1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
11 
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/BlockFrequency.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <limits>
46 #include <memory>
47 #include <utility>
48 
49 #define DEBUG_TYPE "regbankselect"
50 
51 using namespace llvm;
52 
53 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
54     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
55     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
56                           "Run the Fast mode (default mapping)"),
57                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
58                           "Use the Greedy mode (best local mapping)")));
59 
60 char RegBankSelect::ID = 0;
61 
62 INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE,
63                       "Assign register bank of generic virtual registers",
64                       false, false);
65 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
66 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE,
69                     "Assign register bank of generic virtual registers", false,
70                     false)
71 
72 RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode)
73     : MachineFunctionPass(PassID), OptMode(RunningMode) {
74   if (RegBankSelectMode.getNumOccurrences() != 0) {
75     OptMode = RegBankSelectMode;
76     if (RegBankSelectMode != RunningMode)
77       LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
78   }
79 }
80 
81 void RegBankSelect::init(MachineFunction &MF) {
82   RBI = MF.getSubtarget().getRegBankInfo();
83   assert(RBI && "Cannot work without RegisterBankInfo");
84   MRI = &MF.getRegInfo();
85   TRI = MF.getSubtarget().getRegisterInfo();
86   TPC = &getAnalysis<TargetPassConfig>();
87   if (OptMode != Mode::Fast) {
88     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
89     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
90   } else {
91     MBFI = nullptr;
92     MBPI = nullptr;
93   }
94   MIRBuilder.setMF(MF);
95   MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI);
96 }
97 
98 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
99   if (OptMode != Mode::Fast) {
100     // We could preserve the information from these two analysis but
101     // the APIs do not allow to do so yet.
102     AU.addRequired<MachineBlockFrequencyInfo>();
103     AU.addRequired<MachineBranchProbabilityInfo>();
104   }
105   AU.addRequired<TargetPassConfig>();
106   getSelectionDAGFallbackAnalysisUsage(AU);
107   MachineFunctionPass::getAnalysisUsage(AU);
108 }
109 
110 bool RegBankSelect::assignmentMatch(
111     Register Reg, const RegisterBankInfo::ValueMapping &ValMapping,
112     bool &OnlyAssign) const {
113   // By default we assume we will have to repair something.
114   OnlyAssign = false;
115   // Each part of a break down needs to end up in a different register.
116   // In other word, Reg assignment does not match.
117   if (ValMapping.NumBreakDowns != 1)
118     return false;
119 
120   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
121   const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
122   // Reg is free of assignment, a simple assignment will make the
123   // register bank to match.
124   OnlyAssign = CurRegBank == nullptr;
125   LLVM_DEBUG(dbgs() << "Does assignment already match: ";
126              if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
127              dbgs() << " against ";
128              assert(DesiredRegBank && "The mapping must be valid");
129              dbgs() << *DesiredRegBank << '\n';);
130   return CurRegBank == DesiredRegBank;
131 }
132 
133 bool RegBankSelect::repairReg(
134     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
135     RegBankSelect::RepairingPlacement &RepairPt,
136     const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) {
137 
138   assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) &&
139          "need new vreg for each breakdown");
140 
141   // An empty range of new register means no repairing.
142   assert(!NewVRegs.empty() && "We should not have to repair");
143 
144   MachineInstr *MI;
145   if (ValMapping.NumBreakDowns == 1) {
146     // Assume we are repairing a use and thus, the original reg will be
147     // the source of the repairing.
148     Register Src = MO.getReg();
149     Register Dst = *NewVRegs.begin();
150 
151     // If we repair a definition, swap the source and destination for
152     // the repairing.
153     if (MO.isDef())
154       std::swap(Src, Dst);
155 
156     assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) &&
157            "We are about to create several defs for Dst");
158 
159     // Build the instruction used to repair, then clone it at the right
160     // places. Avoiding buildCopy bypasses the check that Src and Dst have the
161     // same types because the type is a placeholder when this function is called.
162     MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY)
163       .addDef(Dst)
164       .addUse(Src);
165     LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':'
166                       << printRegClassOrBank(Src, *MRI, TRI)
167                       << " to: " << printReg(Dst) << ':'
168                       << printRegClassOrBank(Dst, *MRI, TRI) << '\n');
169   } else {
170     // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
171     // sequence.
172     assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported");
173 
174     LLT RegTy = MRI->getType(MO.getReg());
175     if (MO.isDef()) {
176       unsigned MergeOp;
177       if (RegTy.isVector()) {
178         if (ValMapping.NumBreakDowns == RegTy.getNumElements())
179           MergeOp = TargetOpcode::G_BUILD_VECTOR;
180         else {
181           assert(
182               (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns ==
183                RegTy.getSizeInBits()) &&
184               (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() ==
185                0) &&
186               "don't understand this value breakdown");
187 
188           MergeOp = TargetOpcode::G_CONCAT_VECTORS;
189         }
190       } else
191         MergeOp = TargetOpcode::G_MERGE_VALUES;
192 
193       auto MergeBuilder =
194         MIRBuilder.buildInstrNoInsert(MergeOp)
195         .addDef(MO.getReg());
196 
197       for (Register SrcReg : NewVRegs)
198         MergeBuilder.addUse(SrcReg);
199 
200       MI = MergeBuilder;
201     } else {
202       MachineInstrBuilder UnMergeBuilder =
203         MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES);
204       for (Register DefReg : NewVRegs)
205         UnMergeBuilder.addDef(DefReg);
206 
207       UnMergeBuilder.addUse(MO.getReg());
208       MI = UnMergeBuilder;
209     }
210   }
211 
212   if (RepairPt.getNumInsertPoints() != 1)
213     report_fatal_error("need testcase to support multiple insertion points");
214 
215   // TODO:
216   // Check if MI is legal. if not, we need to legalize all the
217   // instructions we are going to insert.
218   std::unique_ptr<MachineInstr *[]> NewInstrs(
219       new MachineInstr *[RepairPt.getNumInsertPoints()]);
220   bool IsFirst = true;
221   unsigned Idx = 0;
222   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
223     MachineInstr *CurMI;
224     if (IsFirst)
225       CurMI = MI;
226     else
227       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
228     InsertPt->insert(*CurMI);
229     NewInstrs[Idx++] = CurMI;
230     IsFirst = false;
231   }
232   // TODO:
233   // Legalize NewInstrs if need be.
234   return true;
235 }
236 
237 uint64_t RegBankSelect::getRepairCost(
238     const MachineOperand &MO,
239     const RegisterBankInfo::ValueMapping &ValMapping) const {
240   assert(MO.isReg() && "We should only repair register operand");
241   assert(ValMapping.NumBreakDowns && "Nothing to map??");
242 
243   bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1;
244   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
245   // If MO does not have a register bank, we should have just been
246   // able to set one unless we have to break the value down.
247   assert(CurRegBank || MO.isDef());
248 
249   // Def: Val <- NewDefs
250   //     Same number of values: copy
251   //     Different number: Val = build_sequence Defs1, Defs2, ...
252   // Use: NewSources <- Val.
253   //     Same number of values: copy.
254   //     Different number: Src1, Src2, ... =
255   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
256   // We should remember that this value is available somewhere else to
257   // coalesce the value.
258 
259   if (ValMapping.NumBreakDowns != 1)
260     return RBI->getBreakDownCost(ValMapping, CurRegBank);
261 
262   if (IsSameNumOfValues) {
263     const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank;
264     // If we repair a definition, swap the source and destination for
265     // the repairing.
266     if (MO.isDef())
267       std::swap(CurRegBank, DesiredRegBank);
268     // TODO: It may be possible to actually avoid the copy.
269     // If we repair something where the source is defined by a copy
270     // and the source of that copy is on the right bank, we can reuse
271     // it for free.
272     // E.g.,
273     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
274     // = op RegToRepair<BankA>
275     // We can simply propagate AlternativeSrc instead of copying RegToRepair
276     // into a new virtual register.
277     // We would also need to propagate this information in the
278     // repairing placement.
279     unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank,
280                                   RBI->getSizeInBits(MO.getReg(), *MRI, *TRI));
281     // TODO: use a dedicated constant for ImpossibleCost.
282     if (Cost != std::numeric_limits<unsigned>::max())
283       return Cost;
284     // Return the legalization cost of that repairing.
285   }
286   return std::numeric_limits<unsigned>::max();
287 }
288 
289 const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
290     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
291     SmallVectorImpl<RepairingPlacement> &RepairPts) {
292   assert(!PossibleMappings.empty() &&
293          "Do not know how to map this instruction");
294 
295   const RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
296   MappingCost Cost = MappingCost::ImpossibleCost();
297   SmallVector<RepairingPlacement, 4> LocalRepairPts;
298   for (const RegisterBankInfo::InstructionMapping *CurMapping :
299        PossibleMappings) {
300     MappingCost CurCost =
301         computeMapping(MI, *CurMapping, LocalRepairPts, &Cost);
302     if (CurCost < Cost) {
303       LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n');
304       Cost = CurCost;
305       BestMapping = CurMapping;
306       RepairPts.clear();
307       for (RepairingPlacement &RepairPt : LocalRepairPts)
308         RepairPts.emplace_back(std::move(RepairPt));
309     }
310   }
311   if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) {
312     // If none of the mapping worked that means they are all impossible.
313     // Thus, pick the first one and set an impossible repairing point.
314     // It will trigger the failed isel mode.
315     BestMapping = *PossibleMappings.begin();
316     RepairPts.emplace_back(
317         RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible));
318   } else
319     assert(BestMapping && "No suitable mapping for instruction");
320   return *BestMapping;
321 }
322 
323 void RegBankSelect::tryAvoidingSplit(
324     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
325     const RegisterBankInfo::ValueMapping &ValMapping) const {
326   const MachineInstr &MI = *MO.getParent();
327   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
328   // Splitting should only occur for PHIs or between terminators,
329   // because we only do local repairing.
330   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
331 
332   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
333          "Repairing placement does not match operand");
334 
335   // If we need splitting for phis, that means it is because we
336   // could not find an insertion point before the terminators of
337   // the predecessor block for this argument. In other words,
338   // the input value is defined by one of the terminators.
339   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
340 
341   // We split to repair the use of a phi or a terminator.
342   if (!MO.isDef()) {
343     if (MI.isTerminator()) {
344       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
345              "Need to split for the first terminator?!");
346     } else {
347       // For the PHI case, the split may not be actually required.
348       // In the copy case, a phi is already a copy on the incoming edge,
349       // therefore there is no need to split.
350       if (ValMapping.NumBreakDowns == 1)
351         // This is a already a copy, there is nothing to do.
352         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
353     }
354     return;
355   }
356 
357   // At this point, we need to repair a defintion of a terminator.
358 
359   // Technically we need to fix the def of MI on all outgoing
360   // edges of MI to keep the repairing local. In other words, we
361   // will create several definitions of the same register. This
362   // does not work for SSA unless that definition is a physical
363   // register.
364   // However, there are other cases where we can get away with
365   // that while still keeping the repairing local.
366   assert(MI.isTerminator() && MO.isDef() &&
367          "This code is for the def of a terminator");
368 
369   // Since we use RPO traversal, if we need to repair a definition
370   // this means this definition could be:
371   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
372   //    uses of a phi.), or
373   // 2. Part of a target specific instruction (i.e., the target applied
374   //    some register class constraints when creating the instruction.)
375   // If the constraints come for #2, the target said that another mapping
376   // is supported so we may just drop them. Indeed, if we do not change
377   // the number of registers holding that value, the uses will get fixed
378   // when we get to them.
379   // Uses in PHIs may have already been proceeded though.
380   // If the constraints come for #1, then, those are weak constraints and
381   // no actual uses may rely on them. However, the problem remains mainly
382   // the same as for #2. If the value stays in one register, we could
383   // just switch the register bank of the definition, but we would need to
384   // account for a repairing cost for each phi we silently change.
385   //
386   // In any case, if the value needs to be broken down into several
387   // registers, the repairing is not local anymore as we need to patch
388   // every uses to rebuild the value in just one register.
389   //
390   // To summarize:
391   // - If the value is in a physical register, we can do the split and
392   //   fix locally.
393   // Otherwise if the value is in a virtual register:
394   // - If the value remains in one register, we do not have to split
395   //   just switching the register bank would do, but we need to account
396   //   in the repairing cost all the phi we changed.
397   // - If the value spans several registers, then we cannot do a local
398   //   repairing.
399 
400   // Check if this is a physical or virtual register.
401   Register Reg = MO.getReg();
402   if (Reg.isPhysical()) {
403     // We are going to split every outgoing edges.
404     // Check that this is possible.
405     // FIXME: The machine representation is currently broken
406     // since it also several terminators in one basic block.
407     // Because of that we would technically need a way to get
408     // the targets of just one terminator to know which edges
409     // we have to split.
410     // Assert that we do not hit the ill-formed representation.
411 
412     // If there are other terminators before that one, some of
413     // the outgoing edges may not be dominated by this definition.
414     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
415            "Do not know which outgoing edges are relevant");
416     const MachineInstr *Next = MI.getNextNode();
417     assert((!Next || Next->isUnconditionalBranch()) &&
418            "Do not know where each terminator ends up");
419     if (Next)
420       // If the next terminator uses Reg, this means we have
421       // to split right after MI and thus we need a way to ask
422       // which outgoing edges are affected.
423       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
424     // We will split all the edges and repair there.
425   } else {
426     // This is a virtual register defined by a terminator.
427     if (ValMapping.NumBreakDowns == 1) {
428       // There is nothing to repair, but we may actually lie on
429       // the repairing cost because of the PHIs already proceeded
430       // as already stated.
431       // Though the code will be correct.
432       assert(false && "Repairing cost may not be accurate");
433     } else {
434       // We need to do non-local repairing. Basically, patch all
435       // the uses (i.e., phis) that we already proceeded.
436       // For now, just say this mapping is not possible.
437       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
438     }
439   }
440 }
441 
442 RegBankSelect::MappingCost RegBankSelect::computeMapping(
443     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
444     SmallVectorImpl<RepairingPlacement> &RepairPts,
445     const RegBankSelect::MappingCost *BestCost) {
446   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
447 
448   if (!InstrMapping.isValid())
449     return MappingCost::ImpossibleCost();
450 
451   // If mapped with InstrMapping, MI will have the recorded cost.
452   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
453   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
454   assert(!Saturated && "Possible mapping saturated the cost");
455   LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
456   LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n');
457   RepairPts.clear();
458   if (BestCost && Cost > *BestCost) {
459     LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
460     return Cost;
461   }
462   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
463 
464   // Moreover, to realize this mapping, the register bank of each operand must
465   // match this mapping. In other words, we may need to locally reassign the
466   // register banks. Account for that repairing cost as well.
467   // In this context, local means in the surrounding of MI.
468   for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands();
469        OpIdx != EndOpIdx; ++OpIdx) {
470     const MachineOperand &MO = MI.getOperand(OpIdx);
471     if (!MO.isReg())
472       continue;
473     Register Reg = MO.getReg();
474     if (!Reg)
475       continue;
476     LLT Ty = MRI.getType(Reg);
477     if (!Ty.isValid())
478       continue;
479 
480     LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n');
481     const RegisterBankInfo::ValueMapping &ValMapping =
482         InstrMapping.getOperandMapping(OpIdx);
483     // If Reg is already properly mapped, this is free.
484     bool Assign;
485     if (assignmentMatch(Reg, ValMapping, Assign)) {
486       LLVM_DEBUG(dbgs() << "=> is free (match).\n");
487       continue;
488     }
489     if (Assign) {
490       LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
491       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
492                                                 RepairingPlacement::Reassign));
493       continue;
494     }
495 
496     // Find the insertion point for the repairing code.
497     RepairPts.emplace_back(
498         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
499     RepairingPlacement &RepairPt = RepairPts.back();
500 
501     // If we need to split a basic block to materialize this insertion point,
502     // we may give a higher cost to this mapping.
503     // Nevertheless, we may get away with the split, so try that first.
504     if (RepairPt.hasSplit())
505       tryAvoidingSplit(RepairPt, MO, ValMapping);
506 
507     // Check that the materialization of the repairing is possible.
508     if (!RepairPt.canMaterialize()) {
509       LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
510       return MappingCost::ImpossibleCost();
511     }
512 
513     // Account for the split cost and repair cost.
514     // Unless the cost is already saturated or we do not care about the cost.
515     if (!BestCost || Saturated)
516       continue;
517 
518     // To get accurate information we need MBFI and MBPI.
519     // Thus, if we end up here this information should be here.
520     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
521 
522     // FIXME: We will have to rework the repairing cost model.
523     // The repairing cost depends on the register bank that MO has.
524     // However, when we break down the value into different values,
525     // MO may not have a register bank while still needing repairing.
526     // For the fast mode, we don't compute the cost so that is fine,
527     // but still for the repairing code, we will have to make a choice.
528     // For the greedy mode, we should choose greedily what is the best
529     // choice based on the next use of MO.
530 
531     // Sums up the repairing cost of MO at each insertion point.
532     uint64_t RepairCost = getRepairCost(MO, ValMapping);
533 
534     // This is an impossible to repair cost.
535     if (RepairCost == std::numeric_limits<unsigned>::max())
536       return MappingCost::ImpossibleCost();
537 
538     // Bias used for splitting: 5%.
539     const uint64_t PercentageForBias = 5;
540     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
541     // We should not need more than a couple of instructions to repair
542     // an assignment. In other words, the computation should not
543     // overflow because the repairing cost is free of basic block
544     // frequency.
545     assert(((RepairCost < RepairCost * PercentageForBias) &&
546             (RepairCost * PercentageForBias <
547              RepairCost * PercentageForBias + 99)) &&
548            "Repairing involves more than a billion of instructions?!");
549     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
550       assert(InsertPt->canMaterialize() && "We should not have made it here");
551       // We will applied some basic block frequency and those uses uint64_t.
552       if (!InsertPt->isSplit())
553         Saturated = Cost.addLocalCost(RepairCost);
554       else {
555         uint64_t CostForInsertPt = RepairCost;
556         // Again we shouldn't overflow here givent that
557         // CostForInsertPt is frequency free at this point.
558         assert(CostForInsertPt + Bias > CostForInsertPt &&
559                "Repairing + split bias overflows");
560         CostForInsertPt += Bias;
561         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
562         // Check if we just overflowed.
563         if ((Saturated = PtCost < CostForInsertPt))
564           Cost.saturate();
565         else
566           Saturated = Cost.addNonLocalCost(PtCost);
567       }
568 
569       // Stop looking into what it takes to repair, this is already
570       // too expensive.
571       if (BestCost && Cost > *BestCost) {
572         LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
573         return Cost;
574       }
575 
576       // No need to accumulate more cost information.
577       // We need to still gather the repairing information though.
578       if (Saturated)
579         break;
580     }
581   }
582   LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n");
583   return Cost;
584 }
585 
586 bool RegBankSelect::applyMapping(
587     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
588     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
589   // OpdMapper will hold all the information needed for the rewriting.
590   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
591 
592   // First, place the repairing code.
593   for (RepairingPlacement &RepairPt : RepairPts) {
594     if (!RepairPt.canMaterialize() ||
595         RepairPt.getKind() == RepairingPlacement::Impossible)
596       return false;
597     assert(RepairPt.getKind() != RepairingPlacement::None &&
598            "This should not make its way in the list");
599     unsigned OpIdx = RepairPt.getOpIdx();
600     MachineOperand &MO = MI.getOperand(OpIdx);
601     const RegisterBankInfo::ValueMapping &ValMapping =
602         InstrMapping.getOperandMapping(OpIdx);
603     Register Reg = MO.getReg();
604 
605     switch (RepairPt.getKind()) {
606     case RepairingPlacement::Reassign:
607       assert(ValMapping.NumBreakDowns == 1 &&
608              "Reassignment should only be for simple mapping");
609       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
610       break;
611     case RepairingPlacement::Insert:
612       // Don't insert additional instruction for debug instruction.
613       if (MI.isDebugInstr())
614         break;
615       OpdMapper.createVRegs(OpIdx);
616       if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx)))
617         return false;
618       break;
619     default:
620       llvm_unreachable("Other kind should not happen");
621     }
622   }
623 
624   // Second, rewrite the instruction.
625   LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
626   RBI->applyMapping(OpdMapper);
627 
628   return true;
629 }
630 
631 bool RegBankSelect::assignInstr(MachineInstr &MI) {
632   LLVM_DEBUG(dbgs() << "Assign: " << MI);
633 
634   unsigned Opc = MI.getOpcode();
635   if (isPreISelGenericOptimizationHint(Opc)) {
636     assert((Opc == TargetOpcode::G_ASSERT_ZEXT ||
637             Opc == TargetOpcode::G_ASSERT_SEXT ||
638             Opc == TargetOpcode::G_ASSERT_ALIGN) &&
639            "Unexpected hint opcode!");
640     // The only correct mapping for these is to always use the source register
641     // bank.
642     const RegisterBank *RB =
643         RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI);
644     // We can assume every instruction above this one has a selected register
645     // bank.
646     assert(RB && "Expected source register to have a register bank?");
647     LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
648     MRI->setRegBank(MI.getOperand(0).getReg(), *RB);
649     return true;
650   }
651 
652   // Remember the repairing placement for all the operands.
653   SmallVector<RepairingPlacement, 4> RepairPts;
654 
655   const RegisterBankInfo::InstructionMapping *BestMapping;
656   if (OptMode == RegBankSelect::Mode::Fast) {
657     BestMapping = &RBI->getInstrMapping(MI);
658     MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts);
659     (void)DefaultCost;
660     if (DefaultCost == MappingCost::ImpossibleCost())
661       return false;
662   } else {
663     RegisterBankInfo::InstructionMappings PossibleMappings =
664         RBI->getInstrPossibleMappings(MI);
665     if (PossibleMappings.empty())
666       return false;
667     BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts);
668   }
669   // Make sure the mapping is valid for MI.
670   assert(BestMapping->verify(MI) && "Invalid instruction mapping");
671 
672   LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n');
673 
674   // After this call, MI may not be valid anymore.
675   // Do not use it.
676   return applyMapping(MI, *BestMapping, RepairPts);
677 }
678 
679 bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) {
680   // Walk the function and assign register banks to all operands.
681   // Use a RPOT to make sure all registers are assigned before we choose
682   // the best mapping of the current instruction.
683   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
684   for (MachineBasicBlock *MBB : RPOT) {
685     // Set a sensible insertion point so that subsequent calls to
686     // MIRBuilder.
687     MIRBuilder.setMBB(*MBB);
688     SmallVector<MachineInstr *> WorkList(
689         make_pointer_range(reverse(MBB->instrs())));
690 
691     while (!WorkList.empty()) {
692       MachineInstr &MI = *WorkList.pop_back_val();
693 
694       // Ignore target-specific post-isel instructions: they should use proper
695       // regclasses.
696       if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode())
697         continue;
698 
699       // Ignore inline asm instructions: they should use physical
700       // registers/regclasses
701       if (MI.isInlineAsm())
702         continue;
703 
704       // Ignore IMPLICIT_DEF which must have a regclass.
705       if (MI.isImplicitDef())
706         continue;
707 
708       if (!assignInstr(MI)) {
709         reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
710                            "unable to map instruction", MI);
711         return false;
712       }
713     }
714   }
715 
716   return true;
717 }
718 
719 bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const {
720 #ifndef NDEBUG
721   if (!DisableGISelLegalityCheck) {
722     if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) {
723       reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect",
724                          "instruction is not legal", *MI);
725       return false;
726     }
727   }
728 #endif
729   return true;
730 }
731 
732 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
733   // If the ISel pipeline failed, do not bother running that pass.
734   if (MF.getProperties().hasProperty(
735           MachineFunctionProperties::Property::FailedISel))
736     return false;
737 
738   LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
739   const Function &F = MF.getFunction();
740   Mode SaveOptMode = OptMode;
741   if (F.hasOptNone())
742     OptMode = Mode::Fast;
743   init(MF);
744 
745 #ifndef NDEBUG
746   if (!checkFunctionIsLegal(MF))
747     return false;
748 #endif
749 
750   assignRegisterBanks(MF);
751 
752   OptMode = SaveOptMode;
753   return false;
754 }
755 
756 //------------------------------------------------------------------------------
757 //                  Helper Classes Implementation
758 //------------------------------------------------------------------------------
759 RegBankSelect::RepairingPlacement::RepairingPlacement(
760     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
761     RepairingPlacement::RepairingKind Kind)
762     // Default is, we are going to insert code to repair OpIdx.
763     : Kind(Kind), OpIdx(OpIdx),
764       CanMaterialize(Kind != RepairingKind::Impossible), P(P) {
765   const MachineOperand &MO = MI.getOperand(OpIdx);
766   assert(MO.isReg() && "Trying to repair a non-reg operand");
767 
768   if (Kind != RepairingKind::Insert)
769     return;
770 
771   // Repairings for definitions happen after MI, uses happen before.
772   bool Before = !MO.isDef();
773 
774   // Check if we are done with MI.
775   if (!MI.isPHI() && !MI.isTerminator()) {
776     addInsertPoint(MI, Before);
777     // We are done with the initialization.
778     return;
779   }
780 
781   // Now, look for the special cases.
782   if (MI.isPHI()) {
783     // - PHI must be the first instructions:
784     //   * Before, we have to split the related incoming edge.
785     //   * After, move the insertion point past the last phi.
786     if (!Before) {
787       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
788       if (It != MI.getParent()->end())
789         addInsertPoint(*It, /*Before*/ true);
790       else
791         addInsertPoint(*(--It), /*Before*/ false);
792       return;
793     }
794     // We repair a use of a phi, we may need to split the related edge.
795     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
796     // Check if we can move the insertion point prior to the
797     // terminators of the predecessor.
798     Register Reg = MO.getReg();
799     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
800     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
801       if (It->modifiesRegister(Reg, &TRI)) {
802         // We cannot hoist the repairing code in the predecessor.
803         // Split the edge.
804         addInsertPoint(Pred, *MI.getParent());
805         return;
806       }
807     // At this point, we can insert in Pred.
808 
809     // - If It is invalid, Pred is empty and we can insert in Pred
810     //   wherever we want.
811     // - If It is valid, It is the first non-terminator, insert after It.
812     if (It == Pred.end())
813       addInsertPoint(Pred, /*Beginning*/ false);
814     else
815       addInsertPoint(*It, /*Before*/ false);
816   } else {
817     // - Terminators must be the last instructions:
818     //   * Before, move the insert point before the first terminator.
819     //   * After, we have to split the outcoming edges.
820     if (Before) {
821       // Check whether Reg is defined by any terminator.
822       MachineBasicBlock::reverse_iterator It = MI;
823       auto REnd = MI.getParent()->rend();
824 
825       for (; It != REnd && It->isTerminator(); ++It) {
826         assert(!It->modifiesRegister(MO.getReg(), &TRI) &&
827                "copy insertion in middle of terminators not handled");
828       }
829 
830       if (It == REnd) {
831         addInsertPoint(*MI.getParent()->begin(), true);
832         return;
833       }
834 
835       // We are sure to be right before the first terminator.
836       addInsertPoint(*It, /*Before*/ false);
837       return;
838     }
839     // Make sure Reg is not redefined by other terminators, otherwise
840     // we do not know how to split.
841     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
842          ++It != End;)
843       // The machine verifier should reject this kind of code.
844       assert(It->modifiesRegister(MO.getReg(), &TRI) &&
845              "Do not know where to split");
846     // Split each outcoming edges.
847     MachineBasicBlock &Src = *MI.getParent();
848     for (auto &Succ : Src.successors())
849       addInsertPoint(Src, Succ);
850   }
851 }
852 
853 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
854                                                        bool Before) {
855   addInsertPoint(*new InstrInsertPoint(MI, Before));
856 }
857 
858 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
859                                                        bool Beginning) {
860   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
861 }
862 
863 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
864                                                        MachineBasicBlock &Dst) {
865   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
866 }
867 
868 void RegBankSelect::RepairingPlacement::addInsertPoint(
869     RegBankSelect::InsertPoint &Point) {
870   CanMaterialize &= Point.canMaterialize();
871   HasSplit |= Point.isSplit();
872   InsertPoints.emplace_back(&Point);
873 }
874 
875 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
876                                                   bool Before)
877     : Instr(Instr), Before(Before) {
878   // Since we do not support splitting, we do not need to update
879   // liveness and such, so do not do anything with P.
880   assert((!Before || !Instr.isPHI()) &&
881          "Splitting before phis requires more points");
882   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
883          "Splitting between phis does not make sense");
884 }
885 
886 void RegBankSelect::InstrInsertPoint::materialize() {
887   if (isSplit()) {
888     // Slice and return the beginning of the new block.
889     // If we need to split between the terminators, we theoritically
890     // need to know where the first and second set of terminators end
891     // to update the successors properly.
892     // Now, in pratice, we should have a maximum of 2 branch
893     // instructions; one conditional and one unconditional. Therefore
894     // we know how to update the successor by looking at the target of
895     // the unconditional branch.
896     // If we end up splitting at some point, then, we should update
897     // the liveness information and such. I.e., we would need to
898     // access P here.
899     // The machine verifier should actually make sure such cases
900     // cannot happen.
901     llvm_unreachable("Not yet implemented");
902   }
903   // Otherwise the insertion point is just the current or next
904   // instruction depending on Before. I.e., there is nothing to do
905   // here.
906 }
907 
908 bool RegBankSelect::InstrInsertPoint::isSplit() const {
909   // If the insertion point is after a terminator, we need to split.
910   if (!Before)
911     return Instr.isTerminator();
912   // If we insert before an instruction that is after a terminator,
913   // we are still after a terminator.
914   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
915 }
916 
917 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
918   // Even if we need to split, because we insert between terminators,
919   // this split has actually the same frequency as the instruction.
920   const MachineBlockFrequencyInfo *MBFI =
921       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
922   if (!MBFI)
923     return 1;
924   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
925 }
926 
927 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
928   const MachineBlockFrequencyInfo *MBFI =
929       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
930   if (!MBFI)
931     return 1;
932   return MBFI->getBlockFreq(&MBB).getFrequency();
933 }
934 
935 void RegBankSelect::EdgeInsertPoint::materialize() {
936   // If we end up repairing twice at the same place before materializing the
937   // insertion point, we may think we have to split an edge twice.
938   // We should have a factory for the insert point such that identical points
939   // are the same instance.
940   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
941          "This point has already been split");
942   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
943   assert(NewBB && "Invalid call to materialize");
944   // We reuse the destination block to hold the information of the new block.
945   DstOrSplit = NewBB;
946 }
947 
948 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
949   const MachineBlockFrequencyInfo *MBFI =
950       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
951   if (!MBFI)
952     return 1;
953   if (WasMaterialized)
954     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
955 
956   const MachineBranchProbabilityInfo *MBPI =
957       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
958   if (!MBPI)
959     return 1;
960   // The basic block will be on the edge.
961   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
962       .getFrequency();
963 }
964 
965 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
966   // If this is not a critical edge, we should not have used this insert
967   // point. Indeed, either the successor or the predecessor should
968   // have do.
969   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
970          "Edge is not critical");
971   return Src.canSplitCriticalEdge(DstOrSplit);
972 }
973 
974 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
975     : LocalFreq(LocalFreq.getFrequency()) {}
976 
977 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
978   // Check if this overflows.
979   if (LocalCost + Cost < LocalCost) {
980     saturate();
981     return true;
982   }
983   LocalCost += Cost;
984   return isSaturated();
985 }
986 
987 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
988   // Check if this overflows.
989   if (NonLocalCost + Cost < NonLocalCost) {
990     saturate();
991     return true;
992   }
993   NonLocalCost += Cost;
994   return isSaturated();
995 }
996 
997 bool RegBankSelect::MappingCost::isSaturated() const {
998   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
999          LocalFreq == UINT64_MAX;
1000 }
1001 
1002 void RegBankSelect::MappingCost::saturate() {
1003   *this = ImpossibleCost();
1004   --LocalCost;
1005 }
1006 
1007 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
1008   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
1009 }
1010 
1011 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
1012   // Sort out the easy cases.
1013   if (*this == Cost)
1014     return false;
1015   // If one is impossible to realize the other is cheaper unless it is
1016   // impossible as well.
1017   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
1018     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
1019   // If one is saturated the other is cheaper, unless it is saturated
1020   // as well.
1021   if (isSaturated() || Cost.isSaturated())
1022     return isSaturated() < Cost.isSaturated();
1023   // At this point we know both costs hold sensible values.
1024 
1025   // If both values have a different base frequency, there is no much
1026   // we can do but to scale everything.
1027   // However, if they have the same base frequency we can avoid making
1028   // complicated computation.
1029   uint64_t ThisLocalAdjust;
1030   uint64_t OtherLocalAdjust;
1031   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
1032 
1033     // At this point, we know the local costs are comparable.
1034     // Do the case that do not involve potential overflow first.
1035     if (NonLocalCost == Cost.NonLocalCost)
1036       // Since the non-local costs do not discriminate on the result,
1037       // just compare the local costs.
1038       return LocalCost < Cost.LocalCost;
1039 
1040     // The base costs are comparable so we may only keep the relative
1041     // value to increase our chances of avoiding overflows.
1042     ThisLocalAdjust = 0;
1043     OtherLocalAdjust = 0;
1044     if (LocalCost < Cost.LocalCost)
1045       OtherLocalAdjust = Cost.LocalCost - LocalCost;
1046     else
1047       ThisLocalAdjust = LocalCost - Cost.LocalCost;
1048   } else {
1049     ThisLocalAdjust = LocalCost;
1050     OtherLocalAdjust = Cost.LocalCost;
1051   }
1052 
1053   // The non-local costs are comparable, just keep the relative value.
1054   uint64_t ThisNonLocalAdjust = 0;
1055   uint64_t OtherNonLocalAdjust = 0;
1056   if (NonLocalCost < Cost.NonLocalCost)
1057     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
1058   else
1059     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
1060   // Scale everything to make them comparable.
1061   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
1062   // Check for overflow on that operation.
1063   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
1064                                            ThisScaledCost < LocalFreq);
1065   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
1066   // Check for overflow on the last operation.
1067   bool OtherOverflows =
1068       OtherLocalAdjust &&
1069       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
1070   // Add the non-local costs.
1071   ThisOverflows |= ThisNonLocalAdjust &&
1072                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
1073   ThisScaledCost += ThisNonLocalAdjust;
1074   OtherOverflows |= OtherNonLocalAdjust &&
1075                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
1076   OtherScaledCost += OtherNonLocalAdjust;
1077   // If both overflows, we cannot compare without additional
1078   // precision, e.g., APInt. Just give up on that case.
1079   if (ThisOverflows && OtherOverflows)
1080     return false;
1081   // If one overflows but not the other, we can still compare.
1082   if (ThisOverflows || OtherOverflows)
1083     return ThisOverflows < OtherOverflows;
1084   // Otherwise, just compare the values.
1085   return ThisScaledCost < OtherScaledCost;
1086 }
1087 
1088 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
1089   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
1090          LocalFreq == Cost.LocalFreq;
1091 }
1092 
1093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1094 LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const {
1095   print(dbgs());
1096   dbgs() << '\n';
1097 }
1098 #endif
1099 
1100 void RegBankSelect::MappingCost::print(raw_ostream &OS) const {
1101   if (*this == ImpossibleCost()) {
1102     OS << "impossible";
1103     return;
1104   }
1105   if (isSaturated()) {
1106     OS << "saturated";
1107     return;
1108   }
1109   OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost;
1110 }
1111