1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LiveRangeEdit class represents changes done to a virtual register when it
10 // is spilled or split.
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/LiveRangeEdit.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/CodeGen/CalcSpillWeights.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetInstrInfo.h"
19 #include "llvm/CodeGen/VirtRegMap.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/raw_ostream.h"
22 
23 using namespace llvm;
24 
25 #define DEBUG_TYPE "regalloc"
26 
27 STATISTIC(NumDCEDeleted,        "Number of instructions deleted by DCE");
28 STATISTIC(NumDCEFoldedLoads,    "Number of single use loads folded after DCE");
29 STATISTIC(NumFracRanges,        "Number of live ranges fractured by DCE");
30 STATISTIC(NumReMaterialization, "Number of instructions rematerialized");
31 
32 void LiveRangeEdit::Delegate::anchor() { }
33 
34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg,
35                                                      bool createSubRanges) {
36   Register VReg = MRI.cloneVirtualRegister(OldReg);
37   if (VRM)
38     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39 
40   LiveInterval &LI = LIS.createEmptyInterval(VReg);
41   if (Parent && !Parent->isSpillable())
42     LI.markNotSpillable();
43   if (createSubRanges) {
44     // Create empty subranges if the OldReg's interval has them. Do not create
45     // the main range here---it will be constructed later after the subranges
46     // have been finalized.
47     LiveInterval &OldLI = LIS.getInterval(OldReg);
48     VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
49     for (LiveInterval::SubRange &S : OldLI.subranges())
50       LI.createSubRange(Alloc, S.LaneMask);
51   }
52   return LI;
53 }
54 
55 Register LiveRangeEdit::createFrom(Register OldReg) {
56   Register VReg = MRI.cloneVirtualRegister(OldReg);
57   if (VRM) {
58     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
59   }
60   // FIXME: Getting the interval here actually computes it.
61   // In theory, this may not be what we want, but in practice
62   // the createEmptyIntervalFrom API is used when this is not
63   // the case. Generally speaking we just want to annotate the
64   // LiveInterval when it gets created but we cannot do that at
65   // the moment.
66   if (Parent && !Parent->isSpillable())
67     LIS.getInterval(VReg).markNotSpillable();
68   return VReg;
69 }
70 
71 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
72                                           const MachineInstr *DefMI) {
73   assert(DefMI && "Missing instruction");
74   ScannedRemattable = true;
75   if (!TII.isTriviallyReMaterializable(*DefMI))
76     return false;
77   Remattable.insert(VNI);
78   return true;
79 }
80 
81 void LiveRangeEdit::scanRemattable() {
82   for (VNInfo *VNI : getParent().valnos) {
83     if (VNI->isUnused())
84       continue;
85     Register Original = VRM->getOriginal(getReg());
86     LiveInterval &OrigLI = LIS.getInterval(Original);
87     VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
88     if (!OrigVNI)
89       continue;
90     MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
91     if (!DefMI)
92       continue;
93     checkRematerializable(OrigVNI, DefMI);
94   }
95   ScannedRemattable = true;
96 }
97 
98 bool LiveRangeEdit::anyRematerializable() {
99   if (!ScannedRemattable)
100     scanRemattable();
101   return !Remattable.empty();
102 }
103 
104 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
105 /// OrigIdx are also available with the same value at UseIdx.
106 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
107                                        SlotIndex OrigIdx,
108                                        SlotIndex UseIdx) const {
109   OrigIdx = OrigIdx.getRegSlot(true);
110   UseIdx = std::max(UseIdx, UseIdx.getRegSlot(true));
111   for (const MachineOperand &MO : OrigMI->operands()) {
112     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
113       continue;
114 
115     // We can't remat physreg uses, unless it is a constant or target wants
116     // to ignore this use.
117     if (MO.getReg().isPhysical()) {
118       if (MRI.isConstantPhysReg(MO.getReg()) || TII.isIgnorableUse(MO))
119         continue;
120       return false;
121     }
122 
123     LiveInterval &li = LIS.getInterval(MO.getReg());
124     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
125     if (!OVNI)
126       continue;
127 
128     // Don't allow rematerialization immediately after the original def.
129     // It would be incorrect if OrigMI redefines the register.
130     // See PR14098.
131     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
132       return false;
133 
134     if (OVNI != li.getVNInfoAt(UseIdx))
135       return false;
136 
137     // Check that subrange is live at UseIdx.
138     if (li.hasSubRanges()) {
139       const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
140       unsigned SubReg = MO.getSubReg();
141       LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
142                               : MRI.getMaxLaneMaskForVReg(MO.getReg());
143       for (LiveInterval::SubRange &SR : li.subranges()) {
144         if ((SR.LaneMask & LM).none())
145           continue;
146         if (!SR.liveAt(UseIdx))
147           return false;
148         // Early exit if all used lanes are checked. No need to continue.
149         LM &= ~SR.LaneMask;
150         if (LM.none())
151           break;
152       }
153     }
154   }
155   return true;
156 }
157 
158 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
159                                        SlotIndex UseIdx, bool cheapAsAMove) {
160   assert(ScannedRemattable && "Call anyRematerializable first");
161 
162   // Use scanRemattable info.
163   if (!Remattable.count(OrigVNI))
164     return false;
165 
166   // No defining instruction provided.
167   SlotIndex DefIdx;
168   assert(RM.OrigMI && "No defining instruction for remattable value");
169   DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
170 
171   // If only cheap remats were requested, bail out early.
172   if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
173     return false;
174 
175   // Verify that all used registers are available with the same values.
176   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
177     return false;
178 
179   return true;
180 }
181 
182 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
183                                          MachineBasicBlock::iterator MI,
184                                          Register DestReg, const Remat &RM,
185                                          const TargetRegisterInfo &tri,
186                                          bool Late, unsigned SubIdx,
187                                          MachineInstr *ReplaceIndexMI) {
188   assert(RM.OrigMI && "Invalid remat");
189   TII.reMaterialize(MBB, MI, DestReg, SubIdx, *RM.OrigMI, tri);
190   // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
191   // to false anyway in case the isDead flag of RM.OrigMI's dest register
192   // is true.
193   (*--MI).getOperand(0).setIsDead(false);
194   Rematted.insert(RM.ParentVNI);
195   ++NumReMaterialization;
196 
197   if (ReplaceIndexMI)
198     return LIS.ReplaceMachineInstrInMaps(*ReplaceIndexMI, *MI).getRegSlot();
199   return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
200 }
201 
202 void LiveRangeEdit::eraseVirtReg(Register Reg) {
203   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
204     LIS.removeInterval(Reg);
205 }
206 
207 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
208                                SmallVectorImpl<MachineInstr*> &Dead) {
209   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
210 
211   // Check that there is a single def and a single use.
212   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) {
213     MachineInstr *MI = MO.getParent();
214     if (MO.isDef()) {
215       if (DefMI && DefMI != MI)
216         return false;
217       if (!MI->canFoldAsLoad())
218         return false;
219       DefMI = MI;
220     } else if (!MO.isUndef()) {
221       if (UseMI && UseMI != MI)
222         return false;
223       // FIXME: Targets don't know how to fold subreg uses.
224       if (MO.getSubReg())
225         return false;
226       UseMI = MI;
227     }
228   }
229   if (!DefMI || !UseMI)
230     return false;
231 
232   // Since we're moving the DefMI load, make sure we're not extending any live
233   // ranges.
234   if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
235                           LIS.getInstructionIndex(*UseMI)))
236     return false;
237 
238   // We also need to make sure it is safe to move the load.
239   // Assume there are stores between DefMI and UseMI.
240   bool SawStore = true;
241   if (!DefMI->isSafeToMove(nullptr, SawStore))
242     return false;
243 
244   LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
245                     << "       into single use: " << *UseMI);
246 
247   SmallVector<unsigned, 8> Ops;
248   if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second)
249     return false;
250 
251   MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
252   if (!FoldMI)
253     return false;
254   LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI);
255   LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
256   // Update the call site info.
257   if (UseMI->shouldUpdateCallSiteInfo())
258     UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI);
259   UseMI->eraseFromParent();
260   DefMI->addRegisterDead(LI->reg(), nullptr);
261   Dead.push_back(DefMI);
262   ++NumDCEFoldedLoads;
263   return true;
264 }
265 
266 bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
267                               const MachineOperand &MO) const {
268   const MachineInstr &MI = *MO.getParent();
269   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
270   if (LI.Query(Idx).isKill())
271     return true;
272   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
273   unsigned SubReg = MO.getSubReg();
274   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
275   for (const LiveInterval::SubRange &S : LI.subranges()) {
276     if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
277       return true;
278   }
279   return false;
280 }
281 
282 /// Find all live intervals that need to shrink, then remove the instruction.
283 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
284   assert(MI->allDefsAreDead() && "Def isn't really dead");
285   SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
286 
287   // Never delete a bundled instruction.
288   if (MI->isBundled()) {
289     // TODO: Handle deleting copy bundles
290     LLVM_DEBUG(dbgs() << "Won't delete dead bundled inst: " << Idx << '\t'
291                       << *MI);
292     return;
293   }
294 
295   // Never delete inline asm.
296   if (MI->isInlineAsm()) {
297     LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
298     return;
299   }
300 
301   // Use the same criteria as DeadMachineInstructionElim.
302   bool SawStore = false;
303   if (!MI->isSafeToMove(nullptr, SawStore)) {
304     LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
305     return;
306   }
307 
308   LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
309 
310   // Collect virtual registers to be erased after MI is gone.
311   SmallVector<Register, 8> RegsToErase;
312   bool ReadsPhysRegs = false;
313   bool isOrigDef = false;
314   Register Dest;
315   unsigned DestSubReg;
316   // Only optimize rematerialize case when the instruction has one def, since
317   // otherwise we could leave some dead defs in the code.  This case is
318   // extremely rare.
319   if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
320       MI->getDesc().getNumDefs() == 1) {
321     Dest = MI->getOperand(0).getReg();
322     DestSubReg = MI->getOperand(0).getSubReg();
323     Register Original = VRM->getOriginal(Dest);
324     LiveInterval &OrigLI = LIS.getInterval(Original);
325     VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
326     // The original live-range may have been shrunk to
327     // an empty live-range. It happens when it is dead, but
328     // we still keep it around to be able to rematerialize
329     // other values that depend on it.
330     if (OrigVNI)
331       isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
332   }
333 
334   bool HasLiveVRegUses = false;
335 
336   // Check for live intervals that may shrink
337   for (const MachineOperand &MO : MI->operands()) {
338     if (!MO.isReg())
339       continue;
340     Register Reg = MO.getReg();
341     if (!Reg.isVirtual()) {
342       // Check if MI reads any unreserved physregs.
343       if (Reg && MO.readsReg() && !MRI.isReserved(Reg))
344         ReadsPhysRegs = true;
345       else if (MO.isDef())
346         LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
347       continue;
348     }
349     LiveInterval &LI = LIS.getInterval(Reg);
350 
351     // Shrink read registers, unless it is likely to be expensive and
352     // unlikely to change anything. We typically don't want to shrink the
353     // PIC base register that has lots of uses everywhere.
354     // Always shrink COPY uses that probably come from live range splitting.
355     if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MO.isDef())) ||
356         (MO.readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, MO))))
357       ToShrink.insert(&LI);
358     else if (MO.readsReg())
359       HasLiveVRegUses = true;
360 
361     // Remove defined value.
362     if (MO.isDef()) {
363       if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
364         TheDelegate->LRE_WillShrinkVirtReg(LI.reg());
365       LIS.removeVRegDefAt(LI, Idx);
366       if (LI.empty())
367         RegsToErase.push_back(Reg);
368     }
369   }
370 
371   // Currently, we don't support DCE of physreg live ranges. If MI reads
372   // any unreserved physregs, don't erase the instruction, but turn it into
373   // a KILL instead. This way, the physreg live ranges don't end up
374   // dangling.
375   // FIXME: It would be better to have something like shrinkToUses() for
376   // physregs. That could potentially enable more DCE and it would free up
377   // the physreg. It would not happen often, though.
378   if (ReadsPhysRegs) {
379     MI->setDesc(TII.get(TargetOpcode::KILL));
380     // Remove all operands that aren't physregs.
381     for (unsigned i = MI->getNumOperands(); i; --i) {
382       const MachineOperand &MO = MI->getOperand(i-1);
383       if (MO.isReg() && MO.getReg().isPhysical())
384         continue;
385       MI->removeOperand(i-1);
386     }
387     LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
388   } else {
389     // If the dest of MI is an original reg and MI is reMaterializable,
390     // don't delete the inst. Replace the dest with a new reg, and keep
391     // the inst for remat of other siblings. The inst is saved in
392     // LiveRangeEdit::DeadRemats and will be deleted after all the
393     // allocations of the func are done.
394     // However, immediately delete instructions which have unshrunk virtual
395     // register uses. That may provoke RA to split an interval at the KILL
396     // and later result in an invalid live segment end.
397     if (isOrigDef && DeadRemats && !HasLiveVRegUses &&
398         TII.isTriviallyReMaterializable(*MI)) {
399       LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
400       VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
401       VNInfo *VNI = NewLI.getNextValue(Idx, Alloc);
402       NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
403 
404       if (DestSubReg) {
405         const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
406         auto *SR = NewLI.createSubRange(
407             Alloc, TRI->getSubRegIndexLaneMask(DestSubReg));
408         SR->addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(),
409                                              SR->getNextValue(Idx, Alloc)));
410       }
411 
412       pop_back();
413       DeadRemats->insert(MI);
414       const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
415       MI->substituteRegister(Dest, NewLI.reg(), 0, TRI);
416       MI->getOperand(0).setIsDead(true);
417     } else {
418       if (TheDelegate)
419         TheDelegate->LRE_WillEraseInstruction(MI);
420       LIS.RemoveMachineInstrFromMaps(*MI);
421       MI->eraseFromParent();
422       ++NumDCEDeleted;
423     }
424   }
425 
426   // Erase any virtregs that are now empty and unused. There may be <undef>
427   // uses around. Keep the empty live range in that case.
428   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
429     Register Reg = RegsToErase[i];
430     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
431       ToShrink.remove(&LIS.getInterval(Reg));
432       eraseVirtReg(Reg);
433     }
434   }
435 }
436 
437 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
438                                       ArrayRef<Register> RegsBeingSpilled) {
439   ToShrinkSet ToShrink;
440 
441   for (;;) {
442     // Erase all dead defs.
443     while (!Dead.empty())
444       eliminateDeadDef(Dead.pop_back_val(), ToShrink);
445 
446     if (ToShrink.empty())
447       break;
448 
449     // Shrink just one live interval. Then delete new dead defs.
450     LiveInterval *LI = ToShrink.pop_back_val();
451     if (foldAsLoad(LI, Dead))
452       continue;
453     Register VReg = LI->reg();
454     if (TheDelegate)
455       TheDelegate->LRE_WillShrinkVirtReg(VReg);
456     if (!LIS.shrinkToUses(LI, &Dead))
457       continue;
458 
459     // Don't create new intervals for a register being spilled.
460     // The new intervals would have to be spilled anyway so its not worth it.
461     // Also they currently aren't spilled so creating them and not spilling
462     // them results in incorrect code.
463     if (llvm::is_contained(RegsBeingSpilled, VReg))
464       continue;
465 
466     // LI may have been separated, create new intervals.
467     LI->RenumberValues();
468     SmallVector<LiveInterval*, 8> SplitLIs;
469     LIS.splitSeparateComponents(*LI, SplitLIs);
470     if (!SplitLIs.empty())
471       ++NumFracRanges;
472 
473     Register Original = VRM ? VRM->getOriginal(VReg) : Register();
474     for (const LiveInterval *SplitLI : SplitLIs) {
475       // If LI is an original interval that hasn't been split yet, make the new
476       // intervals their own originals instead of referring to LI. The original
477       // interval must contain all the split products, and LI doesn't.
478       if (Original != VReg && Original != 0)
479         VRM->setIsSplitFromReg(SplitLI->reg(), Original);
480       if (TheDelegate)
481         TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg);
482     }
483   }
484 }
485 
486 // Keep track of new virtual registers created via
487 // MachineRegisterInfo::createVirtualRegister.
488 void
489 LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) {
490   if (VRM)
491     VRM->grow();
492 
493   NewRegs.push_back(VReg);
494 }
495 
496 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
497                                              VirtRegAuxInfo &VRAI) {
498   for (unsigned I = 0, Size = size(); I < Size; ++I) {
499     LiveInterval &LI = LIS.getInterval(get(I));
500     if (MRI.recomputeRegClass(LI.reg()))
501       LLVM_DEBUG({
502         const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
503         dbgs() << "Inflated " << printReg(LI.reg()) << " to "
504                << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n';
505       });
506     VRAI.calculateSpillWeightAndHint(LI);
507   }
508 }
509