1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LowLevelType.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSlotTracker.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/FormattedStream.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cassert>
58 #include <cstdint>
59 #include <cstring>
60 #include <utility>
61 
62 using namespace llvm;
63 
64 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
65   if (const MachineBasicBlock *MBB = MI.getParent())
66     if (const MachineFunction *MF = MBB->getParent())
67       return MF;
68   return nullptr;
69 }
70 
71 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
72 // it.
73 static void tryToGetTargetInfo(const MachineInstr &MI,
74                                const TargetRegisterInfo *&TRI,
75                                const MachineRegisterInfo *&MRI,
76                                const TargetIntrinsicInfo *&IntrinsicInfo,
77                                const TargetInstrInfo *&TII) {
78 
79   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
80     TRI = MF->getSubtarget().getRegisterInfo();
81     MRI = &MF->getRegInfo();
82     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
83     TII = MF->getSubtarget().getInstrInfo();
84   }
85 }
86 
87 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
88   for (MCPhysReg ImpDef : MCID->implicit_defs())
89     addOperand(MF, MachineOperand::CreateReg(ImpDef, true, true));
90   for (MCPhysReg ImpUse : MCID->implicit_uses())
91     addOperand(MF, MachineOperand::CreateReg(ImpUse, false, true));
92 }
93 
94 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
95 /// implicit operands. It reserves space for the number of operands specified by
96 /// the MCInstrDesc.
97 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID,
98                            DebugLoc DL, bool NoImp)
99     : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0),
100       DbgLoc(std::move(DL)), DebugInstrNum(0) {
101   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
102 
103   // Reserve space for the expected number of operands.
104   if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() +
105                         MCID->implicit_uses().size()) {
106     CapOperands = OperandCapacity::get(NumOps);
107     Operands = MF.allocateOperandArray(CapOperands);
108   }
109 
110   if (!NoImp)
111     addImplicitDefUseOperands(MF);
112 }
113 
114 /// MachineInstr ctor - Copies MachineInstr arg exactly.
115 /// Does not copy the number from debug instruction numbering, to preserve
116 /// uniqueness.
117 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
118     : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
119       Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0) {
120   assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor");
121 
122   CapOperands = OperandCapacity::get(MI.getNumOperands());
123   Operands = MF.allocateOperandArray(CapOperands);
124 
125   // Copy operands.
126   for (const MachineOperand &MO : MI.operands())
127     addOperand(MF, MO);
128 
129   // Replicate ties between the operands, which addOperand was not
130   // able to do reliably.
131   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
132     MachineOperand &NewMO = getOperand(i);
133     const MachineOperand &OrigMO = MI.getOperand(i);
134     NewMO.TiedTo = OrigMO.TiedTo;
135   }
136 
137   // Copy all the sensible flags.
138   setFlags(MI.Flags);
139 }
140 
141 void MachineInstr::moveBefore(MachineInstr *MovePos) {
142   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
143 }
144 
145 /// getRegInfo - If this instruction is embedded into a MachineFunction,
146 /// return the MachineRegisterInfo object for the current function, otherwise
147 /// return null.
148 MachineRegisterInfo *MachineInstr::getRegInfo() {
149   if (MachineBasicBlock *MBB = getParent())
150     return &MBB->getParent()->getRegInfo();
151   return nullptr;
152 }
153 
154 const MachineRegisterInfo *MachineInstr::getRegInfo() const {
155   if (const MachineBasicBlock *MBB = getParent())
156     return &MBB->getParent()->getRegInfo();
157   return nullptr;
158 }
159 
160 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
161   for (MachineOperand &MO : operands())
162     if (MO.isReg())
163       MRI.removeRegOperandFromUseList(&MO);
164 }
165 
166 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) {
167   for (MachineOperand &MO : operands())
168     if (MO.isReg())
169       MRI.addRegOperandToUseList(&MO);
170 }
171 
172 void MachineInstr::addOperand(const MachineOperand &Op) {
173   MachineBasicBlock *MBB = getParent();
174   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
175   MachineFunction *MF = MBB->getParent();
176   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
177   addOperand(*MF, Op);
178 }
179 
180 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
181 /// ranges. If MRI is non-null also update use-def chains.
182 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
183                          unsigned NumOps, MachineRegisterInfo *MRI) {
184   if (MRI)
185     return MRI->moveOperands(Dst, Src, NumOps);
186   // MachineOperand is a trivially copyable type so we can just use memmove.
187   assert(Dst && Src && "Unknown operands");
188   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
189 }
190 
191 /// addOperand - Add the specified operand to the instruction.  If it is an
192 /// implicit operand, it is added to the end of the operand list.  If it is
193 /// an explicit operand it is added at the end of the explicit operand list
194 /// (before the first implicit operand).
195 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
196   assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) &&
197          "Cannot add more operands.");
198   assert(MCID && "Cannot add operands before providing an instr descriptor");
199 
200   // Check if we're adding one of our existing operands.
201   if (&Op >= Operands && &Op < Operands + NumOperands) {
202     // This is unusual: MI->addOperand(MI->getOperand(i)).
203     // If adding Op requires reallocating or moving existing operands around,
204     // the Op reference could go stale. Support it by copying Op.
205     MachineOperand CopyOp(Op);
206     return addOperand(MF, CopyOp);
207   }
208 
209   // Find the insert location for the new operand.  Implicit registers go at
210   // the end, everything else goes before the implicit regs.
211   //
212   // FIXME: Allow mixed explicit and implicit operands on inline asm.
213   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
214   // implicit-defs, but they must not be moved around.  See the FIXME in
215   // InstrEmitter.cpp.
216   unsigned OpNo = getNumOperands();
217   bool isImpReg = Op.isReg() && Op.isImplicit();
218   if (!isImpReg && !isInlineAsm()) {
219     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
220       --OpNo;
221       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
222     }
223   }
224 
225   // OpNo now points as the desired insertion point.  Unless this is a variadic
226   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
227   // RegMask operands go between the explicit and implicit operands.
228   assert((MCID->isVariadic() || OpNo < MCID->getNumOperands() ||
229           Op.isValidExcessOperand()) &&
230          "Trying to add an operand to a machine instr that is already done!");
231 
232   MachineRegisterInfo *MRI = getRegInfo();
233 
234   // Determine if the Operands array needs to be reallocated.
235   // Save the old capacity and operand array.
236   OperandCapacity OldCap = CapOperands;
237   MachineOperand *OldOperands = Operands;
238   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
239     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
240     Operands = MF.allocateOperandArray(CapOperands);
241     // Move the operands before the insertion point.
242     if (OpNo)
243       moveOperands(Operands, OldOperands, OpNo, MRI);
244   }
245 
246   // Move the operands following the insertion point.
247   if (OpNo != NumOperands)
248     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
249                  MRI);
250   ++NumOperands;
251 
252   // Deallocate the old operand array.
253   if (OldOperands != Operands && OldOperands)
254     MF.deallocateOperandArray(OldCap, OldOperands);
255 
256   // Copy Op into place. It still needs to be inserted into the MRI use lists.
257   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
258   NewMO->ParentMI = this;
259 
260   // When adding a register operand, tell MRI about it.
261   if (NewMO->isReg()) {
262     // Ensure isOnRegUseList() returns false, regardless of Op's status.
263     NewMO->Contents.Reg.Prev = nullptr;
264     // Ignore existing ties. This is not a property that can be copied.
265     NewMO->TiedTo = 0;
266     // Add the new operand to MRI, but only for instructions in an MBB.
267     if (MRI)
268       MRI->addRegOperandToUseList(NewMO);
269     // The MCID operand information isn't accurate until we start adding
270     // explicit operands. The implicit operands are added first, then the
271     // explicits are inserted before them.
272     if (!isImpReg) {
273       // Tie uses to defs as indicated in MCInstrDesc.
274       if (NewMO->isUse()) {
275         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
276         if (DefIdx != -1)
277           tieOperands(DefIdx, OpNo);
278       }
279       // If the register operand is flagged as early, mark the operand as such.
280       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
281         NewMO->setIsEarlyClobber(true);
282     }
283     // Ensure debug instructions set debug flag on register uses.
284     if (NewMO->isUse() && isDebugInstr())
285       NewMO->setIsDebug();
286   }
287 }
288 
289 void MachineInstr::removeOperand(unsigned OpNo) {
290   assert(OpNo < getNumOperands() && "Invalid operand number");
291   untieRegOperand(OpNo);
292 
293 #ifndef NDEBUG
294   // Moving tied operands would break the ties.
295   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
296     if (Operands[i].isReg())
297       assert(!Operands[i].isTied() && "Cannot move tied operands");
298 #endif
299 
300   MachineRegisterInfo *MRI = getRegInfo();
301   if (MRI && Operands[OpNo].isReg())
302     MRI->removeRegOperandFromUseList(Operands + OpNo);
303 
304   // Don't call the MachineOperand destructor. A lot of this code depends on
305   // MachineOperand having a trivial destructor anyway, and adding a call here
306   // wouldn't make it 'destructor-correct'.
307 
308   if (unsigned N = NumOperands - 1 - OpNo)
309     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
310   --NumOperands;
311 }
312 
313 void MachineInstr::setExtraInfo(MachineFunction &MF,
314                                 ArrayRef<MachineMemOperand *> MMOs,
315                                 MCSymbol *PreInstrSymbol,
316                                 MCSymbol *PostInstrSymbol,
317                                 MDNode *HeapAllocMarker, MDNode *PCSections,
318                                 uint32_t CFIType) {
319   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
320   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
321   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
322   bool HasPCSections = PCSections != nullptr;
323   bool HasCFIType = CFIType != 0;
324   int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol +
325                     HasHeapAllocMarker + HasPCSections + HasCFIType;
326 
327   // Drop all extra info if there is none.
328   if (NumPointers <= 0) {
329     Info.clear();
330     return;
331   }
332 
333   // If more than one pointer, then store out of line. Store heap alloc markers
334   // out of line because PointerSumType cannot hold more than 4 tag types with
335   // 32-bit pointers.
336   // FIXME: Maybe we should make the symbols in the extra info mutable?
337   else if (NumPointers > 1 || HasHeapAllocMarker || HasPCSections ||
338            HasCFIType) {
339     Info.set<EIIK_OutOfLine>(
340         MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol,
341                              HeapAllocMarker, PCSections, CFIType));
342     return;
343   }
344 
345   // Otherwise store the single pointer inline.
346   if (HasPreInstrSymbol)
347     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
348   else if (HasPostInstrSymbol)
349     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
350   else
351     Info.set<EIIK_MMO>(MMOs[0]);
352 }
353 
354 void MachineInstr::dropMemRefs(MachineFunction &MF) {
355   if (memoperands_empty())
356     return;
357 
358   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
359                getHeapAllocMarker(), getPCSections(), getCFIType());
360 }
361 
362 void MachineInstr::setMemRefs(MachineFunction &MF,
363                               ArrayRef<MachineMemOperand *> MMOs) {
364   if (MMOs.empty()) {
365     dropMemRefs(MF);
366     return;
367   }
368 
369   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
370                getHeapAllocMarker(), getPCSections(), getCFIType());
371 }
372 
373 void MachineInstr::addMemOperand(MachineFunction &MF,
374                                  MachineMemOperand *MO) {
375   SmallVector<MachineMemOperand *, 2> MMOs;
376   MMOs.append(memoperands_begin(), memoperands_end());
377   MMOs.push_back(MO);
378   setMemRefs(MF, MMOs);
379 }
380 
381 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
382   if (this == &MI)
383     // Nothing to do for a self-clone!
384     return;
385 
386   assert(&MF == MI.getMF() &&
387          "Invalid machine functions when cloning memory refrences!");
388   // See if we can just steal the extra info already allocated for the
389   // instruction. We can do this whenever the pre- and post-instruction symbols
390   // are the same (including null).
391   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
392       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
393       getHeapAllocMarker() == MI.getHeapAllocMarker() &&
394       getPCSections() == MI.getPCSections()) {
395     Info = MI.Info;
396     return;
397   }
398 
399   // Otherwise, fall back on a copy-based clone.
400   setMemRefs(MF, MI.memoperands());
401 }
402 
403 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
404 /// identical.
405 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
406                              ArrayRef<MachineMemOperand *> RHS) {
407   if (LHS.size() != RHS.size())
408     return false;
409 
410   auto LHSPointees = make_pointee_range(LHS);
411   auto RHSPointees = make_pointee_range(RHS);
412   return std::equal(LHSPointees.begin(), LHSPointees.end(),
413                     RHSPointees.begin());
414 }
415 
416 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
417                                       ArrayRef<const MachineInstr *> MIs) {
418   // Try handling easy numbers of MIs with simpler mechanisms.
419   if (MIs.empty()) {
420     dropMemRefs(MF);
421     return;
422   }
423   if (MIs.size() == 1) {
424     cloneMemRefs(MF, *MIs[0]);
425     return;
426   }
427   // Because an empty memoperands list provides *no* information and must be
428   // handled conservatively (assuming the instruction can do anything), the only
429   // way to merge with it is to drop all other memoperands.
430   if (MIs[0]->memoperands_empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434 
435   // Handle the general case.
436   SmallVector<MachineMemOperand *, 2> MergedMMOs;
437   // Start with the first instruction.
438   assert(&MF == MIs[0]->getMF() &&
439          "Invalid machine functions when cloning memory references!");
440   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
441   // Now walk all the other instructions and accumulate any different MMOs.
442   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
443     assert(&MF == MI.getMF() &&
444            "Invalid machine functions when cloning memory references!");
445 
446     // Skip MIs with identical operands to the first. This is a somewhat
447     // arbitrary hack but will catch common cases without being quadratic.
448     // TODO: We could fully implement merge semantics here if needed.
449     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
450       continue;
451 
452     // Because an empty memoperands list provides *no* information and must be
453     // handled conservatively (assuming the instruction can do anything), the
454     // only way to merge with it is to drop all other memoperands.
455     if (MI.memoperands_empty()) {
456       dropMemRefs(MF);
457       return;
458     }
459 
460     // Otherwise accumulate these into our temporary buffer of the merged state.
461     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
462   }
463 
464   setMemRefs(MF, MergedMMOs);
465 }
466 
467 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
468   // Do nothing if old and new symbols are the same.
469   if (Symbol == getPreInstrSymbol())
470     return;
471 
472   // If there was only one symbol and we're removing it, just clear info.
473   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
474     Info.clear();
475     return;
476   }
477 
478   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
479                getHeapAllocMarker(), getPCSections(), getCFIType());
480 }
481 
482 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
483   // Do nothing if old and new symbols are the same.
484   if (Symbol == getPostInstrSymbol())
485     return;
486 
487   // If there was only one symbol and we're removing it, just clear info.
488   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
489     Info.clear();
490     return;
491   }
492 
493   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
494                getHeapAllocMarker(), getPCSections(), getCFIType());
495 }
496 
497 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
498   // Do nothing if old and new symbols are the same.
499   if (Marker == getHeapAllocMarker())
500     return;
501 
502   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
503                Marker, getPCSections(), getCFIType());
504 }
505 
506 void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) {
507   // Do nothing if old and new symbols are the same.
508   if (PCSections == getPCSections())
509     return;
510 
511   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
512                getHeapAllocMarker(), PCSections, getCFIType());
513 }
514 
515 void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) {
516   // Do nothing if old and new types are the same.
517   if (Type == getCFIType())
518     return;
519 
520   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
521                getHeapAllocMarker(), getPCSections(), Type);
522 }
523 
524 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
525                                      const MachineInstr &MI) {
526   if (this == &MI)
527     // Nothing to do for a self-clone!
528     return;
529 
530   assert(&MF == MI.getMF() &&
531          "Invalid machine functions when cloning instruction symbols!");
532 
533   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
534   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
535   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
536   setPCSections(MF, MI.getPCSections());
537 }
538 
539 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
540   // For now, the just return the union of the flags. If the flags get more
541   // complicated over time, we might need more logic here.
542   return getFlags() | Other.getFlags();
543 }
544 
545 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
546   uint32_t MIFlags = 0;
547   // Copy the wrapping flags.
548   if (const OverflowingBinaryOperator *OB =
549           dyn_cast<OverflowingBinaryOperator>(&I)) {
550     if (OB->hasNoSignedWrap())
551       MIFlags |= MachineInstr::MIFlag::NoSWrap;
552     if (OB->hasNoUnsignedWrap())
553       MIFlags |= MachineInstr::MIFlag::NoUWrap;
554   }
555 
556   // Copy the exact flag.
557   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
558     if (PE->isExact())
559       MIFlags |= MachineInstr::MIFlag::IsExact;
560 
561   // Copy the fast-math flags.
562   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
563     const FastMathFlags Flags = FP->getFastMathFlags();
564     if (Flags.noNaNs())
565       MIFlags |= MachineInstr::MIFlag::FmNoNans;
566     if (Flags.noInfs())
567       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
568     if (Flags.noSignedZeros())
569       MIFlags |= MachineInstr::MIFlag::FmNsz;
570     if (Flags.allowReciprocal())
571       MIFlags |= MachineInstr::MIFlag::FmArcp;
572     if (Flags.allowContract())
573       MIFlags |= MachineInstr::MIFlag::FmContract;
574     if (Flags.approxFunc())
575       MIFlags |= MachineInstr::MIFlag::FmAfn;
576     if (Flags.allowReassoc())
577       MIFlags |= MachineInstr::MIFlag::FmReassoc;
578   }
579 
580   if (I.getMetadata(LLVMContext::MD_unpredictable))
581     MIFlags |= MachineInstr::MIFlag::Unpredictable;
582 
583   return MIFlags;
584 }
585 
586 void MachineInstr::copyIRFlags(const Instruction &I) {
587   Flags = copyFlagsFromInstruction(I);
588 }
589 
590 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
591   assert(!isBundledWithPred() && "Must be called on bundle header");
592   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
593     if (MII->getDesc().getFlags() & Mask) {
594       if (Type == AnyInBundle)
595         return true;
596     } else {
597       if (Type == AllInBundle && !MII->isBundle())
598         return false;
599     }
600     // This was the last instruction in the bundle.
601     if (!MII->isBundledWithSucc())
602       return Type == AllInBundle;
603   }
604 }
605 
606 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
607                                  MICheckType Check) const {
608   // If opcodes or number of operands are not the same then the two
609   // instructions are obviously not identical.
610   if (Other.getOpcode() != getOpcode() ||
611       Other.getNumOperands() != getNumOperands())
612     return false;
613 
614   if (isBundle()) {
615     // We have passed the test above that both instructions have the same
616     // opcode, so we know that both instructions are bundles here. Let's compare
617     // MIs inside the bundle.
618     assert(Other.isBundle() && "Expected that both instructions are bundles.");
619     MachineBasicBlock::const_instr_iterator I1 = getIterator();
620     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
621     // Loop until we analysed the last intruction inside at least one of the
622     // bundles.
623     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
624       ++I1;
625       ++I2;
626       if (!I1->isIdenticalTo(*I2, Check))
627         return false;
628     }
629     // If we've reached the end of just one of the two bundles, but not both,
630     // the instructions are not identical.
631     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
632       return false;
633   }
634 
635   // Check operands to make sure they match.
636   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
637     const MachineOperand &MO = getOperand(i);
638     const MachineOperand &OMO = Other.getOperand(i);
639     if (!MO.isReg()) {
640       if (!MO.isIdenticalTo(OMO))
641         return false;
642       continue;
643     }
644 
645     // Clients may or may not want to ignore defs when testing for equality.
646     // For example, machine CSE pass only cares about finding common
647     // subexpressions, so it's safe to ignore virtual register defs.
648     if (MO.isDef()) {
649       if (Check == IgnoreDefs)
650         continue;
651       else if (Check == IgnoreVRegDefs) {
652         if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual())
653           if (!MO.isIdenticalTo(OMO))
654             return false;
655       } else {
656         if (!MO.isIdenticalTo(OMO))
657           return false;
658         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
659           return false;
660       }
661     } else {
662       if (!MO.isIdenticalTo(OMO))
663         return false;
664       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
665         return false;
666     }
667   }
668   // If DebugLoc does not match then two debug instructions are not identical.
669   if (isDebugInstr())
670     if (getDebugLoc() && Other.getDebugLoc() &&
671         getDebugLoc() != Other.getDebugLoc())
672       return false;
673   // If pre- or post-instruction symbols do not match then the two instructions
674   // are not identical.
675   if (getPreInstrSymbol() != Other.getPreInstrSymbol() ||
676       getPostInstrSymbol() != Other.getPostInstrSymbol())
677     return false;
678   // Call instructions with different CFI types are not identical.
679   if (isCall() && getCFIType() != Other.getCFIType())
680     return false;
681 
682   return true;
683 }
684 
685 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const {
686   if (!isDebugValueLike() || !Other.isDebugValueLike())
687     return false;
688   if (getDebugLoc() != Other.getDebugLoc())
689     return false;
690   if (getDebugVariable() != Other.getDebugVariable())
691     return false;
692   if (getNumDebugOperands() != Other.getNumDebugOperands())
693     return false;
694   for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx)
695     if (!getDebugOperand(OpIdx).isIdenticalTo(Other.getDebugOperand(OpIdx)))
696       return false;
697   if (!DIExpression::isEqualExpression(
698           getDebugExpression(), isIndirectDebugValue(),
699           Other.getDebugExpression(), Other.isIndirectDebugValue()))
700     return false;
701   return true;
702 }
703 
704 const MachineFunction *MachineInstr::getMF() const {
705   return getParent()->getParent();
706 }
707 
708 MachineInstr *MachineInstr::removeFromParent() {
709   assert(getParent() && "Not embedded in a basic block!");
710   return getParent()->remove(this);
711 }
712 
713 MachineInstr *MachineInstr::removeFromBundle() {
714   assert(getParent() && "Not embedded in a basic block!");
715   return getParent()->remove_instr(this);
716 }
717 
718 void MachineInstr::eraseFromParent() {
719   assert(getParent() && "Not embedded in a basic block!");
720   getParent()->erase(this);
721 }
722 
723 void MachineInstr::eraseFromBundle() {
724   assert(getParent() && "Not embedded in a basic block!");
725   getParent()->erase_instr(this);
726 }
727 
728 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
729   if (!isCall(Type))
730     return false;
731   switch (getOpcode()) {
732   case TargetOpcode::PATCHPOINT:
733   case TargetOpcode::STACKMAP:
734   case TargetOpcode::STATEPOINT:
735   case TargetOpcode::FENTRY_CALL:
736     return false;
737   }
738   return true;
739 }
740 
741 bool MachineInstr::shouldUpdateCallSiteInfo() const {
742   if (isBundle())
743     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
744   return isCandidateForCallSiteEntry();
745 }
746 
747 unsigned MachineInstr::getNumExplicitOperands() const {
748   unsigned NumOperands = MCID->getNumOperands();
749   if (!MCID->isVariadic())
750     return NumOperands;
751 
752   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
753     const MachineOperand &MO = getOperand(I);
754     // The operands must always be in the following order:
755     // - explicit reg defs,
756     // - other explicit operands (reg uses, immediates, etc.),
757     // - implicit reg defs
758     // - implicit reg uses
759     if (MO.isReg() && MO.isImplicit())
760       break;
761     ++NumOperands;
762   }
763   return NumOperands;
764 }
765 
766 unsigned MachineInstr::getNumExplicitDefs() const {
767   unsigned NumDefs = MCID->getNumDefs();
768   if (!MCID->isVariadic())
769     return NumDefs;
770 
771   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
772     const MachineOperand &MO = getOperand(I);
773     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
774       break;
775     ++NumDefs;
776   }
777   return NumDefs;
778 }
779 
780 void MachineInstr::bundleWithPred() {
781   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
782   setFlag(BundledPred);
783   MachineBasicBlock::instr_iterator Pred = getIterator();
784   --Pred;
785   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
786   Pred->setFlag(BundledSucc);
787 }
788 
789 void MachineInstr::bundleWithSucc() {
790   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
791   setFlag(BundledSucc);
792   MachineBasicBlock::instr_iterator Succ = getIterator();
793   ++Succ;
794   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
795   Succ->setFlag(BundledPred);
796 }
797 
798 void MachineInstr::unbundleFromPred() {
799   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
800   clearFlag(BundledPred);
801   MachineBasicBlock::instr_iterator Pred = getIterator();
802   --Pred;
803   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
804   Pred->clearFlag(BundledSucc);
805 }
806 
807 void MachineInstr::unbundleFromSucc() {
808   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
809   clearFlag(BundledSucc);
810   MachineBasicBlock::instr_iterator Succ = getIterator();
811   ++Succ;
812   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
813   Succ->clearFlag(BundledPred);
814 }
815 
816 bool MachineInstr::isStackAligningInlineAsm() const {
817   if (isInlineAsm()) {
818     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
819     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
820       return true;
821   }
822   return false;
823 }
824 
825 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
826   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
827   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
828   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
829 }
830 
831 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
832                                        unsigned *GroupNo) const {
833   assert(isInlineAsm() && "Expected an inline asm instruction");
834   assert(OpIdx < getNumOperands() && "OpIdx out of range");
835 
836   // Ignore queries about the initial operands.
837   if (OpIdx < InlineAsm::MIOp_FirstOperand)
838     return -1;
839 
840   unsigned Group = 0;
841   unsigned NumOps;
842   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
843        i += NumOps) {
844     const MachineOperand &FlagMO = getOperand(i);
845     // If we reach the implicit register operands, stop looking.
846     if (!FlagMO.isImm())
847       return -1;
848     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
849     if (i + NumOps > OpIdx) {
850       if (GroupNo)
851         *GroupNo = Group;
852       return i;
853     }
854     ++Group;
855   }
856   return -1;
857 }
858 
859 const DILabel *MachineInstr::getDebugLabel() const {
860   assert(isDebugLabel() && "not a DBG_LABEL");
861   return cast<DILabel>(getOperand(0).getMetadata());
862 }
863 
864 const MachineOperand &MachineInstr::getDebugVariableOp() const {
865   assert((isDebugValueLike()) && "not a DBG_VALUE*");
866   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
867   return getOperand(VariableOp);
868 }
869 
870 MachineOperand &MachineInstr::getDebugVariableOp() {
871   assert((isDebugValueLike()) && "not a DBG_VALUE*");
872   unsigned VariableOp = isNonListDebugValue() ? 2 : 0;
873   return getOperand(VariableOp);
874 }
875 
876 const DILocalVariable *MachineInstr::getDebugVariable() const {
877   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
878 }
879 
880 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
881   assert((isDebugValueLike()) && "not a DBG_VALUE*");
882   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
883   return getOperand(ExpressionOp);
884 }
885 
886 MachineOperand &MachineInstr::getDebugExpressionOp() {
887   assert((isDebugValueLike()) && "not a DBG_VALUE*");
888   unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1;
889   return getOperand(ExpressionOp);
890 }
891 
892 const DIExpression *MachineInstr::getDebugExpression() const {
893   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
894 }
895 
896 bool MachineInstr::isDebugEntryValue() const {
897   return isDebugValue() && getDebugExpression()->isEntryValue();
898 }
899 
900 const TargetRegisterClass*
901 MachineInstr::getRegClassConstraint(unsigned OpIdx,
902                                     const TargetInstrInfo *TII,
903                                     const TargetRegisterInfo *TRI) const {
904   assert(getParent() && "Can't have an MBB reference here!");
905   assert(getMF() && "Can't have an MF reference here!");
906   const MachineFunction &MF = *getMF();
907 
908   // Most opcodes have fixed constraints in their MCInstrDesc.
909   if (!isInlineAsm())
910     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
911 
912   if (!getOperand(OpIdx).isReg())
913     return nullptr;
914 
915   // For tied uses on inline asm, get the constraint from the def.
916   unsigned DefIdx;
917   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
918     OpIdx = DefIdx;
919 
920   // Inline asm stores register class constraints in the flag word.
921   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
922   if (FlagIdx < 0)
923     return nullptr;
924 
925   unsigned Flag = getOperand(FlagIdx).getImm();
926   unsigned RCID;
927   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
928        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
929        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
930       InlineAsm::hasRegClassConstraint(Flag, RCID))
931     return TRI->getRegClass(RCID);
932 
933   // Assume that all registers in a memory operand are pointers.
934   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
935     return TRI->getPointerRegClass(MF);
936 
937   return nullptr;
938 }
939 
940 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
941     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
942     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
943   // Check every operands inside the bundle if we have
944   // been asked to.
945   if (ExploreBundle)
946     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
947          ++OpndIt)
948       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
949           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
950   else
951     // Otherwise, just check the current operands.
952     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
953       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
954   return CurRC;
955 }
956 
957 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
958     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
959     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
960   assert(CurRC && "Invalid initial register class");
961   // Check if Reg is constrained by some of its use/def from MI.
962   const MachineOperand &MO = getOperand(OpIdx);
963   if (!MO.isReg() || MO.getReg() != Reg)
964     return CurRC;
965   // If yes, accumulate the constraints through the operand.
966   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
967 }
968 
969 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
970     unsigned OpIdx, const TargetRegisterClass *CurRC,
971     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
972   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
973   const MachineOperand &MO = getOperand(OpIdx);
974   assert(MO.isReg() &&
975          "Cannot get register constraints for non-register operand");
976   assert(CurRC && "Invalid initial register class");
977   if (unsigned SubIdx = MO.getSubReg()) {
978     if (OpRC)
979       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
980     else
981       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
982   } else if (OpRC)
983     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
984   return CurRC;
985 }
986 
987 /// Return the number of instructions inside the MI bundle, not counting the
988 /// header instruction.
989 unsigned MachineInstr::getBundleSize() const {
990   MachineBasicBlock::const_instr_iterator I = getIterator();
991   unsigned Size = 0;
992   while (I->isBundledWithSucc()) {
993     ++Size;
994     ++I;
995   }
996   return Size;
997 }
998 
999 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1000 /// the given register (not considering sub/super-registers).
1001 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
1002   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1003     const MachineOperand &MO = getOperand(i);
1004     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
1005       return true;
1006   }
1007   return false;
1008 }
1009 
1010 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1011 /// the specific register or -1 if it is not found. It further tightens
1012 /// the search criteria to a use that kills the register if isKill is true.
1013 int MachineInstr::findRegisterUseOperandIdx(
1014     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
1015   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1016     const MachineOperand &MO = getOperand(i);
1017     if (!MO.isReg() || !MO.isUse())
1018       continue;
1019     Register MOReg = MO.getReg();
1020     if (!MOReg)
1021       continue;
1022     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1023       if (!isKill || MO.isKill())
1024         return i;
1025   }
1026   return -1;
1027 }
1028 
1029 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1030 /// indicating if this instruction reads or writes Reg. This also considers
1031 /// partial defines.
1032 std::pair<bool,bool>
1033 MachineInstr::readsWritesVirtualRegister(Register Reg,
1034                                          SmallVectorImpl<unsigned> *Ops) const {
1035   bool PartDef = false; // Partial redefine.
1036   bool FullDef = false; // Full define.
1037   bool Use = false;
1038 
1039   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1040     const MachineOperand &MO = getOperand(i);
1041     if (!MO.isReg() || MO.getReg() != Reg)
1042       continue;
1043     if (Ops)
1044       Ops->push_back(i);
1045     if (MO.isUse())
1046       Use |= !MO.isUndef();
1047     else if (MO.getSubReg() && !MO.isUndef())
1048       // A partial def undef doesn't count as reading the register.
1049       PartDef = true;
1050     else
1051       FullDef = true;
1052   }
1053   // A partial redefine uses Reg unless there is also a full define.
1054   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1055 }
1056 
1057 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1058 /// the specified register or -1 if it is not found. If isDead is true, defs
1059 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1060 /// also checks if there is a def of a super-register.
1061 int
1062 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1063                                         const TargetRegisterInfo *TRI) const {
1064   bool isPhys = Reg.isPhysical();
1065   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1066     const MachineOperand &MO = getOperand(i);
1067     // Accept regmask operands when Overlap is set.
1068     // Ignore them when looking for a specific def operand (Overlap == false).
1069     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1070       return i;
1071     if (!MO.isReg() || !MO.isDef())
1072       continue;
1073     Register MOReg = MO.getReg();
1074     bool Found = (MOReg == Reg);
1075     if (!Found && TRI && isPhys && MOReg.isPhysical()) {
1076       if (Overlap)
1077         Found = TRI->regsOverlap(MOReg, Reg);
1078       else
1079         Found = TRI->isSubRegister(MOReg, Reg);
1080     }
1081     if (Found && (!isDead || MO.isDead()))
1082       return i;
1083   }
1084   return -1;
1085 }
1086 
1087 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1088 /// operand list that is used to represent the predicate. It returns -1 if
1089 /// none is found.
1090 int MachineInstr::findFirstPredOperandIdx() const {
1091   // Don't call MCID.findFirstPredOperandIdx() because this variant
1092   // is sometimes called on an instruction that's not yet complete, and
1093   // so the number of operands is less than the MCID indicates. In
1094   // particular, the PTX target does this.
1095   const MCInstrDesc &MCID = getDesc();
1096   if (MCID.isPredicable()) {
1097     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098       if (MCID.operands()[i].isPredicate())
1099         return i;
1100   }
1101 
1102   return -1;
1103 }
1104 
1105 // MachineOperand::TiedTo is 4 bits wide.
1106 const unsigned TiedMax = 15;
1107 
1108 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1109 ///
1110 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1111 /// field. TiedTo can have these values:
1112 ///
1113 /// 0:              Operand is not tied to anything.
1114 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1115 /// TiedMax:        Tied to an operand >= TiedMax-1.
1116 ///
1117 /// The tied def must be one of the first TiedMax operands on a normal
1118 /// instruction. INLINEASM instructions allow more tied defs.
1119 ///
1120 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1121   MachineOperand &DefMO = getOperand(DefIdx);
1122   MachineOperand &UseMO = getOperand(UseIdx);
1123   assert(DefMO.isDef() && "DefIdx must be a def operand");
1124   assert(UseMO.isUse() && "UseIdx must be a use operand");
1125   assert(!DefMO.isTied() && "Def is already tied to another use");
1126   assert(!UseMO.isTied() && "Use is already tied to another def");
1127 
1128   if (DefIdx < TiedMax)
1129     UseMO.TiedTo = DefIdx + 1;
1130   else {
1131     // Inline asm can use the group descriptors to find tied operands,
1132     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1133     // but on normal instruction, the tied def must be within the first TiedMax
1134     // operands.
1135     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1136            "DefIdx out of range");
1137     UseMO.TiedTo = TiedMax;
1138   }
1139 
1140   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1141   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1142 }
1143 
1144 /// Given the index of a tied register operand, find the operand it is tied to.
1145 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1146 /// which must exist.
1147 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1148   const MachineOperand &MO = getOperand(OpIdx);
1149   assert(MO.isTied() && "Operand isn't tied");
1150 
1151   // Normally TiedTo is in range.
1152   if (MO.TiedTo < TiedMax)
1153     return MO.TiedTo - 1;
1154 
1155   // Uses on normal instructions can be out of range.
1156   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1157     // Normal tied defs must be in the 0..TiedMax-1 range.
1158     if (MO.isUse())
1159       return TiedMax - 1;
1160     // MO is a def. Search for the tied use.
1161     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1162       const MachineOperand &UseMO = getOperand(i);
1163       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1164         return i;
1165     }
1166     llvm_unreachable("Can't find tied use");
1167   }
1168 
1169   if (getOpcode() == TargetOpcode::STATEPOINT) {
1170     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1171     // on registers.
1172     StatepointOpers SO(this);
1173     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1174     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1175     unsigned NumDefs = getNumDefs();
1176     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1177       while (!getOperand(CurUseIdx).isReg())
1178         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1179       if (OpIdx == CurDefIdx)
1180         return CurUseIdx;
1181       if (OpIdx == CurUseIdx)
1182         return CurDefIdx;
1183       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1184     }
1185     llvm_unreachable("Can't find tied use");
1186   }
1187 
1188   // Now deal with inline asm by parsing the operand group descriptor flags.
1189   // Find the beginning of each operand group.
1190   SmallVector<unsigned, 8> GroupIdx;
1191   unsigned OpIdxGroup = ~0u;
1192   unsigned NumOps;
1193   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1194        i += NumOps) {
1195     const MachineOperand &FlagMO = getOperand(i);
1196     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1197     unsigned CurGroup = GroupIdx.size();
1198     GroupIdx.push_back(i);
1199     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1200     // OpIdx belongs to this operand group.
1201     if (OpIdx > i && OpIdx < i + NumOps)
1202       OpIdxGroup = CurGroup;
1203     unsigned TiedGroup;
1204     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1205       continue;
1206     // Operands in this group are tied to operands in TiedGroup which must be
1207     // earlier. Find the number of operands between the two groups.
1208     unsigned Delta = i - GroupIdx[TiedGroup];
1209 
1210     // OpIdx is a use tied to TiedGroup.
1211     if (OpIdxGroup == CurGroup)
1212       return OpIdx - Delta;
1213 
1214     // OpIdx is a def tied to this use group.
1215     if (OpIdxGroup == TiedGroup)
1216       return OpIdx + Delta;
1217   }
1218   llvm_unreachable("Invalid tied operand on inline asm");
1219 }
1220 
1221 /// clearKillInfo - Clears kill flags on all operands.
1222 ///
1223 void MachineInstr::clearKillInfo() {
1224   for (MachineOperand &MO : operands()) {
1225     if (MO.isReg() && MO.isUse())
1226       MO.setIsKill(false);
1227   }
1228 }
1229 
1230 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1231                                       unsigned SubIdx,
1232                                       const TargetRegisterInfo &RegInfo) {
1233   if (ToReg.isPhysical()) {
1234     if (SubIdx)
1235       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1236     for (MachineOperand &MO : operands()) {
1237       if (!MO.isReg() || MO.getReg() != FromReg)
1238         continue;
1239       MO.substPhysReg(ToReg, RegInfo);
1240     }
1241   } else {
1242     for (MachineOperand &MO : operands()) {
1243       if (!MO.isReg() || MO.getReg() != FromReg)
1244         continue;
1245       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1246     }
1247   }
1248 }
1249 
1250 /// isSafeToMove - Return true if it is safe to move this instruction. If
1251 /// SawStore is set to true, it means that there is a store (or call) between
1252 /// the instruction's location and its intended destination.
1253 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1254   // Ignore stuff that we obviously can't move.
1255   //
1256   // Treat volatile loads as stores. This is not strictly necessary for
1257   // volatiles, but it is required for atomic loads. It is not allowed to move
1258   // a load across an atomic load with Ordering > Monotonic.
1259   if (mayStore() || isCall() || isPHI() ||
1260       (mayLoad() && hasOrderedMemoryRef())) {
1261     SawStore = true;
1262     return false;
1263   }
1264 
1265   if (isPosition() || isDebugInstr() || isTerminator() ||
1266       mayRaiseFPException() || hasUnmodeledSideEffects())
1267     return false;
1268 
1269   // See if this instruction does a load.  If so, we have to guarantee that the
1270   // loaded value doesn't change between the load and the its intended
1271   // destination. The check for isInvariantLoad gives the target the chance to
1272   // classify the load as always returning a constant, e.g. a constant pool
1273   // load.
1274   if (mayLoad() && !isDereferenceableInvariantLoad())
1275     // Otherwise, this is a real load.  If there is a store between the load and
1276     // end of block, we can't move it.
1277     return !SawStore;
1278 
1279   return true;
1280 }
1281 
1282 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1283                                  bool UseTBAA, const MachineMemOperand *MMOa,
1284                                  const MachineMemOperand *MMOb) {
1285   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1286   // operates with MachineMemOperand offset with some important assumptions:
1287   //   - LLVM fundamentally assumes flat address spaces.
1288   //   - MachineOperand offset can *only* result from legalization and cannot
1289   //     affect queries other than the trivial case of overlap checking.
1290   //   - These offsets never wrap and never step outside of allocated objects.
1291   //   - There should never be any negative offsets here.
1292   //
1293   // FIXME: Modify API to hide this math from "user"
1294   // Even before we go to AA we can reason locally about some memory objects. It
1295   // can save compile time, and possibly catch some corner cases not currently
1296   // covered.
1297 
1298   int64_t OffsetA = MMOa->getOffset();
1299   int64_t OffsetB = MMOb->getOffset();
1300   int64_t MinOffset = std::min(OffsetA, OffsetB);
1301 
1302   uint64_t WidthA = MMOa->getSize();
1303   uint64_t WidthB = MMOb->getSize();
1304   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1305   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1306 
1307   const Value *ValA = MMOa->getValue();
1308   const Value *ValB = MMOb->getValue();
1309   bool SameVal = (ValA && ValB && (ValA == ValB));
1310   if (!SameVal) {
1311     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1312     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1313     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1314       return false;
1315     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1316       return false;
1317     if (PSVa && PSVb && (PSVa == PSVb))
1318       SameVal = true;
1319   }
1320 
1321   if (SameVal) {
1322     if (!KnownWidthA || !KnownWidthB)
1323       return true;
1324     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1325     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1326     return (MinOffset + LowWidth > MaxOffset);
1327   }
1328 
1329   if (!AA)
1330     return true;
1331 
1332   if (!ValA || !ValB)
1333     return true;
1334 
1335   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1336   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1337 
1338   int64_t OverlapA =
1339       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1340   int64_t OverlapB =
1341       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1342 
1343   return !AA->isNoAlias(
1344       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1345       MemoryLocation(ValB, OverlapB,
1346                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1347 }
1348 
1349 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1350                             bool UseTBAA) const {
1351   const MachineFunction *MF = getMF();
1352   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1353   const MachineFrameInfo &MFI = MF->getFrameInfo();
1354 
1355   // Exclude call instruction which may alter the memory but can not be handled
1356   // by this function.
1357   if (isCall() || Other.isCall())
1358     return true;
1359 
1360   // If neither instruction stores to memory, they can't alias in any
1361   // meaningful way, even if they read from the same address.
1362   if (!mayStore() && !Other.mayStore())
1363     return false;
1364 
1365   // Both instructions must be memory operations to be able to alias.
1366   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1367     return false;
1368 
1369   // Let the target decide if memory accesses cannot possibly overlap.
1370   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1371     return false;
1372 
1373   // Memory operations without memory operands may access anything. Be
1374   // conservative and assume `MayAlias`.
1375   if (memoperands_empty() || Other.memoperands_empty())
1376     return true;
1377 
1378   // Skip if there are too many memory operands.
1379   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1380   if (NumChecks > TII->getMemOperandAACheckLimit())
1381     return true;
1382 
1383   // Check each pair of memory operands from both instructions, which can't
1384   // alias only if all pairs won't alias.
1385   for (auto *MMOa : memoperands())
1386     for (auto *MMOb : Other.memoperands())
1387       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1388         return true;
1389 
1390   return false;
1391 }
1392 
1393 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1394 /// or volatile memory reference, or if the information describing the memory
1395 /// reference is not available. Return false if it is known to have no ordered
1396 /// memory references.
1397 bool MachineInstr::hasOrderedMemoryRef() const {
1398   // An instruction known never to access memory won't have a volatile access.
1399   if (!mayStore() &&
1400       !mayLoad() &&
1401       !isCall() &&
1402       !hasUnmodeledSideEffects())
1403     return false;
1404 
1405   // Otherwise, if the instruction has no memory reference information,
1406   // conservatively assume it wasn't preserved.
1407   if (memoperands_empty())
1408     return true;
1409 
1410   // Check if any of our memory operands are ordered.
1411   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1412     return !MMO->isUnordered();
1413   });
1414 }
1415 
1416 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1417 /// trap and is loading from a location whose value is invariant across a run of
1418 /// this function.
1419 bool MachineInstr::isDereferenceableInvariantLoad() const {
1420   // If the instruction doesn't load at all, it isn't an invariant load.
1421   if (!mayLoad())
1422     return false;
1423 
1424   // If the instruction has lost its memoperands, conservatively assume that
1425   // it may not be an invariant load.
1426   if (memoperands_empty())
1427     return false;
1428 
1429   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1430 
1431   for (MachineMemOperand *MMO : memoperands()) {
1432     if (!MMO->isUnordered())
1433       // If the memory operand has ordering side effects, we can't move the
1434       // instruction.  Such an instruction is technically an invariant load,
1435       // but the caller code would need updated to expect that.
1436       return false;
1437     if (MMO->isStore()) return false;
1438     if (MMO->isInvariant() && MMO->isDereferenceable())
1439       continue;
1440 
1441     // A load from a constant PseudoSourceValue is invariant.
1442     if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
1443       if (PSV->isConstant(&MFI))
1444         continue;
1445     }
1446 
1447     // Otherwise assume conservatively.
1448     return false;
1449   }
1450 
1451   // Everything checks out.
1452   return true;
1453 }
1454 
1455 /// isConstantValuePHI - If the specified instruction is a PHI that always
1456 /// merges together the same virtual register, return the register, otherwise
1457 /// return 0.
1458 unsigned MachineInstr::isConstantValuePHI() const {
1459   if (!isPHI())
1460     return 0;
1461   assert(getNumOperands() >= 3 &&
1462          "It's illegal to have a PHI without source operands");
1463 
1464   Register Reg = getOperand(1).getReg();
1465   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1466     if (getOperand(i).getReg() != Reg)
1467       return 0;
1468   return Reg;
1469 }
1470 
1471 bool MachineInstr::hasUnmodeledSideEffects() const {
1472   if (hasProperty(MCID::UnmodeledSideEffects))
1473     return true;
1474   if (isInlineAsm()) {
1475     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1476     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1477       return true;
1478   }
1479 
1480   return false;
1481 }
1482 
1483 bool MachineInstr::isLoadFoldBarrier() const {
1484   return mayStore() || isCall() ||
1485          (hasUnmodeledSideEffects() && !isPseudoProbe());
1486 }
1487 
1488 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1489 ///
1490 bool MachineInstr::allDefsAreDead() const {
1491   for (const MachineOperand &MO : operands()) {
1492     if (!MO.isReg() || MO.isUse())
1493       continue;
1494     if (!MO.isDead())
1495       return false;
1496   }
1497   return true;
1498 }
1499 
1500 /// copyImplicitOps - Copy implicit register operands from specified
1501 /// instruction to this instruction.
1502 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1503                                    const MachineInstr &MI) {
1504   for (const MachineOperand &MO :
1505        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1506     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1507       addOperand(MF, MO);
1508 }
1509 
1510 bool MachineInstr::hasComplexRegisterTies() const {
1511   const MCInstrDesc &MCID = getDesc();
1512   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1513     return true;
1514   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1515     const auto &Operand = getOperand(I);
1516     if (!Operand.isReg() || Operand.isDef())
1517       // Ignore the defined registers as MCID marks only the uses as tied.
1518       continue;
1519     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1520     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1521     if (ExpectedTiedIdx != TiedIdx)
1522       return true;
1523   }
1524   return false;
1525 }
1526 
1527 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1528                                  const MachineRegisterInfo &MRI) const {
1529   const MachineOperand &Op = getOperand(OpIdx);
1530   if (!Op.isReg())
1531     return LLT{};
1532 
1533   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1534     return MRI.getType(Op.getReg());
1535 
1536   auto &OpInfo = getDesc().operands()[OpIdx];
1537   if (!OpInfo.isGenericType())
1538     return MRI.getType(Op.getReg());
1539 
1540   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1541     return LLT{};
1542 
1543   LLT TypeToPrint = MRI.getType(Op.getReg());
1544   // Don't mark the type index printed if it wasn't actually printed: maybe
1545   // another operand with the same type index has an actual type attached:
1546   if (TypeToPrint.isValid())
1547     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1548   return TypeToPrint;
1549 }
1550 
1551 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1552 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1553   dbgs() << "  ";
1554   print(dbgs());
1555 }
1556 
1557 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1558     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1559     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1560   if (Depth >= MaxDepth)
1561     return;
1562   if (!AlreadySeenInstrs.insert(this).second)
1563     return;
1564   // PadToColumn always inserts at least one space.
1565   // Don't mess up the alignment if we don't want any space.
1566   if (Depth)
1567     fdbgs().PadToColumn(Depth * 2);
1568   print(fdbgs());
1569   for (const MachineOperand &MO : operands()) {
1570     if (!MO.isReg() || MO.isDef())
1571       continue;
1572     Register Reg = MO.getReg();
1573     if (Reg.isPhysical())
1574       continue;
1575     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1576     if (NewMI == nullptr)
1577       continue;
1578     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1579   }
1580 }
1581 
1582 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1583                                           unsigned MaxDepth) const {
1584   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1585   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1586 }
1587 #endif
1588 
1589 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1590                          bool SkipDebugLoc, bool AddNewLine,
1591                          const TargetInstrInfo *TII) const {
1592   const Module *M = nullptr;
1593   const Function *F = nullptr;
1594   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1595     F = &MF->getFunction();
1596     M = F->getParent();
1597     if (!TII)
1598       TII = MF->getSubtarget().getInstrInfo();
1599   }
1600 
1601   ModuleSlotTracker MST(M);
1602   if (F)
1603     MST.incorporateFunction(*F);
1604   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1605 }
1606 
1607 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1608                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1609                          bool AddNewLine, const TargetInstrInfo *TII) const {
1610   // We can be a bit tidier if we know the MachineFunction.
1611   const TargetRegisterInfo *TRI = nullptr;
1612   const MachineRegisterInfo *MRI = nullptr;
1613   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1614   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1615 
1616   if (isCFIInstruction())
1617     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1618 
1619   SmallBitVector PrintedTypes(8);
1620   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1621   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1622     if (!ShouldPrintRegisterTies)
1623       return 0U;
1624     const MachineOperand &MO = getOperand(OpIdx);
1625     if (MO.isReg() && MO.isTied() && !MO.isDef())
1626       return findTiedOperandIdx(OpIdx);
1627     return 0U;
1628   };
1629   unsigned StartOp = 0;
1630   unsigned e = getNumOperands();
1631 
1632   // Print explicitly defined operands on the left of an assignment syntax.
1633   while (StartOp < e) {
1634     const MachineOperand &MO = getOperand(StartOp);
1635     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1636       break;
1637 
1638     if (StartOp != 0)
1639       OS << ", ";
1640 
1641     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1642     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1643     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1644              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1645     ++StartOp;
1646   }
1647 
1648   if (StartOp != 0)
1649     OS << " = ";
1650 
1651   if (getFlag(MachineInstr::FrameSetup))
1652     OS << "frame-setup ";
1653   if (getFlag(MachineInstr::FrameDestroy))
1654     OS << "frame-destroy ";
1655   if (getFlag(MachineInstr::FmNoNans))
1656     OS << "nnan ";
1657   if (getFlag(MachineInstr::FmNoInfs))
1658     OS << "ninf ";
1659   if (getFlag(MachineInstr::FmNsz))
1660     OS << "nsz ";
1661   if (getFlag(MachineInstr::FmArcp))
1662     OS << "arcp ";
1663   if (getFlag(MachineInstr::FmContract))
1664     OS << "contract ";
1665   if (getFlag(MachineInstr::FmAfn))
1666     OS << "afn ";
1667   if (getFlag(MachineInstr::FmReassoc))
1668     OS << "reassoc ";
1669   if (getFlag(MachineInstr::NoUWrap))
1670     OS << "nuw ";
1671   if (getFlag(MachineInstr::NoSWrap))
1672     OS << "nsw ";
1673   if (getFlag(MachineInstr::IsExact))
1674     OS << "exact ";
1675   if (getFlag(MachineInstr::NoFPExcept))
1676     OS << "nofpexcept ";
1677   if (getFlag(MachineInstr::NoMerge))
1678     OS << "nomerge ";
1679 
1680   // Print the opcode name.
1681   if (TII)
1682     OS << TII->getName(getOpcode());
1683   else
1684     OS << "UNKNOWN";
1685 
1686   if (SkipOpers)
1687     return;
1688 
1689   // Print the rest of the operands.
1690   bool FirstOp = true;
1691   unsigned AsmDescOp = ~0u;
1692   unsigned AsmOpCount = 0;
1693 
1694   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1695     // Print asm string.
1696     OS << " ";
1697     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1698     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1699     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1700     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1701                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1702                             IntrinsicInfo);
1703 
1704     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1705     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1706     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1707       OS << " [sideeffect]";
1708     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1709       OS << " [mayload]";
1710     if (ExtraInfo & InlineAsm::Extra_MayStore)
1711       OS << " [maystore]";
1712     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1713       OS << " [isconvergent]";
1714     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1715       OS << " [alignstack]";
1716     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1717       OS << " [attdialect]";
1718     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1719       OS << " [inteldialect]";
1720 
1721     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1722     FirstOp = false;
1723   }
1724 
1725   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1726     const MachineOperand &MO = getOperand(i);
1727 
1728     if (FirstOp) FirstOp = false; else OS << ",";
1729     OS << " ";
1730 
1731     if (isDebugValueLike() && MO.isMetadata()) {
1732       // Pretty print DBG_VALUE* instructions.
1733       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1734       if (DIV && !DIV->getName().empty())
1735         OS << "!\"" << DIV->getName() << '\"';
1736       else {
1737         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1738         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1739         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1740                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1741       }
1742     } else if (isDebugLabel() && MO.isMetadata()) {
1743       // Pretty print DBG_LABEL instructions.
1744       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1745       if (DIL && !DIL->getName().empty())
1746         OS << "\"" << DIL->getName() << '\"';
1747       else {
1748         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1749         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1750         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1751                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1752       }
1753     } else if (i == AsmDescOp && MO.isImm()) {
1754       // Pretty print the inline asm operand descriptor.
1755       OS << '$' << AsmOpCount++;
1756       unsigned Flag = MO.getImm();
1757       OS << ":[";
1758       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1759 
1760       unsigned RCID = 0;
1761       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1762           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1763         if (TRI) {
1764           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1765         } else
1766           OS << ":RC" << RCID;
1767       }
1768 
1769       if (InlineAsm::isMemKind(Flag)) {
1770         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1771         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1772       }
1773 
1774       unsigned TiedTo = 0;
1775       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1776         OS << " tiedto:$" << TiedTo;
1777 
1778       OS << ']';
1779 
1780       // Compute the index of the next operand descriptor.
1781       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1782     } else {
1783       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1784       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1785       if (MO.isImm() && isOperandSubregIdx(i))
1786         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1787       else
1788         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1789                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1790     }
1791   }
1792 
1793   // Print any optional symbols attached to this instruction as-if they were
1794   // operands.
1795   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1796     if (!FirstOp) {
1797       FirstOp = false;
1798       OS << ',';
1799     }
1800     OS << " pre-instr-symbol ";
1801     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1802   }
1803   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1804     if (!FirstOp) {
1805       FirstOp = false;
1806       OS << ',';
1807     }
1808     OS << " post-instr-symbol ";
1809     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1810   }
1811   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1812     if (!FirstOp) {
1813       FirstOp = false;
1814       OS << ',';
1815     }
1816     OS << " heap-alloc-marker ";
1817     HeapAllocMarker->printAsOperand(OS, MST);
1818   }
1819   if (MDNode *PCSections = getPCSections()) {
1820     if (!FirstOp) {
1821       FirstOp = false;
1822       OS << ',';
1823     }
1824     OS << " pcsections ";
1825     PCSections->printAsOperand(OS, MST);
1826   }
1827   if (uint32_t CFIType = getCFIType()) {
1828     if (!FirstOp)
1829       OS << ',';
1830     OS << " cfi-type " << CFIType;
1831   }
1832 
1833   if (DebugInstrNum) {
1834     if (!FirstOp)
1835       OS << ",";
1836     OS << " debug-instr-number " << DebugInstrNum;
1837   }
1838 
1839   if (!SkipDebugLoc) {
1840     if (const DebugLoc &DL = getDebugLoc()) {
1841       if (!FirstOp)
1842         OS << ',';
1843       OS << " debug-location ";
1844       DL->printAsOperand(OS, MST);
1845     }
1846   }
1847 
1848   if (!memoperands_empty()) {
1849     SmallVector<StringRef, 0> SSNs;
1850     const LLVMContext *Context = nullptr;
1851     std::unique_ptr<LLVMContext> CtxPtr;
1852     const MachineFrameInfo *MFI = nullptr;
1853     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1854       MFI = &MF->getFrameInfo();
1855       Context = &MF->getFunction().getContext();
1856     } else {
1857       CtxPtr = std::make_unique<LLVMContext>();
1858       Context = CtxPtr.get();
1859     }
1860 
1861     OS << " :: ";
1862     bool NeedComma = false;
1863     for (const MachineMemOperand *Op : memoperands()) {
1864       if (NeedComma)
1865         OS << ", ";
1866       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1867       NeedComma = true;
1868     }
1869   }
1870 
1871   if (SkipDebugLoc)
1872     return;
1873 
1874   bool HaveSemi = false;
1875 
1876   // Print debug location information.
1877   if (const DebugLoc &DL = getDebugLoc()) {
1878     if (!HaveSemi) {
1879       OS << ';';
1880       HaveSemi = true;
1881     }
1882     OS << ' ';
1883     DL.print(OS);
1884   }
1885 
1886   // Print extra comments for DEBUG_VALUE.
1887   if (isDebugValueLike() && getDebugVariableOp().isMetadata()) {
1888     if (!HaveSemi) {
1889       OS << ";";
1890       HaveSemi = true;
1891     }
1892     auto *DV = getDebugVariable();
1893     OS << " line no:" <<  DV->getLine();
1894     if (isIndirectDebugValue())
1895       OS << " indirect";
1896   }
1897   // TODO: DBG_LABEL
1898 
1899   if (AddNewLine)
1900     OS << '\n';
1901 }
1902 
1903 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1904                                      const TargetRegisterInfo *RegInfo,
1905                                      bool AddIfNotFound) {
1906   bool isPhysReg = IncomingReg.isPhysical();
1907   bool hasAliases = isPhysReg &&
1908     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1909   bool Found = false;
1910   SmallVector<unsigned,4> DeadOps;
1911   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1912     MachineOperand &MO = getOperand(i);
1913     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1914       continue;
1915 
1916     // DEBUG_VALUE nodes do not contribute to code generation and should
1917     // always be ignored. Failure to do so may result in trying to modify
1918     // KILL flags on DEBUG_VALUE nodes.
1919     if (MO.isDebug())
1920       continue;
1921 
1922     Register Reg = MO.getReg();
1923     if (!Reg)
1924       continue;
1925 
1926     if (Reg == IncomingReg) {
1927       if (!Found) {
1928         if (MO.isKill())
1929           // The register is already marked kill.
1930           return true;
1931         if (isPhysReg && isRegTiedToDefOperand(i))
1932           // Two-address uses of physregs must not be marked kill.
1933           return true;
1934         MO.setIsKill();
1935         Found = true;
1936       }
1937     } else if (hasAliases && MO.isKill() && Reg.isPhysical()) {
1938       // A super-register kill already exists.
1939       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1940         return true;
1941       if (RegInfo->isSubRegister(IncomingReg, Reg))
1942         DeadOps.push_back(i);
1943     }
1944   }
1945 
1946   // Trim unneeded kill operands.
1947   while (!DeadOps.empty()) {
1948     unsigned OpIdx = DeadOps.back();
1949     if (getOperand(OpIdx).isImplicit() &&
1950         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1951       removeOperand(OpIdx);
1952     else
1953       getOperand(OpIdx).setIsKill(false);
1954     DeadOps.pop_back();
1955   }
1956 
1957   // If not found, this means an alias of one of the operands is killed. Add a
1958   // new implicit operand if required.
1959   if (!Found && AddIfNotFound) {
1960     addOperand(MachineOperand::CreateReg(IncomingReg,
1961                                          false /*IsDef*/,
1962                                          true  /*IsImp*/,
1963                                          true  /*IsKill*/));
1964     return true;
1965   }
1966   return Found;
1967 }
1968 
1969 void MachineInstr::clearRegisterKills(Register Reg,
1970                                       const TargetRegisterInfo *RegInfo) {
1971   if (!Reg.isPhysical())
1972     RegInfo = nullptr;
1973   for (MachineOperand &MO : operands()) {
1974     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1975       continue;
1976     Register OpReg = MO.getReg();
1977     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1978       MO.setIsKill(false);
1979   }
1980 }
1981 
1982 bool MachineInstr::addRegisterDead(Register Reg,
1983                                    const TargetRegisterInfo *RegInfo,
1984                                    bool AddIfNotFound) {
1985   bool isPhysReg = Reg.isPhysical();
1986   bool hasAliases = isPhysReg &&
1987     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1988   bool Found = false;
1989   SmallVector<unsigned,4> DeadOps;
1990   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1991     MachineOperand &MO = getOperand(i);
1992     if (!MO.isReg() || !MO.isDef())
1993       continue;
1994     Register MOReg = MO.getReg();
1995     if (!MOReg)
1996       continue;
1997 
1998     if (MOReg == Reg) {
1999       MO.setIsDead();
2000       Found = true;
2001     } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) {
2002       // There exists a super-register that's marked dead.
2003       if (RegInfo->isSuperRegister(Reg, MOReg))
2004         return true;
2005       if (RegInfo->isSubRegister(Reg, MOReg))
2006         DeadOps.push_back(i);
2007     }
2008   }
2009 
2010   // Trim unneeded dead operands.
2011   while (!DeadOps.empty()) {
2012     unsigned OpIdx = DeadOps.back();
2013     if (getOperand(OpIdx).isImplicit() &&
2014         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
2015       removeOperand(OpIdx);
2016     else
2017       getOperand(OpIdx).setIsDead(false);
2018     DeadOps.pop_back();
2019   }
2020 
2021   // If not found, this means an alias of one of the operands is dead. Add a
2022   // new implicit operand if required.
2023   if (Found || !AddIfNotFound)
2024     return Found;
2025 
2026   addOperand(MachineOperand::CreateReg(Reg,
2027                                        true  /*IsDef*/,
2028                                        true  /*IsImp*/,
2029                                        false /*IsKill*/,
2030                                        true  /*IsDead*/));
2031   return true;
2032 }
2033 
2034 void MachineInstr::clearRegisterDeads(Register Reg) {
2035   for (MachineOperand &MO : operands()) {
2036     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2037       continue;
2038     MO.setIsDead(false);
2039   }
2040 }
2041 
2042 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2043   for (MachineOperand &MO : operands()) {
2044     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2045       continue;
2046     MO.setIsUndef(IsUndef);
2047   }
2048 }
2049 
2050 void MachineInstr::addRegisterDefined(Register Reg,
2051                                       const TargetRegisterInfo *RegInfo) {
2052   if (Reg.isPhysical()) {
2053     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2054     if (MO)
2055       return;
2056   } else {
2057     for (const MachineOperand &MO : operands()) {
2058       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2059           MO.getSubReg() == 0)
2060         return;
2061     }
2062   }
2063   addOperand(MachineOperand::CreateReg(Reg,
2064                                        true  /*IsDef*/,
2065                                        true  /*IsImp*/));
2066 }
2067 
2068 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2069                                          const TargetRegisterInfo &TRI) {
2070   bool HasRegMask = false;
2071   for (MachineOperand &MO : operands()) {
2072     if (MO.isRegMask()) {
2073       HasRegMask = true;
2074       continue;
2075     }
2076     if (!MO.isReg() || !MO.isDef()) continue;
2077     Register Reg = MO.getReg();
2078     if (!Reg.isPhysical())
2079       continue;
2080     // If there are no uses, including partial uses, the def is dead.
2081     if (llvm::none_of(UsedRegs,
2082                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2083       MO.setIsDead();
2084   }
2085 
2086   // This is a call with a register mask operand.
2087   // Mask clobbers are always dead, so add defs for the non-dead defines.
2088   if (HasRegMask)
2089     for (const Register &UsedReg : UsedRegs)
2090       addRegisterDefined(UsedReg, &TRI);
2091 }
2092 
2093 unsigned
2094 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2095   // Build up a buffer of hash code components.
2096   SmallVector<size_t, 16> HashComponents;
2097   HashComponents.reserve(MI->getNumOperands() + 1);
2098   HashComponents.push_back(MI->getOpcode());
2099   for (const MachineOperand &MO : MI->operands()) {
2100     if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
2101       continue;  // Skip virtual register defs.
2102 
2103     HashComponents.push_back(hash_value(MO));
2104   }
2105   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2106 }
2107 
2108 void MachineInstr::emitError(StringRef Msg) const {
2109   // Find the source location cookie.
2110   uint64_t LocCookie = 0;
2111   const MDNode *LocMD = nullptr;
2112   for (unsigned i = getNumOperands(); i != 0; --i) {
2113     if (getOperand(i-1).isMetadata() &&
2114         (LocMD = getOperand(i-1).getMetadata()) &&
2115         LocMD->getNumOperands() != 0) {
2116       if (const ConstantInt *CI =
2117               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2118         LocCookie = CI->getZExtValue();
2119         break;
2120       }
2121     }
2122   }
2123 
2124   if (const MachineBasicBlock *MBB = getParent())
2125     if (const MachineFunction *MF = MBB->getParent())
2126       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2127   report_fatal_error(Msg);
2128 }
2129 
2130 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2131                                   const MCInstrDesc &MCID, bool IsIndirect,
2132                                   Register Reg, const MDNode *Variable,
2133                                   const MDNode *Expr) {
2134   assert(isa<DILocalVariable>(Variable) && "not a variable");
2135   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2136   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2137          "Expected inlined-at fields to agree");
2138   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2139   if (IsIndirect)
2140     MIB.addImm(0U);
2141   else
2142     MIB.addReg(0U);
2143   return MIB.addMetadata(Variable).addMetadata(Expr);
2144 }
2145 
2146 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2147                                   const MCInstrDesc &MCID, bool IsIndirect,
2148                                   ArrayRef<MachineOperand> DebugOps,
2149                                   const MDNode *Variable, const MDNode *Expr) {
2150   assert(isa<DILocalVariable>(Variable) && "not a variable");
2151   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2152   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2153          "Expected inlined-at fields to agree");
2154   if (MCID.Opcode == TargetOpcode::DBG_VALUE) {
2155     assert(DebugOps.size() == 1 &&
2156            "DBG_VALUE must contain exactly one debug operand");
2157     MachineOperand DebugOp = DebugOps[0];
2158     if (DebugOp.isReg())
2159       return BuildMI(MF, DL, MCID, IsIndirect, DebugOp.getReg(), Variable,
2160                      Expr);
2161 
2162     auto MIB = BuildMI(MF, DL, MCID).add(DebugOp);
2163     if (IsIndirect)
2164       MIB.addImm(0U);
2165     else
2166       MIB.addReg(0U);
2167     return MIB.addMetadata(Variable).addMetadata(Expr);
2168   }
2169 
2170   auto MIB = BuildMI(MF, DL, MCID);
2171   MIB.addMetadata(Variable).addMetadata(Expr);
2172   for (const MachineOperand &DebugOp : DebugOps)
2173     if (DebugOp.isReg())
2174       MIB.addReg(DebugOp.getReg());
2175     else
2176       MIB.add(DebugOp);
2177   return MIB;
2178 }
2179 
2180 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2181                                   MachineBasicBlock::iterator I,
2182                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2183                                   bool IsIndirect, Register Reg,
2184                                   const MDNode *Variable, const MDNode *Expr) {
2185   MachineFunction &MF = *BB.getParent();
2186   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2187   BB.insert(I, MI);
2188   return MachineInstrBuilder(MF, MI);
2189 }
2190 
2191 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2192                                   MachineBasicBlock::iterator I,
2193                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2194                                   bool IsIndirect,
2195                                   ArrayRef<MachineOperand> DebugOps,
2196                                   const MDNode *Variable, const MDNode *Expr) {
2197   MachineFunction &MF = *BB.getParent();
2198   MachineInstr *MI =
2199       BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr);
2200   BB.insert(I, MI);
2201   return MachineInstrBuilder(MF, *MI);
2202 }
2203 
2204 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2205 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2206 static const DIExpression *
2207 computeExprForSpill(const MachineInstr &MI,
2208                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2209   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2210          "Expected inlined-at fields to agree");
2211 
2212   const DIExpression *Expr = MI.getDebugExpression();
2213   if (MI.isIndirectDebugValue()) {
2214     assert(MI.getDebugOffset().getImm() == 0 &&
2215            "DBG_VALUE with nonzero offset");
2216     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2217   } else if (MI.isDebugValueList()) {
2218     // We will replace the spilled register with a frame index, so
2219     // immediately deref all references to the spilled register.
2220     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2221     for (const MachineOperand *Op : SpilledOperands) {
2222       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2223       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2224     }
2225   }
2226   return Expr;
2227 }
2228 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2229                                                Register SpillReg) {
2230   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2231   SmallVector<const MachineOperand *> SpillOperands;
2232   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2233     SpillOperands.push_back(&Op);
2234   return computeExprForSpill(MI, SpillOperands);
2235 }
2236 
2237 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2238                                           MachineBasicBlock::iterator I,
2239                                           const MachineInstr &Orig,
2240                                           int FrameIndex, Register SpillReg) {
2241   assert(!Orig.isDebugRef() &&
2242          "DBG_INSTR_REF should not reference a virtual register.");
2243   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2244   MachineInstrBuilder NewMI =
2245       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2246   // Non-Variadic Operands: Location, Offset, Variable, Expression
2247   // Variadic Operands:     Variable, Expression, Locations...
2248   if (Orig.isNonListDebugValue())
2249     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2250   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2251   if (Orig.isDebugValueList()) {
2252     for (const MachineOperand &Op : Orig.debug_operands())
2253       if (Op.isReg() && Op.getReg() == SpillReg)
2254         NewMI.addFrameIndex(FrameIndex);
2255       else
2256         NewMI.add(MachineOperand(Op));
2257   }
2258   return NewMI;
2259 }
2260 MachineInstr *llvm::buildDbgValueForSpill(
2261     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2262     const MachineInstr &Orig, int FrameIndex,
2263     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2264   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2265   MachineInstrBuilder NewMI =
2266       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2267   // Non-Variadic Operands: Location, Offset, Variable, Expression
2268   // Variadic Operands:     Variable, Expression, Locations...
2269   if (Orig.isNonListDebugValue())
2270     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2271   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2272   if (Orig.isDebugValueList()) {
2273     for (const MachineOperand &Op : Orig.debug_operands())
2274       if (is_contained(SpilledOperands, &Op))
2275         NewMI.addFrameIndex(FrameIndex);
2276       else
2277         NewMI.add(MachineOperand(Op));
2278   }
2279   return NewMI;
2280 }
2281 
2282 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2283                                   Register Reg) {
2284   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2285   if (Orig.isNonListDebugValue())
2286     Orig.getDebugOffset().ChangeToImmediate(0U);
2287   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2288     Op.ChangeToFrameIndex(FrameIndex);
2289   Orig.getDebugExpressionOp().setMetadata(Expr);
2290 }
2291 
2292 void MachineInstr::collectDebugValues(
2293                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2294   MachineInstr &MI = *this;
2295   if (!MI.getOperand(0).isReg())
2296     return;
2297 
2298   MachineBasicBlock::iterator DI = MI; ++DI;
2299   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2300        DI != DE; ++DI) {
2301     if (!DI->isDebugValue())
2302       return;
2303     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2304       DbgValues.push_back(&*DI);
2305   }
2306 }
2307 
2308 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2309   // Collect matching debug values.
2310   SmallVector<MachineInstr *, 2> DbgValues;
2311 
2312   if (!getOperand(0).isReg())
2313     return;
2314 
2315   Register DefReg = getOperand(0).getReg();
2316   auto *MRI = getRegInfo();
2317   for (auto &MO : MRI->use_operands(DefReg)) {
2318     auto *DI = MO.getParent();
2319     if (!DI->isDebugValue())
2320       continue;
2321     if (DI->hasDebugOperandForReg(DefReg)) {
2322       DbgValues.push_back(DI);
2323     }
2324   }
2325 
2326   // Propagate Reg to debug value instructions.
2327   for (auto *DBI : DbgValues)
2328     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2329       Op.setReg(Reg);
2330 }
2331 
2332 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2333 
2334 static unsigned getSpillSlotSize(const MMOList &Accesses,
2335                                  const MachineFrameInfo &MFI) {
2336   unsigned Size = 0;
2337   for (const auto *A : Accesses)
2338     if (MFI.isSpillSlotObjectIndex(
2339             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2340                 ->getFrameIndex()))
2341       Size += A->getSize();
2342   return Size;
2343 }
2344 
2345 std::optional<unsigned>
2346 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2347   int FI;
2348   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2349     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2350     if (MFI.isSpillSlotObjectIndex(FI))
2351       return (*memoperands_begin())->getSize();
2352   }
2353   return std::nullopt;
2354 }
2355 
2356 std::optional<unsigned>
2357 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2358   MMOList Accesses;
2359   if (TII->hasStoreToStackSlot(*this, Accesses))
2360     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2361   return std::nullopt;
2362 }
2363 
2364 std::optional<unsigned>
2365 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2366   int FI;
2367   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2368     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2369     if (MFI.isSpillSlotObjectIndex(FI))
2370       return (*memoperands_begin())->getSize();
2371   }
2372   return std::nullopt;
2373 }
2374 
2375 std::optional<unsigned>
2376 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2377   MMOList Accesses;
2378   if (TII->hasLoadFromStackSlot(*this, Accesses))
2379     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2380   return std::nullopt;
2381 }
2382 
2383 unsigned MachineInstr::getDebugInstrNum() {
2384   if (DebugInstrNum == 0)
2385     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2386   return DebugInstrNum;
2387 }
2388 
2389 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2390   if (DebugInstrNum == 0)
2391     DebugInstrNum = MF.getNewDebugInstrNum();
2392   return DebugInstrNum;
2393 }
2394 
2395 std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const {
2396   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2397                     getRegInfo()->getType(getOperand(1).getReg()));
2398 }
2399 
2400 std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const {
2401   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2402                     getRegInfo()->getType(getOperand(1).getReg()),
2403                     getRegInfo()->getType(getOperand(2).getReg()));
2404 }
2405 
2406 std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const {
2407   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2408                     getRegInfo()->getType(getOperand(1).getReg()),
2409                     getRegInfo()->getType(getOperand(2).getReg()),
2410                     getRegInfo()->getType(getOperand(3).getReg()));
2411 }
2412 
2413 std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const {
2414   return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2415                     getRegInfo()->getType(getOperand(1).getReg()),
2416                     getRegInfo()->getType(getOperand(2).getReg()),
2417                     getRegInfo()->getType(getOperand(3).getReg()),
2418                     getRegInfo()->getType(getOperand(4).getReg()));
2419 }
2420 
2421 std::tuple<Register, LLT, Register, LLT>
2422 MachineInstr::getFirst2RegLLTs() const {
2423   Register Reg0 = getOperand(0).getReg();
2424   Register Reg1 = getOperand(1).getReg();
2425   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2426                     getRegInfo()->getType(Reg1));
2427 }
2428 
2429 std::tuple<Register, LLT, Register, LLT, Register, LLT>
2430 MachineInstr::getFirst3RegLLTs() const {
2431   Register Reg0 = getOperand(0).getReg();
2432   Register Reg1 = getOperand(1).getReg();
2433   Register Reg2 = getOperand(2).getReg();
2434   return std::tuple(Reg0, getRegInfo()->getType(Reg0), Reg1,
2435                     getRegInfo()->getType(Reg1), Reg2,
2436                     getRegInfo()->getType(Reg2));
2437 }
2438 
2439 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT>
2440 MachineInstr::getFirst4RegLLTs() const {
2441   Register Reg0 = getOperand(0).getReg();
2442   Register Reg1 = getOperand(1).getReg();
2443   Register Reg2 = getOperand(2).getReg();
2444   Register Reg3 = getOperand(3).getReg();
2445   return std::tuple(
2446       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2447       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3));
2448 }
2449 
2450 std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register,
2451            LLT>
2452 MachineInstr::getFirst5RegLLTs() const {
2453   Register Reg0 = getOperand(0).getReg();
2454   Register Reg1 = getOperand(1).getReg();
2455   Register Reg2 = getOperand(2).getReg();
2456   Register Reg3 = getOperand(3).getReg();
2457   Register Reg4 = getOperand(4).getReg();
2458   return std::tuple(
2459       Reg0, getRegInfo()->getType(Reg0), Reg1, getRegInfo()->getType(Reg1),
2460       Reg2, getRegInfo()->getType(Reg2), Reg3, getRegInfo()->getType(Reg3),
2461       Reg4, getRegInfo()->getType(Reg4));
2462 }
2463