1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 
131 using namespace llvm;
132 using namespace LiveDebugValues;
133 
134 // SSAUpdaterImple sets DEBUG_TYPE, change it.
135 #undef DEBUG_TYPE
136 #define DEBUG_TYPE "livedebugvalues"
137 
138 // Act more like the VarLoc implementation, by propagating some locations too
139 // far and ignoring some transfers.
140 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
141                                    cl::desc("Act like old LiveDebugValues did"),
142                                    cl::init(false));
143 
144 // Limit for the maximum number of stack slots we should track, past which we
145 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
146 // stack slots which leads to high memory consumption, and in some scenarios
147 // (such as asan with very many locals) the working set of the function can be
148 // very large, causing many spills. In these scenarios, it is very unlikely that
149 // the developer has hundreds of variables live at the same time that they're
150 // carefully thinking about -- instead, they probably autogenerated the code.
151 // When this happens, gracefully stop tracking excess spill slots, rather than
152 // consuming all the developer's memory.
153 static cl::opt<unsigned>
154     StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
155                          cl::desc("livedebugvalues-stack-ws-limit"),
156                          cl::init(250));
157 
158 /// Tracker for converting machine value locations and variable values into
159 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
160 /// specifying block live-in locations and transfers within blocks.
161 ///
162 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
163 /// and must be initialized with the set of variable values that are live-in to
164 /// the block. The caller then repeatedly calls process(). TransferTracker picks
165 /// out variable locations for the live-in variable values (if there _is_ a
166 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
167 /// stepped through, transfers of values between machine locations are
168 /// identified and if profitable, a DBG_VALUE created.
169 ///
170 /// This is where debug use-before-defs would be resolved: a variable with an
171 /// unavailable value could materialize in the middle of a block, when the
172 /// value becomes available. Or, we could detect clobbers and re-specify the
173 /// variable in a backup location. (XXX these are unimplemented).
174 class TransferTracker {
175 public:
176   const TargetInstrInfo *TII;
177   const TargetLowering *TLI;
178   /// This machine location tracker is assumed to always contain the up-to-date
179   /// value mapping for all machine locations. TransferTracker only reads
180   /// information from it. (XXX make it const?)
181   MLocTracker *MTracker;
182   MachineFunction &MF;
183   bool ShouldEmitDebugEntryValues;
184 
185   /// Record of all changes in variable locations at a block position. Awkwardly
186   /// we allow inserting either before or after the point: MBB != nullptr
187   /// indicates it's before, otherwise after.
188   struct Transfer {
189     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
190     MachineBasicBlock *MBB; /// non-null if we should insert after.
191     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
192   };
193 
194   struct LocAndProperties {
195     LocIdx Loc;
196     DbgValueProperties Properties;
197   };
198 
199   /// Collection of transfers (DBG_VALUEs) to be inserted.
200   SmallVector<Transfer, 32> Transfers;
201 
202   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
203   /// between TransferTrackers view of variable locations and MLocTrackers. For
204   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
205   /// does not.
206   SmallVector<ValueIDNum, 32> VarLocs;
207 
208   /// Map from LocIdxes to which DebugVariables are based that location.
209   /// Mantained while stepping through the block. Not accurate if
210   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
211   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
212 
213   /// Map from DebugVariable to it's current location and qualifying meta
214   /// information. To be used in conjunction with ActiveMLocs to construct
215   /// enough information for the DBG_VALUEs for a particular LocIdx.
216   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
217 
218   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
219   SmallVector<MachineInstr *, 4> PendingDbgValues;
220 
221   /// Record of a use-before-def: created when a value that's live-in to the
222   /// current block isn't available in any machine location, but it will be
223   /// defined in this block.
224   struct UseBeforeDef {
225     /// Value of this variable, def'd in block.
226     ValueIDNum ID;
227     /// Identity of this variable.
228     DebugVariable Var;
229     /// Additional variable properties.
230     DbgValueProperties Properties;
231   };
232 
233   /// Map from instruction index (within the block) to the set of UseBeforeDefs
234   /// that become defined at that instruction.
235   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
236 
237   /// The set of variables that are in UseBeforeDefs and can become a location
238   /// once the relevant value is defined. An element being erased from this
239   /// collection prevents the use-before-def materializing.
240   DenseSet<DebugVariable> UseBeforeDefVariables;
241 
242   const TargetRegisterInfo &TRI;
243   const BitVector &CalleeSavedRegs;
244 
245   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
246                   MachineFunction &MF, const TargetRegisterInfo &TRI,
247                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
248       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
249         CalleeSavedRegs(CalleeSavedRegs) {
250     TLI = MF.getSubtarget().getTargetLowering();
251     auto &TM = TPC.getTM<TargetMachine>();
252     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
253   }
254 
255   /// Load object with live-in variable values. \p mlocs contains the live-in
256   /// values in each machine location, while \p vlocs the live-in variable
257   /// values. This method picks variable locations for the live-in variables,
258   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
259   /// object fields to track variable locations as we step through the block.
260   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
261   void
262   loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs,
263              const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
264              unsigned NumLocs) {
265     ActiveMLocs.clear();
266     ActiveVLocs.clear();
267     VarLocs.clear();
268     VarLocs.reserve(NumLocs);
269     UseBeforeDefs.clear();
270     UseBeforeDefVariables.clear();
271 
272     auto isCalleeSaved = [&](LocIdx L) {
273       unsigned Reg = MTracker->LocIdxToLocID[L];
274       if (Reg >= MTracker->NumRegs)
275         return false;
276       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
277         if (CalleeSavedRegs.test(*RAI))
278           return true;
279       return false;
280     };
281 
282     // Map of the preferred location for each value.
283     DenseMap<ValueIDNum, LocIdx> ValueToLoc;
284 
285     // Initialized the preferred-location map with illegal locations, to be
286     // filled in later.
287     for (const auto &VLoc : VLocs)
288       if (VLoc.second.Kind == DbgValue::Def)
289         ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()});
290 
291     ActiveMLocs.reserve(VLocs.size());
292     ActiveVLocs.reserve(VLocs.size());
293 
294     // Produce a map of value numbers to the current machine locs they live
295     // in. When emulating VarLocBasedImpl, there should only be one
296     // location; when not, we get to pick.
297     for (auto Location : MTracker->locations()) {
298       LocIdx Idx = Location.Idx;
299       ValueIDNum &VNum = MLocs[Idx.asU64()];
300       VarLocs.push_back(VNum);
301 
302       // Is there a variable that wants a location for this value? If not, skip.
303       auto VIt = ValueToLoc.find(VNum);
304       if (VIt == ValueToLoc.end())
305         continue;
306 
307       LocIdx CurLoc = VIt->second;
308       // In order of preference, pick:
309       //  * Callee saved registers,
310       //  * Other registers,
311       //  * Spill slots.
312       if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
313           (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
314         // Insert, or overwrite if insertion failed.
315         VIt->second = Idx;
316       }
317     }
318 
319     // Now map variables to their picked LocIdxes.
320     for (const auto &Var : VLocs) {
321       if (Var.second.Kind == DbgValue::Const) {
322         PendingDbgValues.push_back(
323             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
324         continue;
325       }
326 
327       // If the value has no location, we can't make a variable location.
328       const ValueIDNum &Num = Var.second.ID;
329       auto ValuesPreferredLoc = ValueToLoc.find(Num);
330       if (ValuesPreferredLoc->second.isIllegal()) {
331         // If it's a def that occurs in this block, register it as a
332         // use-before-def to be resolved as we step through the block.
333         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
334           addUseBeforeDef(Var.first, Var.second.Properties, Num);
335         else
336           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
337         continue;
338       }
339 
340       LocIdx M = ValuesPreferredLoc->second;
341       auto NewValue = LocAndProperties{M, Var.second.Properties};
342       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
343       if (!Result.second)
344         Result.first->second = NewValue;
345       ActiveMLocs[M].insert(Var.first);
346       PendingDbgValues.push_back(
347           MTracker->emitLoc(M, Var.first, Var.second.Properties));
348     }
349     flushDbgValues(MBB.begin(), &MBB);
350   }
351 
352   /// Record that \p Var has value \p ID, a value that becomes available
353   /// later in the function.
354   void addUseBeforeDef(const DebugVariable &Var,
355                        const DbgValueProperties &Properties, ValueIDNum ID) {
356     UseBeforeDef UBD = {ID, Var, Properties};
357     UseBeforeDefs[ID.getInst()].push_back(UBD);
358     UseBeforeDefVariables.insert(Var);
359   }
360 
361   /// After the instruction at index \p Inst and position \p pos has been
362   /// processed, check whether it defines a variable value in a use-before-def.
363   /// If so, and the variable value hasn't changed since the start of the
364   /// block, create a DBG_VALUE.
365   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
366     auto MIt = UseBeforeDefs.find(Inst);
367     if (MIt == UseBeforeDefs.end())
368       return;
369 
370     for (auto &Use : MIt->second) {
371       LocIdx L = Use.ID.getLoc();
372 
373       // If something goes very wrong, we might end up labelling a COPY
374       // instruction or similar with an instruction number, where it doesn't
375       // actually define a new value, instead it moves a value. In case this
376       // happens, discard.
377       if (MTracker->readMLoc(L) != Use.ID)
378         continue;
379 
380       // If a different debug instruction defined the variable value / location
381       // since the start of the block, don't materialize this use-before-def.
382       if (!UseBeforeDefVariables.count(Use.Var))
383         continue;
384 
385       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
386     }
387     flushDbgValues(pos, nullptr);
388   }
389 
390   /// Helper to move created DBG_VALUEs into Transfers collection.
391   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
392     if (PendingDbgValues.size() == 0)
393       return;
394 
395     // Pick out the instruction start position.
396     MachineBasicBlock::instr_iterator BundleStart;
397     if (MBB && Pos == MBB->begin())
398       BundleStart = MBB->instr_begin();
399     else
400       BundleStart = getBundleStart(Pos->getIterator());
401 
402     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
403     PendingDbgValues.clear();
404   }
405 
406   bool isEntryValueVariable(const DebugVariable &Var,
407                             const DIExpression *Expr) const {
408     if (!Var.getVariable()->isParameter())
409       return false;
410 
411     if (Var.getInlinedAt())
412       return false;
413 
414     if (Expr->getNumElements() > 0)
415       return false;
416 
417     return true;
418   }
419 
420   bool isEntryValueValue(const ValueIDNum &Val) const {
421     // Must be in entry block (block number zero), and be a PHI / live-in value.
422     if (Val.getBlock() || !Val.isPHI())
423       return false;
424 
425     // Entry values must enter in a register.
426     if (MTracker->isSpill(Val.getLoc()))
427       return false;
428 
429     Register SP = TLI->getStackPointerRegisterToSaveRestore();
430     Register FP = TRI.getFrameRegister(MF);
431     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
432     return Reg != SP && Reg != FP;
433   }
434 
435   bool recoverAsEntryValue(const DebugVariable &Var,
436                            const DbgValueProperties &Prop,
437                            const ValueIDNum &Num) {
438     // Is this variable location a candidate to be an entry value. First,
439     // should we be trying this at all?
440     if (!ShouldEmitDebugEntryValues)
441       return false;
442 
443     // Is the variable appropriate for entry values (i.e., is a parameter).
444     if (!isEntryValueVariable(Var, Prop.DIExpr))
445       return false;
446 
447     // Is the value assigned to this variable still the entry value?
448     if (!isEntryValueValue(Num))
449       return false;
450 
451     // Emit a variable location using an entry value expression.
452     DIExpression *NewExpr =
453         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
454     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
455     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
456 
457     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
458     return true;
459   }
460 
461   /// Change a variable value after encountering a DBG_VALUE inside a block.
462   void redefVar(const MachineInstr &MI) {
463     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
464                       MI.getDebugLoc()->getInlinedAt());
465     DbgValueProperties Properties(MI);
466 
467     const MachineOperand &MO = MI.getOperand(0);
468 
469     // Ignore non-register locations, we don't transfer those.
470     if (!MO.isReg() || MO.getReg() == 0) {
471       auto It = ActiveVLocs.find(Var);
472       if (It != ActiveVLocs.end()) {
473         ActiveMLocs[It->second.Loc].erase(Var);
474         ActiveVLocs.erase(It);
475      }
476       // Any use-before-defs no longer apply.
477       UseBeforeDefVariables.erase(Var);
478       return;
479     }
480 
481     Register Reg = MO.getReg();
482     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
483     redefVar(MI, Properties, NewLoc);
484   }
485 
486   /// Handle a change in variable location within a block. Terminate the
487   /// variables current location, and record the value it now refers to, so
488   /// that we can detect location transfers later on.
489   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
490                 Optional<LocIdx> OptNewLoc) {
491     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
492                       MI.getDebugLoc()->getInlinedAt());
493     // Any use-before-defs no longer apply.
494     UseBeforeDefVariables.erase(Var);
495 
496     // Erase any previous location,
497     auto It = ActiveVLocs.find(Var);
498     if (It != ActiveVLocs.end())
499       ActiveMLocs[It->second.Loc].erase(Var);
500 
501     // If there _is_ no new location, all we had to do was erase.
502     if (!OptNewLoc)
503       return;
504     LocIdx NewLoc = *OptNewLoc;
505 
506     // Check whether our local copy of values-by-location in #VarLocs is out of
507     // date. Wipe old tracking data for the location if it's been clobbered in
508     // the meantime.
509     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
510       for (const auto &P : ActiveMLocs[NewLoc]) {
511         ActiveVLocs.erase(P);
512       }
513       ActiveMLocs[NewLoc.asU64()].clear();
514       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
515     }
516 
517     ActiveMLocs[NewLoc].insert(Var);
518     if (It == ActiveVLocs.end()) {
519       ActiveVLocs.insert(
520           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
521     } else {
522       It->second.Loc = NewLoc;
523       It->second.Properties = Properties;
524     }
525   }
526 
527   /// Account for a location \p mloc being clobbered. Examine the variable
528   /// locations that will be terminated: and try to recover them by using
529   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
530   /// explicitly terminate a location if it can't be recovered.
531   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
532                    bool MakeUndef = true) {
533     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
534     if (ActiveMLocIt == ActiveMLocs.end())
535       return;
536 
537     // What was the old variable value?
538     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
539     clobberMloc(MLoc, OldValue, Pos, MakeUndef);
540   }
541   /// Overload that takes an explicit value \p OldValue for when the value in
542   /// \p MLoc has changed and the TransferTracker's locations have not been
543   /// updated yet.
544   void clobberMloc(LocIdx MLoc, ValueIDNum OldValue,
545                    MachineBasicBlock::iterator Pos, bool MakeUndef = true) {
546     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
547     if (ActiveMLocIt == ActiveMLocs.end())
548       return;
549 
550     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
551 
552     // Examine the remaining variable locations: if we can find the same value
553     // again, we can recover the location.
554     Optional<LocIdx> NewLoc = None;
555     for (auto Loc : MTracker->locations())
556       if (Loc.Value == OldValue)
557         NewLoc = Loc.Idx;
558 
559     // If there is no location, and we weren't asked to make the variable
560     // explicitly undef, then stop here.
561     if (!NewLoc && !MakeUndef) {
562       // Try and recover a few more locations with entry values.
563       for (const auto &Var : ActiveMLocIt->second) {
564         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
565         recoverAsEntryValue(Var, Prop, OldValue);
566       }
567       flushDbgValues(Pos, nullptr);
568       return;
569     }
570 
571     // Examine all the variables based on this location.
572     DenseSet<DebugVariable> NewMLocs;
573     for (const auto &Var : ActiveMLocIt->second) {
574       auto ActiveVLocIt = ActiveVLocs.find(Var);
575       // Re-state the variable location: if there's no replacement then NewLoc
576       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
577       // identifying the alternative location will be emitted.
578       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
579       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
580 
581       // Update machine locations <=> variable locations maps. Defer updating
582       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
583       if (!NewLoc) {
584         ActiveVLocs.erase(ActiveVLocIt);
585       } else {
586         ActiveVLocIt->second.Loc = *NewLoc;
587         NewMLocs.insert(Var);
588       }
589     }
590 
591     // Commit any deferred ActiveMLoc changes.
592     if (!NewMLocs.empty())
593       for (auto &Var : NewMLocs)
594         ActiveMLocs[*NewLoc].insert(Var);
595 
596     // We lazily track what locations have which values; if we've found a new
597     // location for the clobbered value, remember it.
598     if (NewLoc)
599       VarLocs[NewLoc->asU64()] = OldValue;
600 
601     flushDbgValues(Pos, nullptr);
602 
603     // Re-find ActiveMLocIt, iterator could have been invalidated.
604     ActiveMLocIt = ActiveMLocs.find(MLoc);
605     ActiveMLocIt->second.clear();
606   }
607 
608   /// Transfer variables based on \p Src to be based on \p Dst. This handles
609   /// both register copies as well as spills and restores. Creates DBG_VALUEs
610   /// describing the movement.
611   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
612     // Does Src still contain the value num we expect? If not, it's been
613     // clobbered in the meantime, and our variable locations are stale.
614     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
615       return;
616 
617     // assert(ActiveMLocs[Dst].size() == 0);
618     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
619 
620     // Move set of active variables from one location to another.
621     auto MovingVars = ActiveMLocs[Src];
622     ActiveMLocs[Dst] = MovingVars;
623     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
624 
625     // For each variable based on Src; create a location at Dst.
626     for (const auto &Var : MovingVars) {
627       auto ActiveVLocIt = ActiveVLocs.find(Var);
628       assert(ActiveVLocIt != ActiveVLocs.end());
629       ActiveVLocIt->second.Loc = Dst;
630 
631       MachineInstr *MI =
632           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
633       PendingDbgValues.push_back(MI);
634     }
635     ActiveMLocs[Src].clear();
636     flushDbgValues(Pos, nullptr);
637 
638     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
639     // about the old location.
640     if (EmulateOldLDV)
641       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
642   }
643 
644   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
645                                 const DebugVariable &Var,
646                                 const DbgValueProperties &Properties) {
647     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
648                                   Var.getVariable()->getScope(),
649                                   const_cast<DILocation *>(Var.getInlinedAt()));
650     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
651     MIB.add(MO);
652     if (Properties.Indirect)
653       MIB.addImm(0);
654     else
655       MIB.addReg(0);
656     MIB.addMetadata(Var.getVariable());
657     MIB.addMetadata(Properties.DIExpr);
658     return MIB;
659   }
660 };
661 
662 //===----------------------------------------------------------------------===//
663 //            Implementation
664 //===----------------------------------------------------------------------===//
665 
666 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
667 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
668 
669 #ifndef NDEBUG
670 void DbgValue::dump(const MLocTracker *MTrack) const {
671   if (Kind == Const) {
672     MO->dump();
673   } else if (Kind == NoVal) {
674     dbgs() << "NoVal(" << BlockNo << ")";
675   } else if (Kind == VPHI) {
676     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
677   } else {
678     assert(Kind == Def);
679     dbgs() << MTrack->IDAsString(ID);
680   }
681   if (Properties.Indirect)
682     dbgs() << " indir";
683   if (Properties.DIExpr)
684     dbgs() << " " << *Properties.DIExpr;
685 }
686 #endif
687 
688 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
689                          const TargetRegisterInfo &TRI,
690                          const TargetLowering &TLI)
691     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
692       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
693   NumRegs = TRI.getNumRegs();
694   reset();
695   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
696   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
697 
698   // Always track SP. This avoids the implicit clobbering caused by regmasks
699   // from affectings its values. (LiveDebugValues disbelieves calls and
700   // regmasks that claim to clobber SP).
701   Register SP = TLI.getStackPointerRegisterToSaveRestore();
702   if (SP) {
703     unsigned ID = getLocID(SP);
704     (void)lookupOrTrackRegister(ID);
705 
706     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
707       SPAliases.insert(*RAI);
708   }
709 
710   // Build some common stack positions -- full registers being spilt to the
711   // stack.
712   StackSlotIdxes.insert({{8, 0}, 0});
713   StackSlotIdxes.insert({{16, 0}, 1});
714   StackSlotIdxes.insert({{32, 0}, 2});
715   StackSlotIdxes.insert({{64, 0}, 3});
716   StackSlotIdxes.insert({{128, 0}, 4});
717   StackSlotIdxes.insert({{256, 0}, 5});
718   StackSlotIdxes.insert({{512, 0}, 6});
719 
720   // Traverse all the subregister idxes, and ensure there's an index for them.
721   // Duplicates are no problem: we're interested in their position in the
722   // stack slot, we don't want to type the slot.
723   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
724     unsigned Size = TRI.getSubRegIdxSize(I);
725     unsigned Offs = TRI.getSubRegIdxOffset(I);
726     unsigned Idx = StackSlotIdxes.size();
727 
728     // Some subregs have -1, -2 and so forth fed into their fields, to mean
729     // special backend things. Ignore those.
730     if (Size > 60000 || Offs > 60000)
731       continue;
732 
733     StackSlotIdxes.insert({{Size, Offs}, Idx});
734   }
735 
736   // There may also be strange register class sizes (think x86 fp80s).
737   for (const TargetRegisterClass *RC : TRI.regclasses()) {
738     unsigned Size = TRI.getRegSizeInBits(*RC);
739 
740     // We might see special reserved values as sizes, and classes for other
741     // stuff the machine tries to model. If it's more than 512 bits, then it
742     // is very unlikely to be a register than can be spilt.
743     if (Size > 512)
744       continue;
745 
746     unsigned Idx = StackSlotIdxes.size();
747     StackSlotIdxes.insert({{Size, 0}, Idx});
748   }
749 
750   for (auto &Idx : StackSlotIdxes)
751     StackIdxesToPos[Idx.second] = Idx.first;
752 
753   NumSlotIdxes = StackSlotIdxes.size();
754 }
755 
756 LocIdx MLocTracker::trackRegister(unsigned ID) {
757   assert(ID != 0);
758   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
759   LocIdxToIDNum.grow(NewIdx);
760   LocIdxToLocID.grow(NewIdx);
761 
762   // Default: it's an mphi.
763   ValueIDNum ValNum = {CurBB, 0, NewIdx};
764   // Was this reg ever touched by a regmask?
765   for (const auto &MaskPair : reverse(Masks)) {
766     if (MaskPair.first->clobbersPhysReg(ID)) {
767       // There was an earlier def we skipped.
768       ValNum = {CurBB, MaskPair.second, NewIdx};
769       break;
770     }
771   }
772 
773   LocIdxToIDNum[NewIdx] = ValNum;
774   LocIdxToLocID[NewIdx] = ID;
775   return NewIdx;
776 }
777 
778 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
779                                unsigned InstID) {
780   // Def any register we track have that isn't preserved. The regmask
781   // terminates the liveness of a register, meaning its value can't be
782   // relied upon -- we represent this by giving it a new value.
783   for (auto Location : locations()) {
784     unsigned ID = LocIdxToLocID[Location.Idx];
785     // Don't clobber SP, even if the mask says it's clobbered.
786     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
787       defReg(ID, CurBB, InstID);
788   }
789   Masks.push_back(std::make_pair(MO, InstID));
790 }
791 
792 Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
793   SpillLocationNo SpillID(SpillLocs.idFor(L));
794 
795   if (SpillID.id() == 0) {
796     // If there is no location, and we have reached the limit of how many stack
797     // slots to track, then don't track this one.
798     if (SpillLocs.size() >= StackWorkingSetLimit)
799       return None;
800 
801     // Spill location is untracked: create record for this one, and all
802     // subregister slots too.
803     SpillID = SpillLocationNo(SpillLocs.insert(L));
804     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
805       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
806       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
807       LocIdxToIDNum.grow(Idx);
808       LocIdxToLocID.grow(Idx);
809       LocIDToLocIdx.push_back(Idx);
810       LocIdxToLocID[Idx] = L;
811       // Initialize to PHI value; corresponds to the location's live-in value
812       // during transfer function construction.
813       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
814     }
815   }
816   return SpillID;
817 }
818 
819 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
820   unsigned ID = LocIdxToLocID[Idx];
821   if (ID >= NumRegs) {
822     StackSlotPos Pos = locIDToSpillIdx(ID);
823     ID -= NumRegs;
824     unsigned Slot = ID / NumSlotIdxes;
825     return Twine("slot ")
826         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
827         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
828         .str();
829   } else {
830     return TRI.getRegAsmName(ID).str();
831   }
832 }
833 
834 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
835   std::string DefName = LocIdxToName(Num.getLoc());
836   return Num.asString(DefName);
837 }
838 
839 #ifndef NDEBUG
840 LLVM_DUMP_METHOD void MLocTracker::dump() {
841   for (auto Location : locations()) {
842     std::string MLocName = LocIdxToName(Location.Value.getLoc());
843     std::string DefName = Location.Value.asString(MLocName);
844     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
845   }
846 }
847 
848 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
849   for (auto Location : locations()) {
850     std::string foo = LocIdxToName(Location.Idx);
851     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
852   }
853 }
854 #endif
855 
856 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
857                                          const DebugVariable &Var,
858                                          const DbgValueProperties &Properties) {
859   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
860                                 Var.getVariable()->getScope(),
861                                 const_cast<DILocation *>(Var.getInlinedAt()));
862   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
863 
864   const DIExpression *Expr = Properties.DIExpr;
865   if (!MLoc) {
866     // No location -> DBG_VALUE $noreg
867     MIB.addReg(0);
868     MIB.addReg(0);
869   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
870     unsigned LocID = LocIdxToLocID[*MLoc];
871     SpillLocationNo SpillID = locIDToSpill(LocID);
872     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
873     unsigned short Offset = StackIdx.second;
874 
875     // TODO: support variables that are located in spill slots, with non-zero
876     // offsets from the start of the spill slot. It would require some more
877     // complex DIExpression calculations. This doesn't seem to be produced by
878     // LLVM right now, so don't try and support it.
879     // Accept no-subregister slots and subregisters where the offset is zero.
880     // The consumer should already have type information to work out how large
881     // the variable is.
882     if (Offset == 0) {
883       const SpillLoc &Spill = SpillLocs[SpillID.id()];
884       unsigned Base = Spill.SpillBase;
885       MIB.addReg(Base);
886 
887       // There are several ways we can dereference things, and several inputs
888       // to consider:
889       // * NRVO variables will appear with IsIndirect set, but should have
890       //   nothing else in their DIExpressions,
891       // * Variables with DW_OP_stack_value in their expr already need an
892       //   explicit dereference of the stack location,
893       // * Values that don't match the variable size need DW_OP_deref_size,
894       // * Everything else can just become a simple location expression.
895 
896       // We need to use deref_size whenever there's a mismatch between the
897       // size of value and the size of variable portion being read.
898       // Additionally, we should use it whenever dealing with stack_value
899       // fragments, to avoid the consumer having to determine the deref size
900       // from DW_OP_piece.
901       bool UseDerefSize = false;
902       unsigned ValueSizeInBits = getLocSizeInBits(*MLoc);
903       unsigned DerefSizeInBytes = ValueSizeInBits / 8;
904       if (auto Fragment = Var.getFragment()) {
905         unsigned VariableSizeInBits = Fragment->SizeInBits;
906         if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
907           UseDerefSize = true;
908       } else if (auto Size = Var.getVariable()->getSizeInBits()) {
909         if (*Size != ValueSizeInBits) {
910           UseDerefSize = true;
911         }
912       }
913 
914       if (Properties.Indirect) {
915         // This is something like an NRVO variable, where the pointer has been
916         // spilt to the stack, or a dbg.addr pointing at a coroutine frame
917         // field. It should end up being a memory location, with the pointer
918         // to the variable loaded off the stack with a deref. It can't be a
919         // DW_OP_stack_value expression.
920         assert(!Expr->isImplicit());
921         Expr = TRI.prependOffsetExpression(
922             Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
923             Spill.SpillOffset);
924         MIB.addImm(0);
925       } else if (UseDerefSize) {
926         // We're loading a value off the stack that's not the same size as the
927         // variable. Add / subtract stack offset, explicitly deref with a size,
928         // and add DW_OP_stack_value if not already present.
929         SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size,
930                                         DerefSizeInBytes};
931         Expr = DIExpression::prependOpcodes(Expr, Ops, true);
932         unsigned Flags = DIExpression::StackValue | DIExpression::ApplyOffset;
933         Expr = TRI.prependOffsetExpression(Expr, Flags, Spill.SpillOffset);
934         MIB.addReg(0);
935       } else if (Expr->isComplex()) {
936         // A variable with no size ambiguity, but with extra elements in it's
937         // expression. Manually dereference the stack location.
938         assert(Expr->isComplex());
939         Expr = TRI.prependOffsetExpression(
940             Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
941             Spill.SpillOffset);
942         MIB.addReg(0);
943       } else {
944         // A plain value that has been spilt to the stack, with no further
945         // context. Request a location expression, marking the DBG_VALUE as
946         // IsIndirect.
947         Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
948                                            Spill.SpillOffset);
949         MIB.addImm(0);
950       }
951     } else {
952       // This is a stack location with a weird subregister offset: emit an undef
953       // DBG_VALUE instead.
954       MIB.addReg(0);
955       MIB.addReg(0);
956     }
957   } else {
958     // Non-empty, non-stack slot, must be a plain register.
959     unsigned LocID = LocIdxToLocID[*MLoc];
960     MIB.addReg(LocID);
961     if (Properties.Indirect)
962       MIB.addImm(0);
963     else
964       MIB.addReg(0);
965   }
966 
967   MIB.addMetadata(Var.getVariable());
968   MIB.addMetadata(Expr);
969   return MIB;
970 }
971 
972 /// Default construct and initialize the pass.
973 InstrRefBasedLDV::InstrRefBasedLDV() = default;
974 
975 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
976   unsigned Reg = MTracker->LocIdxToLocID[L];
977   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
978     if (CalleeSavedRegs.test(*RAI))
979       return true;
980   return false;
981 }
982 
983 //===----------------------------------------------------------------------===//
984 //            Debug Range Extension Implementation
985 //===----------------------------------------------------------------------===//
986 
987 #ifndef NDEBUG
988 // Something to restore in the future.
989 // void InstrRefBasedLDV::printVarLocInMBB(..)
990 #endif
991 
992 Optional<SpillLocationNo>
993 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
994   assert(MI.hasOneMemOperand() &&
995          "Spill instruction does not have exactly one memory operand?");
996   auto MMOI = MI.memoperands_begin();
997   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
998   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
999          "Inconsistent memory operand in spill instruction");
1000   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1001   const MachineBasicBlock *MBB = MI.getParent();
1002   Register Reg;
1003   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1004   return MTracker->getOrTrackSpillLoc({Reg, Offset});
1005 }
1006 
1007 Optional<LocIdx>
1008 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
1009   Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
1010   if (!SpillLoc)
1011     return None;
1012 
1013   // Where in the stack slot is this value defined -- i.e., what size of value
1014   // is this? An important question, because it could be loaded into a register
1015   // from the stack at some point. Happily the memory operand will tell us
1016   // the size written to the stack.
1017   auto *MemOperand = *MI.memoperands_begin();
1018   unsigned SizeInBits = MemOperand->getSizeInBits();
1019 
1020   // Find that position in the stack indexes we're tracking.
1021   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1022   if (IdxIt == MTracker->StackSlotIdxes.end())
1023     // That index is not tracked. This is suprising, and unlikely to ever
1024     // occur, but the safe action is to indicate the variable is optimised out.
1025     return None;
1026 
1027   unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1028   return MTracker->getSpillMLoc(SpillID);
1029 }
1030 
1031 /// End all previous ranges related to @MI and start a new range from @MI
1032 /// if it is a DBG_VALUE instr.
1033 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1034   if (!MI.isDebugValue())
1035     return false;
1036 
1037   const DILocalVariable *Var = MI.getDebugVariable();
1038   const DIExpression *Expr = MI.getDebugExpression();
1039   const DILocation *DebugLoc = MI.getDebugLoc();
1040   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1041   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1042          "Expected inlined-at fields to agree");
1043 
1044   DebugVariable V(Var, Expr, InlinedAt);
1045   DbgValueProperties Properties(MI);
1046 
1047   // If there are no instructions in this lexical scope, do no location tracking
1048   // at all, this variable shouldn't get a legitimate location range.
1049   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1050   if (Scope == nullptr)
1051     return true; // handled it; by doing nothing
1052 
1053   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
1054   // contribute to locations in this block, but don't propagate further.
1055   // Interpret it like a DBG_VALUE $noreg.
1056   if (MI.isDebugValueList()) {
1057     if (VTracker)
1058       VTracker->defVar(MI, Properties, None);
1059     if (TTracker)
1060       TTracker->redefVar(MI, Properties, None);
1061     return true;
1062   }
1063 
1064   const MachineOperand &MO = MI.getOperand(0);
1065 
1066   // MLocTracker needs to know that this register is read, even if it's only
1067   // read by a debug inst.
1068   if (MO.isReg() && MO.getReg() != 0)
1069     (void)MTracker->readReg(MO.getReg());
1070 
1071   // If we're preparing for the second analysis (variables), the machine value
1072   // locations are already solved, and we report this DBG_VALUE and the value
1073   // it refers to to VLocTracker.
1074   if (VTracker) {
1075     if (MO.isReg()) {
1076       // Feed defVar the new variable location, or if this is a
1077       // DBG_VALUE $noreg, feed defVar None.
1078       if (MO.getReg())
1079         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1080       else
1081         VTracker->defVar(MI, Properties, None);
1082     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1083                MI.getOperand(0).isCImm()) {
1084       VTracker->defVar(MI, MI.getOperand(0));
1085     }
1086   }
1087 
1088   // If performing final tracking of transfers, report this variable definition
1089   // to the TransferTracker too.
1090   if (TTracker)
1091     TTracker->redefVar(MI);
1092   return true;
1093 }
1094 
1095 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1096                                              const ValueTable *MLiveOuts,
1097                                              const ValueTable *MLiveIns) {
1098   if (!MI.isDebugRef())
1099     return false;
1100 
1101   // Only handle this instruction when we are building the variable value
1102   // transfer function.
1103   if (!VTracker && !TTracker)
1104     return false;
1105 
1106   unsigned InstNo = MI.getOperand(0).getImm();
1107   unsigned OpNo = MI.getOperand(1).getImm();
1108 
1109   const DILocalVariable *Var = MI.getDebugVariable();
1110   const DIExpression *Expr = MI.getDebugExpression();
1111   const DILocation *DebugLoc = MI.getDebugLoc();
1112   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1113   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1114          "Expected inlined-at fields to agree");
1115 
1116   DebugVariable V(Var, Expr, InlinedAt);
1117 
1118   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1119   if (Scope == nullptr)
1120     return true; // Handled by doing nothing. This variable is never in scope.
1121 
1122   const MachineFunction &MF = *MI.getParent()->getParent();
1123 
1124   // Various optimizations may have happened to the value during codegen,
1125   // recorded in the value substitution table. Apply any substitutions to
1126   // the instruction / operand number in this DBG_INSTR_REF, and collect
1127   // any subregister extractions performed during optimization.
1128 
1129   // Create dummy substitution with Src set, for lookup.
1130   auto SoughtSub =
1131       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1132 
1133   SmallVector<unsigned, 4> SeenSubregs;
1134   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1135   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1136          LowerBoundIt->Src == SoughtSub.Src) {
1137     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1138     SoughtSub.Src = LowerBoundIt->Dest;
1139     if (unsigned Subreg = LowerBoundIt->Subreg)
1140       SeenSubregs.push_back(Subreg);
1141     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1142   }
1143 
1144   // Default machine value number is <None> -- if no instruction defines
1145   // the corresponding value, it must have been optimized out.
1146   Optional<ValueIDNum> NewID = None;
1147 
1148   // Try to lookup the instruction number, and find the machine value number
1149   // that it defines. It could be an instruction, or a PHI.
1150   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1151   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1152                                 DebugPHINumToValue.end(), InstNo);
1153   if (InstrIt != DebugInstrNumToInstr.end()) {
1154     const MachineInstr &TargetInstr = *InstrIt->second.first;
1155     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1156 
1157     // Pick out the designated operand. It might be a memory reference, if
1158     // a register def was folded into a stack store.
1159     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1160         TargetInstr.hasOneMemOperand()) {
1161       Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1162       if (L)
1163         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1164     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1165       // Permit the debug-info to be completely wrong: identifying a nonexistant
1166       // operand, or one that is not a register definition, means something
1167       // unexpected happened during optimisation. Broken debug-info, however,
1168       // shouldn't crash the compiler -- instead leave the variable value as
1169       // None, which will make it appear "optimised out".
1170       if (OpNo < TargetInstr.getNumOperands()) {
1171         const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1172 
1173         if (MO.isReg() && MO.isDef() && MO.getReg()) {
1174           unsigned LocID = MTracker->getLocID(MO.getReg());
1175           LocIdx L = MTracker->LocIDToLocIdx[LocID];
1176           NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1177         }
1178       }
1179 
1180       if (!NewID) {
1181         LLVM_DEBUG(
1182             { dbgs() << "Seen instruction reference to illegal operand\n"; });
1183       }
1184     }
1185     // else: NewID is left as None.
1186   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1187     // It's actually a PHI value. Which value it is might not be obvious, use
1188     // the resolver helper to find out.
1189     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1190                            MI, InstNo);
1191   }
1192 
1193   // Apply any subregister extractions, in reverse. We might have seen code
1194   // like this:
1195   //    CALL64 @foo, implicit-def $rax
1196   //    %0:gr64 = COPY $rax
1197   //    %1:gr32 = COPY %0.sub_32bit
1198   //    %2:gr16 = COPY %1.sub_16bit
1199   //    %3:gr8  = COPY %2.sub_8bit
1200   // In which case each copy would have been recorded as a substitution with
1201   // a subregister qualifier. Apply those qualifiers now.
1202   if (NewID && !SeenSubregs.empty()) {
1203     unsigned Offset = 0;
1204     unsigned Size = 0;
1205 
1206     // Look at each subregister that we passed through, and progressively
1207     // narrow in, accumulating any offsets that occur. Substitutions should
1208     // only ever be the same or narrower width than what they read from;
1209     // iterate in reverse order so that we go from wide to small.
1210     for (unsigned Subreg : reverse(SeenSubregs)) {
1211       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1212       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1213       Offset += ThisOffset;
1214       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1215     }
1216 
1217     // If that worked, look for an appropriate subregister with the register
1218     // where the define happens. Don't look at values that were defined during
1219     // a stack write: we can't currently express register locations within
1220     // spills.
1221     LocIdx L = NewID->getLoc();
1222     if (NewID && !MTracker->isSpill(L)) {
1223       // Find the register class for the register where this def happened.
1224       // FIXME: no index for this?
1225       Register Reg = MTracker->LocIdxToLocID[L];
1226       const TargetRegisterClass *TRC = nullptr;
1227       for (const auto *TRCI : TRI->regclasses())
1228         if (TRCI->contains(Reg))
1229           TRC = TRCI;
1230       assert(TRC && "Couldn't find target register class?");
1231 
1232       // If the register we have isn't the right size or in the right place,
1233       // Try to find a subregister inside it.
1234       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1235       if (Size != MainRegSize || Offset) {
1236         // Enumerate all subregisters, searching.
1237         Register NewReg = 0;
1238         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1239           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1240           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1241           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1242           if (SubregSize == Size && SubregOffset == Offset) {
1243             NewReg = *SRI;
1244             break;
1245           }
1246         }
1247 
1248         // If we didn't find anything: there's no way to express our value.
1249         if (!NewReg) {
1250           NewID = None;
1251         } else {
1252           // Re-state the value as being defined within the subregister
1253           // that we found.
1254           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1255           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1256         }
1257       }
1258     } else {
1259       // If we can't handle subregisters, unset the new value.
1260       NewID = None;
1261     }
1262   }
1263 
1264   // We, we have a value number or None. Tell the variable value tracker about
1265   // it. The rest of this LiveDebugValues implementation acts exactly the same
1266   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1267   // aren't immediately available).
1268   DbgValueProperties Properties(Expr, false);
1269   if (VTracker)
1270     VTracker->defVar(MI, Properties, NewID);
1271 
1272   // If we're on the final pass through the function, decompose this INSTR_REF
1273   // into a plain DBG_VALUE.
1274   if (!TTracker)
1275     return true;
1276 
1277   // Pick a location for the machine value number, if such a location exists.
1278   // (This information could be stored in TransferTracker to make it faster).
1279   Optional<LocIdx> FoundLoc = None;
1280   for (auto Location : MTracker->locations()) {
1281     LocIdx CurL = Location.Idx;
1282     ValueIDNum ID = MTracker->readMLoc(CurL);
1283     if (NewID && ID == NewID) {
1284       // If this is the first location with that value, pick it. Otherwise,
1285       // consider whether it's a "longer term" location.
1286       if (!FoundLoc) {
1287         FoundLoc = CurL;
1288         continue;
1289       }
1290 
1291       if (MTracker->isSpill(CurL))
1292         FoundLoc = CurL; // Spills are a longer term location.
1293       else if (!MTracker->isSpill(*FoundLoc) &&
1294                !MTracker->isSpill(CurL) &&
1295                !isCalleeSaved(*FoundLoc) &&
1296                isCalleeSaved(CurL))
1297         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1298     }
1299   }
1300 
1301   // Tell transfer tracker that the variable value has changed.
1302   TTracker->redefVar(MI, Properties, FoundLoc);
1303 
1304   // If there was a value with no location; but the value is defined in a
1305   // later instruction in this block, this is a block-local use-before-def.
1306   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1307       NewID->getInst() > CurInst)
1308     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1309 
1310   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1311   // This DBG_VALUE is potentially a $noreg / undefined location, if
1312   // FoundLoc is None.
1313   // (XXX -- could morph the DBG_INSTR_REF in the future).
1314   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1315   TTracker->PendingDbgValues.push_back(DbgMI);
1316   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1317   return true;
1318 }
1319 
1320 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1321   if (!MI.isDebugPHI())
1322     return false;
1323 
1324   // Analyse these only when solving the machine value location problem.
1325   if (VTracker || TTracker)
1326     return true;
1327 
1328   // First operand is the value location, either a stack slot or register.
1329   // Second is the debug instruction number of the original PHI.
1330   const MachineOperand &MO = MI.getOperand(0);
1331   unsigned InstrNum = MI.getOperand(1).getImm();
1332 
1333   auto EmitBadPHI = [this, &MI, InstrNum]() -> bool {
1334     // Helper lambda to do any accounting when we fail to find a location for
1335     // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1336     // dead stack slot, for example.
1337     // Record a DebugPHIRecord with an empty value + location.
1338     DebugPHINumToValue.push_back({InstrNum, MI.getParent(), None, None});
1339     return true;
1340   };
1341 
1342   if (MO.isReg() && MO.getReg()) {
1343     // The value is whatever's currently in the register. Read and record it,
1344     // to be analysed later.
1345     Register Reg = MO.getReg();
1346     ValueIDNum Num = MTracker->readReg(Reg);
1347     auto PHIRec = DebugPHIRecord(
1348         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1349     DebugPHINumToValue.push_back(PHIRec);
1350 
1351     // Ensure this register is tracked.
1352     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1353       MTracker->lookupOrTrackRegister(*RAI);
1354   } else if (MO.isFI()) {
1355     // The value is whatever's in this stack slot.
1356     unsigned FI = MO.getIndex();
1357 
1358     // If the stack slot is dead, then this was optimized away.
1359     // FIXME: stack slot colouring should account for slots that get merged.
1360     if (MFI->isDeadObjectIndex(FI))
1361       return EmitBadPHI();
1362 
1363     // Identify this spill slot, ensure it's tracked.
1364     Register Base;
1365     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1366     SpillLoc SL = {Base, Offs};
1367     Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1368 
1369     // We might be able to find a value, but have chosen not to, to avoid
1370     // tracking too much stack information.
1371     if (!SpillNo)
1372       return EmitBadPHI();
1373 
1374     // Any stack location DBG_PHI should have an associate bit-size.
1375     assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1376     unsigned slotBitSize = MI.getOperand(2).getImm();
1377 
1378     unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1379     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1380     ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1381 
1382     // Record this DBG_PHI for later analysis.
1383     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1384     DebugPHINumToValue.push_back(DbgPHI);
1385   } else {
1386     // Else: if the operand is neither a legal register or a stack slot, then
1387     // we're being fed illegal debug-info. Record an empty PHI, so that any
1388     // debug users trying to read this number will be put off trying to
1389     // interpret the value.
1390     LLVM_DEBUG(
1391         { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1392     return EmitBadPHI();
1393   }
1394 
1395   return true;
1396 }
1397 
1398 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1399   // Meta Instructions do not affect the debug liveness of any register they
1400   // define.
1401   if (MI.isImplicitDef()) {
1402     // Except when there's an implicit def, and the location it's defining has
1403     // no value number. The whole point of an implicit def is to announce that
1404     // the register is live, without be specific about it's value. So define
1405     // a value if there isn't one already.
1406     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1407     // Has a legitimate value -> ignore the implicit def.
1408     if (Num.getLoc() != 0)
1409       return;
1410     // Otherwise, def it here.
1411   } else if (MI.isMetaInstruction())
1412     return;
1413 
1414   // We always ignore SP defines on call instructions, they don't actually
1415   // change the value of the stack pointer... except for win32's _chkstk. This
1416   // is rare: filter quickly for the common case (no stack adjustments, not a
1417   // call, etc). If it is a call that modifies SP, recognise the SP register
1418   // defs.
1419   bool CallChangesSP = false;
1420   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1421       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1422     CallChangesSP = true;
1423 
1424   // Test whether we should ignore a def of this register due to it being part
1425   // of the stack pointer.
1426   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1427     if (CallChangesSP)
1428       return false;
1429     return MI.isCall() && MTracker->SPAliases.count(R);
1430   };
1431 
1432   // Find the regs killed by MI, and find regmasks of preserved regs.
1433   // Max out the number of statically allocated elements in `DeadRegs`, as this
1434   // prevents fallback to std::set::count() operations.
1435   SmallSet<uint32_t, 32> DeadRegs;
1436   SmallVector<const uint32_t *, 4> RegMasks;
1437   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1438   for (const MachineOperand &MO : MI.operands()) {
1439     // Determine whether the operand is a register def.
1440     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1441         Register::isPhysicalRegister(MO.getReg()) &&
1442         !IgnoreSPAlias(MO.getReg())) {
1443       // Remove ranges of all aliased registers.
1444       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1445         // FIXME: Can we break out of this loop early if no insertion occurs?
1446         DeadRegs.insert(*RAI);
1447     } else if (MO.isRegMask()) {
1448       RegMasks.push_back(MO.getRegMask());
1449       RegMaskPtrs.push_back(&MO);
1450     }
1451   }
1452 
1453   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1454   for (uint32_t DeadReg : DeadRegs)
1455     MTracker->defReg(DeadReg, CurBB, CurInst);
1456 
1457   for (const auto *MO : RegMaskPtrs)
1458     MTracker->writeRegMask(MO, CurBB, CurInst);
1459 
1460   // If this instruction writes to a spill slot, def that slot.
1461   if (hasFoldedStackStore(MI)) {
1462     if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1463       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1464         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1465         LocIdx L = MTracker->getSpillMLoc(SpillID);
1466         MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1467       }
1468     }
1469   }
1470 
1471   if (!TTracker)
1472     return;
1473 
1474   // When committing variable values to locations: tell transfer tracker that
1475   // we've clobbered things. It may be able to recover the variable from a
1476   // different location.
1477 
1478   // Inform TTracker about any direct clobbers.
1479   for (uint32_t DeadReg : DeadRegs) {
1480     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1481     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1482   }
1483 
1484   // Look for any clobbers performed by a register mask. Only test locations
1485   // that are actually being tracked.
1486   if (!RegMaskPtrs.empty()) {
1487     for (auto L : MTracker->locations()) {
1488       // Stack locations can't be clobbered by regmasks.
1489       if (MTracker->isSpill(L.Idx))
1490         continue;
1491 
1492       Register Reg = MTracker->LocIdxToLocID[L.Idx];
1493       if (IgnoreSPAlias(Reg))
1494         continue;
1495 
1496       for (const auto *MO : RegMaskPtrs)
1497         if (MO->clobbersPhysReg(Reg))
1498           TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1499     }
1500   }
1501 
1502   // Tell TTracker about any folded stack store.
1503   if (hasFoldedStackStore(MI)) {
1504     if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1505       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1506         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1507         LocIdx L = MTracker->getSpillMLoc(SpillID);
1508         TTracker->clobberMloc(L, MI.getIterator(), true);
1509       }
1510     }
1511   }
1512 }
1513 
1514 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1515   // In all circumstances, re-def all aliases. It's definitely a new value now.
1516   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1517     MTracker->defReg(*RAI, CurBB, CurInst);
1518 
1519   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1520   MTracker->setReg(DstRegNum, SrcValue);
1521 
1522   // Copy subregisters from one location to another.
1523   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1524     unsigned SrcSubReg = SRI.getSubReg();
1525     unsigned SubRegIdx = SRI.getSubRegIndex();
1526     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1527     if (!DstSubReg)
1528       continue;
1529 
1530     // Do copy. There are two matching subregisters, the source value should
1531     // have been def'd when the super-reg was, the latter might not be tracked
1532     // yet.
1533     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1534     // mphi values if it wasn't tracked.
1535     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1536     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1537     (void)SrcL;
1538     (void)DstL;
1539     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1540 
1541     MTracker->setReg(DstSubReg, CpyValue);
1542   }
1543 }
1544 
1545 Optional<SpillLocationNo>
1546 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1547                                      MachineFunction *MF) {
1548   // TODO: Handle multiple stores folded into one.
1549   if (!MI.hasOneMemOperand())
1550     return None;
1551 
1552   // Reject any memory operand that's aliased -- we can't guarantee its value.
1553   auto MMOI = MI.memoperands_begin();
1554   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1555   if (PVal->isAliased(MFI))
1556     return None;
1557 
1558   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1559     return None; // This is not a spill instruction, since no valid size was
1560                  // returned from either function.
1561 
1562   return extractSpillBaseRegAndOffset(MI);
1563 }
1564 
1565 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1566                                        MachineFunction *MF, unsigned &Reg) {
1567   if (!isSpillInstruction(MI, MF))
1568     return false;
1569 
1570   int FI;
1571   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1572   return Reg != 0;
1573 }
1574 
1575 Optional<SpillLocationNo>
1576 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1577                                        MachineFunction *MF, unsigned &Reg) {
1578   if (!MI.hasOneMemOperand())
1579     return None;
1580 
1581   // FIXME: Handle folded restore instructions with more than one memory
1582   // operand.
1583   if (MI.getRestoreSize(TII)) {
1584     Reg = MI.getOperand(0).getReg();
1585     return extractSpillBaseRegAndOffset(MI);
1586   }
1587   return None;
1588 }
1589 
1590 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1591   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1592   // limitations under the new model. Therefore, when comparing them, compare
1593   // versions that don't attempt spills or restores at all.
1594   if (EmulateOldLDV)
1595     return false;
1596 
1597   // Strictly limit ourselves to plain loads and stores, not all instructions
1598   // that can access the stack.
1599   int DummyFI = -1;
1600   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1601       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1602     return false;
1603 
1604   MachineFunction *MF = MI.getMF();
1605   unsigned Reg;
1606 
1607   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1608 
1609   // Strictly limit ourselves to plain loads and stores, not all instructions
1610   // that can access the stack.
1611   int FIDummy;
1612   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1613       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1614     return false;
1615 
1616   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1617   // written to, terminate that variable location. The value in memory
1618   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1619   if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
1620     // Un-set this location and clobber, so that earlier locations don't
1621     // continue past this store.
1622     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1623       unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
1624       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1625       if (!MLoc)
1626         continue;
1627 
1628       // We need to over-write the stack slot with something (here, a def at
1629       // this instruction) to ensure no values are preserved in this stack slot
1630       // after the spill. It also prevents TTracker from trying to recover the
1631       // location and re-installing it in the same place.
1632       ValueIDNum Def(CurBB, CurInst, *MLoc);
1633       MTracker->setMLoc(*MLoc, Def);
1634       if (TTracker)
1635         TTracker->clobberMloc(*MLoc, MI.getIterator());
1636     }
1637   }
1638 
1639   // Try to recognise spill and restore instructions that may transfer a value.
1640   if (isLocationSpill(MI, MF, Reg)) {
1641     // isLocationSpill returning true should guarantee we can extract a
1642     // location.
1643     SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
1644 
1645     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1646       auto ReadValue = MTracker->readReg(SrcReg);
1647       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1648       MTracker->setMLoc(DstLoc, ReadValue);
1649 
1650       if (TTracker) {
1651         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1652         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1653       }
1654     };
1655 
1656     // Then, transfer subreg bits.
1657     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1658       // Ensure this reg is tracked,
1659       (void)MTracker->lookupOrTrackRegister(*SRI);
1660       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1661       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1662       DoTransfer(*SRI, SpillID);
1663     }
1664 
1665     // Directly lookup size of main source reg, and transfer.
1666     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1667     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1668     DoTransfer(Reg, SpillID);
1669   } else {
1670     Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
1671     if (!Loc)
1672       return false;
1673 
1674     // Assumption: we're reading from the base of the stack slot, not some
1675     // offset into it. It seems very unlikely LLVM would ever generate
1676     // restores where this wasn't true. This then becomes a question of what
1677     // subregisters in the destination register line up with positions in the
1678     // stack slot.
1679 
1680     // Def all registers that alias the destination.
1681     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1682       MTracker->defReg(*RAI, CurBB, CurInst);
1683 
1684     // Now find subregisters within the destination register, and load values
1685     // from stack slot positions.
1686     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1687       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1688       auto ReadValue = MTracker->readMLoc(SrcIdx);
1689       MTracker->setReg(DestReg, ReadValue);
1690     };
1691 
1692     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1693       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1694       unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
1695       DoTransfer(*SRI, SpillID);
1696     }
1697 
1698     // Directly look up this registers slot idx by size, and transfer.
1699     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1700     unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
1701     DoTransfer(Reg, SpillID);
1702   }
1703   return true;
1704 }
1705 
1706 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1707   auto DestSrc = TII->isCopyInstr(MI);
1708   if (!DestSrc)
1709     return false;
1710 
1711   const MachineOperand *DestRegOp = DestSrc->Destination;
1712   const MachineOperand *SrcRegOp = DestSrc->Source;
1713 
1714   auto isCalleeSavedReg = [&](unsigned Reg) {
1715     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1716       if (CalleeSavedRegs.test(*RAI))
1717         return true;
1718     return false;
1719   };
1720 
1721   Register SrcReg = SrcRegOp->getReg();
1722   Register DestReg = DestRegOp->getReg();
1723 
1724   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1725   if (SrcReg == DestReg)
1726     return true;
1727 
1728   // For emulating VarLocBasedImpl:
1729   // We want to recognize instructions where destination register is callee
1730   // saved register. If register that could be clobbered by the call is
1731   // included, there would be a great chance that it is going to be clobbered
1732   // soon. It is more likely that previous register, which is callee saved, is
1733   // going to stay unclobbered longer, even if it is killed.
1734   //
1735   // For InstrRefBasedImpl, we can track multiple locations per value, so
1736   // ignore this condition.
1737   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1738     return false;
1739 
1740   // InstrRefBasedImpl only followed killing copies.
1741   if (EmulateOldLDV && !SrcRegOp->isKill())
1742     return false;
1743 
1744   // Before we update MTracker, remember which values were present in each of
1745   // the locations about to be overwritten, so that we can recover any
1746   // potentially clobbered variables.
1747   DenseMap<LocIdx, ValueIDNum> ClobberedLocs;
1748   if (TTracker) {
1749     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1750       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1751       auto MLocIt = TTracker->ActiveMLocs.find(ClobberedLoc);
1752       // If ActiveMLocs isn't tracking this location or there are no variables
1753       // using it, don't bother remembering.
1754       if (MLocIt == TTracker->ActiveMLocs.end() || MLocIt->second.empty())
1755         continue;
1756       ValueIDNum Value = MTracker->readReg(*RAI);
1757       ClobberedLocs[ClobberedLoc] = Value;
1758     }
1759   }
1760 
1761   // Copy MTracker info, including subregs if available.
1762   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1763 
1764   // The copy might have clobbered variables based on the destination register.
1765   // Tell TTracker about it, passing the old ValueIDNum to search for
1766   // alternative locations (or else terminating those variables).
1767   if (TTracker) {
1768     for (auto LocVal : ClobberedLocs) {
1769       TTracker->clobberMloc(LocVal.first, LocVal.second, MI.getIterator(), false);
1770     }
1771   }
1772 
1773   // Only produce a transfer of DBG_VALUE within a block where old LDV
1774   // would have. We might make use of the additional value tracking in some
1775   // other way, later.
1776   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1777     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1778                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1779 
1780   // VarLocBasedImpl would quit tracking the old location after copying.
1781   if (EmulateOldLDV && SrcReg != DestReg)
1782     MTracker->defReg(SrcReg, CurBB, CurInst);
1783 
1784   return true;
1785 }
1786 
1787 /// Accumulate a mapping between each DILocalVariable fragment and other
1788 /// fragments of that DILocalVariable which overlap. This reduces work during
1789 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1790 /// known-to-overlap fragments are present".
1791 /// \param MI A previously unprocessed debug instruction to analyze for
1792 ///           fragment usage.
1793 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1794   assert(MI.isDebugValue() || MI.isDebugRef());
1795   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1796                       MI.getDebugLoc()->getInlinedAt());
1797   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1798 
1799   // If this is the first sighting of this variable, then we are guaranteed
1800   // there are currently no overlapping fragments either. Initialize the set
1801   // of seen fragments, record no overlaps for the current one, and return.
1802   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1803   if (SeenIt == SeenFragments.end()) {
1804     SmallSet<FragmentInfo, 4> OneFragment;
1805     OneFragment.insert(ThisFragment);
1806     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1807 
1808     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1809     return;
1810   }
1811 
1812   // If this particular Variable/Fragment pair already exists in the overlap
1813   // map, it has already been accounted for.
1814   auto IsInOLapMap =
1815       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1816   if (!IsInOLapMap.second)
1817     return;
1818 
1819   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1820   auto &AllSeenFragments = SeenIt->second;
1821 
1822   // Otherwise, examine all other seen fragments for this variable, with "this"
1823   // fragment being a previously unseen fragment. Record any pair of
1824   // overlapping fragments.
1825   for (const auto &ASeenFragment : AllSeenFragments) {
1826     // Does this previously seen fragment overlap?
1827     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1828       // Yes: Mark the current fragment as being overlapped.
1829       ThisFragmentsOverlaps.push_back(ASeenFragment);
1830       // Mark the previously seen fragment as being overlapped by the current
1831       // one.
1832       auto ASeenFragmentsOverlaps =
1833           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1834       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1835              "Previously seen var fragment has no vector of overlaps");
1836       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1837     }
1838   }
1839 
1840   AllSeenFragments.insert(ThisFragment);
1841 }
1842 
1843 void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
1844                                const ValueTable *MLiveIns) {
1845   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1846   // none of these should we interpret it's register defs as new value
1847   // definitions.
1848   if (transferDebugValue(MI))
1849     return;
1850   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1851     return;
1852   if (transferDebugPHI(MI))
1853     return;
1854   if (transferRegisterCopy(MI))
1855     return;
1856   if (transferSpillOrRestoreInst(MI))
1857     return;
1858   transferRegisterDef(MI);
1859 }
1860 
1861 void InstrRefBasedLDV::produceMLocTransferFunction(
1862     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1863     unsigned MaxNumBlocks) {
1864   // Because we try to optimize around register mask operands by ignoring regs
1865   // that aren't currently tracked, we set up something ugly for later: RegMask
1866   // operands that are seen earlier than the first use of a register, still need
1867   // to clobber that register in the transfer function. But this information
1868   // isn't actively recorded. Instead, we track each RegMask used in each block,
1869   // and accumulated the clobbered but untracked registers in each block into
1870   // the following bitvector. Later, if new values are tracked, we can add
1871   // appropriate clobbers.
1872   SmallVector<BitVector, 32> BlockMasks;
1873   BlockMasks.resize(MaxNumBlocks);
1874 
1875   // Reserve one bit per register for the masks described above.
1876   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1877   for (auto &BV : BlockMasks)
1878     BV.resize(TRI->getNumRegs(), true);
1879 
1880   // Step through all instructions and inhale the transfer function.
1881   for (auto &MBB : MF) {
1882     // Object fields that are read by trackers to know where we are in the
1883     // function.
1884     CurBB = MBB.getNumber();
1885     CurInst = 1;
1886 
1887     // Set all machine locations to a PHI value. For transfer function
1888     // production only, this signifies the live-in value to the block.
1889     MTracker->reset();
1890     MTracker->setMPhis(CurBB);
1891 
1892     // Step through each instruction in this block.
1893     for (auto &MI : MBB) {
1894       // Pass in an empty unique_ptr for the value tables when accumulating the
1895       // machine transfer function.
1896       process(MI, nullptr, nullptr);
1897 
1898       // Also accumulate fragment map.
1899       if (MI.isDebugValue() || MI.isDebugRef())
1900         accumulateFragmentMap(MI);
1901 
1902       // Create a map from the instruction number (if present) to the
1903       // MachineInstr and its position.
1904       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1905         auto InstrAndPos = std::make_pair(&MI, CurInst);
1906         auto InsertResult =
1907             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1908 
1909         // There should never be duplicate instruction numbers.
1910         assert(InsertResult.second);
1911         (void)InsertResult;
1912       }
1913 
1914       ++CurInst;
1915     }
1916 
1917     // Produce the transfer function, a map of machine location to new value. If
1918     // any machine location has the live-in phi value from the start of the
1919     // block, it's live-through and doesn't need recording in the transfer
1920     // function.
1921     for (auto Location : MTracker->locations()) {
1922       LocIdx Idx = Location.Idx;
1923       ValueIDNum &P = Location.Value;
1924       if (P.isPHI() && P.getLoc() == Idx.asU64())
1925         continue;
1926 
1927       // Insert-or-update.
1928       auto &TransferMap = MLocTransfer[CurBB];
1929       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1930       if (!Result.second)
1931         Result.first->second = P;
1932     }
1933 
1934     // Accumulate any bitmask operands into the clobberred reg mask for this
1935     // block.
1936     for (auto &P : MTracker->Masks) {
1937       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1938     }
1939   }
1940 
1941   // Compute a bitvector of all the registers that are tracked in this block.
1942   BitVector UsedRegs(TRI->getNumRegs());
1943   for (auto Location : MTracker->locations()) {
1944     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1945     // Ignore stack slots, and aliases of the stack pointer.
1946     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1947       continue;
1948     UsedRegs.set(ID);
1949   }
1950 
1951   // Check that any regmask-clobber of a register that gets tracked, is not
1952   // live-through in the transfer function. It needs to be clobbered at the
1953   // very least.
1954   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1955     BitVector &BV = BlockMasks[I];
1956     BV.flip();
1957     BV &= UsedRegs;
1958     // This produces all the bits that we clobber, but also use. Check that
1959     // they're all clobbered or at least set in the designated transfer
1960     // elem.
1961     for (unsigned Bit : BV.set_bits()) {
1962       unsigned ID = MTracker->getLocID(Bit);
1963       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1964       auto &TransferMap = MLocTransfer[I];
1965 
1966       // Install a value representing the fact that this location is effectively
1967       // written to in this block. As there's no reserved value, instead use
1968       // a value number that is never generated. Pick the value number for the
1969       // first instruction in the block, def'ing this location, which we know
1970       // this block never used anyway.
1971       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1972       auto Result =
1973         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1974       if (!Result.second) {
1975         ValueIDNum &ValueID = Result.first->second;
1976         if (ValueID.getBlock() == I && ValueID.isPHI())
1977           // It was left as live-through. Set it to clobbered.
1978           ValueID = NotGeneratedNum;
1979       }
1980     }
1981   }
1982 }
1983 
1984 bool InstrRefBasedLDV::mlocJoin(
1985     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1986     FuncValueTable &OutLocs, ValueTable &InLocs) {
1987   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1988   bool Changed = false;
1989 
1990   // Handle value-propagation when control flow merges on entry to a block. For
1991   // any location without a PHI already placed, the location has the same value
1992   // as its predecessors. If a PHI is placed, test to see whether it's now a
1993   // redundant PHI that we can eliminate.
1994 
1995   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1996   for (auto *Pred : MBB.predecessors())
1997     BlockOrders.push_back(Pred);
1998 
1999   // Visit predecessors in RPOT order.
2000   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2001     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2002   };
2003   llvm::sort(BlockOrders, Cmp);
2004 
2005   // Skip entry block.
2006   if (BlockOrders.size() == 0)
2007     return false;
2008 
2009   // Step through all machine locations, look at each predecessor and test
2010   // whether we can eliminate redundant PHIs.
2011   for (auto Location : MTracker->locations()) {
2012     LocIdx Idx = Location.Idx;
2013 
2014     // Pick out the first predecessors live-out value for this location. It's
2015     // guaranteed to not be a backedge, as we order by RPO.
2016     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2017 
2018     // If we've already eliminated a PHI here, do no further checking, just
2019     // propagate the first live-in value into this block.
2020     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
2021       if (InLocs[Idx.asU64()] != FirstVal) {
2022         InLocs[Idx.asU64()] = FirstVal;
2023         Changed |= true;
2024       }
2025       continue;
2026     }
2027 
2028     // We're now examining a PHI to see whether it's un-necessary. Loop around
2029     // the other live-in values and test whether they're all the same.
2030     bool Disagree = false;
2031     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2032       const MachineBasicBlock *PredMBB = BlockOrders[I];
2033       const ValueIDNum &PredLiveOut =
2034           OutLocs[PredMBB->getNumber()][Idx.asU64()];
2035 
2036       // Incoming values agree, continue trying to eliminate this PHI.
2037       if (FirstVal == PredLiveOut)
2038         continue;
2039 
2040       // We can also accept a PHI value that feeds back into itself.
2041       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2042         continue;
2043 
2044       // Live-out of a predecessor disagrees with the first predecessor.
2045       Disagree = true;
2046     }
2047 
2048     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2049     if (!Disagree) {
2050       InLocs[Idx.asU64()] = FirstVal;
2051       Changed |= true;
2052     }
2053   }
2054 
2055   // TODO: Reimplement NumInserted and NumRemoved.
2056   return Changed;
2057 }
2058 
2059 void InstrRefBasedLDV::findStackIndexInterference(
2060     SmallVectorImpl<unsigned> &Slots) {
2061   // We could spend a bit of time finding the exact, minimal, set of stack
2062   // indexes that interfere with each other, much like reg units. Or, we can
2063   // rely on the fact that:
2064   //  * The smallest / lowest index will interfere with everything at zero
2065   //    offset, which will be the largest set of registers,
2066   //  * Most indexes with non-zero offset will end up being interference units
2067   //    anyway.
2068   // So just pick those out and return them.
2069 
2070   // We can rely on a single-byte stack index existing already, because we
2071   // initialize them in MLocTracker.
2072   auto It = MTracker->StackSlotIdxes.find({8, 0});
2073   assert(It != MTracker->StackSlotIdxes.end());
2074   Slots.push_back(It->second);
2075 
2076   // Find anything that has a non-zero offset and add that too.
2077   for (auto &Pair : MTracker->StackSlotIdxes) {
2078     // Is offset zero? If so, ignore.
2079     if (!Pair.first.second)
2080       continue;
2081     Slots.push_back(Pair.second);
2082   }
2083 }
2084 
2085 void InstrRefBasedLDV::placeMLocPHIs(
2086     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2087     FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2088   SmallVector<unsigned, 4> StackUnits;
2089   findStackIndexInterference(StackUnits);
2090 
2091   // To avoid repeatedly running the PHI placement algorithm, leverage the
2092   // fact that a def of register MUST also def its register units. Find the
2093   // units for registers, place PHIs for them, and then replicate them for
2094   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2095   // arguments) don't lead to register units being tracked, just place PHIs for
2096   // those registers directly. Stack slots have their own form of "unit",
2097   // store them to one side.
2098   SmallSet<Register, 32> RegUnitsToPHIUp;
2099   SmallSet<LocIdx, 32> NormalLocsToPHI;
2100   SmallSet<SpillLocationNo, 32> StackSlots;
2101   for (auto Location : MTracker->locations()) {
2102     LocIdx L = Location.Idx;
2103     if (MTracker->isSpill(L)) {
2104       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2105       continue;
2106     }
2107 
2108     Register R = MTracker->LocIdxToLocID[L];
2109     SmallSet<Register, 8> FoundRegUnits;
2110     bool AnyIllegal = false;
2111     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
2112       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
2113         if (!MTracker->isRegisterTracked(*URoot)) {
2114           // Not all roots were loaded into the tracking map: this register
2115           // isn't actually def'd anywhere, we only read from it. Generate PHIs
2116           // for this reg, but don't iterate units.
2117           AnyIllegal = true;
2118         } else {
2119           FoundRegUnits.insert(*URoot);
2120         }
2121       }
2122     }
2123 
2124     if (AnyIllegal) {
2125       NormalLocsToPHI.insert(L);
2126       continue;
2127     }
2128 
2129     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2130   }
2131 
2132   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2133   // collection.
2134   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2135   auto CollectPHIsForLoc = [&](LocIdx L) {
2136     // Collect the set of defs.
2137     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2138     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2139       MachineBasicBlock *MBB = OrderToBB[I];
2140       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2141       if (TransferFunc.find(L) != TransferFunc.end())
2142         DefBlocks.insert(MBB);
2143     }
2144 
2145     // The entry block defs the location too: it's the live-in / argument value.
2146     // Only insert if there are other defs though; everything is trivially live
2147     // through otherwise.
2148     if (!DefBlocks.empty())
2149       DefBlocks.insert(&*MF.begin());
2150 
2151     // Ask the SSA construction algorithm where we should put PHIs. Clear
2152     // anything that might have been hanging around from earlier.
2153     PHIBlocks.clear();
2154     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2155   };
2156 
2157   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2158     for (const MachineBasicBlock *MBB : PHIBlocks)
2159       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2160   };
2161 
2162   // For locations with no reg units, just place PHIs.
2163   for (LocIdx L : NormalLocsToPHI) {
2164     CollectPHIsForLoc(L);
2165     // Install those PHI values into the live-in value array.
2166     InstallPHIsAtLoc(L);
2167   }
2168 
2169   // For stack slots, calculate PHIs for the equivalent of the units, then
2170   // install for each index.
2171   for (SpillLocationNo Slot : StackSlots) {
2172     for (unsigned Idx : StackUnits) {
2173       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2174       LocIdx L = MTracker->getSpillMLoc(SpillID);
2175       CollectPHIsForLoc(L);
2176       InstallPHIsAtLoc(L);
2177 
2178       // Find anything that aliases this stack index, install PHIs for it too.
2179       unsigned Size, Offset;
2180       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2181       for (auto &Pair : MTracker->StackSlotIdxes) {
2182         unsigned ThisSize, ThisOffset;
2183         std::tie(ThisSize, ThisOffset) = Pair.first;
2184         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2185           continue;
2186 
2187         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2188         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2189         InstallPHIsAtLoc(ThisL);
2190       }
2191     }
2192   }
2193 
2194   // For reg units, place PHIs, and then place them for any aliasing registers.
2195   for (Register R : RegUnitsToPHIUp) {
2196     LocIdx L = MTracker->lookupOrTrackRegister(R);
2197     CollectPHIsForLoc(L);
2198 
2199     // Install those PHI values into the live-in value array.
2200     InstallPHIsAtLoc(L);
2201 
2202     // Now find aliases and install PHIs for those.
2203     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2204       // Super-registers that are "above" the largest register read/written by
2205       // the function will alias, but will not be tracked.
2206       if (!MTracker->isRegisterTracked(*RAI))
2207         continue;
2208 
2209       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2210       InstallPHIsAtLoc(AliasLoc);
2211     }
2212   }
2213 }
2214 
2215 void InstrRefBasedLDV::buildMLocValueMap(
2216     MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2217     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2218   std::priority_queue<unsigned int, std::vector<unsigned int>,
2219                       std::greater<unsigned int>>
2220       Worklist, Pending;
2221 
2222   // We track what is on the current and pending worklist to avoid inserting
2223   // the same thing twice. We could avoid this with a custom priority queue,
2224   // but this is probably not worth it.
2225   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2226 
2227   // Initialize worklist with every block to be visited. Also produce list of
2228   // all blocks.
2229   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2230   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2231     Worklist.push(I);
2232     OnWorklist.insert(OrderToBB[I]);
2233     AllBlocks.insert(OrderToBB[I]);
2234   }
2235 
2236   // Initialize entry block to PHIs. These represent arguments.
2237   for (auto Location : MTracker->locations())
2238     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2239 
2240   MTracker->reset();
2241 
2242   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2243   // any machine-location that isn't live-through a block to be def'd in that
2244   // block.
2245   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2246 
2247   // Propagate values to eliminate redundant PHIs. At the same time, this
2248   // produces the table of Block x Location => Value for the entry to each
2249   // block.
2250   // The kind of PHIs we can eliminate are, for example, where one path in a
2251   // conditional spills and restores a register, and the register still has
2252   // the same value once control flow joins, unbeknowns to the PHI placement
2253   // code. Propagating values allows us to identify such un-necessary PHIs and
2254   // remove them.
2255   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2256   while (!Worklist.empty() || !Pending.empty()) {
2257     // Vector for storing the evaluated block transfer function.
2258     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2259 
2260     while (!Worklist.empty()) {
2261       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2262       CurBB = MBB->getNumber();
2263       Worklist.pop();
2264 
2265       // Join the values in all predecessor blocks.
2266       bool InLocsChanged;
2267       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2268       InLocsChanged |= Visited.insert(MBB).second;
2269 
2270       // Don't examine transfer function if we've visited this loc at least
2271       // once, and inlocs haven't changed.
2272       if (!InLocsChanged)
2273         continue;
2274 
2275       // Load the current set of live-ins into MLocTracker.
2276       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2277 
2278       // Each element of the transfer function can be a new def, or a read of
2279       // a live-in value. Evaluate each element, and store to "ToRemap".
2280       ToRemap.clear();
2281       for (auto &P : MLocTransfer[CurBB]) {
2282         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2283           // This is a movement of whatever was live in. Read it.
2284           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2285           ToRemap.push_back(std::make_pair(P.first, NewID));
2286         } else {
2287           // It's a def. Just set it.
2288           assert(P.second.getBlock() == CurBB);
2289           ToRemap.push_back(std::make_pair(P.first, P.second));
2290         }
2291       }
2292 
2293       // Commit the transfer function changes into mloc tracker, which
2294       // transforms the contents of the MLocTracker into the live-outs.
2295       for (auto &P : ToRemap)
2296         MTracker->setMLoc(P.first, P.second);
2297 
2298       // Now copy out-locs from mloc tracker into out-loc vector, checking
2299       // whether changes have occurred. These changes can have come from both
2300       // the transfer function, and mlocJoin.
2301       bool OLChanged = false;
2302       for (auto Location : MTracker->locations()) {
2303         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2304         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2305       }
2306 
2307       MTracker->reset();
2308 
2309       // No need to examine successors again if out-locs didn't change.
2310       if (!OLChanged)
2311         continue;
2312 
2313       // All successors should be visited: put any back-edges on the pending
2314       // list for the next pass-through, and any other successors to be
2315       // visited this pass, if they're not going to be already.
2316       for (auto *s : MBB->successors()) {
2317         // Does branching to this successor represent a back-edge?
2318         if (BBToOrder[s] > BBToOrder[MBB]) {
2319           // No: visit it during this dataflow iteration.
2320           if (OnWorklist.insert(s).second)
2321             Worklist.push(BBToOrder[s]);
2322         } else {
2323           // Yes: visit it on the next iteration.
2324           if (OnPending.insert(s).second)
2325             Pending.push(BBToOrder[s]);
2326         }
2327       }
2328     }
2329 
2330     Worklist.swap(Pending);
2331     std::swap(OnPending, OnWorklist);
2332     OnPending.clear();
2333     // At this point, pending must be empty, since it was just the empty
2334     // worklist
2335     assert(Pending.empty() && "Pending should be empty");
2336   }
2337 
2338   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2339   // redundant PHIs.
2340 }
2341 
2342 void InstrRefBasedLDV::BlockPHIPlacement(
2343     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2344     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2345     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2346   // Apply IDF calculator to the designated set of location defs, storing
2347   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2348   // InstrRefBasedLDV object.
2349   IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2350 
2351   IDF.setLiveInBlocks(AllBlocks);
2352   IDF.setDefiningBlocks(DefBlocks);
2353   IDF.calculate(PHIBlocks);
2354 }
2355 
2356 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2357     const MachineBasicBlock &MBB, const DebugVariable &Var,
2358     const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2359     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2360   // Collect a set of locations from predecessor where its live-out value can
2361   // be found.
2362   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2363   SmallVector<const DbgValueProperties *, 4> Properties;
2364   unsigned NumLocs = MTracker->getNumLocs();
2365 
2366   // No predecessors means no PHIs.
2367   if (BlockOrders.empty())
2368     return None;
2369 
2370   for (const auto *p : BlockOrders) {
2371     unsigned ThisBBNum = p->getNumber();
2372     auto OutValIt = LiveOuts.find(p);
2373     if (OutValIt == LiveOuts.end())
2374       // If we have a predecessor not in scope, we'll never find a PHI position.
2375       return None;
2376     const DbgValue &OutVal = *OutValIt->second;
2377 
2378     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2379       // Consts and no-values cannot have locations we can join on.
2380       return None;
2381 
2382     Properties.push_back(&OutVal.Properties);
2383 
2384     // Create new empty vector of locations.
2385     Locs.resize(Locs.size() + 1);
2386 
2387     // If the live-in value is a def, find the locations where that value is
2388     // present. Do the same for VPHIs where we know the VPHI value.
2389     if (OutVal.Kind == DbgValue::Def ||
2390         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2391          OutVal.ID != ValueIDNum::EmptyValue)) {
2392       ValueIDNum ValToLookFor = OutVal.ID;
2393       // Search the live-outs of the predecessor for the specified value.
2394       for (unsigned int I = 0; I < NumLocs; ++I) {
2395         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2396           Locs.back().push_back(LocIdx(I));
2397       }
2398     } else {
2399       assert(OutVal.Kind == DbgValue::VPHI);
2400       // For VPHIs where we don't know the location, we definitely can't find
2401       // a join loc.
2402       if (OutVal.BlockNo != MBB.getNumber())
2403         return None;
2404 
2405       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2406       // a value that's live-through the whole loop. (It has to be a backedge,
2407       // because a block can't dominate itself). We can accept as a PHI location
2408       // any location where the other predecessors agree, _and_ the machine
2409       // locations feed back into themselves. Therefore, add all self-looping
2410       // machine-value PHI locations.
2411       for (unsigned int I = 0; I < NumLocs; ++I) {
2412         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2413         if (MOutLocs[ThisBBNum][I] == MPHI)
2414           Locs.back().push_back(LocIdx(I));
2415       }
2416     }
2417   }
2418 
2419   // We should have found locations for all predecessors, or returned.
2420   assert(Locs.size() == BlockOrders.size());
2421 
2422   // Check that all properties are the same. We can't pick a location if they're
2423   // not.
2424   const DbgValueProperties *Properties0 = Properties[0];
2425   for (const auto *Prop : Properties)
2426     if (*Prop != *Properties0)
2427       return None;
2428 
2429   // Starting with the first set of locations, take the intersection with
2430   // subsequent sets.
2431   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2432   for (unsigned int I = 1; I < Locs.size(); ++I) {
2433     auto &LocVec = Locs[I];
2434     SmallVector<LocIdx, 4> NewCandidates;
2435     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2436                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2437     CandidateLocs = NewCandidates;
2438   }
2439   if (CandidateLocs.empty())
2440     return None;
2441 
2442   // We now have a set of LocIdxes that contain the right output value in
2443   // each of the predecessors. Pick the lowest; if there's a register loc,
2444   // that'll be it.
2445   LocIdx L = *CandidateLocs.begin();
2446 
2447   // Return a PHI-value-number for the found location.
2448   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2449   return PHIVal;
2450 }
2451 
2452 bool InstrRefBasedLDV::vlocJoin(
2453     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2454     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2455     DbgValue &LiveIn) {
2456   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2457   bool Changed = false;
2458 
2459   // Order predecessors by RPOT order, for exploring them in that order.
2460   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2461 
2462   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2463     return BBToOrder[A] < BBToOrder[B];
2464   };
2465 
2466   llvm::sort(BlockOrders, Cmp);
2467 
2468   unsigned CurBlockRPONum = BBToOrder[&MBB];
2469 
2470   // Collect all the incoming DbgValues for this variable, from predecessor
2471   // live-out values.
2472   SmallVector<InValueT, 8> Values;
2473   bool Bail = false;
2474   int BackEdgesStart = 0;
2475   for (auto *p : BlockOrders) {
2476     // If the predecessor isn't in scope / to be explored, we'll never be
2477     // able to join any locations.
2478     if (!BlocksToExplore.contains(p)) {
2479       Bail = true;
2480       break;
2481     }
2482 
2483     // All Live-outs will have been initialized.
2484     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2485 
2486     // Keep track of where back-edges begin in the Values vector. Relies on
2487     // BlockOrders being sorted by RPO.
2488     unsigned ThisBBRPONum = BBToOrder[p];
2489     if (ThisBBRPONum < CurBlockRPONum)
2490       ++BackEdgesStart;
2491 
2492     Values.push_back(std::make_pair(p, &OutLoc));
2493   }
2494 
2495   // If there were no values, or one of the predecessors couldn't have a
2496   // value, then give up immediately. It's not safe to produce a live-in
2497   // value. Leave as whatever it was before.
2498   if (Bail || Values.size() == 0)
2499     return false;
2500 
2501   // All (non-entry) blocks have at least one non-backedge predecessor.
2502   // Pick the variable value from the first of these, to compare against
2503   // all others.
2504   const DbgValue &FirstVal = *Values[0].second;
2505 
2506   // If the old live-in value is not a PHI then either a) no PHI is needed
2507   // here, or b) we eliminated the PHI that was here. If so, we can just
2508   // propagate in the first parent's incoming value.
2509   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2510     Changed = LiveIn != FirstVal;
2511     if (Changed)
2512       LiveIn = FirstVal;
2513     return Changed;
2514   }
2515 
2516   // Scan for variable values that can never be resolved: if they have
2517   // different DIExpressions, different indirectness, or are mixed constants /
2518   // non-constants.
2519   for (auto &V : Values) {
2520     if (V.second->Properties != FirstVal.Properties)
2521       return false;
2522     if (V.second->Kind == DbgValue::NoVal)
2523       return false;
2524     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2525       return false;
2526   }
2527 
2528   // Try to eliminate this PHI. Do the incoming values all agree?
2529   bool Disagree = false;
2530   for (auto &V : Values) {
2531     if (*V.second == FirstVal)
2532       continue; // No disagreement.
2533 
2534     // Eliminate if a backedge feeds a VPHI back into itself.
2535     if (V.second->Kind == DbgValue::VPHI &&
2536         V.second->BlockNo == MBB.getNumber() &&
2537         // Is this a backedge?
2538         std::distance(Values.begin(), &V) >= BackEdgesStart)
2539       continue;
2540 
2541     Disagree = true;
2542   }
2543 
2544   // No disagreement -> live-through value.
2545   if (!Disagree) {
2546     Changed = LiveIn != FirstVal;
2547     if (Changed)
2548       LiveIn = FirstVal;
2549     return Changed;
2550   } else {
2551     // Otherwise use a VPHI.
2552     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2553     Changed = LiveIn != VPHI;
2554     if (Changed)
2555       LiveIn = VPHI;
2556     return Changed;
2557   }
2558 }
2559 
2560 void InstrRefBasedLDV::getBlocksForScope(
2561     const DILocation *DILoc,
2562     SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
2563     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
2564   // Get the set of "normal" in-lexical-scope blocks.
2565   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2566 
2567   // VarLoc LiveDebugValues tracks variable locations that are defined in
2568   // blocks not in scope. This is something we could legitimately ignore, but
2569   // lets allow it for now for the sake of coverage.
2570   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2571 
2572   // Storage for artificial blocks we intend to add to BlocksToExplore.
2573   DenseSet<const MachineBasicBlock *> ToAdd;
2574 
2575   // To avoid needlessly dropping large volumes of variable locations, propagate
2576   // variables through aritifical blocks, i.e. those that don't have any
2577   // instructions in scope at all. To accurately replicate VarLoc
2578   // LiveDebugValues, this means exploring all artificial successors too.
2579   // Perform a depth-first-search to enumerate those blocks.
2580   for (const auto *MBB : BlocksToExplore) {
2581     // Depth-first-search state: each node is a block and which successor
2582     // we're currently exploring.
2583     SmallVector<std::pair<const MachineBasicBlock *,
2584                           MachineBasicBlock::const_succ_iterator>,
2585                 8>
2586         DFS;
2587 
2588     // Find any artificial successors not already tracked.
2589     for (auto *succ : MBB->successors()) {
2590       if (BlocksToExplore.count(succ))
2591         continue;
2592       if (!ArtificialBlocks.count(succ))
2593         continue;
2594       ToAdd.insert(succ);
2595       DFS.push_back({succ, succ->succ_begin()});
2596     }
2597 
2598     // Search all those blocks, depth first.
2599     while (!DFS.empty()) {
2600       const MachineBasicBlock *CurBB = DFS.back().first;
2601       MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2602       // Walk back if we've explored this blocks successors to the end.
2603       if (CurSucc == CurBB->succ_end()) {
2604         DFS.pop_back();
2605         continue;
2606       }
2607 
2608       // If the current successor is artificial and unexplored, descend into
2609       // it.
2610       if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2611         ToAdd.insert(*CurSucc);
2612         DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
2613         continue;
2614       }
2615 
2616       ++CurSucc;
2617     }
2618   };
2619 
2620   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2621 }
2622 
2623 void InstrRefBasedLDV::buildVLocValueMap(
2624     const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2625     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2626     FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
2627     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2628   // This method is much like buildMLocValueMap: but focuses on a single
2629   // LexicalScope at a time. Pick out a set of blocks and variables that are
2630   // to have their value assignments solved, then run our dataflow algorithm
2631   // until a fixedpoint is reached.
2632   std::priority_queue<unsigned int, std::vector<unsigned int>,
2633                       std::greater<unsigned int>>
2634       Worklist, Pending;
2635   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2636 
2637   // The set of blocks we'll be examining.
2638   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2639 
2640   // The order in which to examine them (RPO).
2641   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2642 
2643   // RPO ordering function.
2644   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2645     return BBToOrder[A] < BBToOrder[B];
2646   };
2647 
2648   getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
2649 
2650   // Single block scope: not interesting! No propagation at all. Note that
2651   // this could probably go above ArtificialBlocks without damage, but
2652   // that then produces output differences from original-live-debug-values,
2653   // which propagates from a single block into many artificial ones.
2654   if (BlocksToExplore.size() == 1)
2655     return;
2656 
2657   // Convert a const set to a non-const set. LexicalScopes
2658   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2659   // (Neither of them mutate anything).
2660   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2661   for (const auto *MBB : BlocksToExplore)
2662     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2663 
2664   // Picks out relevants blocks RPO order and sort them.
2665   for (const auto *MBB : BlocksToExplore)
2666     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2667 
2668   llvm::sort(BlockOrders, Cmp);
2669   unsigned NumBlocks = BlockOrders.size();
2670 
2671   // Allocate some vectors for storing the live ins and live outs. Large.
2672   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2673   LiveIns.reserve(NumBlocks);
2674   LiveOuts.reserve(NumBlocks);
2675 
2676   // Initialize all values to start as NoVals. This signifies "it's live
2677   // through, but we don't know what it is".
2678   DbgValueProperties EmptyProperties(EmptyExpr, false);
2679   for (unsigned int I = 0; I < NumBlocks; ++I) {
2680     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2681     LiveIns.push_back(EmptyDbgValue);
2682     LiveOuts.push_back(EmptyDbgValue);
2683   }
2684 
2685   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2686   // vlocJoin.
2687   LiveIdxT LiveOutIdx, LiveInIdx;
2688   LiveOutIdx.reserve(NumBlocks);
2689   LiveInIdx.reserve(NumBlocks);
2690   for (unsigned I = 0; I < NumBlocks; ++I) {
2691     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2692     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2693   }
2694 
2695   // Loop over each variable and place PHIs for it, then propagate values
2696   // between blocks. This keeps the locality of working on one lexical scope at
2697   // at time, but avoids re-processing variable values because some other
2698   // variable has been assigned.
2699   for (const auto &Var : VarsWeCareAbout) {
2700     // Re-initialize live-ins and live-outs, to clear the remains of previous
2701     // variables live-ins / live-outs.
2702     for (unsigned int I = 0; I < NumBlocks; ++I) {
2703       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2704       LiveIns[I] = EmptyDbgValue;
2705       LiveOuts[I] = EmptyDbgValue;
2706     }
2707 
2708     // Place PHIs for variable values, using the LLVM IDF calculator.
2709     // Collect the set of blocks where variables are def'd.
2710     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2711     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2712       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2713       if (TransferFunc.find(Var) != TransferFunc.end())
2714         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2715     }
2716 
2717     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2718 
2719     // Request the set of PHIs we should insert for this variable. If there's
2720     // only one value definition, things are very simple.
2721     if (DefBlocks.size() == 1) {
2722       placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
2723                                       AllTheVLocs, Var, Output);
2724       continue;
2725     }
2726 
2727     // Otherwise: we need to place PHIs through SSA and propagate values.
2728     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2729 
2730     // Insert PHIs into the per-block live-in tables for this variable.
2731     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2732       unsigned BlockNo = PHIMBB->getNumber();
2733       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2734       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2735     }
2736 
2737     for (auto *MBB : BlockOrders) {
2738       Worklist.push(BBToOrder[MBB]);
2739       OnWorklist.insert(MBB);
2740     }
2741 
2742     // Iterate over all the blocks we selected, propagating the variables value.
2743     // This loop does two things:
2744     //  * Eliminates un-necessary VPHIs in vlocJoin,
2745     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2746     //    stores the result to the blocks live-outs.
2747     // Always evaluate the transfer function on the first iteration, and when
2748     // the live-ins change thereafter.
2749     bool FirstTrip = true;
2750     while (!Worklist.empty() || !Pending.empty()) {
2751       while (!Worklist.empty()) {
2752         auto *MBB = OrderToBB[Worklist.top()];
2753         CurBB = MBB->getNumber();
2754         Worklist.pop();
2755 
2756         auto LiveInsIt = LiveInIdx.find(MBB);
2757         assert(LiveInsIt != LiveInIdx.end());
2758         DbgValue *LiveIn = LiveInsIt->second;
2759 
2760         // Join values from predecessors. Updates LiveInIdx, and writes output
2761         // into JoinedInLocs.
2762         bool InLocsChanged =
2763             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
2764 
2765         SmallVector<const MachineBasicBlock *, 8> Preds;
2766         for (const auto *Pred : MBB->predecessors())
2767           Preds.push_back(Pred);
2768 
2769         // If this block's live-in value is a VPHI, try to pick a machine-value
2770         // for it. This makes the machine-value available and propagated
2771         // through all blocks by the time value propagation finishes. We can't
2772         // do this any earlier as it needs to read the block live-outs.
2773         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2774           // There's a small possibility that on a preceeding path, a VPHI is
2775           // eliminated and transitions from VPHI-with-location to
2776           // live-through-value. As a result, the selected location of any VPHI
2777           // might change, so we need to re-compute it on each iteration.
2778           Optional<ValueIDNum> ValueNum =
2779               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2780 
2781           if (ValueNum) {
2782             InLocsChanged |= LiveIn->ID != *ValueNum;
2783             LiveIn->ID = *ValueNum;
2784           }
2785         }
2786 
2787         if (!InLocsChanged && !FirstTrip)
2788           continue;
2789 
2790         DbgValue *LiveOut = LiveOutIdx[MBB];
2791         bool OLChanged = false;
2792 
2793         // Do transfer function.
2794         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2795         auto TransferIt = VTracker.Vars.find(Var);
2796         if (TransferIt != VTracker.Vars.end()) {
2797           // Erase on empty transfer (DBG_VALUE $noreg).
2798           if (TransferIt->second.Kind == DbgValue::Undef) {
2799             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2800             if (*LiveOut != NewVal) {
2801               *LiveOut = NewVal;
2802               OLChanged = true;
2803             }
2804           } else {
2805             // Insert new variable value; or overwrite.
2806             if (*LiveOut != TransferIt->second) {
2807               *LiveOut = TransferIt->second;
2808               OLChanged = true;
2809             }
2810           }
2811         } else {
2812           // Just copy live-ins to live-outs, for anything not transferred.
2813           if (*LiveOut != *LiveIn) {
2814             *LiveOut = *LiveIn;
2815             OLChanged = true;
2816           }
2817         }
2818 
2819         // If no live-out value changed, there's no need to explore further.
2820         if (!OLChanged)
2821           continue;
2822 
2823         // We should visit all successors. Ensure we'll visit any non-backedge
2824         // successors during this dataflow iteration; book backedge successors
2825         // to be visited next time around.
2826         for (auto *s : MBB->successors()) {
2827           // Ignore out of scope / not-to-be-explored successors.
2828           if (LiveInIdx.find(s) == LiveInIdx.end())
2829             continue;
2830 
2831           if (BBToOrder[s] > BBToOrder[MBB]) {
2832             if (OnWorklist.insert(s).second)
2833               Worklist.push(BBToOrder[s]);
2834           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2835             Pending.push(BBToOrder[s]);
2836           }
2837         }
2838       }
2839       Worklist.swap(Pending);
2840       std::swap(OnWorklist, OnPending);
2841       OnPending.clear();
2842       assert(Pending.empty());
2843       FirstTrip = false;
2844     }
2845 
2846     // Save live-ins to output vector. Ignore any that are still marked as being
2847     // VPHIs with no location -- those are variables that we know the value of,
2848     // but are not actually available in the register file.
2849     for (auto *MBB : BlockOrders) {
2850       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2851       if (BlockLiveIn->Kind == DbgValue::NoVal)
2852         continue;
2853       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2854           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2855         continue;
2856       if (BlockLiveIn->Kind == DbgValue::VPHI)
2857         BlockLiveIn->Kind = DbgValue::Def;
2858       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
2859              Var.getFragment() && "Fragment info missing during value prop");
2860       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2861     }
2862   } // Per-variable loop.
2863 
2864   BlockOrders.clear();
2865   BlocksToExplore.clear();
2866 }
2867 
2868 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
2869     const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
2870     MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
2871     const DebugVariable &Var, LiveInsT &Output) {
2872   // If there is a single definition of the variable, then working out it's
2873   // value everywhere is very simple: it's every block dominated by the
2874   // definition. At the dominance frontier, the usual algorithm would:
2875   //  * Place PHIs,
2876   //  * Propagate values into them,
2877   //  * Find there's no incoming variable value from the other incoming branches
2878   //    of the dominance frontier,
2879   //  * Specify there's no variable value in blocks past the frontier.
2880   // This is a common case, hence it's worth special-casing it.
2881 
2882   // Pick out the variables value from the block transfer function.
2883   VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
2884   auto ValueIt = VLocs.Vars.find(Var);
2885   const DbgValue &Value = ValueIt->second;
2886 
2887   // If it's an explicit assignment of "undef", that means there is no location
2888   // anyway, anywhere.
2889   if (Value.Kind == DbgValue::Undef)
2890     return;
2891 
2892   // Assign the variable value to entry to each dominated block that's in scope.
2893   // Skip the definition block -- it's assigned the variable value in the middle
2894   // of the block somewhere.
2895   for (auto *ScopeBlock : InScopeBlocks) {
2896     if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
2897       continue;
2898 
2899     Output[ScopeBlock->getNumber()].push_back({Var, Value});
2900   }
2901 
2902   // All blocks that aren't dominated have no live-in value, thus no variable
2903   // value will be given to them.
2904 }
2905 
2906 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2907 void InstrRefBasedLDV::dump_mloc_transfer(
2908     const MLocTransferMap &mloc_transfer) const {
2909   for (const auto &P : mloc_transfer) {
2910     std::string foo = MTracker->LocIdxToName(P.first);
2911     std::string bar = MTracker->IDAsString(P.second);
2912     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2913   }
2914 }
2915 #endif
2916 
2917 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2918   // Build some useful data structures.
2919 
2920   LLVMContext &Context = MF.getFunction().getContext();
2921   EmptyExpr = DIExpression::get(Context, {});
2922 
2923   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2924     if (const DebugLoc &DL = MI.getDebugLoc())
2925       return DL.getLine() != 0;
2926     return false;
2927   };
2928   // Collect a set of all the artificial blocks.
2929   for (auto &MBB : MF)
2930     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2931       ArtificialBlocks.insert(&MBB);
2932 
2933   // Compute mappings of block <=> RPO order.
2934   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2935   unsigned int RPONumber = 0;
2936   for (MachineBasicBlock *MBB : RPOT) {
2937     OrderToBB[RPONumber] = MBB;
2938     BBToOrder[MBB] = RPONumber;
2939     BBNumToRPO[MBB->getNumber()] = RPONumber;
2940     ++RPONumber;
2941   }
2942 
2943   // Order value substitutions by their "source" operand pair, for quick lookup.
2944   llvm::sort(MF.DebugValueSubstitutions);
2945 
2946 #ifdef EXPENSIVE_CHECKS
2947   // As an expensive check, test whether there are any duplicate substitution
2948   // sources in the collection.
2949   if (MF.DebugValueSubstitutions.size() > 2) {
2950     for (auto It = MF.DebugValueSubstitutions.begin();
2951          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2952       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2953                                               "substitution seen");
2954     }
2955   }
2956 #endif
2957 }
2958 
2959 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
2960 // lexical scope it's used in. When exploring in DFS order and we pass that
2961 // scope, the block can be processed and any tracking information freed.
2962 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
2963     SmallVectorImpl<unsigned> &EjectionMap,
2964     const ScopeToDILocT &ScopeToDILocation,
2965     ScopeToAssignBlocksT &ScopeToAssignBlocks) {
2966   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2967   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
2968   auto *TopScope = LS.getCurrentFunctionScope();
2969 
2970   // Unlike lexical scope explorers, we explore in reverse order, to find the
2971   // "last" lexical scope used for each block early.
2972   WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
2973 
2974   while (!WorkStack.empty()) {
2975     auto &ScopePosition = WorkStack.back();
2976     LexicalScope *WS = ScopePosition.first;
2977     ssize_t ChildNum = ScopePosition.second--;
2978 
2979     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
2980     if (ChildNum >= 0) {
2981       // If ChildNum is positive, there are remaining children to explore.
2982       // Push the child and its children-count onto the stack.
2983       auto &ChildScope = Children[ChildNum];
2984       WorkStack.push_back(
2985           std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
2986     } else {
2987       WorkStack.pop_back();
2988 
2989       // We've explored all children and any later blocks: examine all blocks
2990       // in our scope. If they haven't yet had an ejection number set, then
2991       // this scope will be the last to use that block.
2992       auto DILocationIt = ScopeToDILocation.find(WS);
2993       if (DILocationIt != ScopeToDILocation.end()) {
2994         getBlocksForScope(DILocationIt->second, BlocksToExplore,
2995                           ScopeToAssignBlocks.find(WS)->second);
2996         for (const auto *MBB : BlocksToExplore) {
2997           unsigned BBNum = MBB->getNumber();
2998           if (EjectionMap[BBNum] == 0)
2999             EjectionMap[BBNum] = WS->getDFSOut();
3000         }
3001 
3002         BlocksToExplore.clear();
3003       }
3004     }
3005   }
3006 }
3007 
3008 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
3009     unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
3010     const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
3011     LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
3012     SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
3013     DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3014     const TargetPassConfig &TPC) {
3015   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3016   unsigned NumLocs = MTracker->getNumLocs();
3017   VTracker = nullptr;
3018 
3019   // No scopes? No variable locations.
3020   if (!LS.getCurrentFunctionScope())
3021     return false;
3022 
3023   // Build map from block number to the last scope that uses the block.
3024   SmallVector<unsigned, 16> EjectionMap;
3025   EjectionMap.resize(MaxNumBlocks, 0);
3026   makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
3027                             ScopeToAssignBlocks);
3028 
3029   // Helper lambda for ejecting a block -- if nothing is going to use the block,
3030   // we can translate the variable location information into DBG_VALUEs and then
3031   // free all of InstrRefBasedLDV's data structures.
3032   auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3033     unsigned BBNum = MBB.getNumber();
3034     AllTheVLocs[BBNum].clear();
3035 
3036     // Prime the transfer-tracker, and then step through all the block
3037     // instructions, installing transfers.
3038     MTracker->reset();
3039     MTracker->loadFromArray(MInLocs[BBNum], BBNum);
3040     TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs);
3041 
3042     CurBB = BBNum;
3043     CurInst = 1;
3044     for (auto &MI : MBB) {
3045       process(MI, MOutLocs.get(), MInLocs.get());
3046       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3047       ++CurInst;
3048     }
3049 
3050     // Free machine-location tables for this block.
3051     MInLocs[BBNum].reset();
3052     MOutLocs[BBNum].reset();
3053     // We don't need live-in variable values for this block either.
3054     Output[BBNum].clear();
3055     AllTheVLocs[BBNum].clear();
3056   };
3057 
3058   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3059   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3060   WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3061   unsigned HighestDFSIn = 0;
3062 
3063   // Proceed to explore in depth first order.
3064   while (!WorkStack.empty()) {
3065     auto &ScopePosition = WorkStack.back();
3066     LexicalScope *WS = ScopePosition.first;
3067     ssize_t ChildNum = ScopePosition.second++;
3068 
3069     // We obesrve scopes with children twice here, once descending in, once
3070     // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3071     // we don't process a scope twice. Additionally, ignore scopes that don't
3072     // have a DILocation -- by proxy, this means we never tracked any variable
3073     // assignments in that scope.
3074     auto DILocIt = ScopeToDILocation.find(WS);
3075     if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3076       const DILocation *DILoc = DILocIt->second;
3077       auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3078       auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3079 
3080       buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3081                         MInLocs, AllTheVLocs);
3082     }
3083 
3084     HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3085 
3086     // Descend into any scope nests.
3087     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3088     if (ChildNum < (ssize_t)Children.size()) {
3089       // There are children to explore -- push onto stack and continue.
3090       auto &ChildScope = Children[ChildNum];
3091       WorkStack.push_back(std::make_pair(ChildScope, 0));
3092     } else {
3093       WorkStack.pop_back();
3094 
3095       // We've explored a leaf, or have explored all the children of a scope.
3096       // Try to eject any blocks where this is the last scope it's relevant to.
3097       auto DILocationIt = ScopeToDILocation.find(WS);
3098       if (DILocationIt == ScopeToDILocation.end())
3099         continue;
3100 
3101       getBlocksForScope(DILocationIt->second, BlocksToExplore,
3102                         ScopeToAssignBlocks.find(WS)->second);
3103       for (const auto *MBB : BlocksToExplore)
3104         if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3105           EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3106 
3107       BlocksToExplore.clear();
3108     }
3109   }
3110 
3111   // Some artificial blocks may not have been ejected, meaning they're not
3112   // connected to an actual legitimate scope. This can technically happen
3113   // with things like the entry block. In theory, we shouldn't need to do
3114   // anything for such out-of-scope blocks, but for the sake of being similar
3115   // to VarLocBasedLDV, eject these too.
3116   for (auto *MBB : ArtificialBlocks)
3117     if (MOutLocs[MBB->getNumber()])
3118       EjectBlock(*MBB);
3119 
3120   return emitTransfers(AllVarsNumbering);
3121 }
3122 
3123 bool InstrRefBasedLDV::emitTransfers(
3124     DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3125   // Go through all the transfers recorded in the TransferTracker -- this is
3126   // both the live-ins to a block, and any movements of values that happen
3127   // in the middle.
3128   for (const auto &P : TTracker->Transfers) {
3129     // We have to insert DBG_VALUEs in a consistent order, otherwise they
3130     // appear in DWARF in different orders. Use the order that they appear
3131     // when walking through each block / each instruction, stored in
3132     // AllVarsNumbering.
3133     SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3134     for (MachineInstr *MI : P.Insts) {
3135       DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3136                         MI->getDebugLoc()->getInlinedAt());
3137       Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3138     }
3139     llvm::sort(Insts, llvm::less_first());
3140 
3141     // Insert either before or after the designated point...
3142     if (P.MBB) {
3143       MachineBasicBlock &MBB = *P.MBB;
3144       for (const auto &Pair : Insts)
3145         MBB.insert(P.Pos, Pair.second);
3146     } else {
3147       // Terminators, like tail calls, can clobber things. Don't try and place
3148       // transfers after them.
3149       if (P.Pos->isTerminator())
3150         continue;
3151 
3152       MachineBasicBlock &MBB = *P.Pos->getParent();
3153       for (const auto &Pair : Insts)
3154         MBB.insertAfterBundle(P.Pos, Pair.second);
3155     }
3156   }
3157 
3158   return TTracker->Transfers.size() != 0;
3159 }
3160 
3161 /// Calculate the liveness information for the given machine function and
3162 /// extend ranges across basic blocks.
3163 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3164                                     MachineDominatorTree *DomTree,
3165                                     TargetPassConfig *TPC,
3166                                     unsigned InputBBLimit,
3167                                     unsigned InputDbgValLimit) {
3168   // No subprogram means this function contains no debuginfo.
3169   if (!MF.getFunction().getSubprogram())
3170     return false;
3171 
3172   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3173   this->TPC = TPC;
3174 
3175   this->DomTree = DomTree;
3176   TRI = MF.getSubtarget().getRegisterInfo();
3177   MRI = &MF.getRegInfo();
3178   TII = MF.getSubtarget().getInstrInfo();
3179   TFI = MF.getSubtarget().getFrameLowering();
3180   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3181   MFI = &MF.getFrameInfo();
3182   LS.initialize(MF);
3183 
3184   const auto &STI = MF.getSubtarget();
3185   AdjustsStackInCalls = MFI->adjustsStack() &&
3186                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3187   if (AdjustsStackInCalls)
3188     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3189 
3190   MTracker =
3191       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3192   VTracker = nullptr;
3193   TTracker = nullptr;
3194 
3195   SmallVector<MLocTransferMap, 32> MLocTransfer;
3196   SmallVector<VLocTracker, 8> vlocs;
3197   LiveInsT SavedLiveIns;
3198 
3199   int MaxNumBlocks = -1;
3200   for (auto &MBB : MF)
3201     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3202   assert(MaxNumBlocks >= 0);
3203   ++MaxNumBlocks;
3204 
3205   initialSetup(MF);
3206 
3207   MLocTransfer.resize(MaxNumBlocks);
3208   vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3209   SavedLiveIns.resize(MaxNumBlocks);
3210 
3211   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3212 
3213   // Allocate and initialize two array-of-arrays for the live-in and live-out
3214   // machine values. The outer dimension is the block number; while the inner
3215   // dimension is a LocIdx from MLocTracker.
3216   FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3217   FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3218   unsigned NumLocs = MTracker->getNumLocs();
3219   for (int i = 0; i < MaxNumBlocks; ++i) {
3220     // These all auto-initialize to ValueIDNum::EmptyValue
3221     MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3222     MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3223   }
3224 
3225   // Solve the machine value dataflow problem using the MLocTransfer function,
3226   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3227   // both live-ins and live-outs for decision making in the variable value
3228   // dataflow problem.
3229   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3230 
3231   // Patch up debug phi numbers, turning unknown block-live-in values into
3232   // either live-through machine values, or PHIs.
3233   for (auto &DBG_PHI : DebugPHINumToValue) {
3234     // Identify unresolved block-live-ins.
3235     if (!DBG_PHI.ValueRead)
3236       continue;
3237 
3238     ValueIDNum &Num = *DBG_PHI.ValueRead;
3239     if (!Num.isPHI())
3240       continue;
3241 
3242     unsigned BlockNo = Num.getBlock();
3243     LocIdx LocNo = Num.getLoc();
3244     Num = MInLocs[BlockNo][LocNo.asU64()];
3245   }
3246   // Later, we'll be looking up ranges of instruction numbers.
3247   llvm::sort(DebugPHINumToValue);
3248 
3249   // Walk back through each block / instruction, collecting DBG_VALUE
3250   // instructions and recording what machine value their operands refer to.
3251   for (auto &OrderPair : OrderToBB) {
3252     MachineBasicBlock &MBB = *OrderPair.second;
3253     CurBB = MBB.getNumber();
3254     VTracker = &vlocs[CurBB];
3255     VTracker->MBB = &MBB;
3256     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3257     CurInst = 1;
3258     for (auto &MI : MBB) {
3259       process(MI, MOutLocs.get(), MInLocs.get());
3260       ++CurInst;
3261     }
3262     MTracker->reset();
3263   }
3264 
3265   // Number all variables in the order that they appear, to be used as a stable
3266   // insertion order later.
3267   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3268 
3269   // Map from one LexicalScope to all the variables in that scope.
3270   ScopeToVarsT ScopeToVars;
3271 
3272   // Map from One lexical scope to all blocks where assignments happen for
3273   // that scope.
3274   ScopeToAssignBlocksT ScopeToAssignBlocks;
3275 
3276   // Store map of DILocations that describes scopes.
3277   ScopeToDILocT ScopeToDILocation;
3278 
3279   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3280   // the order is unimportant, it just has to be stable.
3281   unsigned VarAssignCount = 0;
3282   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3283     auto *MBB = OrderToBB[I];
3284     auto *VTracker = &vlocs[MBB->getNumber()];
3285     // Collect each variable with a DBG_VALUE in this block.
3286     for (auto &idx : VTracker->Vars) {
3287       const auto &Var = idx.first;
3288       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3289       assert(ScopeLoc != nullptr);
3290       auto *Scope = LS.findLexicalScope(ScopeLoc);
3291 
3292       // No insts in scope -> shouldn't have been recorded.
3293       assert(Scope != nullptr);
3294 
3295       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3296       ScopeToVars[Scope].insert(Var);
3297       ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3298       ScopeToDILocation[Scope] = ScopeLoc;
3299       ++VarAssignCount;
3300     }
3301   }
3302 
3303   bool Changed = false;
3304 
3305   // If we have an extremely large number of variable assignments and blocks,
3306   // bail out at this point. We've burnt some time doing analysis already,
3307   // however we should cut our losses.
3308   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3309       VarAssignCount > InputDbgValLimit) {
3310     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3311                       << " has " << MaxNumBlocks << " basic blocks and "
3312                       << VarAssignCount
3313                       << " variable assignments, exceeding limits.\n");
3314   } else {
3315     // Optionally, solve the variable value problem and emit to blocks by using
3316     // a lexical-scope-depth search. It should be functionally identical to
3317     // the "else" block of this condition.
3318     Changed = depthFirstVLocAndEmit(
3319         MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3320         SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3321   }
3322 
3323   delete MTracker;
3324   delete TTracker;
3325   MTracker = nullptr;
3326   VTracker = nullptr;
3327   TTracker = nullptr;
3328 
3329   ArtificialBlocks.clear();
3330   OrderToBB.clear();
3331   BBToOrder.clear();
3332   BBNumToRPO.clear();
3333   DebugInstrNumToInstr.clear();
3334   DebugPHINumToValue.clear();
3335   OverlapFragments.clear();
3336   SeenFragments.clear();
3337   SeenDbgPHIs.clear();
3338 
3339   return Changed;
3340 }
3341 
3342 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3343   return new InstrRefBasedLDV();
3344 }
3345 
3346 namespace {
3347 class LDVSSABlock;
3348 class LDVSSAUpdater;
3349 
3350 // Pick a type to identify incoming block values as we construct SSA. We
3351 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3352 // expects to zero-initialize the type.
3353 typedef uint64_t BlockValueNum;
3354 
3355 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3356 /// this PHI is in, the value number it would have, and the expected incoming
3357 /// values from parent blocks.
3358 class LDVSSAPhi {
3359 public:
3360   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3361   LDVSSABlock *ParentBlock;
3362   BlockValueNum PHIValNum;
3363   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3364       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3365 
3366   LDVSSABlock *getParent() { return ParentBlock; }
3367 };
3368 
3369 /// Thin wrapper around a block predecessor iterator. Only difference from a
3370 /// normal block iterator is that it dereferences to an LDVSSABlock.
3371 class LDVSSABlockIterator {
3372 public:
3373   MachineBasicBlock::pred_iterator PredIt;
3374   LDVSSAUpdater &Updater;
3375 
3376   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3377                       LDVSSAUpdater &Updater)
3378       : PredIt(PredIt), Updater(Updater) {}
3379 
3380   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3381     return OtherIt.PredIt != PredIt;
3382   }
3383 
3384   LDVSSABlockIterator &operator++() {
3385     ++PredIt;
3386     return *this;
3387   }
3388 
3389   LDVSSABlock *operator*();
3390 };
3391 
3392 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3393 /// we need to track the PHI value(s) that we may have observed as necessary
3394 /// in this block.
3395 class LDVSSABlock {
3396 public:
3397   MachineBasicBlock &BB;
3398   LDVSSAUpdater &Updater;
3399   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3400   /// List of PHIs in this block. There should only ever be one.
3401   PHIListT PHIList;
3402 
3403   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3404       : BB(BB), Updater(Updater) {}
3405 
3406   LDVSSABlockIterator succ_begin() {
3407     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3408   }
3409 
3410   LDVSSABlockIterator succ_end() {
3411     return LDVSSABlockIterator(BB.succ_end(), Updater);
3412   }
3413 
3414   /// SSAUpdater has requested a PHI: create that within this block record.
3415   LDVSSAPhi *newPHI(BlockValueNum Value) {
3416     PHIList.emplace_back(Value, this);
3417     return &PHIList.back();
3418   }
3419 
3420   /// SSAUpdater wishes to know what PHIs already exist in this block.
3421   PHIListT &phis() { return PHIList; }
3422 };
3423 
3424 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3425 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3426 // SSAUpdaterTraits<LDVSSAUpdater>.
3427 class LDVSSAUpdater {
3428 public:
3429   /// Map of value numbers to PHI records.
3430   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3431   /// Map of which blocks generate Undef values -- blocks that are not
3432   /// dominated by any Def.
3433   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3434   /// Map of machine blocks to our own records of them.
3435   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3436   /// Machine location where any PHI must occur.
3437   LocIdx Loc;
3438   /// Table of live-in machine value numbers for blocks / locations.
3439   const ValueTable *MLiveIns;
3440 
3441   LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
3442       : Loc(L), MLiveIns(MLiveIns) {}
3443 
3444   void reset() {
3445     for (auto &Block : BlockMap)
3446       delete Block.second;
3447 
3448     PHIs.clear();
3449     UndefMap.clear();
3450     BlockMap.clear();
3451   }
3452 
3453   ~LDVSSAUpdater() { reset(); }
3454 
3455   /// For a given MBB, create a wrapper block for it. Stores it in the
3456   /// LDVSSAUpdater block map.
3457   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3458     auto it = BlockMap.find(BB);
3459     if (it == BlockMap.end()) {
3460       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3461       it = BlockMap.find(BB);
3462     }
3463     return it->second;
3464   }
3465 
3466   /// Find the live-in value number for the given block. Looks up the value at
3467   /// the PHI location on entry.
3468   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3469     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3470   }
3471 };
3472 
3473 LDVSSABlock *LDVSSABlockIterator::operator*() {
3474   return Updater.getSSALDVBlock(*PredIt);
3475 }
3476 
3477 #ifndef NDEBUG
3478 
3479 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3480   out << "SSALDVPHI " << PHI.PHIValNum;
3481   return out;
3482 }
3483 
3484 #endif
3485 
3486 } // namespace
3487 
3488 namespace llvm {
3489 
3490 /// Template specialization to give SSAUpdater access to CFG and value
3491 /// information. SSAUpdater calls methods in these traits, passing in the
3492 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3493 /// It also provides methods to create PHI nodes and track them.
3494 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3495 public:
3496   using BlkT = LDVSSABlock;
3497   using ValT = BlockValueNum;
3498   using PhiT = LDVSSAPhi;
3499   using BlkSucc_iterator = LDVSSABlockIterator;
3500 
3501   // Methods to access block successors -- dereferencing to our wrapper class.
3502   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3503   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3504 
3505   /// Iterator for PHI operands.
3506   class PHI_iterator {
3507   private:
3508     LDVSSAPhi *PHI;
3509     unsigned Idx;
3510 
3511   public:
3512     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3513         : PHI(P), Idx(0) {}
3514     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3515         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3516 
3517     PHI_iterator &operator++() {
3518       Idx++;
3519       return *this;
3520     }
3521     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3522     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3523 
3524     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3525 
3526     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3527   };
3528 
3529   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3530 
3531   static inline PHI_iterator PHI_end(PhiT *PHI) {
3532     return PHI_iterator(PHI, true);
3533   }
3534 
3535   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3536   /// vector.
3537   static void FindPredecessorBlocks(LDVSSABlock *BB,
3538                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3539     for (MachineBasicBlock *Pred : BB->BB.predecessors())
3540       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3541   }
3542 
3543   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3544   /// register. For LiveDebugValues, represents a block identified as not having
3545   /// any DBG_PHI predecessors.
3546   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3547     // Create a value number for this block -- it needs to be unique and in the
3548     // "undef" collection, so that we know it's not real. Use a number
3549     // representing a PHI into this block.
3550     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3551     Updater->UndefMap[&BB->BB] = Num;
3552     return Num;
3553   }
3554 
3555   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3556   /// SSAUpdater will populate it with information about incoming values. The
3557   /// value number of this PHI is whatever the  machine value number problem
3558   /// solution determined it to be. This includes non-phi values if SSAUpdater
3559   /// tries to create a PHI where the incoming values are identical.
3560   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3561                                    LDVSSAUpdater *Updater) {
3562     BlockValueNum PHIValNum = Updater->getValue(BB);
3563     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3564     Updater->PHIs[PHIValNum] = PHI;
3565     return PHIValNum;
3566   }
3567 
3568   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3569   /// the specified predecessor block.
3570   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3571     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3572   }
3573 
3574   /// ValueIsPHI - Check if the instruction that defines the specified value
3575   /// is a PHI instruction.
3576   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3577     auto PHIIt = Updater->PHIs.find(Val);
3578     if (PHIIt == Updater->PHIs.end())
3579       return nullptr;
3580     return PHIIt->second;
3581   }
3582 
3583   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3584   /// operands, i.e., it was just added.
3585   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3586     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3587     if (PHI && PHI->IncomingValues.size() == 0)
3588       return PHI;
3589     return nullptr;
3590   }
3591 
3592   /// GetPHIValue - For the specified PHI instruction, return the value
3593   /// that it defines.
3594   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3595 };
3596 
3597 } // end namespace llvm
3598 
3599 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
3600     MachineFunction &MF, const ValueTable *MLiveOuts,
3601     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3602   assert(MLiveOuts && MLiveIns &&
3603          "Tried to resolve DBG_PHI before location "
3604          "tables allocated?");
3605 
3606   // This function will be called twice per DBG_INSTR_REF, and might end up
3607   // computing lots of SSA information: memoize it.
3608   auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
3609   if (SeenDbgPHIIt != SeenDbgPHIs.end())
3610     return SeenDbgPHIIt->second;
3611 
3612   Optional<ValueIDNum> Result =
3613       resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
3614   SeenDbgPHIs.insert({&Here, Result});
3615   return Result;
3616 }
3617 
3618 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
3619     MachineFunction &MF, const ValueTable *MLiveOuts,
3620     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3621   // Pick out records of DBG_PHI instructions that have been observed. If there
3622   // are none, then we cannot compute a value number.
3623   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3624                                     DebugPHINumToValue.end(), InstrNum);
3625   auto LowerIt = RangePair.first;
3626   auto UpperIt = RangePair.second;
3627 
3628   // No DBG_PHI means there can be no location.
3629   if (LowerIt == UpperIt)
3630     return None;
3631 
3632   // If any DBG_PHIs referred to a location we didn't understand, don't try to
3633   // compute a value. There might be scenarios where we could recover a value
3634   // for some range of DBG_INSTR_REFs, but at this point we can have high
3635   // confidence that we've seen a bug.
3636   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3637   for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
3638     if (!DBG_PHI.ValueRead)
3639       return None;
3640 
3641   // If there's only one DBG_PHI, then that is our value number.
3642   if (std::distance(LowerIt, UpperIt) == 1)
3643     return *LowerIt->ValueRead;
3644 
3645   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3646   // technically possible for us to merge values in different registers in each
3647   // block, but highly unlikely that LLVM will generate such code after register
3648   // allocation.
3649   LocIdx Loc = *LowerIt->ReadLoc;
3650 
3651   // We have several DBG_PHIs, and a use position (the Here inst). All each
3652   // DBG_PHI does is identify a value at a program position. We can treat each
3653   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3654   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3655   // determine which Def is used at the Use, and any PHIs that happen along
3656   // the way.
3657   // Adapted LLVM SSA Updater:
3658   LDVSSAUpdater Updater(Loc, MLiveIns);
3659   // Map of which Def or PHI is the current value in each block.
3660   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3661   // Set of PHIs that we have created along the way.
3662   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3663 
3664   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3665   // for the SSAUpdater.
3666   for (const auto &DBG_PHI : DBGPHIRange) {
3667     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3668     const ValueIDNum &Num = *DBG_PHI.ValueRead;
3669     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3670   }
3671 
3672   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3673   const auto &AvailIt = AvailableValues.find(HereBlock);
3674   if (AvailIt != AvailableValues.end()) {
3675     // Actually, we already know what the value is -- the Use is in the same
3676     // block as the Def.
3677     return ValueIDNum::fromU64(AvailIt->second);
3678   }
3679 
3680   // Otherwise, we must use the SSA Updater. It will identify the value number
3681   // that we are to use, and the PHIs that must happen along the way.
3682   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3683   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3684   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3685 
3686   // We have the number for a PHI, or possibly live-through value, to be used
3687   // at this Use. There are a number of things we have to check about it though:
3688   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3689   //    Use was not completely dominated by DBG_PHIs and we should abort.
3690   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3691   //    we've left SSA form. Validate that the inputs to each PHI are the
3692   //    expected values.
3693   //  * Is a PHI we've created actually a merging of values, or are all the
3694   //    predecessor values the same, leading to a non-PHI machine value number?
3695   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3696   //    the ValidatedValues collection below to sort this out.
3697   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3698 
3699   // Define all the input DBG_PHI values in ValidatedValues.
3700   for (const auto &DBG_PHI : DBGPHIRange) {
3701     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3702     const ValueIDNum &Num = *DBG_PHI.ValueRead;
3703     ValidatedValues.insert(std::make_pair(Block, Num));
3704   }
3705 
3706   // Sort PHIs to validate into RPO-order.
3707   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3708   for (auto &PHI : CreatedPHIs)
3709     SortedPHIs.push_back(PHI);
3710 
3711   llvm::sort(SortedPHIs, [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3712     return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3713   });
3714 
3715   for (auto &PHI : SortedPHIs) {
3716     ValueIDNum ThisBlockValueNum =
3717         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3718 
3719     // Are all these things actually defined?
3720     for (auto &PHIIt : PHI->IncomingValues) {
3721       // Any undef input means DBG_PHIs didn't dominate the use point.
3722       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3723         return None;
3724 
3725       ValueIDNum ValueToCheck;
3726       const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3727 
3728       auto VVal = ValidatedValues.find(PHIIt.first);
3729       if (VVal == ValidatedValues.end()) {
3730         // We cross a loop, and this is a backedge. LLVMs tail duplication
3731         // happens so late that DBG_PHI instructions should not be able to
3732         // migrate into loops -- meaning we can only be live-through this
3733         // loop.
3734         ValueToCheck = ThisBlockValueNum;
3735       } else {
3736         // Does the block have as a live-out, in the location we're examining,
3737         // the value that we expect? If not, it's been moved or clobbered.
3738         ValueToCheck = VVal->second;
3739       }
3740 
3741       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3742         return None;
3743     }
3744 
3745     // Record this value as validated.
3746     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3747   }
3748 
3749   // All the PHIs are valid: we can return what the SSAUpdater said our value
3750   // number was.
3751   return Result;
3752 }
3753