.getReg();
472     if (!Reg)
473       continue;
474     LLT Ty = MRI.getType(Reg);
475     if (!Ty.isValid())
476       continue;
477 
478     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
479     const RegisterBankInfo::ValueMapping &ValMapping =
480         InstrMapping.getOperandMapping(OpIdx);
481     // If Reg is already properly mapped, this is free.
482     bool Assign;
483     if (assignmentMatch(Reg, ValMapping, Assign)) {
484       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
485       continue;
486     }
487     if (Assign) {
488       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
489       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
490                                                 RepairingPlacement::Reassign));
491       continue;
492     }
493 
494     // Find the insertion point for the repairing code.
495     RepairPts.emplace_back(
496         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
497     RepairingPlacement &RepairPt = RepairPts.back();
498 
499     // If we need to split a basic block to materialize this insertion point,
500     // we may give a higher cost to this mapping.
501     // Nevertheless, we may get away with the split, so try that first.
502     if (RepairPt.hasSplit())
503       tryAvoidingSplit(RepairPt, MO, ValMapping);
504 
505     // Check that the materialization of the repairing is possible.
506     if (!RepairPt.canMaterialize()) {
507       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
508       return MappingCost::ImpossibleCost();
509     }
510 
511     // Account for the split cost and repair cost.
512     // Unless the cost is already saturated or we do not care about the cost.
513     if (!BestCost || Saturated)
514       continue;
515 
516     // To get accurate information we need MBFI and MBPI.
517     // Thus, if we end up here this information should be here.
518     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
519 
520     // FIXME: We will have to rework the repairing cost model.
521     // The repairing cost depends on the register bank that MO has.
522     // However, when we break down the value into different values,
523     // MO may not have a register bank while still needing repairing.
524     // For the fast mode, we don't compute the cost so that is fine,
525     // but still for the repairing code, we will have to make a choice.
526     // For the greedy mode, we should choose greedily what is the best
527     // choice based on the next use of MO.
528 
529     // Sums up the repairing cost of MO at each insertion point.
530     uint64_t RepairCost = getRepairCost(MO, ValMapping);
531 
532     // This is an impossible to repair cost.
533     if (RepairCost == std::numeric_limits<unsigned>::max())
534       return MappingCost::ImpossibleCost();
535 
536     // Bias used for splitting: 5%.
537     const uint64_t PercentageForBias = 5;
538     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
539     // We should not need more than a couple of instructions to repair
540     // an assignment. In other words, the computation should not
541     // overflow because the repairing cost is free of basic block
542     // frequency.
543     assert(((RepairCost < RepairCost * PercentageForBias) &&
544             (RepairCost * PercentageForBias <
545              RepairCost * PercentageForBias + 99)) &&
546            "Repairing involves more than a billion of instructions?!");
547     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
548       assert(InsertPt->canMaterialize() && "We should not have made it here");
549       // We will applied some basic block frequency and those uses uint64_t.
550       if (!InsertPt->isSplit())
551         Saturated = Cost.addLocalCost(RepairCost);
552       else {
553         uint64_t CostForInsertPt = RepairCost;
554         // Again we shouldn't overflow here givent that
555         // CostForInsertPt is frequency free at this point.
556         assert(CostForInsertPt + Bias > CostForInsertPt &&
557                "Repairing + split bias overflows");
558         CostForInsertPt += Bias;
559         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
560         // Check if we just overflowed.
561         if ((Saturated = PtCost < CostForInsertPt))
562           Cost.saturate();
563         else
564           Saturated = Cost.addNonLocalCost(PtCost);
565       }
566 
567       // Stop looking into what it takes to repair, this is already
568       // too expensive.
569       if (BestCost && Cost > *BestCost) {
570         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
571         return Cost;
572       }
573 
574       // No need to accumulate more cost information.
575       // We need to still gather the repairing information though.
576       if (Saturated)
577         break;
578     }
579   }
580   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
581   return Cost;
582 }
583 
584 bool RegBankSelect::applyMapping(
585     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
586     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
587   // OpdMapper will hold all the information needed for the rewriting.
588   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
589 
590   // First, place the repairing code.
591   for (RepairingPlacement &RepairPt : RepairPts) {
592     if (!RepairPt.canMaterialize() ||
593         RepairPt.getKind() == RepairingPlacement::Impossible)
594       return false;
595     assert(RepairPt.getKind() != RepairingPlacement::None &&
596            "This should not make its way in the list");
597     unsigned OpIdx = RepairPt.getOpIdx();
598     MachineOperand &MO = MI.getOperand(OpIdx);
599     const RegisterBankInfo::ValueMapping &ValMapping =
600         InstrMapping.getOperandMapping(OpIdx);
601     Register Reg = MO.getReg();
602 
603     switch (RepairPt.getKind()) {
604     case RepairingPlacement::Reassign:
605       assert(ValMapping.NumBreakDowns == 1 &&
606              "Reassignment should only be for simple mapping");
607       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
608       break;
609     case RepairingPlacement::Insert:
610       // Don't insert additional instruction for debug instruction.
611       if (MI.isDebugInstr())
612         break;
613       OpdMapper.createVRegs(OpIdx);
614       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
615         return false;
616       break;
617     default:
618       llvm_unreachable("Other kind should not happen");
619     }
620   }
621 
622   // Second, rewrite the instruction.
623   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
624   RBI->applyMapping(OpdMapper);
625 
626   return true;
627 }
628 
629 bool RegBankSelect::assignInstr(MachineInstr &MI) {
630   LLVM_DEBUG(dbgs() << "Assign: " << MI);
631 
632   unsigned Opc = MI.getOpcode();
633   if (isPreISelGenericOptimizationHint(Opc)) {
634     assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
635             Opc == TargetOpcode::G_ASSERT_SEXT ||
636             Opc == TargetOpcode::G_ASSERT_ALIGN) &&
637            "Unexpected hint opcode!");
638     // The only correct mapping for these is to always use the source register
639     // bank.
640     const RegisterBank *RB =
641         RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI);
642     // We can assume every instruction above this one has a selected register
643     // bank.
644     assert(RB && "Expected source register to have a register bank?");
645     LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
646     MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
647     return true;
648   }
649 
650   // Remember the repairing placement for all the operands.
651   SmallVector<RepairingPlacement, 4> RepairPts;
652 
653   const RegisterBankInfo::InstructionMapping *BestMapping;
654   if (OptMode == RegBankSelect::Mode::Fast) {
655     BestMapping = &RBI->getInstrMapping(MI);
656     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
657     (void)DefaultCost;
658     if (DefaultCost == MappingCost::ImpossibleCost())
659       return false;
660   } else {
661     RegisterBankInfo::InstructionMappings PossibleMappings =
662         RBI->getInstrPossibleMappings(MI);
663     if (PossibleMappings.empty())
664       return false;
665     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
666   }
667   // Make sure the mapping is valid for MI.
668   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
669 
670   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
671 
672   // After this call, MI may not be valid anymore.
673   // Do not use it.
674   return applyMapping(MI, *BestMapping, RepairPts);
675 }
676 
677 bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) {
678   // Walk the function and assign register banks to all operands.
679   // Use a RPOT to make sure all registers are assigned before we choose
680   // the best mapping of the current instruction.
681   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
682   for (MachineBasicBlock *MBB : RPOT) {
683     // Set a sensible insertion point so that subsequent calls to
684     // MIRBuilder.
685     MIRBuilder.setMBB(*MBB);
686     SmallVector<MachineInstr *> WorkList(
687         make_pointer_range(reverse(MBB->instrs())));
688 
689     while (!WorkList.empty()) {
690       MachineInstr &MI = *WorkList.pop_back_val();
691 
692       // Ignore target-specific post-isel instructions: they should use proper
693       // regclasses.
694       if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
695         continue;
696 
697       // Ignore inline asm instructions: they should use physical
698       // registers/regclasses
699       if (MI.isInlineAsm())
700         continue;
701 
702       // Ignore IMPLICIT_DEF which must have a regclass.
703       if (MI.isImplicitDef())
704         continue;
705 
706       if (!assignInstr(MI)) {
707         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
708                            "unable to map instruction", MI);
709         return false;
710       }
711     }
712   }
713 
714   return true;
715 }
716 
717 bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const {
718 #ifndef NDEBUG
719   if (!DisableGISelLegalityCheck) {
720     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
721       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
722                          "instruction is not legal", *MI);
723       return false;
724     }
725   }
726 #endif
727   return true;
728 }
729 
730 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
731   // If the ISel pipeline failed, do not bother running that pass.
732   if (MF.getProperties().hasProperty(
733           MachineFunctionProperties::Property::FailedISel))
734     return false;
735 
736   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
737   const Function &F = MF.getFunction();
738   Mode SaveOptMode = OptMode;
739   if (F.hasOptNone())
740     OptMode = Mode::Fast;
741   init(MF);
742 
743 #ifndef NDEBUG
744   if (!checkFunctionIsLegal(MF))
745     return false;
746 #endif
747 
748   assignRegisterBanks(MF);
749 
750   OptMode = SaveOptMode;
751   return false;
752 }
753 
754 //------------------------------------------------------------------------------
755 //                  Helper Classes Implementation
756 //------------------------------------------------------------------------------
757 RegBankSelect::RepairingPlacement::RepairingPlacement(
758     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
759     RepairingPlacement::RepairingKind Kind)
760     // Default is, we are going to insert code to repair OpIdx.
761     : Kind(Kind), OpIdx(OpIdx),
762       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
763   const MachineOperand &MO = MI.getOperand(OpIdx);
764   assert(MO.isReg() && "Trying to repair a non-reg operand");
765 
766   if (Kind != RepairingKind::Insert)
767     return;
768 
769   // Repairings for definitions happen after MI, uses happen before.
770   bool Before = !MO.isDef();
771 
772   // Check if we are done with MI.
773   if (!MI.isPHI() && !MI.isTerminator()) {
774     addInsertPoint(MI, Before);
775     // We are done with the initialization.
776     return;
777   }
778 
779   // Now, look for the special cases.
780   if (MI.isPHI()) {
781     // - PHI must be the first instructions:
782     //   * Before, we have to split the related incoming edge.
783     //   * After, move the insertion point past the last phi.
784     if (!Before) {
785       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
786       if (It != MI.getParent()->end())
787         addInsertPoint(*It, /*Before*/ true);
788       else
789         addInsertPoint(*(--It), /*Before*/ false);
790       return;
791     }
792     // We repair a use of a phi, we may need to split the related edge.
793     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
794     // Check if we can move the insertion point prior to the
795     // terminators of the predecessor.
796     Register Reg = MO.getReg();
797     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
798     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
799       if (It->modifiesRegister(Reg, &TRI)) {
800         // We cannot hoist the repairing code in the predecessor.
801         // Split the edge.
802         addInsertPoint(Pred, *MI.getParent());
803         return;
804       }
805     // At this point, we can insert in Pred.
806 
807     // - If It is invalid, Pred is empty and we can insert in Pred
808     //   wherever we want.
809     // - If It is valid, It is the first non-terminator, insert after It.
810     if (It == Pred.end())
811       addInsertPoint(Pred, /*Beginning*/ false);
812     else
813       addInsertPoint(*It, /*Before*/ false);
814   } else {
815     // - Terminators must be the last instructions:
816     //   * Before, move the insert point before the first terminator.
817     //   * After, we have to split the outcoming edges.
818     if (Before) {
819       // Check whether Reg is defined by any terminator.
820       MachineBasicBlock::reverse_iterator It = MI;
821       auto REnd = MI.getParent()->rend();
822 
823       for (; It != REnd && It->isTerminator(); ++It) {
824         assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
825                "copy insertion in middle of terminators not handled");
826       }
827 
828       if (It == REnd) {
829         addInsertPoint(*MI.getParent()->begin(), true);
830         return;
831       }
832 
833       // We are sure to be right before the first terminator.
834       addInsertPoint(*It, /*Before*/ false);
835       return;
836     }
837     // Make sure Reg is not redefined by other terminators, otherwise
838     // we do not know how to split.
839     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
840          ++It != End;)
841       // The machine verifier should reject this kind of code.
842       assert(It->modifiesRegister(MO.getReg(), &TRI) &&
843              "Do not know where to split");
844     // Split each outcoming edges.
845     MachineBasicBlock &Src = *MI.getParent();
846     for (auto &Succ : Src.successors())
847       addInsertPoint(Src, Succ);
848   }
849 }
850 
851 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
852                                                        bool Before) {
853   addInsertPoint(*new InstrInsertPoint(MI, Before));
854 }
855 
856 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
857                                                        bool Beginning) {
858   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
859 }
860 
861 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
862                                                        MachineBasicBlock &Dst) {
863   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
864 }
865 
866 void RegBankSelect::RepairingPlacement::addInsertPoint(
867     RegBankSelect::InsertPoint &Point) {
868   CanMaterialize &= Point.canMaterialize();
869   HasSplit |= Point.isSplit();
870   InsertPoints.emplace_back(&Point);
871 }
872 
873 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
874                                                   bool Before)
875     : Instr(Instr), Before(Before) {
876   // Since we do not support splitting, we do not need to update
877   // liveness and such, so do not do anything with P.
878   assert((!Before || !Instr.isPHI()) &&
879          "Splitting before phis requires more points");
880   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
881          "Splitting between phis does not make sense");
882 }
883 
884 void RegBankSelect::InstrInsertPoint::materialize() {
885   if (isSplit()) {
886     // Slice and return the beginning of the new block.
887     // If we need to split between the terminators, we theoritically
888     // need to know where the first and second set of terminators end
889     // to update the successors properly.
890     // Now, in pratice, we should have a maximum of 2 branch
891     // instructions; one conditional and one unconditional. Therefore
892     // we know how to update the successor by looking at the target of
893     // the unconditional branch.
894     // If we end up splitting at some point, then, we should update
895     // the liveness information and such. I.e., we would need to
896     // access P here.
897     // The machine verifier should actually make sure such cases
898     // cannot happen.
899     llvm_unreachable("Not yet implemented");
900   }
901   // Otherwise the insertion point is just the current or next
902   // instruction depending on Before. I.e., there is nothing to do
903   // here.
904 }
905 
906 bool RegBankSelect::InstrInsertPoint::isSplit() const {
907   // If the insertion point is after a terminator, we need to split.
908   if (!Before)
909     return Instr.isTerminator();
910   // If we insert before an instruction that is after a terminator,
911   // we are still after a terminator.
912   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
913 }
914 
915 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
916   // Even if we need to split, because we insert between terminators,
917   // this split has actually the same frequency as the instruction.
918   const MachineBlockFrequencyInfo *MBFI =
919       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
920   if (!MBFI)
921     return 1;
922   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
923 }
924 
925 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
926   const MachineBlockFrequencyInfo *MBFI =
927       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
928   if (!MBFI)
929     return 1;
930   return MBFI->getBlockFreq(&MBB).getFrequency();
931 }
932 
933 void RegBankSelect::EdgeInsertPoint::materialize() {
934   // If we end up repairing twice at the same place before materializing the
935   // insertion point, we may think we have to split an edge twice.
936   // We should have a factory for the insert point such that identical points
937   // are the same instance.
938   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
939          "This point has already been split");
940   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
941   assert(NewBB && "Invalid call to materialize");
942   // We reuse the destination block to hold the information of the new block.
943   DstOrSplit = NewBB;
944 }
945 
946 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
947   const MachineBlockFrequencyInfo *MBFI =
948       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
949   if (!MBFI)
950     return 1;
951   if (WasMaterialized)
952     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
953 
954   const MachineBranchProbabilityInfo *MBPI =
955       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
956   if (!MBPI)
957     return 1;
958   // The basic block will be on the edge.
959   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
960       .getFrequency();
961 }
962 
963 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
964   // If this is not a critical edge, we should not have used this insert
965   // point. Indeed, either the successor or the predecessor should
966   // have do.
967   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
968          "Edge is not critical");
969   return Src.canSplitCriticalEdge(DstOrSplit);
970 }
971 
972 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
973     : LocalFreq(LocalFreq.getFrequency()) {}
974 
975 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
976   // Check if this overflows.
977   if (LocalCost + Cost < LocalCost) {
978     saturate();
979     return true;
980   }
981   LocalCost += Cost;
982   return isSaturated();
983 }
984 
985 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
986   // Check if this overflows.
987   if (NonLocalCost + Cost < NonLocalCost) {
988     saturate();
989     return true;
990   }
991   NonLocalCost += Cost;
992   return isSaturated();
993 }
994 
995 bool RegBankSelect::MappingCost::isSaturated() const {
996   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
997          LocalFreq == UINT64_MAX;
998 }
999 
1000 void RegBankSelect::MappingCost::saturate() {
1001   *this = ImpossibleCost();
1002   --LocalCost;
1003 }
1004 
1005 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
1006   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
1007 }
1008 
1009 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
1010   // Sort out the easy cases.
1011   if (*this == Cost)
1012     return false;
1013   // If one is impossible to realize the other is cheaper unless it is
1014   // impossible as well.
1015   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
1016     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
1017   // If one is saturated the other is cheaper, unless it is saturated
1018   // as well.
1019   if (isSaturated() || Cost.isSaturated())
1020     return isSaturated() < Cost.isSaturated();
1021   // At this point we know both costs hold sensible values.
1022 
1023   // If both values have a different base frequency, there is no much
1024   // we can do but to scale everything.
1025   // However, if they have the same base frequency we can avoid making
1026   // complicated computation.
1027   uint64_t ThisLocalAdjust;
1028   uint64_t OtherLocalAdjust;
1029   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
1030 
1031     // At this point, we know the local costs are comparable.
1032     // Do the case that do not involve potential overflow first.
1033     if (NonLocalCost == Cost.NonLocalCost)
1034       // Since the non-local costs do not discriminate on the result,
1035       // just compare the local costs.
1036       return LocalCost < Cost.LocalCost;
1037 
1038     // The base costs are comparable so we may only keep the relative
1039     // value to increase our chances of avoiding overflows.
1040     ThisLocalAdjust = 0;
1041     OtherLocalAdjust = 0;
1042     if (LocalCost < Cost.LocalCost)
1043       OtherLocalAdjust = Cost.LocalCost - LocalCost;
1044     else
1045       ThisLocalAdjust = LocalCost - Cost.LocalCost;
1046   } else {
1047     ThisLocalAdjust = LocalCost;
1048     OtherLocalAdjust = Cost.LocalCost;
1049   }
1050 
1051   // The non-local costs are comparable, just keep the relative value.
1052   uint64_t ThisNonLocalAdjust = 0;
1053   uint64_t OtherNonLocalAdjust = 0;
1054   if (NonLocalCost < Cost.NonLocalCost)
1055     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1056   else
1057     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1058   // Scale everything to make them comparable.
1059   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1060   // Check for overflow on that operation.
1061   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1062                                            ThisScaledCost < LocalFreq);
1063   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1064   // Check for overflow on the last operation.
1065   bool OtherOverflows =
1066       OtherLocalAdjust &&
1067       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1068   // Add the non-local costs.
1069   ThisOverflows |= ThisNonLocalAdjust &&
1070                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1071   ThisScaledCost += ThisNonLocalAdjust;
1072   OtherOverflows |= OtherNonLocalAdjust &&
1073                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1074   OtherScaledCost += OtherNonLocalAdjust;
1075   // If both overflows, we cannot compare without additional
1076   // precision, e.g., APInt. Just give up on that case.
1077   if (ThisOverflows && OtherOverflows)
1078     return false;
1079   // If one overflows but not the other, we can still compare.
1080   if (ThisOverflows || OtherOverflows)
1081     return ThisOverflows < OtherOverflows;
1082   // Otherwise, just compare the values.
1083   return ThisScaledCost < OtherScaledCost;
1084 }
1085 
1086 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1087   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1088          LocalFreq == Cost.LocalFreq;
1089 }
1090 
1091 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1092 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1093   print(dbgs());
1094   dbgs() << '\n';
1095 }
1096 #endif
1097 
1098 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1099   if (*this == ImpossibleCost()) {
1100     OS << "impossible";
1101     return;
1102   }
1103   if (isSaturated()) {
1104     OS << "saturated";
1105     return;
1106   }
1107   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1108 }
1109