1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/LiveRangeEdit.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/CodeGen/CalcSpillWeights.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "regalloc"
26 
27 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
28 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
29 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
30 
31 void LiveRangeEdit::Delegate::anchor() { }
32 
33 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg,
34                                                      bool createSubRanges) {
35   Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36   if (VRM)
37     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
38 
39   LiveInterval &LI = LIS.createEmptyInterval(VReg);
40   if (Parent && !Parent->isSpillable())
41     LI.markNotSpillable();
42   if (createSubRanges) {
43     // Create empty subranges if the OldReg's interval has them. Do not create
44     // the main range here---it will be constructed later after the subranges
45     // have been finalized.
46     LiveInterval &OldLI = LIS.getInterval(OldReg);
47     VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
48     for (LiveInterval::SubRange &S : OldLI.subranges())
49       LI.createSubRange(Alloc, S.LaneMask);
50   }
51   return LI;
52 }
53 
54 Register LiveRangeEdit::createFrom(Register OldReg) {
55   Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
56   if (VRM) {
57     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
58   }
59   // FIXME: Getting the interval here actually computes it.
60   // In theory, this may not be what we want, but in practice
61   // the createEmptyIntervalFrom API is used when this is not
62   // the case. Generally speaking we just want to annotate the
63   // LiveInterval when it gets created but we cannot do that at
64   // the moment.
65   if (Parent && !Parent->isSpillable())
66     LIS.getInterval(VReg).markNotSpillable();
67   return VReg;
68 }
69 
70 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
71                                           const MachineInstr *DefMI) {
72   assert(DefMI && "Missing instruction");
73   ScannedRemattable = true;
74   if (!TII.isTriviallyReMaterializable(*DefMI))
75     return false;
76   Remattable.insert(VNI);
77   return true;
78 }
79 
80 void LiveRangeEdit::scanRemattable() {
81   for (VNInfo *VNI : getParent().valnos) {
82     if (VNI->isUnused())
83       continue;
84     unsigned Original = VRM->getOriginal(getReg());
85     LiveInterval &OrigLI = LIS.getInterval(Original);
86     VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
87     if (!OrigVNI)
88       continue;
89     MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
90     if (!DefMI)
91       continue;
92     checkRematerializable(OrigVNI, DefMI);
93   }
94   ScannedRemattable = true;
95 }
96 
97 bool LiveRangeEdit::anyRematerializable() {
98   if (!ScannedRemattable)
99     scanRemattable();
100   return !Remattable.empty();
101 }
102 
103 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
104 /// OrigIdx are also available with the same value at UseIdx.
105 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
106                                        SlotIndex OrigIdx,
107                                        SlotIndex UseIdx) const {
108   OrigIdx = OrigIdx.getRegSlot(true);
109   UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true));
110   for (const MachineOperand &MO : OrigMI->operands()) {
111     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
112       continue;
113 
114     // We can't remat physreg uses, unless it is a constant or target wants
115     // to ignore this use.
116     if (Register::isPhysicalRegister(MO.getReg())) {
117       if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO))
118         continue;
119       return false;
120     }
121 
122     LiveInterval &li = LIS.getInterval(MO.getReg());
123     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
124     if (!OVNI)
125       continue;
126 
127     // Don't allow rematerialization immediately after the original def.
128     // It would be incorrect if OrigMI redefines the register.
129     // See PR14098.
130     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
131       return false;
132 
133     if (OVNI != li.getVNInfoAt(UseIdx))
134       return false;
135 
136     // Check that subrange is live at UseIdx.
137     if (MO.getSubReg()) {
138       const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
139       LaneBitmask LM = TRI->getSubRegIndexLaneMask(MO.getSubReg());
140       for (LiveInterval::SubRange &SR : li.subranges()) {
141         if ((SR.LaneMask & LM).none())
142           continue;
143         if (!SR.liveAt(UseIdx))
144           return false;
145         // Early exit if all used lanes are checked. No need to continue.
146         LM &= ~SR.LaneMask;
147         if (LM.none())
148           break;
149       }
150     }
151   }
152   return true;
153 }
154 
155 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
156                                        SlotIndex UseIdx, bool cheapAsAMove) {
157   assert(ScannedRemattable && "Call anyRematerializable first");
158 
159   // Use scanRemattable info.
160   if (!Remattable.count(OrigVNI))
161     return false;
162 
163   // No defining instruction provided.
164   SlotIndex DefIdx;
165   assert(RM.OrigMI && "No defining instruction for remattable value");
166   DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
167 
168   // If only cheap remats were requested, bail out early.
169   if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
170     return false;
171 
172   // Verify that all used registers are available with the same values.
173   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
174     return false;
175 
176   return true;
177 }
178 
179 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
180                                          MachineBasicBlock::iterator MI,
181                                          unsigned DestReg,
182                                          const Remat &RM,
183                                          const TargetRegisterInfo &tri,
184                                          bool Late) {
185   assert(RM.OrigMI && "Invalid remat");
186   TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
187   // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
188   // to false anyway in case the isDead flag of RM.OrigMI's dest register
189   // is true.
190   (*--MI).getOperand(0).setIsDead(false);
191   Rematted.insert(RM.ParentVNI);
192   return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
193 }
194 
195 void LiveRangeEdit::eraseVirtReg(Register Reg) {
196   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
197     LIS.removeInterval(Reg);
198 }
199 
200 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
201                                SmallVectorImpl<MachineInstr*> &Dead) {
202   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
203 
204   // Check that there is a single def and a single use.
205   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) {
206     MachineInstr *MI = MO.getParent();
207     if (MO.isDef()) {
208       if (DefMI && DefMI != MI)
209         return false;
210       if (!MI->canFoldAsLoad())
211         return false;
212       DefMI = MI;
213     } else if (!MO.isUndef()) {
214       if (UseMI && UseMI != MI)
215         return false;
216       // FIXME: Targets don't know how to fold subreg uses.
217       if (MO.getSubReg())
218         return false;
219       UseMI = MI;
220     }
221   }
222   if (!DefMI || !UseMI)
223     return false;
224 
225   // Since we're moving the DefMI load, make sure we're not extending any live
226   // ranges.
227   if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
228                           LIS.getInstructionIndex(*UseMI)))
229     return false;
230 
231   // We also need to make sure it is safe to move the load.
232   // Assume there are stores between DefMI and UseMI.
233   bool SawStore = true;
234   if (!DefMI->isSafeToMove(nullptr, SawStore))
235     return false;
236 
237   LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
238                     << "       into single use: " << *UseMI);
239 
240   SmallVector<unsigned, 8> Ops;
241   if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second)
242     return false;
243 
244   MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
245   if (!FoldMI)
246     return false;
247   LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI);
248   LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
249   // Update the call site info.
250   if (UseMI->shouldUpdateCallSiteInfo())
251     UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI);
252   UseMI->eraseFromParent();
253   DefMI->addRegisterDead(LI->reg(), nullptr);
254   Dead.push_back(DefMI);
255   ++NumDCEFoldedLoads;
256   return true;
257 }
258 
259 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
260                               const MachineOperand &MO) const {
261   const MachineInstr &MI = *MO.getParent();
262   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
263   if (LI.Query(Idx).isKill())
264     return true;
265   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
266   unsigned SubReg = MO.getSubReg();
267   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
268   for (const LiveInterval::SubRange &S : LI.subranges()) {
269     if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
270       return true;
271   }
272   return false;
273 }
274 
275 /// Find all live intervals that need to shrink, then remove the instruction.
276 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
277   assert(MI->allDefsAreDead() && "Def isn't really dead");
278   SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
279 
280   // Never delete a bundled instruction.
281   if (MI->isBundled()) {
282     return;
283   }
284   // Never delete inline asm.
285   if (MI->isInlineAsm()) {
286     LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
287     return;
288   }
289 
290   // Use the same criteria as DeadMachineInstructionElim.
291   bool SawStore = false;
292   if (!MI->isSafeToMove(nullptr, SawStore)) {
293     LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
294     return;
295   }
296 
297   LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
298 
299   // Collect virtual registers to be erased after MI is gone.
300   SmallVector<unsigned, 8> RegsToErase;
301   bool ReadsPhysRegs = false;
302   bool isOrigDef = false;
303   Register Dest;
304   unsigned DestSubReg;
305   // Only optimize rematerialize case when the instruction has one def, since
306   // otherwise we could leave some dead defs in the code.  This case is
307   // extremely rare.
308   if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
309       MI->getDesc().getNumDefs() == 1) {
310     Dest = MI->getOperand(0).getReg();
311     DestSubReg = MI->getOperand(0).getSubReg();
312     unsigned Original = VRM->getOriginal(Dest);
313     LiveInterval &OrigLI = LIS.getInterval(Original);
314     VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
315     // The original live-range may have been shrunk to
316     // an empty live-range. It happens when it is dead, but
317     // we still keep it around to be able to rematerialize
318     // other values that depend on it.
319     if (OrigVNI)
320       isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
321   }
322 
323   bool HasLiveVRegUses = false;
324 
325   // Check for live intervals that may shrink
326   for (const MachineOperand &MO : MI->operands()) {
327     if (!MO.isReg())
328       continue;
329     Register Reg = MO.getReg();
330     if (!Register::isVirtualRegister(Reg)) {
331       // Check if MI reads any unreserved physregs.
332       if (Reg && MO.readsReg() && !MRI.isReserved(Reg))
333         ReadsPhysRegs = true;
334       else if (MO.isDef())
335         LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
336       continue;
337     }
338     LiveInterval &LI = LIS.getInterval(Reg);
339 
340     // Shrink read registers, unless it is likely to be expensive and
341     // unlikely to change anything. We typically don't want to shrink the
342     // PIC base register that has lots of uses everywhere.
343     // Always shrink COPY uses that probably come from live range splitting.
344     if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MO.isDef())) ||
345         (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO))))
346       ToShrink.insert(&LI);
347     else if (MO.readsReg())
348       HasLiveVRegUses = true;
349 
350     // Remove defined value.
351     if (MO.isDef()) {
352       if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
353         TheDelegate->LRE_WillShrinkVirtReg(LI.reg());
354       LIS.removeVRegDefAt(LI, Idx);
355       if (LI.empty())
356         RegsToErase.push_back(Reg);
357     }
358   }
359 
360   // Currently, we don't support DCE of physreg live ranges. If MI reads
361   // any unreserved physregs, don't erase the instruction, but turn it into
362   // a KILL instead. This way, the physreg live ranges don't end up
363   // dangling.
364   // FIXME: It would be better to have something like shrinkToUses() for
365   // physregs. That could potentially enable more DCE and it would free up
366   // the physreg. It would not happen often, though.
367   if (ReadsPhysRegs) {
368     MI->setDesc(TII.get(TargetOpcode::KILL));
369     // Remove all operands that aren't physregs.
370     for (unsigned i = MI->getNumOperands(); i; --i) {
371       const MachineOperand &MO = MI->getOperand(i-1);
372       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg()))
373         continue;
374       MI->removeOperand(i-1);
375     }
376     LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
377   } else {
378     // If the dest of MI is an original reg and MI is reMaterializable,
379     // don't delete the inst. Replace the dest with a new reg, and keep
380     // the inst for remat of other siblings. The inst is saved in
381     // LiveRangeEdit::DeadRemats and will be deleted after all the
382     // allocations of the func are done.
383     // However, immediately delete instructions which have unshrunk virtual
384     // register uses. That may provoke RA to split an interval at the KILL
385     // and later result in an invalid live segment end.
386     if (isOrigDef && DeadRemats && !HasLiveVRegUses &&
387         TII.isTriviallyReMaterializable(*MI)) {
388       LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
389       VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
390       VNInfo *VNI = NewLI.getNextValue(Idx, Alloc);
391       NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
392 
393       if (DestSubReg) {
394         const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
395         auto *SR = NewLI.createSubRange(
396             Alloc, TRI->getSubRegIndexLaneMask(DestSubReg));
397         SR->addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(),
398                                              SR->getNextValue(Idx, Alloc)));
399       }
400 
401       pop_back();
402       DeadRemats->insert(MI);
403       const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
404       MI->substituteRegister(Dest, NewLI.reg(), 0, TRI);
405       MI->getOperand(0).setIsDead(true);
406     } else {
407       if (TheDelegate)
408         TheDelegate->LRE_WillEraseInstruction(MI);
409       LIS.RemoveMachineInstrFromMaps(*MI);
410       MI->eraseFromParent();
411       ++NumDCEDeleted;
412     }
413   }
414 
415   // Erase any virtregs that are now empty and unused. There may be <undef>
416   // uses around. Keep the empty live range in that case.
417   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
418     Register Reg = RegsToErase[i];
419     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
420       ToShrink.remove(&LIS.getInterval(Reg));
421       eraseVirtReg(Reg);
422     }
423   }
424 }
425 
426 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
427                                       ArrayRef<Register> RegsBeingSpilled) {
428   ToShrinkSet ToShrink;
429 
430   for (;;) {
431     // Erase all dead defs.
432     while (!Dead.empty())
433       eliminateDeadDef(Dead.pop_back_val(), ToShrink);
434 
435     if (ToShrink.empty())
436       break;
437 
438     // Shrink just one live interval. Then delete new dead defs.
439     LiveInterval *LI = ToShrink.pop_back_val();
440     if (foldAsLoad(LI, Dead))
441       continue;
442     unsigned VReg = LI->reg();
443     if (TheDelegate)
444       TheDelegate->LRE_WillShrinkVirtReg(VReg);
445     if (!LIS.shrinkToUses(LI, &Dead))
446       continue;
447 
448     // Don't create new intervals for a register being spilled.
449     // The new intervals would have to be spilled anyway so its not worth it.
450     // Also they currently aren't spilled so creating them and not spilling
451     // them results in incorrect code.
452     if (llvm::is_contained(RegsBeingSpilled, VReg))
453       continue;
454 
455     // LI may have been separated, create new intervals.
456     LI->RenumberValues();
457     SmallVector<LiveInterval*, 8> SplitLIs;
458     LIS.splitSeparateComponents(*LI, SplitLIs);
459     if (!SplitLIs.empty())
460       ++NumFracRanges;
461 
462     Register Original = VRM ? VRM->getOriginal(VReg) : Register();
463     for (const LiveInterval *SplitLI : SplitLIs) {
464       // If LI is an original interval that hasn't been split yet, make the new
465       // intervals their own originals instead of referring to LI. The original
466       // interval must contain all the split products, and LI doesn't.
467       if (Original != VReg && Original != 0)
468         VRM->setIsSplitFromReg(SplitLI->reg(), Original);
469       if (TheDelegate)
470         TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg);
471     }
472   }
473 }
474 
475 // Keep track of new virtual registers created via
476 // MachineRegisterInfo::createVirtualRegister.
477 void
478 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) {
479   if (VRM)
480     VRM->grow();
481 
482   NewRegs.push_back(VReg);
483 }
484 
485 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
486                                              VirtRegAuxInfo &VRAI) {
487   for (unsigned I = 0, Size = size(); I < Size; ++I) {
488     LiveInterval &LI = LIS.getInterval(get(I));
489     if (MRI.recomputeRegClass(LI.reg()))
490       LLVM_DEBUG({
491         const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
492         dbgs() << "Inflated " << printReg(LI.reg()) << " to "
493                << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n';
494       });
495     VRAI.calculateSpillWeightAndHint(LI);
496   }
497 }
498