1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SlotIndexes.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/MC/MCAsmInfo.h"
32 #include "llvm/MC/MCContext.h"
33 #include "llvm/Support/DataTypes.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include <algorithm>
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "codegen"
41 
42 static cl::opt<bool> PrintSlotIndexes(
43     "print-slotindexes",
44     cl::desc("When printing machine IR, annotate instructions and blocks with "
45              "SlotIndexes when available"),
46     cl::init(true), cl::Hidden);
47 
48 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
49     : BB(B), Number(-1), xParent(&MF) {
50   Insts.Parent = this;
51   if (B)
52     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
53 }
54 
55 MachineBasicBlock::~MachineBasicBlock() {
56 }
57 
58 /// Return the MCSymbol for this basic block.
59 MCSymbol *MachineBasicBlock::getSymbol() const {
60   if (!CachedMCSymbol) {
61     const MachineFunction *MF = getParent();
62     MCContext &Ctx = MF->getContext();
63     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
64     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
65     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
66                                            Twine(MF->getFunctionNumber()) +
67                                            "_" + Twine(getNumber()));
68   }
69 
70   return CachedMCSymbol;
71 }
72 
73 
74 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
75   MBB.print(OS);
76   return OS;
77 }
78 
79 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
80   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
81 }
82 
83 /// When an MBB is added to an MF, we need to update the parent pointer of the
84 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
85 /// operand list for registers.
86 ///
87 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
88 /// gets the next available unique MBB number. If it is removed from a
89 /// MachineFunction, it goes back to being #-1.
90 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
91     MachineBasicBlock *N) {
92   MachineFunction &MF = *N->getParent();
93   N->Number = MF.addToMBBNumbering(N);
94 
95   // Make sure the instructions have their operands in the reginfo lists.
96   MachineRegisterInfo &RegInfo = MF.getRegInfo();
97   for (MachineBasicBlock::instr_iterator
98          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
99     I->AddRegOperandsToUseLists(RegInfo);
100 }
101 
102 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
103     MachineBasicBlock *N) {
104   N->getParent()->removeFromMBBNumbering(N->Number);
105   N->Number = -1;
106 }
107 
108 /// When we add an instruction to a basic block list, we update its parent
109 /// pointer and add its operands from reg use/def lists if appropriate.
110 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
111   assert(!N->getParent() && "machine instruction already in a basic block");
112   N->setParent(Parent);
113 
114   // Add the instruction's register operands to their corresponding
115   // use/def lists.
116   MachineFunction *MF = Parent->getParent();
117   N->AddRegOperandsToUseLists(MF->getRegInfo());
118   MF->handleInsertion(*N);
119 }
120 
121 /// When we remove an instruction from a basic block list, we update its parent
122 /// pointer and remove its operands from reg use/def lists if appropriate.
123 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
124   assert(N->getParent() && "machine instruction not in a basic block");
125 
126   // Remove from the use/def lists.
127   if (MachineFunction *MF = N->getMF()) {
128     MF->handleRemoval(*N);
129     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
130   }
131 
132   N->setParent(nullptr);
133 }
134 
135 /// When moving a range of instructions from one MBB list to another, we need to
136 /// update the parent pointers and the use/def lists.
137 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
138                                                        instr_iterator First,
139                                                        instr_iterator Last) {
140   assert(Parent->getParent() == FromList.Parent->getParent() &&
141          "cannot transfer MachineInstrs between MachineFunctions");
142 
143   // If it's within the same BB, there's nothing to do.
144   if (this == &FromList)
145     return;
146 
147   assert(Parent != FromList.Parent && "Two lists have the same parent?");
148 
149   // If splicing between two blocks within the same function, just update the
150   // parent pointers.
151   for (; First != Last; ++First)
152     First->setParent(Parent);
153 }
154 
155 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
156   assert(!MI->getParent() && "MI is still in a block!");
157   Parent->getParent()->DeleteMachineInstr(MI);
158 }
159 
160 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
161   instr_iterator I = instr_begin(), E = instr_end();
162   while (I != E && I->isPHI())
163     ++I;
164   assert((I == E || !I->isInsideBundle()) &&
165          "First non-phi MI cannot be inside a bundle!");
166   return I;
167 }
168 
169 MachineBasicBlock::iterator
170 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
171   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
172 
173   iterator E = end();
174   while (I != E && (I->isPHI() || I->isPosition() ||
175                     TII->isBasicBlockPrologue(*I)))
176     ++I;
177   // FIXME: This needs to change if we wish to bundle labels
178   // inside the bundle.
179   assert((I == E || !I->isInsideBundle()) &&
180          "First non-phi / non-label instruction is inside a bundle!");
181   return I;
182 }
183 
184 MachineBasicBlock::iterator
185 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
186   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
187 
188   iterator E = end();
189   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
190                     TII->isBasicBlockPrologue(*I)))
191     ++I;
192   // FIXME: This needs to change if we wish to bundle labels / dbg_values
193   // inside the bundle.
194   assert((I == E || !I->isInsideBundle()) &&
195          "First non-phi / non-label / non-debug "
196          "instruction is inside a bundle!");
197   return I;
198 }
199 
200 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
201   iterator B = begin(), E = end(), I = E;
202   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
203     ; /*noop */
204   while (I != E && !I->isTerminator())
205     ++I;
206   return I;
207 }
208 
209 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
210   instr_iterator B = instr_begin(), E = instr_end(), I = E;
211   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
212     ; /*noop */
213   while (I != E && !I->isTerminator())
214     ++I;
215   return I;
216 }
217 
218 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
219   // Skip over begin-of-block dbg_value instructions.
220   return skipDebugInstructionsForward(begin(), end());
221 }
222 
223 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
224   // Skip over end-of-block dbg_value instructions.
225   instr_iterator B = instr_begin(), I = instr_end();
226   while (I != B) {
227     --I;
228     // Return instruction that starts a bundle.
229     if (I->isDebugInstr() || I->isInsideBundle())
230       continue;
231     return I;
232   }
233   // The block is all debug values.
234   return end();
235 }
236 
237 bool MachineBasicBlock::hasEHPadSuccessor() const {
238   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
239     if ((*I)->isEHPad())
240       return true;
241   return false;
242 }
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
246   print(dbgs());
247 }
248 #endif
249 
250 bool MachineBasicBlock::isLegalToHoistInto() const {
251   if (isReturnBlock() || hasEHPadSuccessor())
252     return false;
253   return true;
254 }
255 
256 StringRef MachineBasicBlock::getName() const {
257   if (const BasicBlock *LBB = getBasicBlock())
258     return LBB->getName();
259   else
260     return StringRef("", 0);
261 }
262 
263 /// Return a hopefully unique identifier for this block.
264 std::string MachineBasicBlock::getFullName() const {
265   std::string Name;
266   if (getParent())
267     Name = (getParent()->getName() + ":").str();
268   if (getBasicBlock())
269     Name += getBasicBlock()->getName();
270   else
271     Name += ("BB" + Twine(getNumber())).str();
272   return Name;
273 }
274 
275 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
276                               bool IsStandalone) const {
277   const MachineFunction *MF = getParent();
278   if (!MF) {
279     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
280        << " is null\n";
281     return;
282   }
283   const Function &F = MF->getFunction();
284   const Module *M = F.getParent();
285   ModuleSlotTracker MST(M);
286   MST.incorporateFunction(F);
287   print(OS, MST, Indexes, IsStandalone);
288 }
289 
290 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
291                               const SlotIndexes *Indexes,
292                               bool IsStandalone) const {
293   const MachineFunction *MF = getParent();
294   if (!MF) {
295     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
296        << " is null\n";
297     return;
298   }
299 
300   if (Indexes && PrintSlotIndexes)
301     OS << Indexes->getMBBStartIdx(this) << '\t';
302 
303   OS << "bb." << getNumber();
304   bool HasAttributes = false;
305   if (const auto *BB = getBasicBlock()) {
306     if (BB->hasName()) {
307       OS << "." << BB->getName();
308     } else {
309       HasAttributes = true;
310       OS << " (";
311       int Slot = MST.getLocalSlot(BB);
312       if (Slot == -1)
313         OS << "<ir-block badref>";
314       else
315         OS << (Twine("%ir-block.") + Twine(Slot)).str();
316     }
317   }
318 
319   if (hasAddressTaken()) {
320     OS << (HasAttributes ? ", " : " (");
321     OS << "address-taken";
322     HasAttributes = true;
323   }
324   if (isEHPad()) {
325     OS << (HasAttributes ? ", " : " (");
326     OS << "landing-pad";
327     HasAttributes = true;
328   }
329   if (getAlignment() != Align::None()) {
330     OS << (HasAttributes ? ", " : " (");
331     OS << "align " << Log2(getAlignment());
332     HasAttributes = true;
333   }
334   if (HasAttributes)
335     OS << ")";
336   OS << ":\n";
337 
338   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
339   const MachineRegisterInfo &MRI = MF->getRegInfo();
340   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
341   bool HasLineAttributes = false;
342 
343   // Print the preds of this block according to the CFG.
344   if (!pred_empty() && IsStandalone) {
345     if (Indexes) OS << '\t';
346     // Don't indent(2), align with previous line attributes.
347     OS << "; predecessors: ";
348     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
349       if (I != pred_begin())
350         OS << ", ";
351       OS << printMBBReference(**I);
352     }
353     OS << '\n';
354     HasLineAttributes = true;
355   }
356 
357   if (!succ_empty()) {
358     if (Indexes) OS << '\t';
359     // Print the successors
360     OS.indent(2) << "successors: ";
361     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
362       if (I != succ_begin())
363         OS << ", ";
364       OS << printMBBReference(**I);
365       if (!Probs.empty())
366         OS << '('
367            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
368            << ')';
369     }
370     if (!Probs.empty() && IsStandalone) {
371       // Print human readable probabilities as comments.
372       OS << "; ";
373       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
374         const BranchProbability &BP = getSuccProbability(I);
375         if (I != succ_begin())
376           OS << ", ";
377         OS << printMBBReference(**I) << '('
378            << format("%.2f%%",
379                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
380                           100.0 * 100.0) /
381                          100.0)
382            << ')';
383       }
384     }
385 
386     OS << '\n';
387     HasLineAttributes = true;
388   }
389 
390   if (!livein_empty() && MRI.tracksLiveness()) {
391     if (Indexes) OS << '\t';
392     OS.indent(2) << "liveins: ";
393 
394     bool First = true;
395     for (const auto &LI : liveins()) {
396       if (!First)
397         OS << ", ";
398       First = false;
399       OS << printReg(LI.PhysReg, TRI);
400       if (!LI.LaneMask.all())
401         OS << ":0x" << PrintLaneMask(LI.LaneMask);
402     }
403     HasLineAttributes = true;
404   }
405 
406   if (HasLineAttributes)
407     OS << '\n';
408 
409   bool IsInBundle = false;
410   for (const MachineInstr &MI : instrs()) {
411     if (Indexes && PrintSlotIndexes) {
412       if (Indexes->hasIndex(MI))
413         OS << Indexes->getInstructionIndex(MI);
414       OS << '\t';
415     }
416 
417     if (IsInBundle && !MI.isInsideBundle()) {
418       OS.indent(2) << "}\n";
419       IsInBundle = false;
420     }
421 
422     OS.indent(IsInBundle ? 4 : 2);
423     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
424              /*AddNewLine=*/false, &TII);
425 
426     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
427       OS << " {";
428       IsInBundle = true;
429     }
430     OS << '\n';
431   }
432 
433   if (IsInBundle)
434     OS.indent(2) << "}\n";
435 
436   if (IrrLoopHeaderWeight && IsStandalone) {
437     if (Indexes) OS << '\t';
438     OS.indent(2) << "; Irreducible loop header weight: "
439                  << IrrLoopHeaderWeight.getValue() << '\n';
440   }
441 }
442 
443 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
444                                        bool /*PrintType*/) const {
445   OS << "%bb." << getNumber();
446 }
447 
448 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
449   LiveInVector::iterator I = find_if(
450       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
451   if (I == LiveIns.end())
452     return;
453 
454   I->LaneMask &= ~LaneMask;
455   if (I->LaneMask.none())
456     LiveIns.erase(I);
457 }
458 
459 MachineBasicBlock::livein_iterator
460 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
461   // Get non-const version of iterator.
462   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
463   return LiveIns.erase(LI);
464 }
465 
466 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
467   livein_iterator I = find_if(
468       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
469   return I != livein_end() && (I->LaneMask & LaneMask).any();
470 }
471 
472 void MachineBasicBlock::sortUniqueLiveIns() {
473   llvm::sort(LiveIns,
474              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
475                return LI0.PhysReg < LI1.PhysReg;
476              });
477   // Liveins are sorted by physreg now we can merge their lanemasks.
478   LiveInVector::const_iterator I = LiveIns.begin();
479   LiveInVector::const_iterator J;
480   LiveInVector::iterator Out = LiveIns.begin();
481   for (; I != LiveIns.end(); ++Out, I = J) {
482     unsigned PhysReg = I->PhysReg;
483     LaneBitmask LaneMask = I->LaneMask;
484     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
485       LaneMask |= J->LaneMask;
486     Out->PhysReg = PhysReg;
487     Out->LaneMask = LaneMask;
488   }
489   LiveIns.erase(Out, LiveIns.end());
490 }
491 
492 unsigned
493 MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) {
494   assert(getParent() && "MBB must be inserted in function");
495   assert(PhysReg.isPhysical() && "Expected physreg");
496   assert(RC && "Register class is required");
497   assert((isEHPad() || this == &getParent()->front()) &&
498          "Only the entry block and landing pads can have physreg live ins");
499 
500   bool LiveIn = isLiveIn(PhysReg);
501   iterator I = SkipPHIsAndLabels(begin()), E = end();
502   MachineRegisterInfo &MRI = getParent()->getRegInfo();
503   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
504 
505   // Look for an existing copy.
506   if (LiveIn)
507     for (;I != E && I->isCopy(); ++I)
508       if (I->getOperand(1).getReg() == PhysReg) {
509         Register VirtReg = I->getOperand(0).getReg();
510         if (!MRI.constrainRegClass(VirtReg, RC))
511           llvm_unreachable("Incompatible live-in register class.");
512         return VirtReg;
513       }
514 
515   // No luck, create a virtual register.
516   Register VirtReg = MRI.createVirtualRegister(RC);
517   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
518     .addReg(PhysReg, RegState::Kill);
519   if (!LiveIn)
520     addLiveIn(PhysReg);
521   return VirtReg;
522 }
523 
524 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
525   getParent()->splice(NewAfter->getIterator(), getIterator());
526 }
527 
528 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
529   getParent()->splice(++NewBefore->getIterator(), getIterator());
530 }
531 
532 void MachineBasicBlock::updateTerminator() {
533   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
534   // A block with no successors has no concerns with fall-through edges.
535   if (this->succ_empty())
536     return;
537 
538   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
539   SmallVector<MachineOperand, 4> Cond;
540   DebugLoc DL = findBranchDebugLoc();
541   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
542   (void) B;
543   assert(!B && "UpdateTerminators requires analyzable predecessors!");
544   if (Cond.empty()) {
545     if (TBB) {
546       // The block has an unconditional branch. If its successor is now its
547       // layout successor, delete the branch.
548       if (isLayoutSuccessor(TBB))
549         TII->removeBranch(*this);
550     } else {
551       // The block has an unconditional fallthrough. If its successor is not its
552       // layout successor, insert a branch. First we have to locate the only
553       // non-landing-pad successor, as that is the fallthrough block.
554       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
555         if ((*SI)->isEHPad())
556           continue;
557         assert(!TBB && "Found more than one non-landing-pad successor!");
558         TBB = *SI;
559       }
560 
561       // If there is no non-landing-pad successor, the block has no fall-through
562       // edges to be concerned with.
563       if (!TBB)
564         return;
565 
566       // Finally update the unconditional successor to be reached via a branch
567       // if it would not be reached by fallthrough.
568       if (!isLayoutSuccessor(TBB))
569         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
570     }
571     return;
572   }
573 
574   if (FBB) {
575     // The block has a non-fallthrough conditional branch. If one of its
576     // successors is its layout successor, rewrite it to a fallthrough
577     // conditional branch.
578     if (isLayoutSuccessor(TBB)) {
579       if (TII->reverseBranchCondition(Cond))
580         return;
581       TII->removeBranch(*this);
582       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
583     } else if (isLayoutSuccessor(FBB)) {
584       TII->removeBranch(*this);
585       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
586     }
587     return;
588   }
589 
590   // Walk through the successors and find the successor which is not a landing
591   // pad and is not the conditional branch destination (in TBB) as the
592   // fallthrough successor.
593   MachineBasicBlock *FallthroughBB = nullptr;
594   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
595     if ((*SI)->isEHPad() || *SI == TBB)
596       continue;
597     assert(!FallthroughBB && "Found more than one fallthrough successor.");
598     FallthroughBB = *SI;
599   }
600 
601   if (!FallthroughBB) {
602     if (canFallThrough()) {
603       // We fallthrough to the same basic block as the conditional jump targets.
604       // Remove the conditional jump, leaving unconditional fallthrough.
605       // FIXME: This does not seem like a reasonable pattern to support, but it
606       // has been seen in the wild coming out of degenerate ARM test cases.
607       TII->removeBranch(*this);
608 
609       // Finally update the unconditional successor to be reached via a branch if
610       // it would not be reached by fallthrough.
611       if (!isLayoutSuccessor(TBB))
612         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
613       return;
614     }
615 
616     // We enter here iff exactly one successor is TBB which cannot fallthrough
617     // and the rest successors if any are EHPads.  In this case, we need to
618     // change the conditional branch into unconditional branch.
619     TII->removeBranch(*this);
620     Cond.clear();
621     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
622     return;
623   }
624 
625   // The block has a fallthrough conditional branch.
626   if (isLayoutSuccessor(TBB)) {
627     if (TII->reverseBranchCondition(Cond)) {
628       // We can't reverse the condition, add an unconditional branch.
629       Cond.clear();
630       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
631       return;
632     }
633     TII->removeBranch(*this);
634     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
635   } else if (!isLayoutSuccessor(FallthroughBB)) {
636     TII->removeBranch(*this);
637     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
638   }
639 }
640 
641 void MachineBasicBlock::validateSuccProbs() const {
642 #ifndef NDEBUG
643   int64_t Sum = 0;
644   for (auto Prob : Probs)
645     Sum += Prob.getNumerator();
646   // Due to precision issue, we assume that the sum of probabilities is one if
647   // the difference between the sum of their numerators and the denominator is
648   // no greater than the number of successors.
649   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
650              Probs.size() &&
651          "The sum of successors's probabilities exceeds one.");
652 #endif // NDEBUG
653 }
654 
655 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
656                                      BranchProbability Prob) {
657   // Probability list is either empty (if successor list isn't empty, this means
658   // disabled optimization) or has the same size as successor list.
659   if (!(Probs.empty() && !Successors.empty()))
660     Probs.push_back(Prob);
661   Successors.push_back(Succ);
662   Succ->addPredecessor(this);
663 }
664 
665 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
666   // We need to make sure probability list is either empty or has the same size
667   // of successor list. When this function is called, we can safely delete all
668   // probability in the list.
669   Probs.clear();
670   Successors.push_back(Succ);
671   Succ->addPredecessor(this);
672 }
673 
674 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
675                                        MachineBasicBlock *New,
676                                        bool NormalizeSuccProbs) {
677   succ_iterator OldI = llvm::find(successors(), Old);
678   assert(OldI != succ_end() && "Old is not a successor of this block!");
679   assert(llvm::find(successors(), New) == succ_end() &&
680          "New is already a successor of this block!");
681 
682   // Add a new successor with equal probability as the original one. Note
683   // that we directly copy the probability using the iterator rather than
684   // getting a potentially synthetic probability computed when unknown. This
685   // preserves the probabilities as-is and then we can renormalize them and
686   // query them effectively afterward.
687   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
688                                   : *getProbabilityIterator(OldI));
689   if (NormalizeSuccProbs)
690     normalizeSuccProbs();
691 }
692 
693 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
694                                         bool NormalizeSuccProbs) {
695   succ_iterator I = find(Successors, Succ);
696   removeSuccessor(I, NormalizeSuccProbs);
697 }
698 
699 MachineBasicBlock::succ_iterator
700 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
701   assert(I != Successors.end() && "Not a current successor!");
702 
703   // If probability list is empty it means we don't use it (disabled
704   // optimization).
705   if (!Probs.empty()) {
706     probability_iterator WI = getProbabilityIterator(I);
707     Probs.erase(WI);
708     if (NormalizeSuccProbs)
709       normalizeSuccProbs();
710   }
711 
712   (*I)->removePredecessor(this);
713   return Successors.erase(I);
714 }
715 
716 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
717                                          MachineBasicBlock *New) {
718   if (Old == New)
719     return;
720 
721   succ_iterator E = succ_end();
722   succ_iterator NewI = E;
723   succ_iterator OldI = E;
724   for (succ_iterator I = succ_begin(); I != E; ++I) {
725     if (*I == Old) {
726       OldI = I;
727       if (NewI != E)
728         break;
729     }
730     if (*I == New) {
731       NewI = I;
732       if (OldI != E)
733         break;
734     }
735   }
736   assert(OldI != E && "Old is not a successor of this block");
737 
738   // If New isn't already a successor, let it take Old's place.
739   if (NewI == E) {
740     Old->removePredecessor(this);
741     New->addPredecessor(this);
742     *OldI = New;
743     return;
744   }
745 
746   // New is already a successor.
747   // Update its probability instead of adding a duplicate edge.
748   if (!Probs.empty()) {
749     auto ProbIter = getProbabilityIterator(NewI);
750     if (!ProbIter->isUnknown())
751       *ProbIter += *getProbabilityIterator(OldI);
752   }
753   removeSuccessor(OldI);
754 }
755 
756 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
757                                       succ_iterator I) {
758   if (Orig->Probs.empty())
759     addSuccessor(*I, Orig->getSuccProbability(I));
760   else
761     addSuccessorWithoutProb(*I);
762 }
763 
764 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
765   Predecessors.push_back(Pred);
766 }
767 
768 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
769   pred_iterator I = find(Predecessors, Pred);
770   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
771   Predecessors.erase(I);
772 }
773 
774 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
775   if (this == FromMBB)
776     return;
777 
778   while (!FromMBB->succ_empty()) {
779     MachineBasicBlock *Succ = *FromMBB->succ_begin();
780 
781     // If probability list is empty it means we don't use it (disabled
782     // optimization).
783     if (!FromMBB->Probs.empty()) {
784       auto Prob = *FromMBB->Probs.begin();
785       addSuccessor(Succ, Prob);
786     } else
787       addSuccessorWithoutProb(Succ);
788 
789     FromMBB->removeSuccessor(Succ);
790   }
791 }
792 
793 void
794 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
795   if (this == FromMBB)
796     return;
797 
798   while (!FromMBB->succ_empty()) {
799     MachineBasicBlock *Succ = *FromMBB->succ_begin();
800     if (!FromMBB->Probs.empty()) {
801       auto Prob = *FromMBB->Probs.begin();
802       addSuccessor(Succ, Prob);
803     } else
804       addSuccessorWithoutProb(Succ);
805     FromMBB->removeSuccessor(Succ);
806 
807     // Fix up any PHI nodes in the successor.
808     Succ->replacePhiUsesWith(FromMBB, this);
809   }
810   normalizeSuccProbs();
811 }
812 
813 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
814   return is_contained(predecessors(), MBB);
815 }
816 
817 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
818   return is_contained(successors(), MBB);
819 }
820 
821 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
822   MachineFunction::const_iterator I(this);
823   return std::next(I) == MachineFunction::const_iterator(MBB);
824 }
825 
826 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
827   MachineFunction::iterator Fallthrough = getIterator();
828   ++Fallthrough;
829   // If FallthroughBlock is off the end of the function, it can't fall through.
830   if (Fallthrough == getParent()->end())
831     return nullptr;
832 
833   // If FallthroughBlock isn't a successor, no fallthrough is possible.
834   if (!isSuccessor(&*Fallthrough))
835     return nullptr;
836 
837   // Analyze the branches, if any, at the end of the block.
838   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
839   SmallVector<MachineOperand, 4> Cond;
840   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
841   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
842     // If we couldn't analyze the branch, examine the last instruction.
843     // If the block doesn't end in a known control barrier, assume fallthrough
844     // is possible. The isPredicated check is needed because this code can be
845     // called during IfConversion, where an instruction which is normally a
846     // Barrier is predicated and thus no longer an actual control barrier.
847     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
848                ? &*Fallthrough
849                : nullptr;
850   }
851 
852   // If there is no branch, control always falls through.
853   if (!TBB) return &*Fallthrough;
854 
855   // If there is some explicit branch to the fallthrough block, it can obviously
856   // reach, even though the branch should get folded to fall through implicitly.
857   if (MachineFunction::iterator(TBB) == Fallthrough ||
858       MachineFunction::iterator(FBB) == Fallthrough)
859     return &*Fallthrough;
860 
861   // If it's an unconditional branch to some block not the fall through, it
862   // doesn't fall through.
863   if (Cond.empty()) return nullptr;
864 
865   // Otherwise, if it is conditional and has no explicit false block, it falls
866   // through.
867   return (FBB == nullptr) ? &*Fallthrough : nullptr;
868 }
869 
870 bool MachineBasicBlock::canFallThrough() {
871   return getFallThrough() != nullptr;
872 }
873 
874 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
875                                                         Pass &P) {
876   if (!canSplitCriticalEdge(Succ))
877     return nullptr;
878 
879   MachineFunction *MF = getParent();
880   DebugLoc DL;  // FIXME: this is nowhere
881 
882   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
883   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
884   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
885                     << " -- " << printMBBReference(*NMBB) << " -- "
886                     << printMBBReference(*Succ) << '\n');
887 
888   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
889   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
890   if (LIS)
891     LIS->insertMBBInMaps(NMBB);
892   else if (Indexes)
893     Indexes->insertMBBInMaps(NMBB);
894 
895   // On some targets like Mips, branches may kill virtual registers. Make sure
896   // that LiveVariables is properly updated after updateTerminator replaces the
897   // terminators.
898   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
899 
900   // Collect a list of virtual registers killed by the terminators.
901   SmallVector<unsigned, 4> KilledRegs;
902   if (LV)
903     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
904          I != E; ++I) {
905       MachineInstr *MI = &*I;
906       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
907            OE = MI->operands_end(); OI != OE; ++OI) {
908         if (!OI->isReg() || OI->getReg() == 0 ||
909             !OI->isUse() || !OI->isKill() || OI->isUndef())
910           continue;
911         Register Reg = OI->getReg();
912         if (Register::isPhysicalRegister(Reg) ||
913             LV->getVarInfo(Reg).removeKill(*MI)) {
914           KilledRegs.push_back(Reg);
915           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
916           OI->setIsKill(false);
917         }
918       }
919     }
920 
921   SmallVector<unsigned, 4> UsedRegs;
922   if (LIS) {
923     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
924          I != E; ++I) {
925       MachineInstr *MI = &*I;
926 
927       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
928            OE = MI->operands_end(); OI != OE; ++OI) {
929         if (!OI->isReg() || OI->getReg() == 0)
930           continue;
931 
932         Register Reg = OI->getReg();
933         if (!is_contained(UsedRegs, Reg))
934           UsedRegs.push_back(Reg);
935       }
936     }
937   }
938 
939   ReplaceUsesOfBlockWith(Succ, NMBB);
940 
941   // If updateTerminator() removes instructions, we need to remove them from
942   // SlotIndexes.
943   SmallVector<MachineInstr*, 4> Terminators;
944   if (Indexes) {
945     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
946          I != E; ++I)
947       Terminators.push_back(&*I);
948   }
949 
950   updateTerminator();
951 
952   if (Indexes) {
953     SmallVector<MachineInstr*, 4> NewTerminators;
954     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
955          I != E; ++I)
956       NewTerminators.push_back(&*I);
957 
958     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
959         E = Terminators.end(); I != E; ++I) {
960       if (!is_contained(NewTerminators, *I))
961         Indexes->removeMachineInstrFromMaps(**I);
962     }
963   }
964 
965   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
966   NMBB->addSuccessor(Succ);
967   if (!NMBB->isLayoutSuccessor(Succ)) {
968     SmallVector<MachineOperand, 4> Cond;
969     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
970     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
971 
972     if (Indexes) {
973       for (MachineInstr &MI : NMBB->instrs()) {
974         // Some instructions may have been moved to NMBB by updateTerminator(),
975         // so we first remove any instruction that already has an index.
976         if (Indexes->hasIndex(MI))
977           Indexes->removeMachineInstrFromMaps(MI);
978         Indexes->insertMachineInstrInMaps(MI);
979       }
980     }
981   }
982 
983   // Fix PHI nodes in Succ so they refer to NMBB instead of this.
984   Succ->replacePhiUsesWith(this, NMBB);
985 
986   // Inherit live-ins from the successor
987   for (const auto &LI : Succ->liveins())
988     NMBB->addLiveIn(LI);
989 
990   // Update LiveVariables.
991   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
992   if (LV) {
993     // Restore kills of virtual registers that were killed by the terminators.
994     while (!KilledRegs.empty()) {
995       unsigned Reg = KilledRegs.pop_back_val();
996       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
997         if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false))
998           continue;
999         if (Register::isVirtualRegister(Reg))
1000           LV->getVarInfo(Reg).Kills.push_back(&*I);
1001         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1002         break;
1003       }
1004     }
1005     // Update relevant live-through information.
1006     LV->addNewBlock(NMBB, this, Succ);
1007   }
1008 
1009   if (LIS) {
1010     // After splitting the edge and updating SlotIndexes, live intervals may be
1011     // in one of two situations, depending on whether this block was the last in
1012     // the function. If the original block was the last in the function, all
1013     // live intervals will end prior to the beginning of the new split block. If
1014     // the original block was not at the end of the function, all live intervals
1015     // will extend to the end of the new split block.
1016 
1017     bool isLastMBB =
1018       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1019 
1020     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1021     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1022     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1023 
1024     // Find the registers used from NMBB in PHIs in Succ.
1025     SmallSet<unsigned, 8> PHISrcRegs;
1026     for (MachineBasicBlock::instr_iterator
1027          I = Succ->instr_begin(), E = Succ->instr_end();
1028          I != E && I->isPHI(); ++I) {
1029       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1030         if (I->getOperand(ni+1).getMBB() == NMBB) {
1031           MachineOperand &MO = I->getOperand(ni);
1032           Register Reg = MO.getReg();
1033           PHISrcRegs.insert(Reg);
1034           if (MO.isUndef())
1035             continue;
1036 
1037           LiveInterval &LI = LIS->getInterval(Reg);
1038           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1039           assert(VNI &&
1040                  "PHI sources should be live out of their predecessors.");
1041           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1042         }
1043       }
1044     }
1045 
1046     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1047     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1048       unsigned Reg = Register::index2VirtReg(i);
1049       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1050         continue;
1051 
1052       LiveInterval &LI = LIS->getInterval(Reg);
1053       if (!LI.liveAt(PrevIndex))
1054         continue;
1055 
1056       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1057       if (isLiveOut && isLastMBB) {
1058         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1059         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1060         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1061       } else if (!isLiveOut && !isLastMBB) {
1062         LI.removeSegment(StartIndex, EndIndex);
1063       }
1064     }
1065 
1066     // Update all intervals for registers whose uses may have been modified by
1067     // updateTerminator().
1068     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1069   }
1070 
1071   if (MachineDominatorTree *MDT =
1072           P.getAnalysisIfAvailable<MachineDominatorTree>())
1073     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1074 
1075   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1076     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1077       // If one or the other blocks were not in a loop, the new block is not
1078       // either, and thus LI doesn't need to be updated.
1079       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1080         if (TIL == DestLoop) {
1081           // Both in the same loop, the NMBB joins loop.
1082           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1083         } else if (TIL->contains(DestLoop)) {
1084           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1085           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1086         } else if (DestLoop->contains(TIL)) {
1087           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1088           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1089         } else {
1090           // Edge from two loops with no containment relation.  Because these
1091           // are natural loops, we know that the destination block must be the
1092           // header of its loop (adding a branch into a loop elsewhere would
1093           // create an irreducible loop).
1094           assert(DestLoop->getHeader() == Succ &&
1095                  "Should not create irreducible loops!");
1096           if (MachineLoop *P = DestLoop->getParentLoop())
1097             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1098         }
1099       }
1100     }
1101 
1102   return NMBB;
1103 }
1104 
1105 bool MachineBasicBlock::canSplitCriticalEdge(
1106     const MachineBasicBlock *Succ) const {
1107   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1108   // it in this generic function.
1109   if (Succ->isEHPad())
1110     return false;
1111 
1112   const MachineFunction *MF = getParent();
1113 
1114   // Performance might be harmed on HW that implements branching using exec mask
1115   // where both sides of the branches are always executed.
1116   if (MF->getTarget().requiresStructuredCFG())
1117     return false;
1118 
1119   // We may need to update this's terminator, but we can't do that if
1120   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1121   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1122   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1123   SmallVector<MachineOperand, 4> Cond;
1124   // AnalyzeBanch should modify this, since we did not allow modification.
1125   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1126                          /*AllowModify*/ false))
1127     return false;
1128 
1129   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1130   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1131   // case that we can't handle. Since this never happens in properly optimized
1132   // code, just skip those edges.
1133   if (TBB && TBB == FBB) {
1134     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1135                       << printMBBReference(*this) << '\n');
1136     return false;
1137   }
1138   return true;
1139 }
1140 
1141 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1142 /// neighboring instructions so the bundle won't be broken by removing MI.
1143 static void unbundleSingleMI(MachineInstr *MI) {
1144   // Removing the first instruction in a bundle.
1145   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1146     MI->unbundleFromSucc();
1147   // Removing the last instruction in a bundle.
1148   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1149     MI->unbundleFromPred();
1150   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1151   // are already fine.
1152 }
1153 
1154 MachineBasicBlock::instr_iterator
1155 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1156   unbundleSingleMI(&*I);
1157   return Insts.erase(I);
1158 }
1159 
1160 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1161   unbundleSingleMI(MI);
1162   MI->clearFlag(MachineInstr::BundledPred);
1163   MI->clearFlag(MachineInstr::BundledSucc);
1164   return Insts.remove(MI);
1165 }
1166 
1167 MachineBasicBlock::instr_iterator
1168 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1169   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1170          "Cannot insert instruction with bundle flags");
1171   // Set the bundle flags when inserting inside a bundle.
1172   if (I != instr_end() && I->isBundledWithPred()) {
1173     MI->setFlag(MachineInstr::BundledPred);
1174     MI->setFlag(MachineInstr::BundledSucc);
1175   }
1176   return Insts.insert(I, MI);
1177 }
1178 
1179 /// This method unlinks 'this' from the containing function, and returns it, but
1180 /// does not delete it.
1181 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1182   assert(getParent() && "Not embedded in a function!");
1183   getParent()->remove(this);
1184   return this;
1185 }
1186 
1187 /// This method unlinks 'this' from the containing function, and deletes it.
1188 void MachineBasicBlock::eraseFromParent() {
1189   assert(getParent() && "Not embedded in a function!");
1190   getParent()->erase(this);
1191 }
1192 
1193 /// Given a machine basic block that branched to 'Old', change the code and CFG
1194 /// so that it branches to 'New' instead.
1195 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1196                                                MachineBasicBlock *New) {
1197   assert(Old != New && "Cannot replace self with self!");
1198 
1199   MachineBasicBlock::instr_iterator I = instr_end();
1200   while (I != instr_begin()) {
1201     --I;
1202     if (!I->isTerminator()) break;
1203 
1204     // Scan the operands of this machine instruction, replacing any uses of Old
1205     // with New.
1206     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1207       if (I->getOperand(i).isMBB() &&
1208           I->getOperand(i).getMBB() == Old)
1209         I->getOperand(i).setMBB(New);
1210   }
1211 
1212   // Update the successor information.
1213   replaceSuccessor(Old, New);
1214 }
1215 
1216 void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old,
1217                                            MachineBasicBlock *New) {
1218   for (MachineInstr &MI : phis())
1219     for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
1220       MachineOperand &MO = MI.getOperand(i);
1221       if (MO.getMBB() == Old)
1222         MO.setMBB(New);
1223     }
1224 }
1225 
1226 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1227 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1228 /// MBB successors from the CFG.  DestA and DestB can be null.
1229 ///
1230 /// Besides DestA and DestB, retain other edges leading to LandingPads
1231 /// (currently there can be only one; we don't check or require that here).
1232 /// Note it is possible that DestA and/or DestB are LandingPads.
1233 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1234                                              MachineBasicBlock *DestB,
1235                                              bool IsCond) {
1236   // The values of DestA and DestB frequently come from a call to the
1237   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1238   // values from there.
1239   //
1240   // 1. If both DestA and DestB are null, then the block ends with no branches
1241   //    (it falls through to its successor).
1242   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1243   //    with only an unconditional branch.
1244   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1245   //    with a conditional branch that falls through to a successor (DestB).
1246   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1247   //    conditional branch followed by an unconditional branch. DestA is the
1248   //    'true' destination and DestB is the 'false' destination.
1249 
1250   bool Changed = false;
1251 
1252   MachineBasicBlock *FallThru = getNextNode();
1253 
1254   if (!DestA && !DestB) {
1255     // Block falls through to successor.
1256     DestA = FallThru;
1257     DestB = FallThru;
1258   } else if (DestA && !DestB) {
1259     if (IsCond)
1260       // Block ends in conditional jump that falls through to successor.
1261       DestB = FallThru;
1262   } else {
1263     assert(DestA && DestB && IsCond &&
1264            "CFG in a bad state. Cannot correct CFG edges");
1265   }
1266 
1267   // Remove superfluous edges. I.e., those which aren't destinations of this
1268   // basic block, duplicate edges, or landing pads.
1269   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1270   MachineBasicBlock::succ_iterator SI = succ_begin();
1271   while (SI != succ_end()) {
1272     const MachineBasicBlock *MBB = *SI;
1273     if (!SeenMBBs.insert(MBB).second ||
1274         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1275       // This is a superfluous edge, remove it.
1276       SI = removeSuccessor(SI);
1277       Changed = true;
1278     } else {
1279       ++SI;
1280     }
1281   }
1282 
1283   if (Changed)
1284     normalizeSuccProbs();
1285   return Changed;
1286 }
1287 
1288 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1289 /// instructions.  Return UnknownLoc if there is none.
1290 DebugLoc
1291 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1292   // Skip debug declarations, we don't want a DebugLoc from them.
1293   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1294   if (MBBI != instr_end())
1295     return MBBI->getDebugLoc();
1296   return {};
1297 }
1298 
1299 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1300 /// instructions.  Return UnknownLoc if there is none.
1301 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1302   if (MBBI == instr_begin()) return {};
1303   // Skip debug declarations, we don't want a DebugLoc from them.
1304   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1305   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1306   return {};
1307 }
1308 
1309 /// Find and return the merged DebugLoc of the branch instructions of the block.
1310 /// Return UnknownLoc if there is none.
1311 DebugLoc
1312 MachineBasicBlock::findBranchDebugLoc() {
1313   DebugLoc DL;
1314   auto TI = getFirstTerminator();
1315   while (TI != end() && !TI->isBranch())
1316     ++TI;
1317 
1318   if (TI != end()) {
1319     DL = TI->getDebugLoc();
1320     for (++TI ; TI != end() ; ++TI)
1321       if (TI->isBranch())
1322         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1323   }
1324   return DL;
1325 }
1326 
1327 /// Return probability of the edge from this block to MBB.
1328 BranchProbability
1329 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1330   if (Probs.empty())
1331     return BranchProbability(1, succ_size());
1332 
1333   const auto &Prob = *getProbabilityIterator(Succ);
1334   if (Prob.isUnknown()) {
1335     // For unknown probabilities, collect the sum of all known ones, and evenly
1336     // ditribute the complemental of the sum to each unknown probability.
1337     unsigned KnownProbNum = 0;
1338     auto Sum = BranchProbability::getZero();
1339     for (auto &P : Probs) {
1340       if (!P.isUnknown()) {
1341         Sum += P;
1342         KnownProbNum++;
1343       }
1344     }
1345     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1346   } else
1347     return Prob;
1348 }
1349 
1350 /// Set successor probability of a given iterator.
1351 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1352                                            BranchProbability Prob) {
1353   assert(!Prob.isUnknown());
1354   if (Probs.empty())
1355     return;
1356   *getProbabilityIterator(I) = Prob;
1357 }
1358 
1359 /// Return probability iterator corresonding to the I successor iterator
1360 MachineBasicBlock::const_probability_iterator
1361 MachineBasicBlock::getProbabilityIterator(
1362     MachineBasicBlock::const_succ_iterator I) const {
1363   assert(Probs.size() == Successors.size() && "Async probability list!");
1364   const size_t index = std::distance(Successors.begin(), I);
1365   assert(index < Probs.size() && "Not a current successor!");
1366   return Probs.begin() + index;
1367 }
1368 
1369 /// Return probability iterator corresonding to the I successor iterator.
1370 MachineBasicBlock::probability_iterator
1371 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1372   assert(Probs.size() == Successors.size() && "Async probability list!");
1373   const size_t index = std::distance(Successors.begin(), I);
1374   assert(index < Probs.size() && "Not a current successor!");
1375   return Probs.begin() + index;
1376 }
1377 
1378 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1379 /// as of just before "MI".
1380 ///
1381 /// Search is localised to a neighborhood of
1382 /// Neighborhood instructions before (searching for defs or kills) and N
1383 /// instructions after (searching just for defs) MI.
1384 MachineBasicBlock::LivenessQueryResult
1385 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1386                                            unsigned Reg, const_iterator Before,
1387                                            unsigned Neighborhood) const {
1388   unsigned N = Neighborhood;
1389 
1390   // Try searching forwards from Before, looking for reads or defs.
1391   const_iterator I(Before);
1392   for (; I != end() && N > 0; ++I) {
1393     if (I->isDebugInstr())
1394       continue;
1395 
1396     --N;
1397 
1398     PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1399 
1400     // Register is live when we read it here.
1401     if (Info.Read)
1402       return LQR_Live;
1403     // Register is dead if we can fully overwrite or clobber it here.
1404     if (Info.FullyDefined || Info.Clobbered)
1405       return LQR_Dead;
1406   }
1407 
1408   // If we reached the end, it is safe to clobber Reg at the end of a block of
1409   // no successor has it live in.
1410   if (I == end()) {
1411     for (MachineBasicBlock *S : successors()) {
1412       for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) {
1413         if (TRI->regsOverlap(LI.PhysReg, Reg))
1414           return LQR_Live;
1415       }
1416     }
1417 
1418     return LQR_Dead;
1419   }
1420 
1421 
1422   N = Neighborhood;
1423 
1424   // Start by searching backwards from Before, looking for kills, reads or defs.
1425   I = const_iterator(Before);
1426   // If this is the first insn in the block, don't search backwards.
1427   if (I != begin()) {
1428     do {
1429       --I;
1430 
1431       if (I->isDebugInstr())
1432         continue;
1433 
1434       --N;
1435 
1436       PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI);
1437 
1438       // Defs happen after uses so they take precedence if both are present.
1439 
1440       // Register is dead after a dead def of the full register.
1441       if (Info.DeadDef)
1442         return LQR_Dead;
1443       // Register is (at least partially) live after a def.
1444       if (Info.Defined) {
1445         if (!Info.PartialDeadDef)
1446           return LQR_Live;
1447         // As soon as we saw a partial definition (dead or not),
1448         // we cannot tell if the value is partial live without
1449         // tracking the lanemasks. We are not going to do this,
1450         // so fall back on the remaining of the analysis.
1451         break;
1452       }
1453       // Register is dead after a full kill or clobber and no def.
1454       if (Info.Killed || Info.Clobbered)
1455         return LQR_Dead;
1456       // Register must be live if we read it.
1457       if (Info.Read)
1458         return LQR_Live;
1459 
1460     } while (I != begin() && N > 0);
1461   }
1462 
1463   // If all the instructions before this in the block are debug instructions,
1464   // skip over them.
1465   while (I != begin() && std::prev(I)->isDebugInstr())
1466     --I;
1467 
1468   // Did we get to the start of the block?
1469   if (I == begin()) {
1470     // If so, the register's state is definitely defined by the live-in state.
1471     for (const MachineBasicBlock::RegisterMaskPair &LI : liveins())
1472       if (TRI->regsOverlap(LI.PhysReg, Reg))
1473         return LQR_Live;
1474 
1475     return LQR_Dead;
1476   }
1477 
1478   // At this point we have no idea of the liveness of the register.
1479   return LQR_Unknown;
1480 }
1481 
1482 const uint32_t *
1483 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1484   // EH funclet entry does not preserve any registers.
1485   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1486 }
1487 
1488 const uint32_t *
1489 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1490   // If we see a return block with successors, this must be a funclet return,
1491   // which does not preserve any registers. If there are no successors, we don't
1492   // care what kind of return it is, putting a mask after it is a no-op.
1493   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1494 }
1495 
1496 void MachineBasicBlock::clearLiveIns() {
1497   LiveIns.clear();
1498 }
1499 
1500 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1501   assert(getParent()->getProperties().hasProperty(
1502       MachineFunctionProperties::Property::TracksLiveness) &&
1503       "Liveness information is accurate");
1504   return LiveIns.begin();
1505 }
1506