1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/InitializePasses.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/raw_ostream.h"
20 
21 #define DEBUG_TYPE "pipeliner"
22 using namespace llvm;
23 
24 void ModuloSchedule::print(raw_ostream &OS) {
25   for (MachineInstr *MI : ScheduledInstrs)
26     OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
27 }
28 
29 //===----------------------------------------------------------------------===//
30 // ModuloScheduleExpander implementation
31 //===----------------------------------------------------------------------===//
32 
33 /// Return the register values for  the operands of a Phi instruction.
34 /// This function assume the instruction is a Phi.
35 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
36                        unsigned &InitVal, unsigned &LoopVal) {
37   assert(Phi.isPHI() && "Expecting a Phi.");
38 
39   InitVal = 0;
40   LoopVal = 0;
41   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
42     if (Phi.getOperand(i + 1).getMBB() != Loop)
43       InitVal = Phi.getOperand(i).getReg();
44     else
45       LoopVal = Phi.getOperand(i).getReg();
46 
47   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
48 }
49 
50 /// Return the Phi register value that comes from the incoming block.
51 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
52   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
53     if (Phi.getOperand(i + 1).getMBB() != LoopBB)
54       return Phi.getOperand(i).getReg();
55   return 0;
56 }
57 
58 /// Return the Phi register value that comes the loop block.
59 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
60   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
61     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
62       return Phi.getOperand(i).getReg();
63   return 0;
64 }
65 
66 void ModuloScheduleExpander::expand() {
67   BB = Schedule.getLoop()->getTopBlock();
68   Preheader = *BB->pred_begin();
69   if (Preheader == BB)
70     Preheader = *std::next(BB->pred_begin());
71 
72   // Iterate over the definitions in each instruction, and compute the
73   // stage difference for each use.  Keep the maximum value.
74   for (MachineInstr *MI : Schedule.getInstructions()) {
75     int DefStage = Schedule.getStage(MI);
76     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
77       MachineOperand &Op = MI->getOperand(i);
78       if (!Op.isReg() || !Op.isDef())
79         continue;
80 
81       Register Reg = Op.getReg();
82       unsigned MaxDiff = 0;
83       bool PhiIsSwapped = false;
84       for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
85                                              EI = MRI.use_end();
86            UI != EI; ++UI) {
87         MachineOperand &UseOp = *UI;
88         MachineInstr *UseMI = UseOp.getParent();
89         int UseStage = Schedule.getStage(UseMI);
90         unsigned Diff = 0;
91         if (UseStage != -1 && UseStage >= DefStage)
92           Diff = UseStage - DefStage;
93         if (MI->isPHI()) {
94           if (isLoopCarried(*MI))
95             ++Diff;
96           else
97             PhiIsSwapped = true;
98         }
99         MaxDiff = std::max(Diff, MaxDiff);
100       }
101       RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
102     }
103   }
104 
105   generatePipelinedLoop();
106 }
107 
108 void ModuloScheduleExpander::generatePipelinedLoop() {
109   LoopInfo = TII->analyzeLoopForPipelining(BB);
110   assert(LoopInfo && "Must be able to analyze loop!");
111 
112   // Create a new basic block for the kernel and add it to the CFG.
113   MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
114 
115   unsigned MaxStageCount = Schedule.getNumStages() - 1;
116 
117   // Remember the registers that are used in different stages. The index is
118   // the iteration, or stage, that the instruction is scheduled in.  This is
119   // a map between register names in the original block and the names created
120   // in each stage of the pipelined loop.
121   ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
122   InstrMapTy InstrMap;
123 
124   SmallVector<MachineBasicBlock *, 4> PrologBBs;
125 
126   // Generate the prolog instructions that set up the pipeline.
127   generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128   MF.insert(BB->getIterator(), KernelBB);
129 
130   // Rearrange the instructions to generate the new, pipelined loop,
131   // and update register names as needed.
132   for (MachineInstr *CI : Schedule.getInstructions()) {
133     if (CI->isPHI())
134       continue;
135     unsigned StageNum = Schedule.getStage(CI);
136     MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137     updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138     KernelBB->push_back(NewMI);
139     InstrMap[NewMI] = CI;
140   }
141 
142   // Copy any terminator instructions to the new kernel, and update
143   // names as needed.
144   for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
145                                    E = BB->instr_end();
146        I != E; ++I) {
147     MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
148     updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
149     KernelBB->push_back(NewMI);
150     InstrMap[NewMI] = &*I;
151   }
152 
153   NewKernel = KernelBB;
154   KernelBB->transferSuccessors(BB);
155   KernelBB->replaceSuccessor(BB, KernelBB);
156 
157   generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
158                        InstrMap, MaxStageCount, MaxStageCount, false);
159   generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
160                MaxStageCount, MaxStageCount, false);
161 
162   LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
163 
164   SmallVector<MachineBasicBlock *, 4> EpilogBBs;
165   // Generate the epilog instructions to complete the pipeline.
166   generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
167 
168   // We need this step because the register allocation doesn't handle some
169   // situations well, so we insert copies to help out.
170   splitLifetimes(KernelBB, EpilogBBs);
171 
172   // Remove dead instructions due to loop induction variables.
173   removeDeadInstructions(KernelBB, EpilogBBs);
174 
175   // Add branches between prolog and epilog blocks.
176   addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
177 
178   delete[] VRMap;
179 }
180 
181 void ModuloScheduleExpander::cleanup() {
182   // Remove the original loop since it's no longer referenced.
183   for (auto &I : *BB)
184     LIS.RemoveMachineInstrFromMaps(I);
185   BB->clear();
186   BB->eraseFromParent();
187 }
188 
189 /// Generate the pipeline prolog code.
190 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
191                                             MachineBasicBlock *KernelBB,
192                                             ValueMapTy *VRMap,
193                                             MBBVectorTy &PrologBBs) {
194   MachineBasicBlock *PredBB = Preheader;
195   InstrMapTy InstrMap;
196 
197   // Generate a basic block for each stage, not including the last stage,
198   // which will be generated in the kernel. Each basic block may contain
199   // instructions from multiple stages/iterations.
200   for (unsigned i = 0; i < LastStage; ++i) {
201     // Create and insert the prolog basic block prior to the original loop
202     // basic block.  The original loop is removed later.
203     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
204     PrologBBs.push_back(NewBB);
205     MF.insert(BB->getIterator(), NewBB);
206     NewBB->transferSuccessors(PredBB);
207     PredBB->addSuccessor(NewBB);
208     PredBB = NewBB;
209 
210     // Generate instructions for each appropriate stage. Process instructions
211     // in original program order.
212     for (int StageNum = i; StageNum >= 0; --StageNum) {
213       for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
214                                        BBE = BB->getFirstTerminator();
215            BBI != BBE; ++BBI) {
216         if (Schedule.getStage(&*BBI) == StageNum) {
217           if (BBI->isPHI())
218             continue;
219           MachineInstr *NewMI =
220               cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
221           updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
222           NewBB->push_back(NewMI);
223           InstrMap[NewMI] = &*BBI;
224         }
225       }
226     }
227     rewritePhiValues(NewBB, i, VRMap, InstrMap);
228     LLVM_DEBUG({
229       dbgs() << "prolog:\n";
230       NewBB->dump();
231     });
232   }
233 
234   PredBB->replaceSuccessor(BB, KernelBB);
235 
236   // Check if we need to remove the branch from the preheader to the original
237   // loop, and replace it with a branch to the new loop.
238   unsigned numBranches = TII->removeBranch(*Preheader);
239   if (numBranches) {
240     SmallVector<MachineOperand, 0> Cond;
241     TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
242   }
243 }
244 
245 /// Generate the pipeline epilog code. The epilog code finishes the iterations
246 /// that were started in either the prolog or the kernel.  We create a basic
247 /// block for each stage that needs to complete.
248 void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
249                                             MachineBasicBlock *KernelBB,
250                                             ValueMapTy *VRMap,
251                                             MBBVectorTy &EpilogBBs,
252                                             MBBVectorTy &PrologBBs) {
253   // We need to change the branch from the kernel to the first epilog block, so
254   // this call to analyze branch uses the kernel rather than the original BB.
255   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
256   SmallVector<MachineOperand, 4> Cond;
257   bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
258   assert(!checkBranch && "generateEpilog must be able to analyze the branch");
259   if (checkBranch)
260     return;
261 
262   MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
263   if (*LoopExitI == KernelBB)
264     ++LoopExitI;
265   assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
266   MachineBasicBlock *LoopExitBB = *LoopExitI;
267 
268   MachineBasicBlock *PredBB = KernelBB;
269   MachineBasicBlock *EpilogStart = LoopExitBB;
270   InstrMapTy InstrMap;
271 
272   // Generate a basic block for each stage, not including the last stage,
273   // which was generated for the kernel.  Each basic block may contain
274   // instructions from multiple stages/iterations.
275   int EpilogStage = LastStage + 1;
276   for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
277     MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
278     EpilogBBs.push_back(NewBB);
279     MF.insert(BB->getIterator(), NewBB);
280 
281     PredBB->replaceSuccessor(LoopExitBB, NewBB);
282     NewBB->addSuccessor(LoopExitBB);
283 
284     if (EpilogStart == LoopExitBB)
285       EpilogStart = NewBB;
286 
287     // Add instructions to the epilog depending on the current block.
288     // Process instructions in original program order.
289     for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
290       for (auto &BBI : *BB) {
291         if (BBI.isPHI())
292           continue;
293         MachineInstr *In = &BBI;
294         if ((unsigned)Schedule.getStage(In) == StageNum) {
295           // Instructions with memoperands in the epilog are updated with
296           // conservative values.
297           MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
298           updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
299           NewBB->push_back(NewMI);
300           InstrMap[NewMI] = In;
301         }
302       }
303     }
304     generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
305                          InstrMap, LastStage, EpilogStage, i == 1);
306     generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
307                  LastStage, EpilogStage, i == 1);
308     PredBB = NewBB;
309 
310     LLVM_DEBUG({
311       dbgs() << "epilog:\n";
312       NewBB->dump();
313     });
314   }
315 
316   // Fix any Phi nodes in the loop exit block.
317   LoopExitBB->replacePhiUsesWith(BB, PredBB);
318 
319   // Create a branch to the new epilog from the kernel.
320   // Remove the original branch and add a new branch to the epilog.
321   TII->removeBranch(*KernelBB);
322   TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
323   // Add a branch to the loop exit.
324   if (EpilogBBs.size() > 0) {
325     MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
326     SmallVector<MachineOperand, 4> Cond1;
327     TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
328   }
329 }
330 
331 /// Replace all uses of FromReg that appear outside the specified
332 /// basic block with ToReg.
333 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
334                                     MachineBasicBlock *MBB,
335                                     MachineRegisterInfo &MRI,
336                                     LiveIntervals &LIS) {
337   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
338                                          E = MRI.use_end();
339        I != E;) {
340     MachineOperand &O = *I;
341     ++I;
342     if (O.getParent()->getParent() != MBB)
343       O.setReg(ToReg);
344   }
345   if (!LIS.hasInterval(ToReg))
346     LIS.createEmptyInterval(ToReg);
347 }
348 
349 /// Return true if the register has a use that occurs outside the
350 /// specified loop.
351 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
352                             MachineRegisterInfo &MRI) {
353   for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
354                                          E = MRI.use_end();
355        I != E; ++I)
356     if (I->getParent()->getParent() != BB)
357       return true;
358   return false;
359 }
360 
361 /// Generate Phis for the specific block in the generated pipelined code.
362 /// This function looks at the Phis from the original code to guide the
363 /// creation of new Phis.
364 void ModuloScheduleExpander::generateExistingPhis(
365     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
366     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
367     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
368   // Compute the stage number for the initial value of the Phi, which
369   // comes from the prolog. The prolog to use depends on to which kernel/
370   // epilog that we're adding the Phi.
371   unsigned PrologStage = 0;
372   unsigned PrevStage = 0;
373   bool InKernel = (LastStageNum == CurStageNum);
374   if (InKernel) {
375     PrologStage = LastStageNum - 1;
376     PrevStage = CurStageNum;
377   } else {
378     PrologStage = LastStageNum - (CurStageNum - LastStageNum);
379     PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
380   }
381 
382   for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
383                                    BBE = BB->getFirstNonPHI();
384        BBI != BBE; ++BBI) {
385     Register Def = BBI->getOperand(0).getReg();
386 
387     unsigned InitVal = 0;
388     unsigned LoopVal = 0;
389     getPhiRegs(*BBI, BB, InitVal, LoopVal);
390 
391     unsigned PhiOp1 = 0;
392     // The Phi value from the loop body typically is defined in the loop, but
393     // not always. So, we need to check if the value is defined in the loop.
394     unsigned PhiOp2 = LoopVal;
395     if (VRMap[LastStageNum].count(LoopVal))
396       PhiOp2 = VRMap[LastStageNum][LoopVal];
397 
398     int StageScheduled = Schedule.getStage(&*BBI);
399     int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
400     unsigned NumStages = getStagesForReg(Def, CurStageNum);
401     if (NumStages == 0) {
402       // We don't need to generate a Phi anymore, but we need to rename any uses
403       // of the Phi value.
404       unsigned NewReg = VRMap[PrevStage][LoopVal];
405       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
406                             InitVal, NewReg);
407       if (VRMap[CurStageNum].count(LoopVal))
408         VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
409     }
410     // Adjust the number of Phis needed depending on the number of prologs left,
411     // and the distance from where the Phi is first scheduled. The number of
412     // Phis cannot exceed the number of prolog stages. Each stage can
413     // potentially define two values.
414     unsigned MaxPhis = PrologStage + 2;
415     if (!InKernel && (int)PrologStage <= LoopValStage)
416       MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
417     unsigned NumPhis = std::min(NumStages, MaxPhis);
418 
419     unsigned NewReg = 0;
420     unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
421     // In the epilog, we may need to look back one stage to get the correct
422     // Phi name, because the epilog and prolog blocks execute the same stage.
423     // The correct name is from the previous block only when the Phi has
424     // been completely scheduled prior to the epilog, and Phi value is not
425     // needed in multiple stages.
426     int StageDiff = 0;
427     if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
428         NumPhis == 1)
429       StageDiff = 1;
430     // Adjust the computations below when the phi and the loop definition
431     // are scheduled in different stages.
432     if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
433       StageDiff = StageScheduled - LoopValStage;
434     for (unsigned np = 0; np < NumPhis; ++np) {
435       // If the Phi hasn't been scheduled, then use the initial Phi operand
436       // value. Otherwise, use the scheduled version of the instruction. This
437       // is a little complicated when a Phi references another Phi.
438       if (np > PrologStage || StageScheduled >= (int)LastStageNum)
439         PhiOp1 = InitVal;
440       // Check if the Phi has already been scheduled in a prolog stage.
441       else if (PrologStage >= AccessStage + StageDiff + np &&
442                VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
443         PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
444       // Check if the Phi has already been scheduled, but the loop instruction
445       // is either another Phi, or doesn't occur in the loop.
446       else if (PrologStage >= AccessStage + StageDiff + np) {
447         // If the Phi references another Phi, we need to examine the other
448         // Phi to get the correct value.
449         PhiOp1 = LoopVal;
450         MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
451         int Indirects = 1;
452         while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
453           int PhiStage = Schedule.getStage(InstOp1);
454           if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
455             PhiOp1 = getInitPhiReg(*InstOp1, BB);
456           else
457             PhiOp1 = getLoopPhiReg(*InstOp1, BB);
458           InstOp1 = MRI.getVRegDef(PhiOp1);
459           int PhiOpStage = Schedule.getStage(InstOp1);
460           int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
461           if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
462               VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
463             PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
464             break;
465           }
466           ++Indirects;
467         }
468       } else
469         PhiOp1 = InitVal;
470       // If this references a generated Phi in the kernel, get the Phi operand
471       // from the incoming block.
472       if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
473         if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
474           PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
475 
476       MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
477       bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
478       // In the epilog, a map lookup is needed to get the value from the kernel,
479       // or previous epilog block. How is does this depends on if the
480       // instruction is scheduled in the previous block.
481       if (!InKernel) {
482         int StageDiffAdj = 0;
483         if (LoopValStage != -1 && StageScheduled > LoopValStage)
484           StageDiffAdj = StageScheduled - LoopValStage;
485         // Use the loop value defined in the kernel, unless the kernel
486         // contains the last definition of the Phi.
487         if (np == 0 && PrevStage == LastStageNum &&
488             (StageScheduled != 0 || LoopValStage != 0) &&
489             VRMap[PrevStage - StageDiffAdj].count(LoopVal))
490           PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
491         // Use the value defined by the Phi. We add one because we switch
492         // from looking at the loop value to the Phi definition.
493         else if (np > 0 && PrevStage == LastStageNum &&
494                  VRMap[PrevStage - np + 1].count(Def))
495           PhiOp2 = VRMap[PrevStage - np + 1][Def];
496         // Use the loop value defined in the kernel.
497         else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
498                  VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
499           PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
500         // Use the value defined by the Phi, unless we're generating the first
501         // epilog and the Phi refers to a Phi in a different stage.
502         else if (VRMap[PrevStage - np].count(Def) &&
503                  (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
504                   (LoopValStage == StageScheduled)))
505           PhiOp2 = VRMap[PrevStage - np][Def];
506       }
507 
508       // Check if we can reuse an existing Phi. This occurs when a Phi
509       // references another Phi, and the other Phi is scheduled in an
510       // earlier stage. We can try to reuse an existing Phi up until the last
511       // stage of the current Phi.
512       if (LoopDefIsPhi) {
513         if (static_cast<int>(PrologStage - np) >= StageScheduled) {
514           int LVNumStages = getStagesForPhi(LoopVal);
515           int StageDiff = (StageScheduled - LoopValStage);
516           LVNumStages -= StageDiff;
517           // Make sure the loop value Phi has been processed already.
518           if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
519             NewReg = PhiOp2;
520             unsigned ReuseStage = CurStageNum;
521             if (isLoopCarried(*PhiInst))
522               ReuseStage -= LVNumStages;
523             // Check if the Phi to reuse has been generated yet. If not, then
524             // there is nothing to reuse.
525             if (VRMap[ReuseStage - np].count(LoopVal)) {
526               NewReg = VRMap[ReuseStage - np][LoopVal];
527 
528               rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
529                                     Def, NewReg);
530               // Update the map with the new Phi name.
531               VRMap[CurStageNum - np][Def] = NewReg;
532               PhiOp2 = NewReg;
533               if (VRMap[LastStageNum - np - 1].count(LoopVal))
534                 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
535 
536               if (IsLast && np == NumPhis - 1)
537                 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
538               continue;
539             }
540           }
541         }
542         if (InKernel && StageDiff > 0 &&
543             VRMap[CurStageNum - StageDiff - np].count(LoopVal))
544           PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
545       }
546 
547       const TargetRegisterClass *RC = MRI.getRegClass(Def);
548       NewReg = MRI.createVirtualRegister(RC);
549 
550       MachineInstrBuilder NewPhi =
551           BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
552                   TII->get(TargetOpcode::PHI), NewReg);
553       NewPhi.addReg(PhiOp1).addMBB(BB1);
554       NewPhi.addReg(PhiOp2).addMBB(BB2);
555       if (np == 0)
556         InstrMap[NewPhi] = &*BBI;
557 
558       // We define the Phis after creating the new pipelined code, so
559       // we need to rename the Phi values in scheduled instructions.
560 
561       unsigned PrevReg = 0;
562       if (InKernel && VRMap[PrevStage - np].count(LoopVal))
563         PrevReg = VRMap[PrevStage - np][LoopVal];
564       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
565                             NewReg, PrevReg);
566       // If the Phi has been scheduled, use the new name for rewriting.
567       if (VRMap[CurStageNum - np].count(Def)) {
568         unsigned R = VRMap[CurStageNum - np][Def];
569         rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
570                               NewReg);
571       }
572 
573       // Check if we need to rename any uses that occurs after the loop. The
574       // register to replace depends on whether the Phi is scheduled in the
575       // epilog.
576       if (IsLast && np == NumPhis - 1)
577         replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
578 
579       // In the kernel, a dependent Phi uses the value from this Phi.
580       if (InKernel)
581         PhiOp2 = NewReg;
582 
583       // Update the map with the new Phi name.
584       VRMap[CurStageNum - np][Def] = NewReg;
585     }
586 
587     while (NumPhis++ < NumStages) {
588       rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
589                             NewReg, 0);
590     }
591 
592     // Check if we need to rename a Phi that has been eliminated due to
593     // scheduling.
594     if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
595       replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
596   }
597 }
598 
599 /// Generate Phis for the specified block in the generated pipelined code.
600 /// These are new Phis needed because the definition is scheduled after the
601 /// use in the pipelined sequence.
602 void ModuloScheduleExpander::generatePhis(
603     MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
604     MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
605     unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
606   // Compute the stage number that contains the initial Phi value, and
607   // the Phi from the previous stage.
608   unsigned PrologStage = 0;
609   unsigned PrevStage = 0;
610   unsigned StageDiff = CurStageNum - LastStageNum;
611   bool InKernel = (StageDiff == 0);
612   if (InKernel) {
613     PrologStage = LastStageNum - 1;
614     PrevStage = CurStageNum;
615   } else {
616     PrologStage = LastStageNum - StageDiff;
617     PrevStage = LastStageNum + StageDiff - 1;
618   }
619 
620   for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
621                                    BBE = BB->instr_end();
622        BBI != BBE; ++BBI) {
623     for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
624       MachineOperand &MO = BBI->getOperand(i);
625       if (!MO.isReg() || !MO.isDef() ||
626           !Register::isVirtualRegister(MO.getReg()))
627         continue;
628 
629       int StageScheduled = Schedule.getStage(&*BBI);
630       assert(StageScheduled != -1 && "Expecting scheduled instruction.");
631       Register Def = MO.getReg();
632       unsigned NumPhis = getStagesForReg(Def, CurStageNum);
633       // An instruction scheduled in stage 0 and is used after the loop
634       // requires a phi in the epilog for the last definition from either
635       // the kernel or prolog.
636       if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
637           hasUseAfterLoop(Def, BB, MRI))
638         NumPhis = 1;
639       if (!InKernel && (unsigned)StageScheduled > PrologStage)
640         continue;
641 
642       unsigned PhiOp2 = VRMap[PrevStage][Def];
643       if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
644         if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
645           PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
646       // The number of Phis can't exceed the number of prolog stages. The
647       // prolog stage number is zero based.
648       if (NumPhis > PrologStage + 1 - StageScheduled)
649         NumPhis = PrologStage + 1 - StageScheduled;
650       for (unsigned np = 0; np < NumPhis; ++np) {
651         unsigned PhiOp1 = VRMap[PrologStage][Def];
652         if (np <= PrologStage)
653           PhiOp1 = VRMap[PrologStage - np][Def];
654         if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
655           if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
656             PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
657           if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
658             PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
659         }
660         if (!InKernel)
661           PhiOp2 = VRMap[PrevStage - np][Def];
662 
663         const TargetRegisterClass *RC = MRI.getRegClass(Def);
664         Register NewReg = MRI.createVirtualRegister(RC);
665 
666         MachineInstrBuilder NewPhi =
667             BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
668                     TII->get(TargetOpcode::PHI), NewReg);
669         NewPhi.addReg(PhiOp1).addMBB(BB1);
670         NewPhi.addReg(PhiOp2).addMBB(BB2);
671         if (np == 0)
672           InstrMap[NewPhi] = &*BBI;
673 
674         // Rewrite uses and update the map. The actions depend upon whether
675         // we generating code for the kernel or epilog blocks.
676         if (InKernel) {
677           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
678                                 NewReg);
679           rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
680                                 NewReg);
681 
682           PhiOp2 = NewReg;
683           VRMap[PrevStage - np - 1][Def] = NewReg;
684         } else {
685           VRMap[CurStageNum - np][Def] = NewReg;
686           if (np == NumPhis - 1)
687             rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
688                                   NewReg);
689         }
690         if (IsLast && np == NumPhis - 1)
691           replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
692       }
693     }
694   }
695 }
696 
697 /// Remove instructions that generate values with no uses.
698 /// Typically, these are induction variable operations that generate values
699 /// used in the loop itself.  A dead instruction has a definition with
700 /// no uses, or uses that occur in the original loop only.
701 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
702                                                     MBBVectorTy &EpilogBBs) {
703   // For each epilog block, check that the value defined by each instruction
704   // is used.  If not, delete it.
705   for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
706                                      MBE = EpilogBBs.rend();
707        MBB != MBE; ++MBB)
708     for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
709                                                    ME = (*MBB)->instr_rend();
710          MI != ME;) {
711       // From DeadMachineInstructionElem. Don't delete inline assembly.
712       if (MI->isInlineAsm()) {
713         ++MI;
714         continue;
715       }
716       bool SawStore = false;
717       // Check if it's safe to remove the instruction due to side effects.
718       // We can, and want to, remove Phis here.
719       if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
720         ++MI;
721         continue;
722       }
723       bool used = true;
724       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
725                                       MOE = MI->operands_end();
726            MOI != MOE; ++MOI) {
727         if (!MOI->isReg() || !MOI->isDef())
728           continue;
729         Register reg = MOI->getReg();
730         // Assume physical registers are used, unless they are marked dead.
731         if (Register::isPhysicalRegister(reg)) {
732           used = !MOI->isDead();
733           if (used)
734             break;
735           continue;
736         }
737         unsigned realUses = 0;
738         for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
739                                                EI = MRI.use_end();
740              UI != EI; ++UI) {
741           // Check if there are any uses that occur only in the original
742           // loop.  If so, that's not a real use.
743           if (UI->getParent()->getParent() != BB) {
744             realUses++;
745             used = true;
746             break;
747           }
748         }
749         if (realUses > 0)
750           break;
751         used = false;
752       }
753       if (!used) {
754         LIS.RemoveMachineInstrFromMaps(*MI);
755         MI++->eraseFromParent();
756         continue;
757       }
758       ++MI;
759     }
760   // In the kernel block, check if we can remove a Phi that generates a value
761   // used in an instruction removed in the epilog block.
762   for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
763                                    BBE = KernelBB->getFirstNonPHI();
764        BBI != BBE;) {
765     MachineInstr *MI = &*BBI;
766     ++BBI;
767     Register reg = MI->getOperand(0).getReg();
768     if (MRI.use_begin(reg) == MRI.use_end()) {
769       LIS.RemoveMachineInstrFromMaps(*MI);
770       MI->eraseFromParent();
771     }
772   }
773 }
774 
775 /// For loop carried definitions, we split the lifetime of a virtual register
776 /// that has uses past the definition in the next iteration. A copy with a new
777 /// virtual register is inserted before the definition, which helps with
778 /// generating a better register assignment.
779 ///
780 ///   v1 = phi(a, v2)     v1 = phi(a, v2)
781 ///   v2 = phi(b, v3)     v2 = phi(b, v3)
782 ///   v3 = ..             v4 = copy v1
783 ///   .. = V1             v3 = ..
784 ///                       .. = v4
785 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
786                                             MBBVectorTy &EpilogBBs) {
787   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
788   for (auto &PHI : KernelBB->phis()) {
789     Register Def = PHI.getOperand(0).getReg();
790     // Check for any Phi definition that used as an operand of another Phi
791     // in the same block.
792     for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
793                                                  E = MRI.use_instr_end();
794          I != E; ++I) {
795       if (I->isPHI() && I->getParent() == KernelBB) {
796         // Get the loop carried definition.
797         unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
798         if (!LCDef)
799           continue;
800         MachineInstr *MI = MRI.getVRegDef(LCDef);
801         if (!MI || MI->getParent() != KernelBB || MI->isPHI())
802           continue;
803         // Search through the rest of the block looking for uses of the Phi
804         // definition. If one occurs, then split the lifetime.
805         unsigned SplitReg = 0;
806         for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
807                                     KernelBB->instr_end()))
808           if (BBJ.readsRegister(Def)) {
809             // We split the lifetime when we find the first use.
810             if (SplitReg == 0) {
811               SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
812               BuildMI(*KernelBB, MI, MI->getDebugLoc(),
813                       TII->get(TargetOpcode::COPY), SplitReg)
814                   .addReg(Def);
815             }
816             BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
817           }
818         if (!SplitReg)
819           continue;
820         // Search through each of the epilog blocks for any uses to be renamed.
821         for (auto &Epilog : EpilogBBs)
822           for (auto &I : *Epilog)
823             if (I.readsRegister(Def))
824               I.substituteRegister(Def, SplitReg, 0, *TRI);
825         break;
826       }
827     }
828   }
829 }
830 
831 /// Remove the incoming block from the Phis in a basic block.
832 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
833   for (MachineInstr &MI : *BB) {
834     if (!MI.isPHI())
835       break;
836     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
837       if (MI.getOperand(i + 1).getMBB() == Incoming) {
838         MI.RemoveOperand(i + 1);
839         MI.RemoveOperand(i);
840         break;
841       }
842   }
843 }
844 
845 /// Create branches from each prolog basic block to the appropriate epilog
846 /// block.  These edges are needed if the loop ends before reaching the
847 /// kernel.
848 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
849                                          MBBVectorTy &PrologBBs,
850                                          MachineBasicBlock *KernelBB,
851                                          MBBVectorTy &EpilogBBs,
852                                          ValueMapTy *VRMap) {
853   assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
854   MachineBasicBlock *LastPro = KernelBB;
855   MachineBasicBlock *LastEpi = KernelBB;
856 
857   // Start from the blocks connected to the kernel and work "out"
858   // to the first prolog and the last epilog blocks.
859   SmallVector<MachineInstr *, 4> PrevInsts;
860   unsigned MaxIter = PrologBBs.size() - 1;
861   for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
862     // Add branches to the prolog that go to the corresponding
863     // epilog, and the fall-thru prolog/kernel block.
864     MachineBasicBlock *Prolog = PrologBBs[j];
865     MachineBasicBlock *Epilog = EpilogBBs[i];
866 
867     SmallVector<MachineOperand, 4> Cond;
868     Optional<bool> StaticallyGreater =
869         LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
870     unsigned numAdded = 0;
871     if (!StaticallyGreater.hasValue()) {
872       Prolog->addSuccessor(Epilog);
873       numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
874     } else if (*StaticallyGreater == false) {
875       Prolog->addSuccessor(Epilog);
876       Prolog->removeSuccessor(LastPro);
877       LastEpi->removeSuccessor(Epilog);
878       numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
879       removePhis(Epilog, LastEpi);
880       // Remove the blocks that are no longer referenced.
881       if (LastPro != LastEpi) {
882         LastEpi->clear();
883         LastEpi->eraseFromParent();
884       }
885       if (LastPro == KernelBB) {
886         LoopInfo->disposed();
887         NewKernel = nullptr;
888       }
889       LastPro->clear();
890       LastPro->eraseFromParent();
891     } else {
892       numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
893       removePhis(Epilog, Prolog);
894     }
895     LastPro = Prolog;
896     LastEpi = Epilog;
897     for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
898                                                    E = Prolog->instr_rend();
899          I != E && numAdded > 0; ++I, --numAdded)
900       updateInstruction(&*I, false, j, 0, VRMap);
901   }
902 
903   if (NewKernel) {
904     LoopInfo->setPreheader(PrologBBs[MaxIter]);
905     LoopInfo->adjustTripCount(-(MaxIter + 1));
906   }
907 }
908 
909 /// Return true if we can compute the amount the instruction changes
910 /// during each iteration. Set Delta to the amount of the change.
911 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
912   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
913   const MachineOperand *BaseOp;
914   int64_t Offset;
915   bool OffsetIsScalable;
916   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
917     return false;
918 
919   // FIXME: This algorithm assumes instructions have fixed-size offsets.
920   if (OffsetIsScalable)
921     return false;
922 
923   if (!BaseOp->isReg())
924     return false;
925 
926   Register BaseReg = BaseOp->getReg();
927 
928   MachineRegisterInfo &MRI = MF.getRegInfo();
929   // Check if there is a Phi. If so, get the definition in the loop.
930   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
931   if (BaseDef && BaseDef->isPHI()) {
932     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
933     BaseDef = MRI.getVRegDef(BaseReg);
934   }
935   if (!BaseDef)
936     return false;
937 
938   int D = 0;
939   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
940     return false;
941 
942   Delta = D;
943   return true;
944 }
945 
946 /// Update the memory operand with a new offset when the pipeliner
947 /// generates a new copy of the instruction that refers to a
948 /// different memory location.
949 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
950                                                MachineInstr &OldMI,
951                                                unsigned Num) {
952   if (Num == 0)
953     return;
954   // If the instruction has memory operands, then adjust the offset
955   // when the instruction appears in different stages.
956   if (NewMI.memoperands_empty())
957     return;
958   SmallVector<MachineMemOperand *, 2> NewMMOs;
959   for (MachineMemOperand *MMO : NewMI.memoperands()) {
960     // TODO: Figure out whether isAtomic is really necessary (see D57601).
961     if (MMO->isVolatile() || MMO->isAtomic() ||
962         (MMO->isInvariant() && MMO->isDereferenceable()) ||
963         (!MMO->getValue())) {
964       NewMMOs.push_back(MMO);
965       continue;
966     }
967     unsigned Delta;
968     if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
969       int64_t AdjOffset = Delta * Num;
970       NewMMOs.push_back(
971           MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
972     } else {
973       NewMMOs.push_back(
974           MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
975     }
976   }
977   NewMI.setMemRefs(MF, NewMMOs);
978 }
979 
980 /// Clone the instruction for the new pipelined loop and update the
981 /// memory operands, if needed.
982 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
983                                                  unsigned CurStageNum,
984                                                  unsigned InstStageNum) {
985   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
986   // Check for tied operands in inline asm instructions. This should be handled
987   // elsewhere, but I'm not sure of the best solution.
988   if (OldMI->isInlineAsm())
989     for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
990       const auto &MO = OldMI->getOperand(i);
991       if (MO.isReg() && MO.isUse())
992         break;
993       unsigned UseIdx;
994       if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
995         NewMI->tieOperands(i, UseIdx);
996     }
997   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
998   return NewMI;
999 }
1000 
1001 /// Clone the instruction for the new pipelined loop. If needed, this
1002 /// function updates the instruction using the values saved in the
1003 /// InstrChanges structure.
1004 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1005     MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1006   MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1007   auto It = InstrChanges.find(OldMI);
1008   if (It != InstrChanges.end()) {
1009     std::pair<unsigned, int64_t> RegAndOffset = It->second;
1010     unsigned BasePos, OffsetPos;
1011     if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1012       return nullptr;
1013     int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1014     MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1015     if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1016       NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1017     NewMI->getOperand(OffsetPos).setImm(NewOffset);
1018   }
1019   updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1020   return NewMI;
1021 }
1022 
1023 /// Update the machine instruction with new virtual registers.  This
1024 /// function may change the defintions and/or uses.
1025 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1026                                                bool LastDef,
1027                                                unsigned CurStageNum,
1028                                                unsigned InstrStageNum,
1029                                                ValueMapTy *VRMap) {
1030   for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
1031     MachineOperand &MO = NewMI->getOperand(i);
1032     if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
1033       continue;
1034     Register reg = MO.getReg();
1035     if (MO.isDef()) {
1036       // Create a new virtual register for the definition.
1037       const TargetRegisterClass *RC = MRI.getRegClass(reg);
1038       Register NewReg = MRI.createVirtualRegister(RC);
1039       MO.setReg(NewReg);
1040       VRMap[CurStageNum][reg] = NewReg;
1041       if (LastDef)
1042         replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1043     } else if (MO.isUse()) {
1044       MachineInstr *Def = MRI.getVRegDef(reg);
1045       // Compute the stage that contains the last definition for instruction.
1046       int DefStageNum = Schedule.getStage(Def);
1047       unsigned StageNum = CurStageNum;
1048       if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1049         // Compute the difference in stages between the defintion and the use.
1050         unsigned StageDiff = (InstrStageNum - DefStageNum);
1051         // Make an adjustment to get the last definition.
1052         StageNum -= StageDiff;
1053       }
1054       if (VRMap[StageNum].count(reg))
1055         MO.setReg(VRMap[StageNum][reg]);
1056     }
1057   }
1058 }
1059 
1060 /// Return the instruction in the loop that defines the register.
1061 /// If the definition is a Phi, then follow the Phi operand to
1062 /// the instruction in the loop.
1063 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1064   SmallPtrSet<MachineInstr *, 8> Visited;
1065   MachineInstr *Def = MRI.getVRegDef(Reg);
1066   while (Def->isPHI()) {
1067     if (!Visited.insert(Def).second)
1068       break;
1069     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1070       if (Def->getOperand(i + 1).getMBB() == BB) {
1071         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1072         break;
1073       }
1074   }
1075   return Def;
1076 }
1077 
1078 /// Return the new name for the value from the previous stage.
1079 unsigned ModuloScheduleExpander::getPrevMapVal(
1080     unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1081     ValueMapTy *VRMap, MachineBasicBlock *BB) {
1082   unsigned PrevVal = 0;
1083   if (StageNum > PhiStage) {
1084     MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1085     if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1086       // The name is defined in the previous stage.
1087       PrevVal = VRMap[StageNum - 1][LoopVal];
1088     else if (VRMap[StageNum].count(LoopVal))
1089       // The previous name is defined in the current stage when the instruction
1090       // order is swapped.
1091       PrevVal = VRMap[StageNum][LoopVal];
1092     else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1093       // The loop value hasn't yet been scheduled.
1094       PrevVal = LoopVal;
1095     else if (StageNum == PhiStage + 1)
1096       // The loop value is another phi, which has not been scheduled.
1097       PrevVal = getInitPhiReg(*LoopInst, BB);
1098     else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1099       // The loop value is another phi, which has been scheduled.
1100       PrevVal =
1101           getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1102                         LoopStage, VRMap, BB);
1103   }
1104   return PrevVal;
1105 }
1106 
1107 /// Rewrite the Phi values in the specified block to use the mappings
1108 /// from the initial operand. Once the Phi is scheduled, we switch
1109 /// to using the loop value instead of the Phi value, so those names
1110 /// do not need to be rewritten.
1111 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1112                                               unsigned StageNum,
1113                                               ValueMapTy *VRMap,
1114                                               InstrMapTy &InstrMap) {
1115   for (auto &PHI : BB->phis()) {
1116     unsigned InitVal = 0;
1117     unsigned LoopVal = 0;
1118     getPhiRegs(PHI, BB, InitVal, LoopVal);
1119     Register PhiDef = PHI.getOperand(0).getReg();
1120 
1121     unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1122     unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1123     unsigned NumPhis = getStagesForPhi(PhiDef);
1124     if (NumPhis > StageNum)
1125       NumPhis = StageNum;
1126     for (unsigned np = 0; np <= NumPhis; ++np) {
1127       unsigned NewVal =
1128           getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1129       if (!NewVal)
1130         NewVal = InitVal;
1131       rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1132                             NewVal);
1133     }
1134   }
1135 }
1136 
1137 /// Rewrite a previously scheduled instruction to use the register value
1138 /// from the new instruction. Make sure the instruction occurs in the
1139 /// basic block, and we don't change the uses in the new instruction.
1140 void ModuloScheduleExpander::rewriteScheduledInstr(
1141     MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1142     unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1143     unsigned PrevReg) {
1144   bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1145   int StagePhi = Schedule.getStage(Phi) + PhiNum;
1146   // Rewrite uses that have been scheduled already to use the new
1147   // Phi register.
1148   for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
1149                                          EI = MRI.use_end();
1150        UI != EI;) {
1151     MachineOperand &UseOp = *UI;
1152     MachineInstr *UseMI = UseOp.getParent();
1153     ++UI;
1154     if (UseMI->getParent() != BB)
1155       continue;
1156     if (UseMI->isPHI()) {
1157       if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1158         continue;
1159       if (getLoopPhiReg(*UseMI, BB) != OldReg)
1160         continue;
1161     }
1162     InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1163     assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1164     MachineInstr *OrigMI = OrigInstr->second;
1165     int StageSched = Schedule.getStage(OrigMI);
1166     int CycleSched = Schedule.getCycle(OrigMI);
1167     unsigned ReplaceReg = 0;
1168     // This is the stage for the scheduled instruction.
1169     if (StagePhi == StageSched && Phi->isPHI()) {
1170       int CyclePhi = Schedule.getCycle(Phi);
1171       if (PrevReg && InProlog)
1172         ReplaceReg = PrevReg;
1173       else if (PrevReg && !isLoopCarried(*Phi) &&
1174                (CyclePhi <= CycleSched || OrigMI->isPHI()))
1175         ReplaceReg = PrevReg;
1176       else
1177         ReplaceReg = NewReg;
1178     }
1179     // The scheduled instruction occurs before the scheduled Phi, and the
1180     // Phi is not loop carried.
1181     if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1182       ReplaceReg = NewReg;
1183     if (StagePhi > StageSched && Phi->isPHI())
1184       ReplaceReg = NewReg;
1185     if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1186       ReplaceReg = NewReg;
1187     if (ReplaceReg) {
1188       MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1189       UseOp.setReg(ReplaceReg);
1190     }
1191   }
1192 }
1193 
1194 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1195   if (!Phi.isPHI())
1196     return false;
1197   int DefCycle = Schedule.getCycle(&Phi);
1198   int DefStage = Schedule.getStage(&Phi);
1199 
1200   unsigned InitVal = 0;
1201   unsigned LoopVal = 0;
1202   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1203   MachineInstr *Use = MRI.getVRegDef(LoopVal);
1204   if (!Use || Use->isPHI())
1205     return true;
1206   int LoopCycle = Schedule.getCycle(Use);
1207   int LoopStage = Schedule.getStage(Use);
1208   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 // PeelingModuloScheduleExpander implementation
1213 //===----------------------------------------------------------------------===//
1214 // This is a reimplementation of ModuloScheduleExpander that works by creating
1215 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1216 //===----------------------------------------------------------------------===//
1217 
1218 namespace {
1219 // Remove any dead phis in MBB. Dead phis either have only one block as input
1220 // (in which case they are the identity) or have no uses.
1221 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1222                        LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1223   bool Changed = true;
1224   while (Changed) {
1225     Changed = false;
1226     for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
1227       MachineInstr &MI = *I++;
1228       assert(MI.isPHI());
1229       if (MRI.use_empty(MI.getOperand(0).getReg())) {
1230         if (LIS)
1231           LIS->RemoveMachineInstrFromMaps(MI);
1232         MI.eraseFromParent();
1233         Changed = true;
1234       } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1235         MRI.constrainRegClass(MI.getOperand(1).getReg(),
1236                               MRI.getRegClass(MI.getOperand(0).getReg()));
1237         MRI.replaceRegWith(MI.getOperand(0).getReg(),
1238                            MI.getOperand(1).getReg());
1239         if (LIS)
1240           LIS->RemoveMachineInstrFromMaps(MI);
1241         MI.eraseFromParent();
1242         Changed = true;
1243       }
1244     }
1245   }
1246 }
1247 
1248 /// Rewrites the kernel block in-place to adhere to the given schedule.
1249 /// KernelRewriter holds all of the state required to perform the rewriting.
1250 class KernelRewriter {
1251   ModuloSchedule &S;
1252   MachineBasicBlock *BB;
1253   MachineBasicBlock *PreheaderBB, *ExitBB;
1254   MachineRegisterInfo &MRI;
1255   const TargetInstrInfo *TII;
1256   LiveIntervals *LIS;
1257 
1258   // Map from register class to canonical undef register for that class.
1259   DenseMap<const TargetRegisterClass *, Register> Undefs;
1260   // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1261   // this map is only used when InitReg is non-undef.
1262   DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1263   // Map from LoopReg to phi register where the InitReg is undef.
1264   DenseMap<Register, Register> UndefPhis;
1265 
1266   // Reg is used by MI. Return the new register MI should use to adhere to the
1267   // schedule. Insert phis as necessary.
1268   Register remapUse(Register Reg, MachineInstr &MI);
1269   // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1270   // If InitReg is not given it is chosen arbitrarily. It will either be undef
1271   // or will be chosen so as to share another phi.
1272   Register phi(Register LoopReg, Optional<Register> InitReg = {},
1273                const TargetRegisterClass *RC = nullptr);
1274   // Create an undef register of the given register class.
1275   Register undef(const TargetRegisterClass *RC);
1276 
1277 public:
1278   KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1279                  LiveIntervals *LIS = nullptr);
1280   void rewrite();
1281 };
1282 } // namespace
1283 
1284 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1285                                MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1286     : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1287       ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1288       TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1289   PreheaderBB = *BB->pred_begin();
1290   if (PreheaderBB == BB)
1291     PreheaderBB = *std::next(BB->pred_begin());
1292 }
1293 
1294 void KernelRewriter::rewrite() {
1295   // Rearrange the loop to be in schedule order. Note that the schedule may
1296   // contain instructions that are not owned by the loop block (InstrChanges and
1297   // friends), so we gracefully handle unowned instructions and delete any
1298   // instructions that weren't in the schedule.
1299   auto InsertPt = BB->getFirstTerminator();
1300   MachineInstr *FirstMI = nullptr;
1301   for (MachineInstr *MI : S.getInstructions()) {
1302     if (MI->isPHI())
1303       continue;
1304     if (MI->getParent())
1305       MI->removeFromParent();
1306     BB->insert(InsertPt, MI);
1307     if (!FirstMI)
1308       FirstMI = MI;
1309   }
1310   assert(FirstMI && "Failed to find first MI in schedule");
1311 
1312   // At this point all of the scheduled instructions are between FirstMI
1313   // and the end of the block. Kill from the first non-phi to FirstMI.
1314   for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1315     if (LIS)
1316       LIS->RemoveMachineInstrFromMaps(*I);
1317     (I++)->eraseFromParent();
1318   }
1319 
1320   // Now remap every instruction in the loop.
1321   for (MachineInstr &MI : *BB) {
1322     if (MI.isPHI() || MI.isTerminator())
1323       continue;
1324     for (MachineOperand &MO : MI.uses()) {
1325       if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1326         continue;
1327       Register Reg = remapUse(MO.getReg(), MI);
1328       MO.setReg(Reg);
1329     }
1330   }
1331   EliminateDeadPhis(BB, MRI, LIS);
1332 
1333   // Ensure a phi exists for all instructions that are either referenced by
1334   // an illegal phi or by an instruction outside the loop. This allows us to
1335   // treat remaps of these values the same as "normal" values that come from
1336   // loop-carried phis.
1337   for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1338     if (MI->isPHI()) {
1339       Register R = MI->getOperand(0).getReg();
1340       phi(R);
1341       continue;
1342     }
1343 
1344     for (MachineOperand &Def : MI->defs()) {
1345       for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1346         if (MI.getParent() != BB) {
1347           phi(Def.getReg());
1348           break;
1349         }
1350       }
1351     }
1352   }
1353 }
1354 
1355 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1356   MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1357   if (!Producer)
1358     return Reg;
1359 
1360   int ConsumerStage = S.getStage(&MI);
1361   if (!Producer->isPHI()) {
1362     // Non-phi producers are simple to remap. Insert as many phis as the
1363     // difference between the consumer and producer stages.
1364     if (Producer->getParent() != BB)
1365       // Producer was not inside the loop. Use the register as-is.
1366       return Reg;
1367     int ProducerStage = S.getStage(Producer);
1368     assert(ConsumerStage != -1 &&
1369            "In-loop consumer should always be scheduled!");
1370     assert(ConsumerStage >= ProducerStage);
1371     unsigned StageDiff = ConsumerStage - ProducerStage;
1372 
1373     for (unsigned I = 0; I < StageDiff; ++I)
1374       Reg = phi(Reg);
1375     return Reg;
1376   }
1377 
1378   // First, dive through the phi chain to find the defaults for the generated
1379   // phis.
1380   SmallVector<Optional<Register>, 4> Defaults;
1381   Register LoopReg = Reg;
1382   auto LoopProducer = Producer;
1383   while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1384     LoopReg = getLoopPhiReg(*LoopProducer, BB);
1385     Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1386     LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1387     assert(LoopProducer);
1388   }
1389   int LoopProducerStage = S.getStage(LoopProducer);
1390 
1391   Optional<Register> IllegalPhiDefault;
1392 
1393   if (LoopProducerStage == -1) {
1394     // Do nothing.
1395   } else if (LoopProducerStage > ConsumerStage) {
1396     // This schedule is only representable if ProducerStage == ConsumerStage+1.
1397     // In addition, Consumer's cycle must be scheduled after Producer in the
1398     // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1399     // functions.
1400 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1401     int LoopProducerCycle = S.getCycle(LoopProducer);
1402     int ConsumerCycle = S.getCycle(&MI);
1403 #endif
1404     assert(LoopProducerCycle <= ConsumerCycle);
1405     assert(LoopProducerStage == ConsumerStage + 1);
1406     // Peel off the first phi from Defaults and insert a phi between producer
1407     // and consumer. This phi will not be at the front of the block so we
1408     // consider it illegal. It will only exist during the rewrite process; it
1409     // needs to exist while we peel off prologs because these could take the
1410     // default value. After that we can replace all uses with the loop producer
1411     // value.
1412     IllegalPhiDefault = Defaults.front();
1413     Defaults.erase(Defaults.begin());
1414   } else {
1415     assert(ConsumerStage >= LoopProducerStage);
1416     int StageDiff = ConsumerStage - LoopProducerStage;
1417     if (StageDiff > 0) {
1418       LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1419                         << " to " << (Defaults.size() + StageDiff) << "\n");
1420       // If we need more phis than we have defaults for, pad out with undefs for
1421       // the earliest phis, which are at the end of the defaults chain (the
1422       // chain is in reverse order).
1423       Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
1424                                                        ? Optional<Register>()
1425                                                        : Defaults.back());
1426     }
1427   }
1428 
1429   // Now we know the number of stages to jump back, insert the phi chain.
1430   auto DefaultI = Defaults.rbegin();
1431   while (DefaultI != Defaults.rend())
1432     LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1433 
1434   if (IllegalPhiDefault.hasValue()) {
1435     // The consumer optionally consumes LoopProducer in the same iteration
1436     // (because the producer is scheduled at an earlier cycle than the consumer)
1437     // or the initial value. To facilitate this we create an illegal block here
1438     // by embedding a phi in the middle of the block. We will fix this up
1439     // immediately prior to pruning.
1440     auto RC = MRI.getRegClass(Reg);
1441     Register R = MRI.createVirtualRegister(RC);
1442     MachineInstr *IllegalPhi =
1443         BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1444             .addReg(IllegalPhiDefault.getValue())
1445             .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1446             .addReg(LoopReg)
1447             .addMBB(BB); // Block choice is arbitrary and has no effect.
1448     // Illegal phi should belong to the producer stage so that it can be
1449     // filtered correctly during peeling.
1450     S.setStage(IllegalPhi, LoopProducerStage);
1451     return R;
1452   }
1453 
1454   return LoopReg;
1455 }
1456 
1457 Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
1458                              const TargetRegisterClass *RC) {
1459   // If the init register is not undef, try and find an existing phi.
1460   if (InitReg.hasValue()) {
1461     auto I = Phis.find({LoopReg, InitReg.getValue()});
1462     if (I != Phis.end())
1463       return I->second;
1464   } else {
1465     for (auto &KV : Phis) {
1466       if (KV.first.first == LoopReg)
1467         return KV.second;
1468     }
1469   }
1470 
1471   // InitReg is either undef or no existing phi takes InitReg as input. Try and
1472   // find a phi that takes undef as input.
1473   auto I = UndefPhis.find(LoopReg);
1474   if (I != UndefPhis.end()) {
1475     Register R = I->second;
1476     if (!InitReg.hasValue())
1477       // Found a phi taking undef as input, and this input is undef so return
1478       // without any more changes.
1479       return R;
1480     // Found a phi taking undef as input, so rewrite it to take InitReg.
1481     MachineInstr *MI = MRI.getVRegDef(R);
1482     MI->getOperand(1).setReg(InitReg.getValue());
1483     Phis.insert({{LoopReg, InitReg.getValue()}, R});
1484     MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
1485     UndefPhis.erase(I);
1486     return R;
1487   }
1488 
1489   // Failed to find any existing phi to reuse, so create a new one.
1490   if (!RC)
1491     RC = MRI.getRegClass(LoopReg);
1492   Register R = MRI.createVirtualRegister(RC);
1493   if (InitReg.hasValue())
1494     MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1495   BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1496       .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
1497       .addMBB(PreheaderBB)
1498       .addReg(LoopReg)
1499       .addMBB(BB);
1500   if (!InitReg.hasValue())
1501     UndefPhis[LoopReg] = R;
1502   else
1503     Phis[{LoopReg, *InitReg}] = R;
1504   return R;
1505 }
1506 
1507 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1508   Register &R = Undefs[RC];
1509   if (R == 0) {
1510     // Create an IMPLICIT_DEF that defines this register if we need it.
1511     // All uses of this should be removed by the time we have finished unrolling
1512     // prologs and epilogs.
1513     R = MRI.createVirtualRegister(RC);
1514     auto *InsertBB = &PreheaderBB->getParent()->front();
1515     BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1516             TII->get(TargetOpcode::IMPLICIT_DEF), R);
1517   }
1518   return R;
1519 }
1520 
1521 namespace {
1522 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1523 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1524 /// through and defaults for these phis.
1525 class KernelOperandInfo {
1526   MachineBasicBlock *BB;
1527   MachineRegisterInfo &MRI;
1528   SmallVector<Register, 4> PhiDefaults;
1529   MachineOperand *Source;
1530   MachineOperand *Target;
1531 
1532 public:
1533   KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1534                     const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1535       : MRI(MRI) {
1536     Source = MO;
1537     BB = MO->getParent()->getParent();
1538     while (isRegInLoop(MO)) {
1539       MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1540       if (MI->isFullCopy()) {
1541         MO = &MI->getOperand(1);
1542         continue;
1543       }
1544       if (!MI->isPHI())
1545         break;
1546       // If this is an illegal phi, don't count it in distance.
1547       if (IllegalPhis.count(MI)) {
1548         MO = &MI->getOperand(3);
1549         continue;
1550       }
1551 
1552       Register Default = getInitPhiReg(*MI, BB);
1553       MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1554                                             : &MI->getOperand(3);
1555       PhiDefaults.push_back(Default);
1556     }
1557     Target = MO;
1558   }
1559 
1560   bool operator==(const KernelOperandInfo &Other) const {
1561     return PhiDefaults.size() == Other.PhiDefaults.size();
1562   }
1563 
1564   void print(raw_ostream &OS) const {
1565     OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1566        << *Source->getParent();
1567   }
1568 
1569 private:
1570   bool isRegInLoop(MachineOperand *MO) {
1571     return MO->isReg() && MO->getReg().isVirtual() &&
1572            MRI.getVRegDef(MO->getReg())->getParent() == BB;
1573   }
1574 };
1575 } // namespace
1576 
1577 MachineBasicBlock *
1578 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1579   MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1580   if (LPD == LPD_Front)
1581     PeeledFront.push_back(NewBB);
1582   else
1583     PeeledBack.push_front(NewBB);
1584   for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1585        ++I, ++NI) {
1586     CanonicalMIs[&*I] = &*I;
1587     CanonicalMIs[&*NI] = &*I;
1588     BlockMIs[{NewBB, &*I}] = &*NI;
1589     BlockMIs[{BB, &*I}] = &*I;
1590   }
1591   return NewBB;
1592 }
1593 
1594 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1595                                                        int MinStage) {
1596   for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1597        I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1598     MachineInstr *MI = &*I++;
1599     int Stage = getStage(MI);
1600     if (Stage == -1 || Stage >= MinStage)
1601       continue;
1602 
1603     for (MachineOperand &DefMO : MI->defs()) {
1604       SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1605       for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1606         // Only PHIs can use values from this block by construction.
1607         // Match with the equivalent PHI in B.
1608         assert(UseMI.isPHI());
1609         Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1610                                                MI->getParent());
1611         Subs.emplace_back(&UseMI, Reg);
1612       }
1613       for (auto &Sub : Subs)
1614         Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1615                                       *MRI.getTargetRegisterInfo());
1616     }
1617     if (LIS)
1618       LIS->RemoveMachineInstrFromMaps(*MI);
1619     MI->eraseFromParent();
1620   }
1621 }
1622 
1623 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1624     MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1625   auto InsertPt = DestBB->getFirstNonPHI();
1626   DenseMap<Register, Register> Remaps;
1627   for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
1628     MachineInstr *MI = &*I++;
1629     if (MI->isPHI()) {
1630       // This is an illegal PHI. If we move any instructions using an illegal
1631       // PHI, we need to create a legal Phi.
1632       if (getStage(MI) != Stage) {
1633         // The legal Phi is not necessary if the illegal phi's stage
1634         // is being moved.
1635         Register PhiR = MI->getOperand(0).getReg();
1636         auto RC = MRI.getRegClass(PhiR);
1637         Register NR = MRI.createVirtualRegister(RC);
1638         MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1639                                    DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1640                                .addReg(PhiR)
1641                                .addMBB(SourceBB);
1642         BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
1643         CanonicalMIs[NI] = CanonicalMIs[MI];
1644         Remaps[PhiR] = NR;
1645       }
1646     }
1647     if (getStage(MI) != Stage)
1648       continue;
1649     MI->removeFromParent();
1650     DestBB->insert(InsertPt, MI);
1651     auto *KernelMI = CanonicalMIs[MI];
1652     BlockMIs[{DestBB, KernelMI}] = MI;
1653     BlockMIs.erase({SourceBB, KernelMI});
1654   }
1655   SmallVector<MachineInstr *, 4> PhiToDelete;
1656   for (MachineInstr &MI : DestBB->phis()) {
1657     assert(MI.getNumOperands() == 3);
1658     MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1659     // If the instruction referenced by the phi is moved inside the block
1660     // we don't need the phi anymore.
1661     if (getStage(Def) == Stage) {
1662       Register PhiReg = MI.getOperand(0).getReg();
1663       assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1664       MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1665       MI.getOperand(0).setReg(PhiReg);
1666       PhiToDelete.push_back(&MI);
1667     }
1668   }
1669   for (auto *P : PhiToDelete)
1670     P->eraseFromParent();
1671   InsertPt = DestBB->getFirstNonPHI();
1672   // Helper to clone Phi instructions into the destination block. We clone Phi
1673   // greedily to avoid combinatorial explosion of Phi instructions.
1674   auto clonePhi = [&](MachineInstr *Phi) {
1675     MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1676     DestBB->insert(InsertPt, NewMI);
1677     Register OrigR = Phi->getOperand(0).getReg();
1678     Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1679     NewMI->getOperand(0).setReg(R);
1680     NewMI->getOperand(1).setReg(OrigR);
1681     NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1682     Remaps[OrigR] = R;
1683     CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1684     BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1685     PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1686     return R;
1687   };
1688   for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1689     for (MachineOperand &MO : I->uses()) {
1690       if (!MO.isReg())
1691         continue;
1692       if (Remaps.count(MO.getReg()))
1693         MO.setReg(Remaps[MO.getReg()]);
1694       else {
1695         // If we are using a phi from the source block we need to add a new phi
1696         // pointing to the old one.
1697         MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1698         if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1699           Register R = clonePhi(Use);
1700           MO.setReg(R);
1701         }
1702       }
1703     }
1704   }
1705 }
1706 
1707 Register
1708 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1709                                                   MachineInstr *Phi) {
1710   unsigned distance = PhiNodeLoopIteration[Phi];
1711   MachineInstr *CanonicalUse = CanonicalPhi;
1712   Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1713   for (unsigned I = 0; I < distance; ++I) {
1714     assert(CanonicalUse->isPHI());
1715     assert(CanonicalUse->getNumOperands() == 5);
1716     unsigned LoopRegIdx = 3, InitRegIdx = 1;
1717     if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1718       std::swap(LoopRegIdx, InitRegIdx);
1719     CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1720     CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1721   }
1722   return CanonicalUseReg;
1723 }
1724 
1725 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1726   BitVector LS(Schedule.getNumStages(), true);
1727   BitVector AS(Schedule.getNumStages(), true);
1728   LiveStages[BB] = LS;
1729   AvailableStages[BB] = AS;
1730 
1731   // Peel out the prologs.
1732   LS.reset();
1733   for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1734     LS[I] = 1;
1735     Prologs.push_back(peelKernel(LPD_Front));
1736     LiveStages[Prologs.back()] = LS;
1737     AvailableStages[Prologs.back()] = LS;
1738   }
1739 
1740   // Create a block that will end up as the new loop exiting block (dominated by
1741   // all prologs and epilogs). It will only contain PHIs, in the same order as
1742   // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1743   // that the exiting block is a (sub) clone of BB. This in turn gives us the
1744   // property that any value deffed in BB but used outside of BB is used by a
1745   // PHI in the exiting block.
1746   MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1747   EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1748   // Push out the epilogs, again in reverse order.
1749   // We can't assume anything about the minumum loop trip count at this point,
1750   // so emit a fairly complex epilog.
1751 
1752   // We first peel number of stages minus one epilogue. Then we remove dead
1753   // stages and reorder instructions based on their stage. If we have 3 stages
1754   // we generate first:
1755   // E0[3, 2, 1]
1756   // E1[3', 2']
1757   // E2[3'']
1758   // And then we move instructions based on their stages to have:
1759   // E0[3]
1760   // E1[2, 3']
1761   // E2[1, 2', 3'']
1762   // The transformation is legal because we only move instructions past
1763   // instructions of a previous loop iteration.
1764   for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1765     Epilogs.push_back(peelKernel(LPD_Back));
1766     MachineBasicBlock *B = Epilogs.back();
1767     filterInstructions(B, Schedule.getNumStages() - I);
1768     // Keep track at which iteration each phi belongs to. We need it to know
1769     // what version of the variable to use during prologue/epilogue stitching.
1770     EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1771     for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
1772       PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
1773   }
1774   for (size_t I = 0; I < Epilogs.size(); I++) {
1775     LS.reset();
1776     for (size_t J = I; J < Epilogs.size(); J++) {
1777       int Iteration = J;
1778       unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1779       // Move stage one block at a time so that Phi nodes are updated correctly.
1780       for (size_t K = Iteration; K > I; K--)
1781         moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1782       LS[Stage] = 1;
1783     }
1784     LiveStages[Epilogs[I]] = LS;
1785     AvailableStages[Epilogs[I]] = AS;
1786   }
1787 
1788   // Now we've defined all the prolog and epilog blocks as a fallthrough
1789   // sequence, add the edges that will be followed if the loop trip count is
1790   // lower than the number of stages (connecting prologs directly with epilogs).
1791   auto PI = Prologs.begin();
1792   auto EI = Epilogs.begin();
1793   assert(Prologs.size() == Epilogs.size());
1794   for (; PI != Prologs.end(); ++PI, ++EI) {
1795     MachineBasicBlock *Pred = *(*EI)->pred_begin();
1796     (*PI)->addSuccessor(*EI);
1797     for (MachineInstr &MI : (*EI)->phis()) {
1798       Register Reg = MI.getOperand(1).getReg();
1799       MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1800       if (Use && Use->getParent() == Pred) {
1801         MachineInstr *CanonicalUse = CanonicalMIs[Use];
1802         if (CanonicalUse->isPHI()) {
1803           // If the use comes from a phi we need to skip as many phi as the
1804           // distance between the epilogue and the kernel. Trace through the phi
1805           // chain to find the right value.
1806           Reg = getPhiCanonicalReg(CanonicalUse, Use);
1807         }
1808         Reg = getEquivalentRegisterIn(Reg, *PI);
1809       }
1810       MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1811       MI.addOperand(MachineOperand::CreateMBB(*PI));
1812     }
1813   }
1814 
1815   // Create a list of all blocks in order.
1816   SmallVector<MachineBasicBlock *, 8> Blocks;
1817   llvm::copy(PeeledFront, std::back_inserter(Blocks));
1818   Blocks.push_back(BB);
1819   llvm::copy(PeeledBack, std::back_inserter(Blocks));
1820 
1821   // Iterate in reverse order over all instructions, remapping as we go.
1822   for (MachineBasicBlock *B : reverse(Blocks)) {
1823     for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
1824          I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1825       MachineInstr *MI = &*I++;
1826       rewriteUsesOf(MI);
1827     }
1828   }
1829   for (auto *MI : IllegalPhisToDelete) {
1830     if (LIS)
1831       LIS->RemoveMachineInstrFromMaps(*MI);
1832     MI->eraseFromParent();
1833   }
1834   IllegalPhisToDelete.clear();
1835 
1836   // Now all remapping has been done, we're free to optimize the generated code.
1837   for (MachineBasicBlock *B : reverse(Blocks))
1838     EliminateDeadPhis(B, MRI, LIS);
1839   EliminateDeadPhis(ExitingBB, MRI, LIS);
1840 }
1841 
1842 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1843   MachineFunction &MF = *BB->getParent();
1844   MachineBasicBlock *Exit = *BB->succ_begin();
1845   if (Exit == BB)
1846     Exit = *std::next(BB->succ_begin());
1847 
1848   MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1849   MF.insert(std::next(BB->getIterator()), NewBB);
1850 
1851   // Clone all phis in BB into NewBB and rewrite.
1852   for (MachineInstr &MI : BB->phis()) {
1853     auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1854     Register OldR = MI.getOperand(3).getReg();
1855     Register R = MRI.createVirtualRegister(RC);
1856     SmallVector<MachineInstr *, 4> Uses;
1857     for (MachineInstr &Use : MRI.use_instructions(OldR))
1858       if (Use.getParent() != BB)
1859         Uses.push_back(&Use);
1860     for (MachineInstr *Use : Uses)
1861       Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1862                               *MRI.getTargetRegisterInfo());
1863     MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1864         .addReg(OldR)
1865         .addMBB(BB);
1866     BlockMIs[{NewBB, &MI}] = NI;
1867     CanonicalMIs[NI] = &MI;
1868   }
1869   BB->replaceSuccessor(Exit, NewBB);
1870   Exit->replacePhiUsesWith(BB, NewBB);
1871   NewBB->addSuccessor(Exit);
1872 
1873   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1874   SmallVector<MachineOperand, 4> Cond;
1875   bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1876   (void)CanAnalyzeBr;
1877   assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1878   TII->removeBranch(*BB);
1879   TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1880                     Cond, DebugLoc());
1881   TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1882   return NewBB;
1883 }
1884 
1885 Register
1886 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1887                                                        MachineBasicBlock *BB) {
1888   MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1889   unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1890   return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1891 }
1892 
1893 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1894   if (MI->isPHI()) {
1895     // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1896     // and it is produced by this block.
1897     Register PhiR = MI->getOperand(0).getReg();
1898     Register R = MI->getOperand(3).getReg();
1899     int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1900     if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1901       R = MI->getOperand(1).getReg();
1902     MRI.setRegClass(R, MRI.getRegClass(PhiR));
1903     MRI.replaceRegWith(PhiR, R);
1904     // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1905     // later to figure out how to remap registers.
1906     MI->getOperand(0).setReg(PhiR);
1907     IllegalPhisToDelete.push_back(MI);
1908     return;
1909   }
1910 
1911   int Stage = getStage(MI);
1912   if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1913       LiveStages[MI->getParent()].test(Stage))
1914     // Instruction is live, no rewriting to do.
1915     return;
1916 
1917   for (MachineOperand &DefMO : MI->defs()) {
1918     SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1919     for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1920       // Only PHIs can use values from this block by construction.
1921       // Match with the equivalent PHI in B.
1922       assert(UseMI.isPHI());
1923       Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1924                                              MI->getParent());
1925       Subs.emplace_back(&UseMI, Reg);
1926     }
1927     for (auto &Sub : Subs)
1928       Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1929                                     *MRI.getTargetRegisterInfo());
1930   }
1931   if (LIS)
1932     LIS->RemoveMachineInstrFromMaps(*MI);
1933   MI->eraseFromParent();
1934 }
1935 
1936 void PeelingModuloScheduleExpander::fixupBranches() {
1937   // Work outwards from the kernel.
1938   bool KernelDisposed = false;
1939   int TC = Schedule.getNumStages() - 1;
1940   for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1941        ++PI, ++EI, --TC) {
1942     MachineBasicBlock *Prolog = *PI;
1943     MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1944     MachineBasicBlock *Epilog = *EI;
1945     SmallVector<MachineOperand, 4> Cond;
1946     TII->removeBranch(*Prolog);
1947     Optional<bool> StaticallyGreater =
1948         LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1949     if (!StaticallyGreater.hasValue()) {
1950       LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1951       // Dynamically branch based on Cond.
1952       TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1953     } else if (*StaticallyGreater == false) {
1954       LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1955       // Prolog never falls through; branch to epilog and orphan interior
1956       // blocks. Leave it to unreachable-block-elim to clean up.
1957       Prolog->removeSuccessor(Fallthrough);
1958       for (MachineInstr &P : Fallthrough->phis()) {
1959         P.RemoveOperand(2);
1960         P.RemoveOperand(1);
1961       }
1962       TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1963       KernelDisposed = true;
1964     } else {
1965       LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1966       // Prolog always falls through; remove incoming values in epilog.
1967       Prolog->removeSuccessor(Epilog);
1968       for (MachineInstr &P : Epilog->phis()) {
1969         P.RemoveOperand(4);
1970         P.RemoveOperand(3);
1971       }
1972     }
1973   }
1974 
1975   if (!KernelDisposed) {
1976     LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1977     LoopInfo->setPreheader(Prologs.back());
1978   } else {
1979     LoopInfo->disposed();
1980   }
1981 }
1982 
1983 void PeelingModuloScheduleExpander::rewriteKernel() {
1984   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1985   KR.rewrite();
1986 }
1987 
1988 void PeelingModuloScheduleExpander::expand() {
1989   BB = Schedule.getLoop()->getTopBlock();
1990   Preheader = Schedule.getLoop()->getLoopPreheader();
1991   LLVM_DEBUG(Schedule.dump());
1992   LoopInfo = TII->analyzeLoopForPipelining(BB);
1993   assert(LoopInfo);
1994 
1995   rewriteKernel();
1996   peelPrologAndEpilogs();
1997   fixupBranches();
1998 }
1999 
2000 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2001   BB = Schedule.getLoop()->getTopBlock();
2002   Preheader = Schedule.getLoop()->getLoopPreheader();
2003 
2004   // Dump the schedule before we invalidate and remap all its instructions.
2005   // Stash it in a string so we can print it if we found an error.
2006   std::string ScheduleDump;
2007   raw_string_ostream OS(ScheduleDump);
2008   Schedule.print(OS);
2009   OS.flush();
2010 
2011   // First, run the normal ModuleScheduleExpander. We don't support any
2012   // InstrChanges.
2013   assert(LIS && "Requires LiveIntervals!");
2014   ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2015                              ModuloScheduleExpander::InstrChangesTy());
2016   MSE.expand();
2017   MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2018   if (!ExpandedKernel) {
2019     // The expander optimized away the kernel. We can't do any useful checking.
2020     MSE.cleanup();
2021     return;
2022   }
2023   // Before running the KernelRewriter, re-add BB into the CFG.
2024   Preheader->addSuccessor(BB);
2025 
2026   // Now run the new expansion algorithm.
2027   KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2028   KR.rewrite();
2029   peelPrologAndEpilogs();
2030 
2031   // Collect all illegal phis that the new algorithm created. We'll give these
2032   // to KernelOperandInfo.
2033   SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2034   for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2035     if (NI->isPHI())
2036       IllegalPhis.insert(&*NI);
2037   }
2038 
2039   // Co-iterate across both kernels. We expect them to be identical apart from
2040   // phis and full COPYs (we look through both).
2041   SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2042   auto OI = ExpandedKernel->begin();
2043   auto NI = BB->begin();
2044   for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2045     while (OI->isPHI() || OI->isFullCopy())
2046       ++OI;
2047     while (NI->isPHI() || NI->isFullCopy())
2048       ++NI;
2049     assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2050     // Analyze every operand separately.
2051     for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2052          OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2053       KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2054                         KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2055   }
2056 
2057   bool Failed = false;
2058   for (auto &OldAndNew : KOIs) {
2059     if (OldAndNew.first == OldAndNew.second)
2060       continue;
2061     Failed = true;
2062     errs() << "Modulo kernel validation error: [\n";
2063     errs() << " [golden] ";
2064     OldAndNew.first.print(errs());
2065     errs() << "          ";
2066     OldAndNew.second.print(errs());
2067     errs() << "]\n";
2068   }
2069 
2070   if (Failed) {
2071     errs() << "Golden reference kernel:\n";
2072     ExpandedKernel->print(errs());
2073     errs() << "New kernel:\n";
2074     BB->print(errs());
2075     errs() << ScheduleDump;
2076     report_fatal_error(
2077         "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2078   }
2079 
2080   // Cleanup by removing BB from the CFG again as the original
2081   // ModuloScheduleExpander intended.
2082   Preheader->removeSuccessor(BB);
2083   MSE.cleanup();
2084 }
2085 
2086 //===----------------------------------------------------------------------===//
2087 // ModuloScheduleTestPass implementation
2088 //===----------------------------------------------------------------------===//
2089 // This pass constructs a ModuloSchedule from its module and runs
2090 // ModuloScheduleExpander.
2091 //
2092 // The module is expected to contain a single-block analyzable loop.
2093 // The total order of instructions is taken from the loop as-is.
2094 // Instructions are expected to be annotated with a PostInstrSymbol.
2095 // This PostInstrSymbol must have the following format:
2096 //  "Stage=%d Cycle=%d".
2097 //===----------------------------------------------------------------------===//
2098 
2099 namespace {
2100 class ModuloScheduleTest : public MachineFunctionPass {
2101 public:
2102   static char ID;
2103 
2104   ModuloScheduleTest() : MachineFunctionPass(ID) {
2105     initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2106   }
2107 
2108   bool runOnMachineFunction(MachineFunction &MF) override;
2109   void runOnLoop(MachineFunction &MF, MachineLoop &L);
2110 
2111   void getAnalysisUsage(AnalysisUsage &AU) const override {
2112     AU.addRequired<MachineLoopInfo>();
2113     AU.addRequired<LiveIntervals>();
2114     MachineFunctionPass::getAnalysisUsage(AU);
2115   }
2116 };
2117 } // namespace
2118 
2119 char ModuloScheduleTest::ID = 0;
2120 
2121 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2122                       "Modulo Schedule test pass", false, false)
2123 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2124 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2125 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2126                     "Modulo Schedule test pass", false, false)
2127 
2128 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2129   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2130   for (auto *L : MLI) {
2131     if (L->getTopBlock() != L->getBottomBlock())
2132       continue;
2133     runOnLoop(MF, *L);
2134     return false;
2135   }
2136   return false;
2137 }
2138 
2139 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2140   std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2141   std::pair<StringRef, StringRef> StageTokenAndValue =
2142       getToken(StageAndCycle.first, "-");
2143   std::pair<StringRef, StringRef> CycleTokenAndValue =
2144       getToken(StageAndCycle.second, "-");
2145   if (StageTokenAndValue.first != "Stage" ||
2146       CycleTokenAndValue.first != "_Cycle") {
2147     llvm_unreachable(
2148         "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2149     return;
2150   }
2151 
2152   StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2153   CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2154 
2155   dbgs() << "  Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2156 }
2157 
2158 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2159   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2160   MachineBasicBlock *BB = L.getTopBlock();
2161   dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2162 
2163   DenseMap<MachineInstr *, int> Cycle, Stage;
2164   std::vector<MachineInstr *> Instrs;
2165   for (MachineInstr &MI : *BB) {
2166     if (MI.isTerminator())
2167       continue;
2168     Instrs.push_back(&MI);
2169     if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2170       dbgs() << "Parsing post-instr symbol for " << MI;
2171       parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2172     }
2173   }
2174 
2175   ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2176                     std::move(Stage));
2177   ModuloScheduleExpander MSE(
2178       MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2179   MSE.expand();
2180   MSE.cleanup();
2181 }
2182 
2183 //===----------------------------------------------------------------------===//
2184 // ModuloScheduleTestAnnotater implementation
2185 //===----------------------------------------------------------------------===//
2186 
2187 void ModuloScheduleTestAnnotater::annotate() {
2188   for (MachineInstr *MI : S.getInstructions()) {
2189     SmallVector<char, 16> SV;
2190     raw_svector_ostream OS(SV);
2191     OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2192     MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2193     MI->setPostInstrSymbol(MF, Sym);
2194   }
2195 }
2196