1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/LiveStacks.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineInstrBundle.h"
36 #include "llvm/CodeGen/MachineLoopInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/SlotIndexes.h"
40 #include "llvm/CodeGen/Spiller.h"
41 #include "llvm/CodeGen/StackMaps.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/Support/BlockFrequency.h"
49 #include "llvm/Support/BranchProbability.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <cassert>
56 #include <iterator>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 using namespace llvm;
62 
63 #define DEBUG_TYPE "regalloc"
64 
65 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
66 STATISTIC(NumSnippets,        "Number of spilled snippets");
67 STATISTIC(NumSpills,          "Number of spills inserted");
68 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
69 STATISTIC(NumReloads,         "Number of reloads inserted");
70 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
71 STATISTIC(NumFolded,          "Number of folded stack accesses");
72 STATISTIC(NumFoldedLoads,     "Number of folded loads");
73 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
74 
75 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
76                                      cl::desc("Disable inline spill hoisting"));
77 static cl::opt<bool>
78 RestrictStatepointRemat("restrict-statepoint-remat",
79                        cl::init(false), cl::Hidden,
80                        cl::desc("Restrict remat for statepoint operands"));
81 
82 namespace {
83 
84 class HoistSpillHelper : private LiveRangeEdit::Delegate {
85   MachineFunction &MF;
86   LiveIntervals &LIS;
87   LiveStacks &LSS;
88   MachineDominatorTree &MDT;
89   MachineLoopInfo &Loops;
90   VirtRegMap &VRM;
91   MachineRegisterInfo &MRI;
92   const TargetInstrInfo &TII;
93   const TargetRegisterInfo &TRI;
94   const MachineBlockFrequencyInfo &MBFI;
95 
96   InsertPointAnalysis IPA;
97 
98   // Map from StackSlot to the LiveInterval of the original register.
99   // Note the LiveInterval of the original register may have been deleted
100   // after it is spilled. We keep a copy here to track the range where
101   // spills can be moved.
102   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
103 
104   // Map from pair of (StackSlot and Original VNI) to a set of spills which
105   // have the same stackslot and have equal values defined by Original VNI.
106   // These spills are mergeable and are hoist candidates.
107   using MergeableSpillsMap =
108       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
109   MergeableSpillsMap MergeableSpills;
110 
111   /// This is the map from original register to a set containing all its
112   /// siblings. To hoist a spill to another BB, we need to find out a live
113   /// sibling there and use it as the source of the new spill.
114   DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
115 
116   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
117                      MachineBasicBlock &BB, Register &LiveReg);
118 
119   void rmRedundantSpills(
120       SmallPtrSet<MachineInstr *, 16> &Spills,
121       SmallVectorImpl<MachineInstr *> &SpillsToRm,
122       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
123 
124   void getVisitOrders(
125       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
126       SmallVectorImpl<MachineDomTreeNode *> &Orders,
127       SmallVectorImpl<MachineInstr *> &SpillsToRm,
128       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
129       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
130 
131   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
132                       SmallPtrSet<MachineInstr *, 16> &Spills,
133                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
134                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
135 
136 public:
137   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
138                    VirtRegMap &vrm)
139       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
140         LSS(pass.getAnalysis<LiveStacks>()),
141         MDT(pass.getAnalysis<MachineDominatorTree>()),
142         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
143         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
144         TRI(*mf.getSubtarget().getRegisterInfo()),
145         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
146         IPA(LIS, mf.getNumBlockIDs()) {}
147 
148   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
149                             unsigned Original);
150   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
151   void hoistAllSpills();
152   void LRE_DidCloneVirtReg(Register, Register) override;
153 };
154 
155 class InlineSpiller : public Spiller {
156   MachineFunction &MF;
157   LiveIntervals &LIS;
158   LiveStacks &LSS;
159   MachineDominatorTree &MDT;
160   MachineLoopInfo &Loops;
161   VirtRegMap &VRM;
162   MachineRegisterInfo &MRI;
163   const TargetInstrInfo &TII;
164   const TargetRegisterInfo &TRI;
165   const MachineBlockFrequencyInfo &MBFI;
166 
167   // Variables that are valid during spill(), but used by multiple methods.
168   LiveRangeEdit *Edit = nullptr;
169   LiveInterval *StackInt = nullptr;
170   int StackSlot;
171   Register Original;
172 
173   // All registers to spill to StackSlot, including the main register.
174   SmallVector<Register, 8> RegsToSpill;
175 
176   // All COPY instructions to/from snippets.
177   // They are ignored since both operands refer to the same stack slot.
178   // For bundled copies, this will only include the first header copy.
179   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
180 
181   // Values that failed to remat at some point.
182   SmallPtrSet<VNInfo*, 8> UsedValues;
183 
184   // Dead defs generated during spilling.
185   SmallVector<MachineInstr*, 8> DeadDefs;
186 
187   // Object records spills information and does the hoisting.
188   HoistSpillHelper HSpiller;
189 
190   // Live range weight calculator.
191   VirtRegAuxInfo &VRAI;
192 
193   ~InlineSpiller() override = default;
194 
195 public:
196   InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
197                 VirtRegAuxInfo &VRAI)
198       : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
199         LSS(Pass.getAnalysis<LiveStacks>()),
200         MDT(Pass.getAnalysis<MachineDominatorTree>()),
201         Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
202         MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
203         TRI(*MF.getSubtarget().getRegisterInfo()),
204         MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
205         HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
206 
207   void spill(LiveRangeEdit &) override;
208   void postOptimization() override;
209 
210 private:
211   bool isSnippet(const LiveInterval &SnipLI);
212   void collectRegsToSpill();
213 
214   bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
215 
216   bool isSibling(Register Reg);
217   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
218   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
219 
220   void markValueUsed(LiveInterval*, VNInfo*);
221   bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
222   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
223   void reMaterializeAll();
224 
225   bool coalesceStackAccess(MachineInstr *MI, Register Reg);
226   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
227                          MachineInstr *LoadMI = nullptr);
228   void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
229   void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
230 
231   void spillAroundUses(Register Reg);
232   void spillAll();
233 };
234 
235 } // end anonymous namespace
236 
237 Spiller::~Spiller() = default;
238 
239 void Spiller::anchor() {}
240 
241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
242                                    MachineFunction &MF, VirtRegMap &VRM,
243                                    VirtRegAuxInfo &VRAI) {
244   return new InlineSpiller(Pass, MF, VRM, VRAI);
245 }
246 
247 //===----------------------------------------------------------------------===//
248 //                                Snippets
249 //===----------------------------------------------------------------------===//
250 
251 // When spilling a virtual register, we also spill any snippets it is connected
252 // to. The snippets are small live ranges that only have a single real use,
253 // leftovers from live range splitting. Spilling them enables memory operand
254 // folding or tightens the live range around the single use.
255 //
256 // This minimizes register pressure and maximizes the store-to-load distance for
257 // spill slots which can be important in tight loops.
258 
259 /// If MI is a COPY to or from Reg, return the other register, otherwise return
260 /// 0.
261 static Register isCopyOf(const MachineInstr &MI, Register Reg) {
262   assert(!MI.isBundled());
263   if (!MI.isCopy())
264     return Register();
265 
266   const MachineOperand &DstOp = MI.getOperand(0);
267   const MachineOperand &SrcOp = MI.getOperand(1);
268 
269   // TODO: Probably only worth allowing subreg copies with undef dests.
270   if (DstOp.getSubReg() != SrcOp.getSubReg())
271     return Register();
272   if (DstOp.getReg() == Reg)
273     return SrcOp.getReg();
274   if (SrcOp.getReg() == Reg)
275     return DstOp.getReg();
276   return Register();
277 }
278 
279 /// Check for a copy bundle as formed by SplitKit.
280 static Register isCopyOfBundle(const MachineInstr &FirstMI, Register Reg) {
281   if (!FirstMI.isBundled())
282     return isCopyOf(FirstMI, Reg);
283 
284   assert(!FirstMI.isBundledWithPred() && FirstMI.isBundledWithSucc() &&
285          "expected to see first instruction in bundle");
286 
287   Register SnipReg;
288   MachineBasicBlock::const_instr_iterator I = FirstMI.getIterator();
289   while (I->isBundledWithSucc()) {
290     const MachineInstr &MI = *I;
291     if (!MI.isCopy())
292       return Register();
293 
294     const MachineOperand &DstOp = MI.getOperand(0);
295     const MachineOperand &SrcOp = MI.getOperand(1);
296     if (DstOp.getReg() == Reg) {
297       if (!SnipReg)
298         SnipReg = SrcOp.getReg();
299       else if (SnipReg != SrcOp.getReg())
300         return Register();
301     } else if (SrcOp.getReg() == Reg) {
302       if (!SnipReg)
303         SnipReg = DstOp.getReg();
304       else if (SnipReg != DstOp.getReg())
305         return Register();
306     }
307 
308     ++I;
309   }
310 
311   return Register();
312 }
313 
314 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
315   for (const MachineOperand &MO : MI.all_defs())
316     if (MO.getReg().isVirtual())
317       LIS.getInterval(MO.getReg());
318 }
319 
320 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
321 /// It is assumed that SnipLI is a virtual register with the same original as
322 /// Edit->getReg().
323 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
324   Register Reg = Edit->getReg();
325 
326   // A snippet is a tiny live range with only a single instruction using it
327   // besides copies to/from Reg or spills/fills.
328   // Exception is done for statepoint instructions which will fold fills
329   // into their operands.
330   // We accept:
331   //
332   //   %snip = COPY %Reg / FILL fi#
333   //   %snip = USE %snip
334   //   %snip = STATEPOINT %snip in var arg area
335   //   %Reg = COPY %snip / SPILL %snip, fi#
336   //
337   if (!LIS.intervalIsInOneMBB(SnipLI))
338     return false;
339 
340   // Number of defs should not exceed 2 not accounting defs coming from
341   // statepoint instructions.
342   unsigned NumValNums = SnipLI.getNumValNums();
343   for (auto *VNI : SnipLI.vnis()) {
344     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
345     if (MI->getOpcode() == TargetOpcode::STATEPOINT)
346       --NumValNums;
347   }
348   if (NumValNums > 2)
349     return false;
350 
351   MachineInstr *UseMI = nullptr;
352 
353   // Check that all uses satisfy our criteria.
354   for (MachineRegisterInfo::reg_bundle_nodbg_iterator
355            RI = MRI.reg_bundle_nodbg_begin(SnipLI.reg()),
356            E = MRI.reg_bundle_nodbg_end();
357        RI != E;) {
358     MachineInstr &MI = *RI++;
359 
360     // Allow copies to/from Reg.
361     if (isCopyOfBundle(MI, Reg))
362       continue;
363 
364     // Allow stack slot loads.
365     int FI;
366     if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
367       continue;
368 
369     // Allow stack slot stores.
370     if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
371       continue;
372 
373     if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg()))
374       continue;
375 
376     // Allow a single additional instruction.
377     if (UseMI && &MI != UseMI)
378       return false;
379     UseMI = &MI;
380   }
381   return true;
382 }
383 
384 /// collectRegsToSpill - Collect live range snippets that only have a single
385 /// real use.
386 void InlineSpiller::collectRegsToSpill() {
387   Register Reg = Edit->getReg();
388 
389   // Main register always spills.
390   RegsToSpill.assign(1, Reg);
391   SnippetCopies.clear();
392 
393   // Snippets all have the same original, so there can't be any for an original
394   // register.
395   if (Original == Reg)
396     return;
397 
398   for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
399     Register SnipReg = isCopyOfBundle(MI, Reg);
400     if (!isSibling(SnipReg))
401       continue;
402     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
403     if (!isSnippet(SnipLI))
404       continue;
405     SnippetCopies.insert(&MI);
406     if (isRegToSpill(SnipReg))
407       continue;
408     RegsToSpill.push_back(SnipReg);
409     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
410     ++NumSnippets;
411   }
412 }
413 
414 bool InlineSpiller::isSibling(Register Reg) {
415   return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
416 }
417 
418 /// It is beneficial to spill to earlier place in the same BB in case
419 /// as follows:
420 /// There is an alternative def earlier in the same MBB.
421 /// Hoist the spill as far as possible in SpillMBB. This can ease
422 /// register pressure:
423 ///
424 ///   x = def
425 ///   y = use x
426 ///   s = copy x
427 ///
428 /// Hoisting the spill of s to immediately after the def removes the
429 /// interference between x and y:
430 ///
431 ///   x = def
432 ///   spill x
433 ///   y = use killed x
434 ///
435 /// This hoist only helps when the copy kills its source.
436 ///
437 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
438                                        MachineInstr &CopyMI) {
439   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
440 #ifndef NDEBUG
441   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
442   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
443 #endif
444 
445   Register SrcReg = CopyMI.getOperand(1).getReg();
446   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
447   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
448   LiveQueryResult SrcQ = SrcLI.Query(Idx);
449   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
450   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
451     return false;
452 
453   // Conservatively extend the stack slot range to the range of the original
454   // value. We may be able to do better with stack slot coloring by being more
455   // careful here.
456   assert(StackInt && "No stack slot assigned yet.");
457   LiveInterval &OrigLI = LIS.getInterval(Original);
458   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
459   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
460   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
461                     << *StackInt << '\n');
462 
463   // We are going to spill SrcVNI immediately after its def, so clear out
464   // any later spills of the same value.
465   eliminateRedundantSpills(SrcLI, SrcVNI);
466 
467   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
468   MachineBasicBlock::iterator MII;
469   if (SrcVNI->isPHIDef())
470     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
471   else {
472     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
473     assert(DefMI && "Defining instruction disappeared");
474     MII = DefMI;
475     ++MII;
476   }
477   MachineInstrSpan MIS(MII, MBB);
478   // Insert spill without kill flag immediately after def.
479   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
480                           MRI.getRegClass(SrcReg), &TRI, Register());
481   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
482   for (const MachineInstr &MI : make_range(MIS.begin(), MII))
483     getVDefInterval(MI, LIS);
484   --MII; // Point to store instruction.
485   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
486 
487   // If there is only 1 store instruction is required for spill, add it
488   // to mergeable list. In X86 AMX, 2 intructions are required to store.
489   // We disable the merge for this case.
490   if (MIS.begin() == MII)
491     HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
492   ++NumSpills;
493   return true;
494 }
495 
496 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
497 /// redundant spills of this value in SLI.reg and sibling copies.
498 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
499   assert(VNI && "Missing value");
500   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
501   WorkList.push_back(std::make_pair(&SLI, VNI));
502   assert(StackInt && "No stack slot assigned yet.");
503 
504   do {
505     LiveInterval *LI;
506     std::tie(LI, VNI) = WorkList.pop_back_val();
507     Register Reg = LI->reg();
508     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
509                       << VNI->def << " in " << *LI << '\n');
510 
511     // Regs to spill are taken care of.
512     if (isRegToSpill(Reg))
513       continue;
514 
515     // Add all of VNI's live range to StackInt.
516     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
517     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
518 
519     // Find all spills and copies of VNI.
520     for (MachineInstr &MI :
521          llvm::make_early_inc_range(MRI.use_nodbg_bundles(Reg))) {
522       if (!MI.isCopy() && !MI.mayStore())
523         continue;
524       SlotIndex Idx = LIS.getInstructionIndex(MI);
525       if (LI->getVNInfoAt(Idx) != VNI)
526         continue;
527 
528       // Follow sibling copies down the dominator tree.
529       if (Register DstReg = isCopyOfBundle(MI, Reg)) {
530         if (isSibling(DstReg)) {
531           LiveInterval &DstLI = LIS.getInterval(DstReg);
532           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
533           assert(DstVNI && "Missing defined value");
534           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
535 
536           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
537         }
538         continue;
539       }
540 
541       // Erase spills.
542       int FI;
543       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
544         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
545         // eliminateDeadDefs won't normally remove stores, so switch opcode.
546         MI.setDesc(TII.get(TargetOpcode::KILL));
547         DeadDefs.push_back(&MI);
548         ++NumSpillsRemoved;
549         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
550           --NumSpills;
551       }
552     }
553   } while (!WorkList.empty());
554 }
555 
556 //===----------------------------------------------------------------------===//
557 //                            Rematerialization
558 //===----------------------------------------------------------------------===//
559 
560 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
561 /// instruction cannot be eliminated. See through snippet copies
562 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
563   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
564   WorkList.push_back(std::make_pair(LI, VNI));
565   do {
566     std::tie(LI, VNI) = WorkList.pop_back_val();
567     if (!UsedValues.insert(VNI).second)
568       continue;
569 
570     if (VNI->isPHIDef()) {
571       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
572       for (MachineBasicBlock *P : MBB->predecessors()) {
573         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
574         if (PVNI)
575           WorkList.push_back(std::make_pair(LI, PVNI));
576       }
577       continue;
578     }
579 
580     // Follow snippet copies.
581     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
582     if (!SnippetCopies.count(MI))
583       continue;
584     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
585     assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
586     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
587     assert(SnipVNI && "Snippet undefined before copy");
588     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
589   } while (!WorkList.empty());
590 }
591 
592 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
593                                                      MachineInstr &MI) {
594   if (!RestrictStatepointRemat)
595     return true;
596   // Here's a quick explanation of the problem we're trying to handle here:
597   // * There are some pseudo instructions with more vreg uses than there are
598   //   physical registers on the machine.
599   // * This is normally handled by spilling the vreg, and folding the reload
600   //   into the user instruction.  (Thus decreasing the number of used vregs
601   //   until the remainder can be assigned to physregs.)
602   // * However, since we may try to spill vregs in any order, we can end up
603   //   trying to spill each operand to the instruction, and then rematting it
604   //   instead.  When that happens, the new live intervals (for the remats) are
605   //   expected to be trivially assignable (i.e. RS_Done).  However, since we
606   //   may have more remats than physregs, we're guaranteed to fail to assign
607   //   one.
608   // At the moment, we only handle this for STATEPOINTs since they're the only
609   // pseudo op where we've seen this.  If we start seeing other instructions
610   // with the same problem, we need to revisit this.
611   if (MI.getOpcode() != TargetOpcode::STATEPOINT)
612     return true;
613   // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
614   // that number of physical registers is enough to cover all fixed arguments.
615   // If it is not true we need to revisit it.
616   for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
617                 EndIdx = MI.getNumOperands();
618        Idx < EndIdx; ++Idx) {
619     MachineOperand &MO = MI.getOperand(Idx);
620     if (MO.isReg() && MO.getReg() == VReg)
621       return false;
622   }
623   return true;
624 }
625 
626 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
627 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
628   // Analyze instruction
629   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
630   VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
631 
632   if (!RI.Reads)
633     return false;
634 
635   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
636   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
637 
638   if (!ParentVNI) {
639     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
640     for (MachineOperand &MO : MI.all_uses())
641       if (MO.getReg() == VirtReg.reg())
642         MO.setIsUndef();
643     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
644     return true;
645   }
646 
647   if (SnippetCopies.count(&MI))
648     return false;
649 
650   LiveInterval &OrigLI = LIS.getInterval(Original);
651   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
652   LiveRangeEdit::Remat RM(ParentVNI);
653   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
654 
655   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
656     markValueUsed(&VirtReg, ParentVNI);
657     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
658     return false;
659   }
660 
661   // If the instruction also writes VirtReg.reg, it had better not require the
662   // same register for uses and defs.
663   if (RI.Tied) {
664     markValueUsed(&VirtReg, ParentVNI);
665     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
666     return false;
667   }
668 
669   // Before rematerializing into a register for a single instruction, try to
670   // fold a load into the instruction. That avoids allocating a new register.
671   if (RM.OrigMI->canFoldAsLoad() &&
672       foldMemoryOperand(Ops, RM.OrigMI)) {
673     Edit->markRematerialized(RM.ParentVNI);
674     ++NumFoldedLoads;
675     return true;
676   }
677 
678   // If we can't guarantee that we'll be able to actually assign the new vreg,
679   // we can't remat.
680   if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
681     markValueUsed(&VirtReg, ParentVNI);
682     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
683     return false;
684   }
685 
686   // Allocate a new register for the remat.
687   Register NewVReg = Edit->createFrom(Original);
688 
689   // Finally we can rematerialize OrigMI before MI.
690   SlotIndex DefIdx =
691       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
692 
693   // We take the DebugLoc from MI, since OrigMI may be attributed to a
694   // different source location.
695   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
696   NewMI->setDebugLoc(MI.getDebugLoc());
697 
698   (void)DefIdx;
699   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
700                     << *LIS.getInstructionFromIndex(DefIdx));
701 
702   // Replace operands
703   for (const auto &OpPair : Ops) {
704     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
705     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
706       MO.setReg(NewVReg);
707       MO.setIsKill();
708     }
709   }
710   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
711 
712   ++NumRemats;
713   return true;
714 }
715 
716 /// reMaterializeAll - Try to rematerialize as many uses as possible,
717 /// and trim the live ranges after.
718 void InlineSpiller::reMaterializeAll() {
719   if (!Edit->anyRematerializable())
720     return;
721 
722   UsedValues.clear();
723 
724   // Try to remat before all uses of snippets.
725   bool anyRemat = false;
726   for (Register Reg : RegsToSpill) {
727     LiveInterval &LI = LIS.getInterval(Reg);
728     for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
729       // Debug values are not allowed to affect codegen.
730       if (MI.isDebugValue())
731         continue;
732 
733       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
734              "instruction that isn't a DBG_VALUE");
735 
736       anyRemat |= reMaterializeFor(LI, MI);
737     }
738   }
739   if (!anyRemat)
740     return;
741 
742   // Remove any values that were completely rematted.
743   for (Register Reg : RegsToSpill) {
744     LiveInterval &LI = LIS.getInterval(Reg);
745     for (VNInfo *VNI : LI.vnis()) {
746       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
747         continue;
748       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
749       MI->addRegisterDead(Reg, &TRI);
750       if (!MI->allDefsAreDead())
751         continue;
752       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
753       DeadDefs.push_back(MI);
754     }
755   }
756 
757   // Eliminate dead code after remat. Note that some snippet copies may be
758   // deleted here.
759   if (DeadDefs.empty())
760     return;
761   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
762   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
763 
764   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
765   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
766   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
767   // removed, PHI VNI are still left in the LiveInterval.
768   // So to get rid of unused reg, we need to check whether it has non-dbg
769   // reference instead of whether it has non-empty interval.
770   unsigned ResultPos = 0;
771   for (Register Reg : RegsToSpill) {
772     if (MRI.reg_nodbg_empty(Reg)) {
773       Edit->eraseVirtReg(Reg);
774       continue;
775     }
776 
777     assert(LIS.hasInterval(Reg) &&
778            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
779            "Empty and not used live-range?!");
780 
781     RegsToSpill[ResultPos++] = Reg;
782   }
783   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
784   LLVM_DEBUG(dbgs() << RegsToSpill.size()
785                     << " registers to spill after remat.\n");
786 }
787 
788 //===----------------------------------------------------------------------===//
789 //                                 Spilling
790 //===----------------------------------------------------------------------===//
791 
792 /// If MI is a load or store of StackSlot, it can be removed.
793 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
794   int FI = 0;
795   Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
796   bool IsLoad = InstrReg;
797   if (!IsLoad)
798     InstrReg = TII.isStoreToStackSlot(*MI, FI);
799 
800   // We have a stack access. Is it the right register and slot?
801   if (InstrReg != Reg || FI != StackSlot)
802     return false;
803 
804   if (!IsLoad)
805     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
806 
807   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
808   LIS.RemoveMachineInstrFromMaps(*MI);
809   MI->eraseFromParent();
810 
811   if (IsLoad) {
812     ++NumReloadsRemoved;
813     --NumReloads;
814   } else {
815     ++NumSpillsRemoved;
816     --NumSpills;
817   }
818 
819   return true;
820 }
821 
822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
823 LLVM_DUMP_METHOD
824 // Dump the range of instructions from B to E with their slot indexes.
825 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
826                                                MachineBasicBlock::iterator E,
827                                                LiveIntervals const &LIS,
828                                                const char *const header,
829                                                Register VReg = Register()) {
830   char NextLine = '\n';
831   char SlotIndent = '\t';
832 
833   if (std::next(B) == E) {
834     NextLine = ' ';
835     SlotIndent = ' ';
836   }
837 
838   dbgs() << '\t' << header << ": " << NextLine;
839 
840   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
841     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
842 
843     // If a register was passed in and this instruction has it as a
844     // destination that is marked as an early clobber, print the
845     // early-clobber slot index.
846     if (VReg) {
847       MachineOperand *MO = I->findRegisterDefOperand(VReg);
848       if (MO && MO->isEarlyClobber())
849         Idx = Idx.getRegSlot(true);
850     }
851 
852     dbgs() << SlotIndent << Idx << '\t' << *I;
853   }
854 }
855 #endif
856 
857 /// foldMemoryOperand - Try folding stack slot references in Ops into their
858 /// instructions.
859 ///
860 /// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
861 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
862 /// @return       True on success.
863 bool InlineSpiller::
864 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
865                   MachineInstr *LoadMI) {
866   if (Ops.empty())
867     return false;
868   // Don't attempt folding in bundles.
869   MachineInstr *MI = Ops.front().first;
870   if (Ops.back().first != MI || MI->isBundled())
871     return false;
872 
873   bool WasCopy = MI->isCopy();
874   Register ImpReg;
875 
876   // TII::foldMemoryOperand will do what we need here for statepoint
877   // (fold load into use and remove corresponding def). We will replace
878   // uses of removed def with loads (spillAroundUses).
879   // For that to work we need to untie def and use to pass it through
880   // foldMemoryOperand and signal foldPatchpoint that it is allowed to
881   // fold them.
882   bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
883 
884   // Spill subregs if the target allows it.
885   // We always want to spill subregs for stackmap/patchpoint pseudos.
886   bool SpillSubRegs = TII.isSubregFoldable() ||
887                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
888                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
889                       MI->getOpcode() == TargetOpcode::STACKMAP;
890 
891   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
892   // operands.
893   SmallVector<unsigned, 8> FoldOps;
894   for (const auto &OpPair : Ops) {
895     unsigned Idx = OpPair.second;
896     assert(MI == OpPair.first && "Instruction conflict during operand folding");
897     MachineOperand &MO = MI->getOperand(Idx);
898 
899     // No point restoring an undef read, and we'll produce an invalid live
900     // interval.
901     // TODO: Is this really the correct way to handle undef tied uses?
902     if (MO.isUse() && !MO.readsReg() && !MO.isTied())
903       continue;
904 
905     if (MO.isImplicit()) {
906       ImpReg = MO.getReg();
907       continue;
908     }
909 
910     if (!SpillSubRegs && MO.getSubReg())
911       return false;
912     // We cannot fold a load instruction into a def.
913     if (LoadMI && MO.isDef())
914       return false;
915     // Tied use operands should not be passed to foldMemoryOperand.
916     if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
917       FoldOps.push_back(Idx);
918   }
919 
920   // If we only have implicit uses, we won't be able to fold that.
921   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
922   if (FoldOps.empty())
923     return false;
924 
925   MachineInstrSpan MIS(MI, MI->getParent());
926 
927   SmallVector<std::pair<unsigned, unsigned> > TiedOps;
928   if (UntieRegs)
929     for (unsigned Idx : FoldOps) {
930       MachineOperand &MO = MI->getOperand(Idx);
931       if (!MO.isTied())
932         continue;
933       unsigned Tied = MI->findTiedOperandIdx(Idx);
934       if (MO.isUse())
935         TiedOps.emplace_back(Tied, Idx);
936       else {
937         assert(MO.isDef() && "Tied to not use and def?");
938         TiedOps.emplace_back(Idx, Tied);
939       }
940       MI->untieRegOperand(Idx);
941     }
942 
943   MachineInstr *FoldMI =
944       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
945              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
946   if (!FoldMI) {
947     // Re-tie operands.
948     for (auto Tied : TiedOps)
949       MI->tieOperands(Tied.first, Tied.second);
950     return false;
951   }
952 
953   // Remove LIS for any dead defs in the original MI not in FoldMI.
954   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
955     if (!MO->isReg())
956       continue;
957     Register Reg = MO->getReg();
958     if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) {
959       continue;
960     }
961     // Skip non-Defs, including undef uses and internal reads.
962     if (MO->isUse())
963       continue;
964     PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
965     if (RI.FullyDefined)
966       continue;
967     // FoldMI does not define this physreg. Remove the LI segment.
968     assert(MO->isDead() && "Cannot fold physreg def");
969     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
970     LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
971   }
972 
973   int FI;
974   if (TII.isStoreToStackSlot(*MI, FI) &&
975       HSpiller.rmFromMergeableSpills(*MI, FI))
976     --NumSpills;
977   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
978   // Update the call site info.
979   if (MI->isCandidateForCallSiteEntry())
980     MI->getMF()->moveCallSiteInfo(MI, FoldMI);
981 
982   // If we've folded a store into an instruction labelled with debug-info,
983   // record a substitution from the old operand to the memory operand. Handle
984   // the simple common case where operand 0 is the one being folded, plus when
985   // the destination operand is also a tied def. More values could be
986   // substituted / preserved with more analysis.
987   if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
988     // Helper lambda.
989     auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
990       // Substitute old operand zero to the new instructions memory operand.
991       unsigned OldOperandNum = Ops[0].second;
992       unsigned NewNum = FoldMI->getDebugInstrNum();
993       unsigned OldNum = MI->getDebugInstrNum();
994       MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
995                          {NewNum, MachineFunction::DebugOperandMemNumber});
996     };
997 
998     const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
999     if (Ops.size() == 1 && Op0.isDef()) {
1000       MakeSubstitution();
1001     } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
1002                Op0.getReg() == MI->getOperand(1).getReg()) {
1003       MakeSubstitution();
1004     }
1005   } else if (MI->peekDebugInstrNum()) {
1006     // This is a debug-labelled instruction, but the operand being folded isn't
1007     // at operand zero. Most likely this means it's a load being folded in.
1008     // Substitute any register defs from operand zero up to the one being
1009     // folded -- past that point, we don't know what the new operand indexes
1010     // will be.
1011     MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
1012   }
1013 
1014   MI->eraseFromParent();
1015 
1016   // Insert any new instructions other than FoldMI into the LIS maps.
1017   assert(!MIS.empty() && "Unexpected empty span of instructions!");
1018   for (MachineInstr &MI : MIS)
1019     if (&MI != FoldMI)
1020       LIS.InsertMachineInstrInMaps(MI);
1021 
1022   // TII.foldMemoryOperand may have left some implicit operands on the
1023   // instruction.  Strip them.
1024   if (ImpReg)
1025     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1026       MachineOperand &MO = FoldMI->getOperand(i - 1);
1027       if (!MO.isReg() || !MO.isImplicit())
1028         break;
1029       if (MO.getReg() == ImpReg)
1030         FoldMI->removeOperand(i - 1);
1031     }
1032 
1033   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1034                                                 "folded"));
1035 
1036   if (!WasCopy)
1037     ++NumFolded;
1038   else if (Ops.front().second == 0) {
1039     ++NumSpills;
1040     // If there is only 1 store instruction is required for spill, add it
1041     // to mergeable list. In X86 AMX, 2 intructions are required to store.
1042     // We disable the merge for this case.
1043     if (std::distance(MIS.begin(), MIS.end()) <= 1)
1044       HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
1045   } else
1046     ++NumReloads;
1047   return true;
1048 }
1049 
1050 void InlineSpiller::insertReload(Register NewVReg,
1051                                  SlotIndex Idx,
1052                                  MachineBasicBlock::iterator MI) {
1053   MachineBasicBlock &MBB = *MI->getParent();
1054 
1055   MachineInstrSpan MIS(MI, &MBB);
1056   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1057                            MRI.getRegClass(NewVReg), &TRI, Register());
1058 
1059   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1060 
1061   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1062                                                 NewVReg));
1063   ++NumReloads;
1064 }
1065 
1066 /// Check if \p Def fully defines a VReg with an undefined value.
1067 /// If that's the case, that means the value of VReg is actually
1068 /// not relevant.
1069 static bool isRealSpill(const MachineInstr &Def) {
1070   if (!Def.isImplicitDef())
1071     return true;
1072   assert(Def.getNumOperands() == 1 &&
1073          "Implicit def with more than one definition");
1074   // We can say that the VReg defined by Def is undef, only if it is
1075   // fully defined by Def. Otherwise, some of the lanes may not be
1076   // undef and the value of the VReg matters.
1077   return Def.getOperand(0).getSubReg();
1078 }
1079 
1080 /// insertSpill - Insert a spill of NewVReg after MI.
1081 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1082                                  MachineBasicBlock::iterator MI) {
1083   // Spill are not terminators, so inserting spills after terminators will
1084   // violate invariants in MachineVerifier.
1085   assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1086   MachineBasicBlock &MBB = *MI->getParent();
1087 
1088   MachineInstrSpan MIS(MI, &MBB);
1089   MachineBasicBlock::iterator SpillBefore = std::next(MI);
1090   bool IsRealSpill = isRealSpill(*MI);
1091 
1092   if (IsRealSpill)
1093     TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1094                             MRI.getRegClass(NewVReg), &TRI, Register());
1095   else
1096     // Don't spill undef value.
1097     // Anything works for undef, in particular keeping the memory
1098     // uninitialized is a viable option and it saves code size and
1099     // run time.
1100     BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1101         .addReg(NewVReg, getKillRegState(isKill));
1102 
1103   MachineBasicBlock::iterator Spill = std::next(MI);
1104   LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1105   for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1106     getVDefInterval(MI, LIS);
1107 
1108   LLVM_DEBUG(
1109       dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1110   ++NumSpills;
1111   // If there is only 1 store instruction is required for spill, add it
1112   // to mergeable list. In X86 AMX, 2 intructions are required to store.
1113   // We disable the merge for this case.
1114   if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1115     HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1116 }
1117 
1118 /// spillAroundUses - insert spill code around each use of Reg.
1119 void InlineSpiller::spillAroundUses(Register Reg) {
1120   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1121   LiveInterval &OldLI = LIS.getInterval(Reg);
1122 
1123   // Iterate over instructions using Reg.
1124   for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1125     // Debug values are not allowed to affect codegen.
1126     if (MI.isDebugValue()) {
1127       // Modify DBG_VALUE now that the value is in a spill slot.
1128       MachineBasicBlock *MBB = MI.getParent();
1129       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1130       buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1131       MBB->erase(MI);
1132       continue;
1133     }
1134 
1135     assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1136            "instruction that isn't a DBG_VALUE");
1137 
1138     // Ignore copies to/from snippets. We'll delete them.
1139     if (SnippetCopies.count(&MI))
1140       continue;
1141 
1142     // Stack slot accesses may coalesce away.
1143     if (coalesceStackAccess(&MI, Reg))
1144       continue;
1145 
1146     // Analyze instruction.
1147     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1148     VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1149 
1150     // Find the slot index where this instruction reads and writes OldLI.
1151     // This is usually the def slot, except for tied early clobbers.
1152     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1153     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1154       if (SlotIndex::isSameInstr(Idx, VNI->def))
1155         Idx = VNI->def;
1156 
1157     // Check for a sibling copy.
1158     Register SibReg = isCopyOfBundle(MI, Reg);
1159     if (SibReg && isSibling(SibReg)) {
1160       // This may actually be a copy between snippets.
1161       if (isRegToSpill(SibReg)) {
1162         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1163         SnippetCopies.insert(&MI);
1164         continue;
1165       }
1166       if (RI.Writes) {
1167         if (hoistSpillInsideBB(OldLI, MI)) {
1168           // This COPY is now dead, the value is already in the stack slot.
1169           MI.getOperand(0).setIsDead();
1170           DeadDefs.push_back(&MI);
1171           continue;
1172         }
1173       } else {
1174         // This is a reload for a sib-reg copy. Drop spills downstream.
1175         LiveInterval &SibLI = LIS.getInterval(SibReg);
1176         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1177         // The COPY will fold to a reload below.
1178       }
1179     }
1180 
1181     // Attempt to fold memory ops.
1182     if (foldMemoryOperand(Ops))
1183       continue;
1184 
1185     // Create a new virtual register for spill/fill.
1186     // FIXME: Infer regclass from instruction alone.
1187     Register NewVReg = Edit->createFrom(Reg);
1188 
1189     if (RI.Reads)
1190       insertReload(NewVReg, Idx, &MI);
1191 
1192     // Rewrite instruction operands.
1193     bool hasLiveDef = false;
1194     for (const auto &OpPair : Ops) {
1195       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1196       MO.setReg(NewVReg);
1197       if (MO.isUse()) {
1198         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1199           MO.setIsKill();
1200       } else {
1201         if (!MO.isDead())
1202           hasLiveDef = true;
1203       }
1204     }
1205     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1206 
1207     // FIXME: Use a second vreg if instruction has no tied ops.
1208     if (RI.Writes)
1209       if (hasLiveDef)
1210         insertSpill(NewVReg, true, &MI);
1211   }
1212 }
1213 
1214 /// spillAll - Spill all registers remaining after rematerialization.
1215 void InlineSpiller::spillAll() {
1216   // Update LiveStacks now that we are committed to spilling.
1217   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1218     StackSlot = VRM.assignVirt2StackSlot(Original);
1219     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1220     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1221   } else
1222     StackInt = &LSS.getInterval(StackSlot);
1223 
1224   if (Original != Edit->getReg())
1225     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1226 
1227   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1228   for (Register Reg : RegsToSpill)
1229     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1230                                      StackInt->getValNumInfo(0));
1231   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1232 
1233   // Spill around uses of all RegsToSpill.
1234   for (Register Reg : RegsToSpill)
1235     spillAroundUses(Reg);
1236 
1237   // Hoisted spills may cause dead code.
1238   if (!DeadDefs.empty()) {
1239     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1240     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1241   }
1242 
1243   // Finally delete the SnippetCopies.
1244   for (Register Reg : RegsToSpill) {
1245     for (MachineInstr &MI :
1246          llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1247       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1248       // FIXME: Do this with a LiveRangeEdit callback.
1249       LIS.getSlotIndexes()->removeSingleMachineInstrFromMaps(MI);
1250       MI.eraseFromBundle();
1251     }
1252   }
1253 
1254   // Delete all spilled registers.
1255   for (Register Reg : RegsToSpill)
1256     Edit->eraseVirtReg(Reg);
1257 }
1258 
1259 void InlineSpiller::spill(LiveRangeEdit &edit) {
1260   ++NumSpilledRanges;
1261   Edit = &edit;
1262   assert(!Register::isStackSlot(edit.getReg()) &&
1263          "Trying to spill a stack slot.");
1264   // Share a stack slot among all descendants of Original.
1265   Original = VRM.getOriginal(edit.getReg());
1266   StackSlot = VRM.getStackSlot(Original);
1267   StackInt = nullptr;
1268 
1269   LLVM_DEBUG(dbgs() << "Inline spilling "
1270                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1271                     << ':' << edit.getParent() << "\nFrom original "
1272                     << printReg(Original) << '\n');
1273   assert(edit.getParent().isSpillable() &&
1274          "Attempting to spill already spilled value.");
1275   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1276 
1277   collectRegsToSpill();
1278   reMaterializeAll();
1279 
1280   // Remat may handle everything.
1281   if (!RegsToSpill.empty())
1282     spillAll();
1283 
1284   Edit->calculateRegClassAndHint(MF, VRAI);
1285 }
1286 
1287 /// Optimizations after all the reg selections and spills are done.
1288 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1289 
1290 /// When a spill is inserted, add the spill to MergeableSpills map.
1291 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1292                                             unsigned Original) {
1293   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1294   LiveInterval &OrigLI = LIS.getInterval(Original);
1295   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1296   // LiveInterval may be cleared after all its references are spilled.
1297   if (!StackSlotToOrigLI.contains(StackSlot)) {
1298     auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1299     LI->assign(OrigLI, Allocator);
1300     StackSlotToOrigLI[StackSlot] = std::move(LI);
1301   }
1302   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1303   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1304   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1305   MergeableSpills[MIdx].insert(&Spill);
1306 }
1307 
1308 /// When a spill is removed, remove the spill from MergeableSpills map.
1309 /// Return true if the spill is removed successfully.
1310 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1311                                              int StackSlot) {
1312   auto It = StackSlotToOrigLI.find(StackSlot);
1313   if (It == StackSlotToOrigLI.end())
1314     return false;
1315   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1316   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1317   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1318   return MergeableSpills[MIdx].erase(&Spill);
1319 }
1320 
1321 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1322 /// i.e., there should be a living sibling of OrigReg at the insert point.
1323 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1324                                      MachineBasicBlock &BB, Register &LiveReg) {
1325   SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1326   // The original def could be after the last insert point in the root block,
1327   // we can't hoist to here.
1328   if (Idx < OrigVNI.def) {
1329     // TODO: We could be better here. If LI is not alive in landing pad
1330     // we could hoist spill after LIP.
1331     LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1332     return false;
1333   }
1334   Register OrigReg = OrigLI.reg();
1335   SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1336   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1337 
1338   for (const Register &SibReg : Siblings) {
1339     LiveInterval &LI = LIS.getInterval(SibReg);
1340     VNInfo *VNI = LI.getVNInfoAt(Idx);
1341     if (VNI) {
1342       LiveReg = SibReg;
1343       return true;
1344     }
1345   }
1346   return false;
1347 }
1348 
1349 /// Remove redundant spills in the same BB. Save those redundant spills in
1350 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1351 void HoistSpillHelper::rmRedundantSpills(
1352     SmallPtrSet<MachineInstr *, 16> &Spills,
1353     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1354     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1355   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1356   // another spill inside. If a BB contains more than one spill, only keep the
1357   // earlier spill with smaller SlotIndex.
1358   for (auto *const CurrentSpill : Spills) {
1359     MachineBasicBlock *Block = CurrentSpill->getParent();
1360     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1361     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1362     if (PrevSpill) {
1363       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1364       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1365       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1366       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1367       SpillsToRm.push_back(SpillToRm);
1368       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1369     } else {
1370       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1371     }
1372   }
1373   for (auto *const SpillToRm : SpillsToRm)
1374     Spills.erase(SpillToRm);
1375 }
1376 
1377 /// Starting from \p Root find a top-down traversal order of the dominator
1378 /// tree to visit all basic blocks containing the elements of \p Spills.
1379 /// Redundant spills will be found and put into \p SpillsToRm at the same
1380 /// time. \p SpillBBToSpill will be populated as part of the process and
1381 /// maps a basic block to the first store occurring in the basic block.
1382 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1383 void HoistSpillHelper::getVisitOrders(
1384     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1385     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1386     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1387     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1388     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1389   // The set contains all the possible BB nodes to which we may hoist
1390   // original spills.
1391   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1392   // Save the BB nodes on the path from the first BB node containing
1393   // non-redundant spill to the Root node.
1394   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1395   // All the spills to be hoisted must originate from a single def instruction
1396   // to the OrigReg. It means the def instruction should dominate all the spills
1397   // to be hoisted. We choose the BB where the def instruction is located as
1398   // the Root.
1399   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1400   // For every node on the dominator tree with spill, walk up on the dominator
1401   // tree towards the Root node until it is reached. If there is other node
1402   // containing spill in the middle of the path, the previous spill saw will
1403   // be redundant and the node containing it will be removed. All the nodes on
1404   // the path starting from the first node with non-redundant spill to the Root
1405   // node will be added to the WorkSet, which will contain all the possible
1406   // locations where spills may be hoisted to after the loop below is done.
1407   for (auto *const Spill : Spills) {
1408     MachineBasicBlock *Block = Spill->getParent();
1409     MachineDomTreeNode *Node = MDT[Block];
1410     MachineInstr *SpillToRm = nullptr;
1411     while (Node != RootIDomNode) {
1412       // If Node dominates Block, and it already contains a spill, the spill in
1413       // Block will be redundant.
1414       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1415         SpillToRm = SpillBBToSpill[MDT[Block]];
1416         break;
1417         /// If we see the Node already in WorkSet, the path from the Node to
1418         /// the Root node must already be traversed by another spill.
1419         /// Then no need to repeat.
1420       } else if (WorkSet.count(Node)) {
1421         break;
1422       } else {
1423         NodesOnPath.insert(Node);
1424       }
1425       Node = Node->getIDom();
1426     }
1427     if (SpillToRm) {
1428       SpillsToRm.push_back(SpillToRm);
1429     } else {
1430       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1431       // set the initial status before hoisting start. The value of BBs
1432       // containing original spills is set to 0, in order to descriminate
1433       // with BBs containing hoisted spills which will be inserted to
1434       // SpillsToKeep later during hoisting.
1435       SpillsToKeep[MDT[Block]] = 0;
1436       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1437     }
1438     NodesOnPath.clear();
1439   }
1440 
1441   // Sort the nodes in WorkSet in top-down order and save the nodes
1442   // in Orders. Orders will be used for hoisting in runHoistSpills.
1443   unsigned idx = 0;
1444   Orders.push_back(MDT.getBase().getNode(Root));
1445   do {
1446     MachineDomTreeNode *Node = Orders[idx++];
1447     for (MachineDomTreeNode *Child : Node->children()) {
1448       if (WorkSet.count(Child))
1449         Orders.push_back(Child);
1450     }
1451   } while (idx != Orders.size());
1452   assert(Orders.size() == WorkSet.size() &&
1453          "Orders have different size with WorkSet");
1454 
1455 #ifndef NDEBUG
1456   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1457   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1458   for (; RIt != Orders.rend(); RIt++)
1459     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1460   LLVM_DEBUG(dbgs() << "\n");
1461 #endif
1462 }
1463 
1464 /// Try to hoist spills according to BB hotness. The spills to removed will
1465 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1466 /// \p SpillsToIns.
1467 void HoistSpillHelper::runHoistSpills(
1468     LiveInterval &OrigLI, VNInfo &OrigVNI,
1469     SmallPtrSet<MachineInstr *, 16> &Spills,
1470     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1471     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1472   // Visit order of dominator tree nodes.
1473   SmallVector<MachineDomTreeNode *, 32> Orders;
1474   // SpillsToKeep contains all the nodes where spills are to be inserted
1475   // during hoisting. If the spill to be inserted is an original spill
1476   // (not a hoisted one), the value of the map entry is 0. If the spill
1477   // is a hoisted spill, the value of the map entry is the VReg to be used
1478   // as the source of the spill.
1479   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1480   // Map from BB to the first spill inside of it.
1481   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1482 
1483   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1484 
1485   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1486   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1487                  SpillBBToSpill);
1488 
1489   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1490   // nodes set and the cost of all the spills inside those nodes.
1491   // The nodes set are the locations where spills are to be inserted
1492   // in the subtree of current node.
1493   using NodesCostPair =
1494       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1495   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1496 
1497   // Iterate Orders set in reverse order, which will be a bottom-up order
1498   // in the dominator tree. Once we visit a dom tree node, we know its
1499   // children have already been visited and the spill locations in the
1500   // subtrees of all the children have been determined.
1501   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1502   for (; RIt != Orders.rend(); RIt++) {
1503     MachineBasicBlock *Block = (*RIt)->getBlock();
1504 
1505     // If Block contains an original spill, simply continue.
1506     if (SpillsToKeep.contains(*RIt) && !SpillsToKeep[*RIt]) {
1507       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1508       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1509       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1510       continue;
1511     }
1512 
1513     // Collect spills in subtree of current node (*RIt) to
1514     // SpillsInSubTreeMap[*RIt].first.
1515     for (MachineDomTreeNode *Child : (*RIt)->children()) {
1516       if (!SpillsInSubTreeMap.contains(Child))
1517         continue;
1518       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1519       // should be placed before getting the begin and end iterators of
1520       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1521       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1522       // and the map grows and then the original buckets in the map are moved.
1523       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1524           SpillsInSubTreeMap[*RIt].first;
1525       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1526       SubTreeCost += SpillsInSubTreeMap[Child].second;
1527       auto BI = SpillsInSubTreeMap[Child].first.begin();
1528       auto EI = SpillsInSubTreeMap[Child].first.end();
1529       SpillsInSubTree.insert(BI, EI);
1530       SpillsInSubTreeMap.erase(Child);
1531     }
1532 
1533     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1534           SpillsInSubTreeMap[*RIt].first;
1535     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1536     // No spills in subtree, simply continue.
1537     if (SpillsInSubTree.empty())
1538       continue;
1539 
1540     // Check whether Block is a possible candidate to insert spill.
1541     Register LiveReg;
1542     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1543       continue;
1544 
1545     // If there are multiple spills that could be merged, bias a little
1546     // to hoist the spill.
1547     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1548                                        ? BranchProbability(9, 10)
1549                                        : BranchProbability(1, 1);
1550     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1551       // Hoist: Move spills to current Block.
1552       for (auto *const SpillBB : SpillsInSubTree) {
1553         // When SpillBB is a BB contains original spill, insert the spill
1554         // to SpillsToRm.
1555         if (SpillsToKeep.contains(SpillBB) && !SpillsToKeep[SpillBB]) {
1556           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1557           SpillsToRm.push_back(SpillToRm);
1558         }
1559         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1560         SpillsToKeep.erase(SpillBB);
1561       }
1562       // Current Block is the BB containing the new hoisted spill. Add it to
1563       // SpillsToKeep. LiveReg is the source of the new spill.
1564       SpillsToKeep[*RIt] = LiveReg;
1565       LLVM_DEBUG({
1566         dbgs() << "spills in BB: ";
1567         for (const auto Rspill : SpillsInSubTree)
1568           dbgs() << Rspill->getBlock()->getNumber() << " ";
1569         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1570                << "\n";
1571       });
1572       SpillsInSubTree.clear();
1573       SpillsInSubTree.insert(*RIt);
1574       SubTreeCost = MBFI.getBlockFreq(Block);
1575     }
1576   }
1577   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1578   // save them to SpillsToIns.
1579   for (const auto &Ent : SpillsToKeep) {
1580     if (Ent.second)
1581       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1582   }
1583 }
1584 
1585 /// For spills with equal values, remove redundant spills and hoist those left
1586 /// to less hot spots.
1587 ///
1588 /// Spills with equal values will be collected into the same set in
1589 /// MergeableSpills when spill is inserted. These equal spills are originated
1590 /// from the same defining instruction and are dominated by the instruction.
1591 /// Before hoisting all the equal spills, redundant spills inside in the same
1592 /// BB are first marked to be deleted. Then starting from the spills left, walk
1593 /// up on the dominator tree towards the Root node where the define instruction
1594 /// is located, mark the dominated spills to be deleted along the way and
1595 /// collect the BB nodes on the path from non-dominated spills to the define
1596 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1597 /// where we are considering to hoist the spills. We iterate the WorkSet in
1598 /// bottom-up order, and for each node, we will decide whether to hoist spills
1599 /// inside its subtree to that node. In this way, we can get benefit locally
1600 /// even if hoisting all the equal spills to one cold place is impossible.
1601 void HoistSpillHelper::hoistAllSpills() {
1602   SmallVector<Register, 4> NewVRegs;
1603   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1604 
1605   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1606     Register Reg = Register::index2VirtReg(i);
1607     Register Original = VRM.getPreSplitReg(Reg);
1608     if (!MRI.def_empty(Reg))
1609       Virt2SiblingsMap[Original].insert(Reg);
1610   }
1611 
1612   // Each entry in MergeableSpills contains a spill set with equal values.
1613   for (auto &Ent : MergeableSpills) {
1614     int Slot = Ent.first.first;
1615     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1616     VNInfo *OrigVNI = Ent.first.second;
1617     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1618     if (Ent.second.empty())
1619       continue;
1620 
1621     LLVM_DEBUG({
1622       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1623              << "Equal spills in BB: ";
1624       for (const auto spill : EqValSpills)
1625         dbgs() << spill->getParent()->getNumber() << " ";
1626       dbgs() << "\n";
1627     });
1628 
1629     // SpillsToRm is the spill set to be removed from EqValSpills.
1630     SmallVector<MachineInstr *, 16> SpillsToRm;
1631     // SpillsToIns is the spill set to be newly inserted after hoisting.
1632     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1633 
1634     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1635 
1636     LLVM_DEBUG({
1637       dbgs() << "Finally inserted spills in BB: ";
1638       for (const auto &Ispill : SpillsToIns)
1639         dbgs() << Ispill.first->getNumber() << " ";
1640       dbgs() << "\nFinally removed spills in BB: ";
1641       for (const auto Rspill : SpillsToRm)
1642         dbgs() << Rspill->getParent()->getNumber() << " ";
1643       dbgs() << "\n";
1644     });
1645 
1646     // Stack live range update.
1647     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1648     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1649       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1650                                      StackIntvl.getValNumInfo(0));
1651 
1652     // Insert hoisted spills.
1653     for (auto const &Insert : SpillsToIns) {
1654       MachineBasicBlock *BB = Insert.first;
1655       Register LiveReg = Insert.second;
1656       MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1657       MachineInstrSpan MIS(MII, BB);
1658       TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1659                               MRI.getRegClass(LiveReg), &TRI, Register());
1660       LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1661       for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1662         getVDefInterval(MI, LIS);
1663       ++NumSpills;
1664     }
1665 
1666     // Remove redundant spills or change them to dead instructions.
1667     NumSpills -= SpillsToRm.size();
1668     for (auto *const RMEnt : SpillsToRm) {
1669       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1670       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1671         MachineOperand &MO = RMEnt->getOperand(i - 1);
1672         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1673           RMEnt->removeOperand(i - 1);
1674       }
1675     }
1676     Edit.eliminateDeadDefs(SpillsToRm, std::nullopt);
1677   }
1678 }
1679 
1680 /// For VirtReg clone, the \p New register should have the same physreg or
1681 /// stackslot as the \p old register.
1682 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1683   if (VRM.hasPhys(Old))
1684     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1685   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1686     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1687   else
1688     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1689   if (VRM.hasShape(Old))
1690     VRM.assignVirt2Shape(New, VRM.getShape(Old));
1691 }
1692